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Chimeric antigen receptor (CAR) T-cells are an emerging therapy for the treatment

of relapsed/refractory B-cell malignancies. While CD19 CAR-T cells have been

FDA-approved, CAR T-cells targeting CD22, as well as dual-targeting CD19/CD22

CAR T-cells, are currently being evaluated in clinical trials. This systematic review

and meta-analysis aimed to evaluate the efficacy and safety of CD22-targeting

CAR T-cell therapies. We searched MEDLINE, EMBASE, Web of Science, and the

Cochrane Central Register of Controlled Trials from inception to March 3rd 2022

for full-length articles and conference abstracts of clinical trials employing CD22-

targeting CAR T-cells in acute lymphocytic leukemia (ALL) and non-Hodgkin’s

lymphoma (NHL). The primary outcome was best complete response (bCR). A

DerSimonian and Laird random-effects model with arcsine transformation was

used to pool outcome proportions. From 1068 references screened, 100 were

included, representing 30 early phase studies with 637 patients, investigating CD22

or CD19/CD22 CAR T-cells. CD22 CAR T-cells had a bCR of 68% [95% CI, 53-81%]

in ALL (n= 116), and 64% [95% CI, 46-81%] in NHL (n= 28) with 74% and 96% of

patients having received anti-CD19 CAR T-cells previously in ALL and NHL studies

respectively. CD19/CD22 CAR T-cells had a bCR rate of 90% [95% CI, 84-95%] in

ALL (n= 297) and 47% [95%CI, 34-61%] in NHL (n= 137). The estimated incidence of

total and severe (grade ≥3) CRS were 87% [95% CI, 80-92%] and 6% [95% CI, 3-9%]

respectively. ICANS and severe ICANS had an estimated incidence of 16% [95% CI,

9-25%] and 3% [95% CI, 1-5%] respectively. Early phase trials of CD22 and CD19/

CD22CAR T-cells show high remission rates in ALL and NHL. Severe CRS or ICANS

were (1)rare and dual-targeting did not increase toxicity. Variability in CAR

construct, dose, and patient factors amongst studies limits comparisons, with

long-term outcomes yet to be reported.

Systematic review registration: https://www.crd.york.ac.uk/prospero, identifier

CRD42020193027.
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Introduction

The treatment of relapsed/refractory (R/R) B-cell malignancies

remains a challenge. Among patients with B-cell acute

lymphoblastic leukemia (B-ALL) who have failed standard

induction chemotherapy, only 45% achieve complete remission

with salvage chemotherapy, and one-year survival is only 26%

(1). Likewise, in diffuse large B-cell lymphoma (DLBCL), patients

with refractory disease have a CR rate of 7% with salvage

chemotherapy and a one-year survival of 28% (2). The emergence

of chimeric antigen receptor (CAR) T-cell immunotherapy, in

which T-cells are genetically engineered to express CARs

targeting specific tumor-associated antigens, has significantly

changed the treatment of these R/R diseases. CD19 CAR T-cells,

the most well-established B-cell antigen target, demonstrated

promising responses in clinical trials, with CR rates of 70-90% in

B-ALL and 50% in certain Non-Hodgkin’s lymphoma (NHL)

patients (3–6). Today, there are four FDA-approved CD19 CAR

T-cell therapies approved for use in NHL (axi-cel, tisa-cel, liso-cel,

and brexu-cel), with brexu-cel now also approved for use in patients

under 25 with ALL (6–14).

Despite these impressive results, around 30% of patients fail to

respond to CD19 CAR T-cells, and 36-57% of patients who achieve

CR relapse within one year (5, 11, 15). In particular, a subset of

relapses are associated with loss of CD19 expression or escape splice

variants on malignant cells, with prior studies finding 16-68% of

relapses to be CD19-negative (11, 15, 16). Alternate CAR targets for

B-cell malignancies are now being explored, including CD22, CD20,

CD79b and BAFF-R (17–23). Among these, CD22 has been the

focus of a large number of clinical trials in recent years, both as a

single target and as part of dual-targeting CD19/CD22 CAR T-cells.

One theoretical advantage of dual-targeting is the prevention of

antigen-negative relapse.

The recent influx of CD22 and CD19/CD22 CAR T-cell therapies

entering clinical trials warrants a systematic review to evaluate their

efficacy and to assess the risk of adverse events that are common in

CAR T-cell therapies, such as cytokine release syndrome (CRS) and

immune effector cell associated neurotoxicity syndrome (ICANS).

There is limited synthesis of clinical trial findings, with the majority

of prior systematic reviews focusing on CD19 CAR T-cells (24–26).

Grigor et al. andYu et al. conducted broader reviews of all CART-cells,

but only included studies up to late 2017 and early 2018, respectively,

andas suchbothonly includeoneCD22CART-cell trial (5, 27).Li et al.

is the only systematic review we identified that focused on CD22 and/

or CD19/CD22 CAR T-cell therapies, however, it only included ten

studies (28). We conducted a preliminary scan and found that a

significant amount of CD22 CAR T-cell clinical trial data is currently

published only in the form of conference abstracts, which were not

included in the review by Li et al. As such, a meta-analysis including

data from abstracts will provide a more comprehensive review of

current findings.

We conducted a systematic review and meta-analysis of CAR T-

cells targeting CD22, alone or in combination with other antigen

targets, to evaluate their efficacy and safety in the treatment of

patients with B-cell malignancies.
Frontiers in Immunology 02
Methods

Registration

This systematic review and meta-analysis was conducted in

accordance with the PRISMA guidelines (details in Supplementary

Materials) (29). The protocol was prospectively registered in

PROSPERO (CRD42020193027), and the full protocol is

published in a peer-reviewed journal (30).
Eligibility criteria, data sources
and search strategy

Interventional studies, with or without a comparator, on CD22

CAR T-cell therapy in patients with B-cell malignancies were

eligible for inclusion. This included studies investigating multi-

target therapies, such as multi-targeted CD19 and CD22 CAR T-

cells (CD19/CD22 CAR T-cell therapy). Only studies that reported

the primary outcome of interest, complete response (CR), were

included. Full-length articles, conference abstracts, letters and case

reports were considered, while reviews, editorials, and

commentaries were excluded. Studies for which an associated

clinical trial could not be identified (using a clinical trial

registration number) were excluded to avoid double-

counting participants.

MEDLINE, EMBASE, Web of Science, and the Cochrane

Central Register of Controlled Trials were searched from

inception to March 3 2022. Additionally, the conference

proceedings of the American Society of Hematology, American

Society of Clinical Oncology, and European Hematology

Association were searched manually. Bibliographies of all

included studies were also searched. The search strategy was

created in collaboration with an experienced health science

librarian. No language restrictions were applied. The full search

strategy can be found in the Supplementary Materials. In addition

to the search of study reports, ClinicalTrials.gov and the WHO

International Clinical Trials Registry Platform (ICTRP) were

searched to catalogue any relevant registered clinical trials.
Study selection

Search results were uploaded to Covidence systematic review

software (Veritas Health Innovation, Melbourne, Australia). Title

and abstract screening, full-text screening, data extraction and risk

of bias assessment were conducted by two reviewers in duplicate

(N.J.F and K.A). Disagreements were resolved by discussion or a

third reviewer (K.A.H. and H.A.). Within included reports, multiple

reports of the same study were identified and grouped by associated

clinical trial number. For each study, the most recent full-length

article was used as the primary report for data extraction, with any

other reports cross-referenced for Supplemental Information. If no

full-length article existed for a given study, the most recent

conference abstract or case report was used as the primary report.
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Data items and extraction

A piloted form on Covidence was used for data extraction.

Publication, study, patient and intervention characteristics as well

as manufacturing, efficacy, and safety outcomes were extracted.

Health Related Quality of Life (HRQoL) or Patient-Reported

Outcomes (PRO) were also sought.

The primary outcome extracted for meta-analysis was best CR

rate (bCR), defined as the proportion of patients reported to have

achieved CR at any point during follow-up; one-month CR and

three-month CR rate were also extracted. Secondary efficacy

outcomes included overall response, relapse rate, and time-to-

event data (overall survival and progression-free survival). Safety

outcomes included reported incidence of adverse events (CRS,

ICANS, graft-versus-host disease, infection, and other reported

adverse events) and 30-day mortality rate. Full details of these

and other data items are available in the previously published

protocol (30). Study quality was assessed using a modified

Institute of Health Economics (IHE) risk of bias tool (31).
Data synthesis and analysis

Meta-analysis was deemed appropriate for bCR, CRS, and

ICANS; other outcomes are synthesized narratively as there was

significant variation in reporting by included studies. Meta-analyses

were conducted using R statistical software (v.4.2.2). Binary

outcomes are presented as proportions with 95% confidence

intervals (CI). A random effects model (DerSimonia and Laird)

was employed to pool proportions using an arcsine-based

transformation (metaprop function from R package metafor).

Given the prevalence of low and high event rates in our data, an

arcsine transformation was deemed more appropriate than a logit

transformation (32). Cochrane I2 statistic is used to assess statistical

heterogeneity between summary data.

Subgroup analysis was undertaken using a meta-regression

technique (metareg function from the R package metafor). Pre-

specified subgroups of interest were malignancy type, single vs. dual

targeting therapy, age group, and previous therapy (previous

transplant, previous CD19 CAR T-cell therapy, previous non-

CAR-T cell immunotherapy). A sensitivity analysis was

performed by removing data from conference abstracts and

evaluating the effect on the results. An alternative funnel plot

(study size vs arcsine transformed outcome proportion) was used

to assess publication bias (33). The GRADE approach was used to

evaluate confidence in treatment effects (34).
Results

Results of search

From 1068 unique references, 115 references were included in

our review, representing 45 unique studies (Figure 1) (35–79).

Among these, 29 were eligible for meta-analysis (27 studies with a
Frontiers in Immunology 03
total of 578 patients for efficacy analysis and 29 studies with a total

of 637 patients for safety analysis); and 15 were treated as case

reports/series. Of note Liu 2021A was excluded from both the

response and safety meta-analyses due to heterogeneity in study

design and insufficient safety data, however is summarized

narratively and in our tabular data synthesis. Details of the

studies included in the meta-analysis are presented in Table 1. All

studies were early-phase single-arm clinical trials. A full list of

included references grouped by study can be found in

Supplementary Materials. Outcomes from case reports and case

series are summarized separately in Supplementary Table 1.
Patient characteristics

The majority of studies examined R/R B-ALL patients as the

population of interest, however a significant subset of studies

examined R/R NHL. Among the seven CD22 CAR T-cell studies,

five included only B-ALL patients, one included B-NHL, and one

examined both B-ALL and B-NHL. Among the 23 studies

examining CD19/CD22 CAR T-cells, 15 included only B-ALL

patients, 5 included B-NHL patients, and 3 included both B-ALL

and B-NHL patients. Patient demographics, disease status, and

prior therapies are presented in Table 2. Among CD22 CAR T-

cell studies that provided information on prior CAR T-cell therapy

(5 out of 7 studies), the majority of patients had received prior

CD19 CAR T-cells (108/137, 79%). This includes Zhu 2021 who

included only patients who had relapsed post-CD19 CAR T-cells. In

comparison, prior CD19 CAR T-cell therapy was less commonly

reported in CD19/CD22 CAR T-cell studies, with only 11% of

patients (20/176) having had prior CD19 CAR-T cell therapy

among 11 studies, with the remaining 12 studies not providing

information on prior CAR T-cell therapies. Many patients had

received other prior therapies, including hematopoietic stem cell

transplant (HCT) and targeted immunotherapies such as

blinatumomab and inotuzumab.
Intervention characteristics

There were seven studies of CAR T-cell therapy solely targeting

CD22 (CD22 CAR T-cells), and 23 studies investigated CAR T-cell

therapies targeting both CD19 and CD22 (CD19/CD22 CAR T-

cells). This includes Liu 2022, in which select patients also received

CD20 CAR T-cells if CD19 and CD22 CAR T-cells failed. Various

dual-targeting methods were used, including bivalent CAR

molecules, bicistronic vectors, co-administration, and sequential

infusion of two CAR T-cell populations. Details are presented in

Table 3. Cao 2021 was unique in that it involved sequential CD19/

CD22 CAR T-cell infusion after all participants had received

autologous HCT. Ramakrishnan 2020 and Zhang 2021B both

combined CAR T-cells with anti-PD1 antibody therapy. Hu 2021

was unique because it utilized a universal donor-derived CAR T-cell

product in which CRISPR/Cas9 was used to disrupt the TRAC

region and CD52 gene of CAR T-cells to minimize host CAR T-cell
frontiersin.org
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rejection and to allow for anti-CD52-mediated targeted depletion of

autologous T-cells.

Thirteen of 30 studies were dose escalation trials, but only six

identified a recommended expansion phase dose. Annesley 2021,

Gardner 2020, and Spiegel 2020 all identified the recommended

dose of CD19/CD22 CAR T-cells to be 3x106 CAR T-cells/kg for

ALL patients (and LBCL patients in Spiegel 2020), with no dose-

limiting toxicities identified. Spiegel 2020 commented that they did

not pursue higher doses due to toxicity concerns at higher doses

seen in other clinical trials. Conversely, Cordoba 2021 treated ALL

patients with up to 5x106 CD19/CD22 CAR T-cells cells/kg. No

dose-limiting toxicities were identified, and while CAR T-cell

persistence was identified as an issue, higher doses were not

pursued due to a lack of correlation between higher dose and

persistence. Among CD22 CAR T-cell studies, Baird 2021 examined

two dose levels of 1x106 and 3x106 CAR T-cells/kg for LCBL
Frontiers in Immunology 04
patients, however 1x106 was the maximum tolerated dose. Shah

2020 also initially used 1x106 CD22 CAR T-cells/kg in their

expansion phase to treat ALL patients, but the dose was de-

escalated to 3x105 CAR T-cells/kg following increased toxicity

with the institution of a CD4/CD8 selection procedure during

manufacturing. In all studies except Ramakrishnan 2020, CAR T-

cells were dosed by weight. A number of studies also used a

fractionated adaptive dosing scheme, in which the target dose was

given in split infusions, with subsequent infusions being held if

toxicity developed.
Response data

27 of 30 studies were included in meta-analysis of bCR rates.

Cao 2018, Liu 2021A, Liu 2022, and a subset of Summers 2021 were
FIGURE 1

PRISMA flow diagram of references identified, screened, excluded (with reasons) and included.
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excluded in accordance with our prespecified protocol. Cao 2021

included patients who were in CR at the start of therapy. Liu 2021A

and Liu 2022 had a complicated study design involving sequential

rounds of CAR T-cells where some patients only received CD19

CAR T-cells and not CD22 CAR-T cells, so efficacy outcomes were

not comparable to the other included studies. Summers 2021

included two CAR T-cell products (V1 and V2), with a focus on

the latter improved product, and did not clearly report CR among

patients receiving V1. Out of 23 studies that included participants

with B-ALL, 21 reported minimal residual disease (MRD) status.
Frontiers in Immunology 05
The all-study model of bCR rate had significant heterogeneity (I2 =

83%, p-value <0·0001). Through meta-regression with our pre-

specified subgroups of interest, diagnosis (ALL vs. NHL) was

identified as a significant predictor of bCR. (Supplemental Table 2).

The residual heterogeneity was reduced to moderate (I2 = 66%) by

grouping studies according to both CAR target (CD22 vs CD19/CD22)

and diagnosis (ALL vs. NHL). Therefore, we present the meta-analysis

of bCR in these subgroups (Figure 2).

CD22 CAR T-cell therapies had an estimated CR of 68% [95%

CI, 53-81%] in B-ALL patients (n=116), and 64% [95% CI, 46-81%]
TABLE 1 Study Characteristics of Included Clinical Trials.

Study ID Clinical Trial No. Country Phase Publication Type Malignancy Antigen Target

Annesley 2021 NCT03330691 USA 1 Abstract ALL CD19/CD22

Baird 2021 NCT04088890 USA 1 Letter LBCL CD22

Cao 2021 ChiCTR-OPN-16009847 China 0 Full Report NHL CD19/CD22

Cordoba 2021 NCT03289455 UK 1 Full Report ALL CD19/CD22

Dai 2020 NCT03185494 China 1 Full Report ALL CD19/CD22

Frey 2021 NCT03620058 USA 1 Abstract ALL CD19/CD22

Gardner 2020 NCT03330691 USA, Canada 1 Abstract ALL CD19/CD22

Hu 2021 NCT04227015 China 1 Full Report ALL CD19/CD22

Liu 2021 A ChiCTR-ONC-17013648 China 1 Full Report ALL CD19/CD22

Liu 2021 B NCT03614858 China 1/2 Abstract ALL CD19/CD22

Liu 2022 ChiCTR1800014457 China 1 Full Report NHL CD19/CD22/
CD20

Pan 2019 ChiCTR-OIC-17013523 China 1 Full Report ALL CD22

Pan 2020 ChiCTR-OIB-17013670 China 1 Letter ALL CD19/CD22

Ramakrishnan 2020 NCT03287817 UK, USA 1 Abstract DLBCL CD19/CD22

Schultz 2018 NCT03241940 USA 1 Abstract ALL CD19/CD22

Shah 2020 NCT02315612 USA 1 Full Report ALL CD22

Shalabi 2020 NCT03448393 USA 1 Abstract ALL CD19/CD22

Singh 2021† NCT02650414 and NCT02588456 USA 1 Full Report ALL CD22

Speigel 2021 NCT03233854 USA 1 Full Report ALL, LBCL CD19/CD22

Summers 2021†† NCT03244306 (V1) and NCT04571138 (V2) USA 1 Abstract ALL CD22

Tan 2021 ChiCTR2000028793 China 1 Letter ALL CD22

Wang 2020 ChiCTR-OPN-16008526 China 1 Full Report ALL, NHL CD19/CD22

Wang 2021 ChiCTR2000032211 China 0 Full Report ALL CD19/CD22

Wei 2021 ChiCTR1800015575 China 1 Full Report ALL, NHL CD19/CD22

Yang 2018 NCT03312205 China 1 Abstract ALL CD19/CD22

Yang 2020 NCT04129099 China 1 Abstract ALL CD19/CD22

Yang 2019 NCT03825731 China 1 Abstract ALL CD19/CD22

Zhang 2021 A NCT03196830 China 2 Full Report NHL CD19/CD22

Zhang 2021 B NCT04539444 China 2 Abstract NHL CD19/CD22

Zhu 2021 ChiCTR1800019298 China 1 Full Report ALL, DLBCL CD22
ALL, acute lymphoblastic leukemia; NHL, Non-Hodgkin’s Lymphoma; LBCL, large B-cell lymphoma; DLBCL, diffuse large B-cell lymphoma. †Singh 2021 reports combined results of an adult
and pediatric study investigating the same intervention. ††Summers 2021 reports results of an initial (V1) and optimized (V2) CAR construct.
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TABLE 2 Intervention Characteristics of Included Clinical Trials.

Study ID Method of co-targeting sCFV domain Costimulatory
Domain

T-cell
source

CAR T-cell Dose in cells/kg
(except where marked * indicating

non-weight based dose)

CD22

Pan 2019 N/A YK-CD22 41BB Auto/allo† Median 5 x105, range 0.2-34.7

Shah 2020 N/A m971 41BB Auto DL1: 3x105, DL2: 1x106, DL3: 3x106

Singh 2021 N/A m971 (long linker) 41BB Auto Patients <50 kg: 1–10 x 106 cells/kg.
Patients >50 kg: 5.0 x 108 cells total* in
fractioned adaptive dosing scheme.

Summers 2021 N/A m971 41BB Auto V1 DL1: 1 x 106, DL2: 3 x 106

V2: 2 x 105

Tan 2021 N/A FH80 41BB Auto Median: 1.2 x 106, range 0.68-9.4

Zhu 2021 N/A NR 41BB Auto 2.0 x 106

Baird 2021 N/A m971 41BB Auto DL1: 1 x 106 (n = 12), DL2: 3 x 106 (n = 9)

CD19/CD22

Annesley 2021 Co-transduction NR CD19: 41BB
CD22: 41BB

Auto DL1: 0.5 x 106 (n = 3)
DL2: 1 x 106 (n = 3)
DL3: 3 x 106 (n =6)

Cordoba 2021 Bicistronic vector Humanized CD19: OX40
CD22: 41BB

Auto DL1: 1x106 (n = 2)
DL2: 3x106 (n = 5)
DL3: 5x106 (n = 5)

Dai 2020 Bivalent CAR CD19: FMC63
CD22: m971

41BB Auto Mean: 2.28 x106 (range: 1.7-3)

Frey 2021 Co-administration Humanized CD19: 41BB
CD22: 41BB

Auto Planned CD19 dose: 2.0 x 106

Planned CD22 dose: 2.0 x 106

With fractionated adaptive dosing scheme.

Gardner 2020 Co-transduction CD19: FMC63
CD22: m971

CD19: 41BB
CD22: 41BB

Auto DL1: 1x106

DL2: 3x106

Hu 2021 Bivalent CAR CD19: FMC63
CD22: m971

41BB Allo
(UCART)††

DL1: 1 x 106

DL2: 3 x 106

Liu 2021 A Sequential infusion (months) CD19: FMC63
CD22: Human
phage library

CD19: 41BB
CD22: 41BB

Auto Median CD19: 1.0 x 105 (range 0.486 - 5.0)
Median CD22: 2.0 x 105 (range 0.32 - 5.0)

Liu 2021 B Group 1: Tandem
Group 2: Sequential

NR NR NR NR

Pan 2020 Sequential infusion (months) CD19: FMC63
CD22: YK-CD22

CD19: 4-1BB
CD22: 4-1BB

Auto CD19: 10 x 105 (range 3.3 - 42.8)
CD22: 10 x 105 (range, 0.25 - 47.4)

Schultz 2018 Bivalent CAR CD19: FMC63
CD22: m971

41BB Auto DL1: 1 x 106

Subsequent doses not yet reported

Shalabi 2020 Bivalent CAR CD19: FMC63
CD22: m971

41BB Auto DL1: 3 x 105

DL2: 1 x 106

DL3: 3 x 106

Speigel 2021 Bivalent CAR CD19: FMC63
CD22: m971

41BB Auto DL1: 1 x 106

DL2: 3 x 106

Wang 2020 Sequential infusion (days) NR CD19: CD28, 4-
1BB
CD22: CD28, 4-
1BB

Auto ALL: CD19: 2.5 x 106, CD22: 2.5 x 106

NHL: CD19: 5 x 106, CD22: 5x 106

Wang 2021 Co-administration NR 41BB Auto Mean CD19: 3.975 x 106 (range 3-6)
Mean CD22: 3.125 x 106 (range 2-4)

(Continued)
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in NHL patients (n= 28). CD19/CD22 CAR T-cell therapies had an

estimated CR rate of 90% [95% CI, 84-95%] in B-ALL patients (n=

297) and 47% [95% CI, 34-61%] in NHL patients (n= 137). The

cumulative percentage of CRs which were MRD negative, among B-

ALL studies which reported these data, was 93% (199/213) for

CD19/CD22 CAR T-cells and 86% (68/79) for CD22 CAR T-cells.

Data for time-to-event outcomes, follow-up, relapse, and

antigen status are presented in Table 4. Length of follow-up was

reported in 20 studies, with reported median length ranging from 2-

27.3 months. The methods of reporting relapse and survival were

inconsistent with variable length of follow-up, limiting any direct

comparisons. In general, relapse was common in these studies, with

relapses being observed over a year after CR. Among CD22 studies

that had at least 6 months median follow-up, the relapse rate range

ranged from 17-69%, with Shah et al., 2020 having the longest

median follow-up of 24 months and 49 out of 71 (69%) patients

who achieved CR eventually relapsing. Among CD19/CD22 studies

with at least 6 months of median follow-up, relapse rate ranged

from 17-69%, with most of these studies having >40% relapse rates.
Frontiers in Immunology 07
Among CD22 CAR T-cell trials, Pan 2019 reported

predominantly antigen-positive relapse while Shah 2020 reported

predominantly antigen loss or diminished site density at relapse;

Baird 2021 and Tan 2020 had small sample sizes with few relapses

but reported 1/3 and 2/2 relapses involved CD22 loss or

downregulation, respectively. Among CD19/CD22 CAR T-cell

trials, the majority of relapses with reported antigen status were

CD19+/CD22+ (42/50, 84%); among antigen-negative relapses, a

common pattern observed was CD19-negative malignant cells with

diminished CD22 site density (CD19-/CD22dim) (Supplementary

Materials, p3).

In-vivo CAR T-cell expansion data was reported by 24 out of 30

studies. Both Wei 2021 and Hu 2021 found that patients who

achieved CR had higher peak levels of CAR T-cells than non-

responders. Long-term persistence of CAR T-cells was variable with

limited reporting, and persistence ranged from 42 days to 10

months. Cao 2021 found that patients with progressive disease

had no detectable CAR T-cells at three months, while most patients

in CR did have detectable CAR T-cells at three months. Details of
TABLE 2 Continued

Study ID Method of co-targeting sCFV domain Costimulatory
Domain

T-cell
source

CAR T-cell Dose in cells/kg
(except where marked * indicating

non-weight based dose)

Wei 2021 Bivalent CAR CD19: FMC63
CD22: human phage
library

41BB Auto BCL: Median 6.3 x 106 (range 4.9-9.4)
ALL: 4.85 x 106 (range 1.04-7.02)

Yang 2018 Co-transduction NR CD19: CD28, 4-
1BB
CD22: CD28, 4-
1BB

Auto Median CD19: 2 x 105, range 0.9-5
Median CD22: 0.5 x 105, range 0.4-12

Yang 2020 Bivalent CAR NR 41BB Auto DL1: 6.0 x 104 (n = 2)
DL2: 1.0-1.5 x 105 (n=7)
DL3: 2.25 x 105 (n=1)

Yang 2019 Bivalent CAR NR 41BB Auto DL1: 2.5-5 x 105(n = 4)
DL2: 1-2.5 x 106 (n = 7)
DL3: 3-5 x 106 (n = 5)

Cao 2021 Sequential infusion (days) following
HSCT

Murine CD19: CD28,
41BB
CD22: CD28,
41BB

Auto Median CD19: 4.1 x 106 (range 1.8 - 10)
Median CD22: 4.0 x 106 (range 1.0 - 10)

Liu 2022§ Sequential infusion (months) - CD22
only given after CD19 failure

CD22: Human
phage library
CD19: FMC63/
human phage library

CD19: 41BB
CD22: 41BB

Auto Median CD19: 2.0 x 106 (range 0.11 - 3.0)
Median CD22: 2.0 x 106 (range 0.17 - 4.13)
Median CD20: 1.29 x 106 (range 0.44 - 2.17)

Ramakrishnan
2020

Bicistronic vector NR CD19: OX40
CD22: 41BB

Auto DL1: 50 x 106 CAR T-cells total*
DL2: 150 x 106 CAR T-cells total*
DL3: 450 x 106 CAR T-cells total*

Zhang 2021 A Bivalent CAR CD19: FMC63
CD22: m971

41BB Auto Median: 8.258 x 108 CAR T-cells total* (range
3.690 x 10^8 to 3.285 x 109)

Zhang 2021 B* Sequential infusion (days) NR CD19: 41BB
CD22: 41BB

NR 0.5 - 2 x 107
Co-transduction: Simultaneously transducing T-cells with two separate vectors. Bivalent CAR: A single CARmolecule that has two specificity domains. Bicistronic vector: transduction of a single
vector that expresses two CARs. Sequential infusion: infusion of one CAR-T cell product followed by a different CAR-T cell product, either on successive days (days) or delayed (months). DL,
dose level. Fractionated adaptive dosing scheme: dose is given in fractions over 3 days, and subsequent doses held if develop adverse events after first dose. †Pan 2019: allogeneic cells were allowed
in patients with previous transplant. ††Hu 2021 used CRISPR-Cas9 engineered universal CAR T-cells (donor-derived). §Liu 2022 only gave CD22 after patients failed CD19, therefore not all
patients received CD22. *In Zhang 2021, intervention included anti-PD-1 antibody administered after sequential infusion of CD19 and CD22 CAR-T cells.
N/A, not applicable; NR, not reported.
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TABLE 3 Characteristics of Treated Patients.

Study ID Malignancy N Sex (%
M)

Median age
(range)

Prior CD19
CAR
T-cells

Other prior therapy

CD22

Pan 2019 ALL 34 59% 10 (1-55) 31/34 Allo-HCT: 13/34

Shah 2020 ALL 58 NR 17.5 (4.4-30.6) 36/58 CD22 CAR T cells: 5/58
Inotuzumab: 14/58
CD19-targeted therapy: 51/58
Blinatumomab: 23/58
HCT: 39/58

Singh 2021 ALL 8 NR NR; 3 adults, 5
pediatrics

5/8 Prior allo-HSCT: 3/8
Blinatumomab: 3/8

Summers
2021

V1 ALL 4 NR NR NR NR

V2 ALL 3 NR NR 3/3 NR

Tan 2021 ALL 8 25% 9 (5-16) NR Prior CD19 and CD22 directed therapies: 8/8
Prior allo-HSCT: 4/8

Zhu 2021 ALL 6 50% 39.5 (25-58)
13/13

NR

DLBCL 7 71% 56 (16-70)

Baird 2021 LBCL 21 62% 64 (36-79) 20/21 Allo-SCT: 6/21

CD19/CD22

Annesley 2021 ALL 11 NR NR 4/11 CD19 or CD22 targeted therapies: 11/12 enrolled
pts

Cordoba 2021 ALL 15 73% 8 (4-16) 1/15 Allo-SCT: 7/15

Dai 2020 ALL 6 67% 23.5 (17-44) NR NR

Frey 2021 ALL 13 NR 46 (28-71) 2/13 Blinatumomab: 8/13
Inotuzumab: 8/13
Prior allogeneic SCT: 10/13

Gardner 2020 ALL 27 NR NR NR CD19 or CD22 targeted therapies: 13/27

Hu 2021 ALL 6 33% 49 (26-56) NR NR

Liu 2021 A ALL 27 52% 21 (1.6–55) NR All had relapsed post allo-HCT

Liu 2021 B Tandem ALL 49 NR NR NR NR

Sequential ALL 13 NR NR NR

Pan 2020 ALL 20 65% 6 (1-16) NR NR

Schultz 2018 ALL 4 NR NR (2-17) NR NR

Shalabi 2020 ALL 11 NR 21 (5-28) 5/11 NR

Speigel 2021 ALL 17 71% 47 (26-68) 1/17 Allo-SCT: 12/17

LBCL 21 67% 69 (25-78) NR Auto-SCT: 4/21

Wang 2020 ALL 51 63% 27 (9-62) NR Allo-HCT: 9/51
Auto-HCT: 3/51

NHL 38 58% 47 (17-11) NR Auto-HCT: 6/38

Wang 2021 TCF3-HLF
+ALL

4 100% 6.8 (2.9-14.7) NR NR

Wei 2021 ALL 15 47% 27 (16-65) 0/15 Prior HSCT: 1/15

NHL 16 50% 52.5 (23-68) 0/16 Auto-HSCT: 1/16

Yang 2018 ALL 15 73% 19 (4-45) NR NR

(Continued)
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expansion and persistence data can be found in Supplementary

Materials (page 3, Supplementary Table 5).

Data on manufacturing outcomes demonstrated no major

challenges in CAR T-cell manufacturing, with bivalent CARs

having comparable mean transduction efficacy to monovalent

CARs. Details are presented in Supplementary Materials (page 3,

Supplementary Table 6).

There was inadequate patient level data to perform subgroup

analysis by age group, prior HSCT, prior CD19 CAR T-cell therapy,

or other prior immunotherapies.
Safety data

All studies provided information on CRS and ICANS. The

estimated incidence of total and severe (grade ≥3) CRS were 87%

[95% CI, 80%-92%] and 6% [95% CI, 3%-9%], respectively

(Figure 3). Estimated ICANS and severe ICANS incidence were

16% [95% CI, 9-25%] and 3% [95% CI, 1-5%], respectively

(Figure 4). Meta-regression revealed no significant difference in

the incidence of adverse events (total or severe) between those

treated with CD22 versus CD19/CD22 CAR T-cells (Supplementary

Table 3). There was no significant difference in the incidence of CRS

or ICANS (total or severe) between B-ALL and NHL patients.

All-cause 30-day mortality was available for 18 studies (n=457).

The estimated incidence from these studies was 1% [95% CI, 0-3%]

(Supplementary Figure 1). Pan 2019 and Frey 2021 were outliers

with a 30-day mortality of 12% (4/34) and 15% (2/13), respectively.

In Pan 2019, two patients died of infection-related causes, and two

patients who had previously received transplantation had death

attributable to a combination of CRS and graft reaction. In Frey

2021, one patient died of grade 4 ICANS and sepsis, and one died

from a rapidly progressive disease.

Shah 2020 was the only study to report and characterize

hemophagocytic histiocytosis (HLH)-like toxicities. In a

retrospective analysis of 59 patients, they found that 21/52 (40%)

of patients who developed CRS also developed HLH. The onset of

HLH was delayed (median onset 14 days), and in 11/21 patients
Frontiers in Immunology 09
HLH developed after CRS was already resolving. HLH was

effectively treated with corticosteroids and anakinra, however one

patient died secondary to bacterial sepsis prior to HLH resolution.

All other patients fully recovered.
Bridging to hematopoietic cell transplant

Nineteen of the 30 studies commented on patients undergoing

hematopoietic cell transplant (HCT) after achieving CR following

CAR T-cell therapy. Among these, 99/292 (34%) of reported

patients who achieved CR proceeding to HCT. Of note, this

excludes Cao 2021, in which all patients received HCT prior to,

rather than following, CAR T-cell therapy.

There was limited reporting of comparative survival in

transplanted vs. non-transplanted groups. Shah 2020 found

allogeneic HCT to be positively associated with relapse-free

survival and event-free survival based on a time-covariate

analysis. Similarly, Pan 2019 noted that at the observation

endpoint, 8/11 CR patients who received transplant were relapse

free (2 died of treatment-related mortality, 1 relapsed) while only 3/

7 CR patients who had no further treatment were relapse free. In

contrast, subgroup analysis of B-ALL patients by Wang 2020 found

that transplant was not associated with a survival benefit.

Among studies examining HCT prior to CAR T-cell therapy,

Cao 2021 showed significant efficacy of sequential HCT + CD19/

CD22 CAR T-cells, with 2-year PFS of 83%. In Wang 2020, among

the subset of patients that had a history of relapse post-HCT, 22/23

were able to achieve CR with CD19/CD22 CAR T-cell therapy, with

1-year PFS of 59.2%.
Catalogue of registered clinical trials

Through our search of clinical trial databases, we catalogued 99

registered clinical trials investigating CAR T-cells that target CD22

alone (29%) or in combination with other antigen targets (63%). 34

of the 62 (54%) multi-targeting trials did not specify the multi-
TABLE 3 Continued

Study ID Malignancy N Sex (%
M)

Median age
(range)

Prior CD19
CAR
T-cells

Other prior therapy

Yang 2020 ALL 10 50% 11.5 (3-48)† 3/10 Allo-HSCT: 1/10

Yang 2019 ALL 16 59% 8 (4-45) 4/17 NR

Cao 2021 Aggressive
NHL

42 57% 41 (24-61) NR No prior HSCT

Liu 2022 Burkitt 23 NR 8 (2-12) NR NR

Ramakrishnan 2020 DLBCL 19 NR 57 (28-71) 0/19 No prior CD19 or CD22-directed therapies or
allo-HCT

Zhang 2021 A NHL 32 59% NR 0/32 Prior HSCT: 4/32

Zhang 2021 B NHL 11 NR NR NR NR
NR, not reported.
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targeting approach used. 82 (83%) and 55 (56%) trial registries did

not report the costimulatory domain(s) or T-cell source (allogeneic

vs. autologous), respectively. Results have been reported for 36/99

(36%) of the registered trials so far, with three of these studies

ineligible for inclusion in this review due to inadequate or absent

reporting of clinical outcomes. Of note, we excluded 25 published

reports which for which the corresponding clinical trial could not be

identified and 33 publications that reported pooled outcomes of

multiple clinical trials or CAR T-cell therapies, in which data on

CD22-targeted therapies specifically could not be extracted

(Supplementary Materials).
Risk of bias

The risk of bias for all domains are presented in Supplemental

Figure 2 and summarized in Supplemental Figure 3. The majority of

studies were single-center and did not provide estimates of random
Frontiers in Immunology 10
variability. No studies reported having blinded outcome assessors.

The modified funnel plot appeared symmetrical, suggesting there

was no publication bias (Supplementary Figure 4). The sensitivity

analysis for publication type showed that removing data from

conference abstracts did not substantially alter the estimates of

CR (Supplementary Figure 5).

The evidence was assessed as low quality using the GRADE

approach (Supplementary Table 4). While estimates were fairly

consistent across studies, all studies were single-arm interventional

studies with serious risks of bias.
Discussion

We provide a narrative synthesis and meta-analysis of 30 early-

phase single-arm studies representing 637 patients. There was a

strong signal of efficacy with an estimated CR for CD22 CAR T-cells

in B-ALL of 68% [95% CI, 54-77%], and 64% in NHL [95% CI, 46-
FIGURE 2

Forest plot of best complete response rate organized by malignancy type and antigen target. Pooled estimates, represented by the black diamond,
were calculated for each subgroup and overall weighted effect.
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TABLE 4 Survival and Relapse Data from Included Studies.

Study
ID

Disease Months of follow up
(median, range)

Relapse Rate
(% of CR)

Overall survival data Event-free survival

CD22 CAR T- cell Studies

Pan 2019 ALL 3.2 (0-14.5) 6/26 (23%) NR 1-year LFS rate (among those who
achieved CR): 58.1%

Shah 2020 ALL 24* 49/71 (69%) Median OS: 13.4 months
(95% CI 7.7-20.3)

Median EFS: 3.2 months (95% CI 1.4-
5.5)
Median RFS (restricted to those in CR):
13.4 months (95% CI 7.7-20.3)

Singh
2021

ALL IR 4/4 (100%) NR NR

Summers
2021 v2

ALL NR 0/3 (0%) NR NR

Tan 2021 ALL 6 (2-11) 2/7 (29%) IR IR

Zhu 2021 ALL IR 0/2 (0%) 6-month OS of pts who did not
receive HSCT: 20.5%

6 month PFS of patients who did not
receive HSCT: 20.0%

DLBCL 0/4 (0%) 6-month OS of pts who did not
receive HSCT: 67.07%

6 month PFS of patients who did not
receive HSCT: 66.7%

Baird 2021 LBCL 7.3** (1.2-21.3) 3/18 (17%) NR NR

CD19/CD22 CAR T-cell Studies

Cordoba
2021

ALL 14 (2-28) 9/13 (69%) 6 month OS rate: 80% 6 and 12-month EFS rate: 48%, 32%
6, 12-month molecular-free PFS rate:
38%, 23%

Dai 2020 ALL 8.5 (4-12) 3/6 (50%) NR NR

Frey 2021 ALL 6.2*** (0.2 - 25) 1/11 (9%) 6-month OS rate: 85% NR

Gardner
2020

ALL NR 4/23 (17%) NR NR

Hu 2021 ALL 4.3 (2-8) 1/5 (20%) NR NR

Liu 2021
A

ALL 19.7 (5.6-27.3) After CD19: 3/26
After CD22: 5/19

ITT analysis of all 27 patients:
12-month OS rate: 84.0% (95%
CI 70.7-99.8)

ITT analysis of all 27 patients:
12-month EFS rate: 65.2% (95% CI, 47.8
to 88.9)

Liu 2021 B ALL NR NR Tandem: 6-month OS rate:
90.0%

Tandem: 6-month LFS: 76.2%

Sequential: 6-month OS rate:
88.9%

Sequential: 6-month LFS: 88.9%

Pan 2020 ALL 27.3 (9.8 to 36) 8/20 (40%) 2-year OS rate: 80.9% (95%CI
61.2-100.0%)

2-year LFS: 60% (95%CI, 38.5-81.5%)

Shalabi
2020

ALL 3.3 (1-8.5) 2/8 (25%) NR NR

Speigel
2021

ALL 9.3 (95% CI 7.2-NE) 10/17 (59%) Median OS: 11.8 mo (95%CI
5.5-NE)

Median PFS: 5.8 months (95% CI 2.6–
NE)

LBCL 10 (95%CI 8.7 - 21.5) 8/13 (62%) Median OS: 22.5 mo (95%CI
8.3–NE).

Median PFS: 3.2 months (95% CI 1.2–
5.5)

Wang
2020

ALL 16.7 (1.3-33.3) 24/49 (49%) Median OS: 31 months
(95% CI 10.6-NR)

Median PFS: 13.6 months (95% CI, 6.5-
NR);
1-year PFS rate: 52.9% (95% CI 38.5-
65.5)

NHL 14.4 (0.4-27.4) NR Median OS: 18 months
(95% CI 6.1-NR)

Median PFS: 9.9 months (95% CI 3.3-
NR);

(Continued)
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81%]. Further, dual-targeting CD19/CD22 CAR T-cells had an

estimated CR of 90% [95% CI, 84-98%] and 47% [95% CI, 34-

61%] in B-ALL and NHL patients respectively. There was also an

acceptable safety profile for both CD22 and CD19/CD22 CAR T-

cells in R/R B-cell malignancies, with estimated rates of severe CRS

and ICANS of just 6% [95% CI, 3%-9%] and 3% [95% CI, 1-5%].

Estimated CR rates in ALL patients were significantly higher

with CD19/CD22 CAR T-cell therapy compared to single-target

CD22 CAR T-cells. In contrast, the difference in bCR rates in NHL

patients treated with CD19/CD22 CAR T-cells versus CD22 CAR

T-cells was not statistically significant, however these groups did

have a smaller sample size. It should be noted that a greater

proportion of patients in the single-target CD22 CAR T-cell

studies had failed CD19 CAR T-cells, and were receiving CD22 as

a second-line CAR-T cell therapy. Thus, the lower CR rates seen

among CD22 studies compared to dual target studies in ALL may be

the result of selecting patients that were more refractory to

treatment; in this case, substantial CR rates despite previous CAR

T-cell failure point towards the value of CD22 CAR T-cells as a

treatment option.

Prior meta-analyses of CD19 CAR T-cells reported estimated

CR rates of 77% [95% CI, 63-87%] and 80% [95% CI, 76-85%]

among ALL patients, which are similar to our estimated CR rates for

CD22 CAR T-cells, but slightly lower than the CR rates estimated

for CD19/CD22 CAR-T cells in ALL in our study.4,8 Among NHL
Frontiers in Immunology 12
patients, meta-analyses of CD19 CAR T-cells reported CR rates of

48% [95%CI: 42–54%] and 44% [95% CI: 34-55%], similar to our

estimated CR for both CD22 CAR T-cells and CD19/CD22 CAR T-

cells in NHL patients (26). This may indicate that dual therapy is

more effective in ALL but not NHL patients, although direct

comparison is not possible due to differing methodologies

between meta-analyses, and given that prior meta-analyses

included earlier generations of CAR T-cells that had lower

efficacy. Among CD19/CD22 CAR T-cell therapies, a number of

multi-targeting strategies were employed but given the small

number of trials per group no comparison of efficacy could be made.

We saw no indication that dual-target CD19/CD22 therapies

have a higher incidence of adverse events compared to single-target

CD22 CAR T-cells. Compared to prior CD19 CAR T-cell meta-

analyses, both CD22 and CD19/CD22 CAR T-cells had lower

estimated rates of severe CRS and ICANS but higher rates of total

CRS (5, 24). Notably, a retrospective study that compared CD19

and CD19/CD22 CAR T-cells from two clinical trials also showed

that CD19 CAR T-cells actually had a statistically significant

increased risk of severe CRS compared to CD19/CD22 CAR T-

cells (80). These differences may be due to the inherent biology of

the CARs or could be explained by variability in reporting

guidelines, patients, dosing regimens, or improvement in

treatment protocols. Overall 30-day mortality for all CD22 CAR

T-cells was comparable to that of CD19 CAR T-cells and HCT (5,
TABLE 4 Continued

Study
ID

Disease Months of follow up
(median, range)

Relapse Rate
(% of CR)

Overall survival data Event-free survival

1-year PFS rate: 50.0% (95% CI, 33.4-
64.5)

Wang
2021

ALL Incomplete reporting 2/4 (50%) Incomplete reporting, only patient-level data

Wei 2021 ALL NR 3/4 (75%) of pts that did
not proceed to HSCT

Median OS: 652 days (95% CI
390-905 days)

Median PFS: 90 days (95% CI 41-139
days)

BCL Median 397 days, range NR 7/14 (50%) Median OS not reached
1-year OS rate: 77.3%
2-year OS rate: 77.3%

Median PFS: 246 days
1-year PFS rate: 40.2%
2-year PFS rate: 40.2%

Yang 2018 ALL 4.4 (0.8-13.1) 2/15 (13%) NR NR

Yang 2020 ALL 3.3 (0.5-7) 2/9 (22%) Incomplete reporting, only patient-level data

Yang 2019 ALL 2 (0.2-4.6) 0/8 (0%) NR NR

Cao 2021 NHL 24.3 (4.9 - 49.2) N/A**** NR NR

Liu 2022 NHL 17 (15-23) After CD19: 6/15 (40%)
After CD22: 0/13 (0%)

NR 18-month PFS: 78% (95% CI 55-90%)

Zhang
2021 A

NHL 8.7 (3-NR) 10/23 (43%) Median OS not reached
OS rate 69.1% at 6 months
OS rate 63.3% at 12 months

Median PFS: 6.8 months
PFS rate 51.4% at 6 months
PFS rate 40.0% at 12 months

Zhang
2021 B

NHL 5.8 (3-NR) 0/8 (0%) 6-month OS rate: 100% 6-month PFS rate: 80.8%
LFS, leukemia-free survival; PFS, progression-free survival. Incomplete reporting includes studies that only reported follow-up for a subset of patients, or that include survival data in graphical
form but do not provide numerical data points. *Shah et al. report “median potential follow-up” of 24 months. **Baird 2021 only reports median follow-up for patients in CR. ***Frey 2021 only
reports median-follow-up for living patients. ****Cao 2021 included patients who were in CR at the start of remission, therefore is excluded from data involving CR rate.
N/A, not applicable; NR, not reported.
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81). In contrast to CD19 CAR T-cell studies, the incidence of

adverse events was relatively homogenous across studies in our

review (5).

Among studies that report long-term data, it appears that

relapse within a year is common, and thus durability of response

remains a challenge. However, there is inadequate data to determine

whether relapse rates are significantly different to that of other CAR

T-cell therapies, particularly given that many prior CD19 CAR T-

cell studies used first-generation CARs, limiting the comparison to

the current second-generation CD22 CARs. Among dual-target

studies, relapses were often CD19+/CD22+, indicating that

mechanisms other than antigen loss, including poor CAR T-cell
Frontiers in Immunology 13
persistence, may impact long-term outcomes. Long-term data are

needed to determine whether dual-targeting improves relapse-free

survival compared to single-targeting. Regardless, our study showed

that CD22 CAR T-cells present another line of therapy for patients

who relapse post-CAR T-cell therapy with CD19-negative disease.

Strengths of this review include our broad and methodical

search strategy, which included both electronic searches of

multiple databases and manual searching of conference abstracts.

Sensitivity analysis confirmed that conference abstracts, although

they had limited data on secondary outcomes, did not affect the

heterogeneity of our meta-analysis, making them a valuable

inclusion to our analysis. To further our confidence that all
FIGURE 3

Forest plot of cytokine release syndrome rate organized by severity. Pooled estimate of effect, black diamond, was calculated for both all grades (1-
5) and severe grades (3-5). Pan 2020: cycle 1 (CD19) was excluded from analysis, although rates did not significantly differ from cycle 2 (18/20 all
grades, 1/20 severe).
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relevant research had been identified we searched clinical trial

registries and catalogued our results.

Overall, many clinical trial registry entries in ClinicalTrials.gov

or the WHO ICTRP poorly describe their respective intervention.

Basic characteristics such as CAR target, structure, dosing regimen,

and population criteria are often incomplete or missing. CAR T-cells

are highly modular therapies and pre-clinical studies have shown that

simple modifications (e.g. switching co-stimulatory domain, altering

linker length) canhave drastic effects on function (82–84).We strongly

advocate for authors to followamore robust and transparent approach

to CAR T-cell trial registration, which should at a minimum provide

the interventional and patient characteristics described in our

protocol (30).

This review has a number of important limitations which should be

recognized. Firstly, all studies are early-phase, single-arm, interventional
Frontiers in Immunology 14
trials, with a significant risk of bias. Concurrently, many outcomes of

interest were not provided by the majority of studies. Nonetheless, there

was sufficient data on CR rates and adverse events to achieve the

primary aim of this review, which was to evaluate the efficacy and safety

of CD22 CAR T-cell therapies in B-cell malignancies.

This systematic review of CD22CAR-T cell clinical trials observed a

strong signal of efficacy and safety of both single (CD22) and dual-target

(CD19/CD22) CAR T-cells in patients with R/R B-cell malignancies.

CD22 appears to be a viable antigen target and may be an option for

thosewhorelapseafterCD19CART-cell therapy.However,manyearly-

phase interventional studies are still ongoing and have not yet published

results, while others have reported preliminary results without having

reached the maximum tolerated dose. The long-term efficacy of these

therapies at their optimal therapeutic level thus has yet to be seen.

Durability of response appears to remain a key limitation, as with other
FIGURE 4

Forest plot of immune effector cell-associated neurotoxicity syndrome rate organized by severity. Pooled estimate of effect, black diamond, was
calculated for both all grades (1-5) and severe grades (3-5). Pan 2020: cycle 1 (CD19) was excluded from analysis, although rates did not significantly
differ from cycle 2 (3/20 all grades, 1/20 severe).
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CAR T-cell therapies. Future trials are needed to determine the

comparative efficacy of these therapies and identify strategies to

improve the durability of response.
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