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There is high clinical demand for the resolution of tendinopathies, which affect 
mainly adult individuals and animals. Tendon damage resolution during the 
adult lifetime is not as effective as in earlier stages where complete restoration 
of tendon structure and property occurs. However, the molecular mechanisms 
underlying tendon regeneration remain unknown, limiting the development 
of targeted therapies. The research aim was to draw a comparative map of 
molecules that control tenogenesis and to exploit systems biology to model 
their signaling cascades and physiological paths. Using current literature data 
on molecular interactions in early tendon development, species-specific data 
collections were created. Then, computational analysis was used to construct 
Tendon NETworks in which information flow and molecular links were traced, 
prioritized, and enriched. Species-specific Tendon NETworks generated a data-
driven computational framework based on three operative levels and a stage-
dependent set of molecules and interactions (embryo–fetal or prepubertal) 
responsible, respectively, for signaling differentiation and morphogenesis, 
shaping tendon transcriptional program and downstream modeling of its 
fibrillogenesis toward a mature tissue. The computational network enrichment 
unveiled a more complex hierarchical organization of molecule interactions 
assigning a central role to neuro and endocrine axes which are novel and 
only partially explored systems for tenogenesis. Overall, this study emphasizes 
the value of system biology in linking the currently available disjointed 
molecular data, by establishing the direction and priority of signaling flows. 
Simultaneously, computational enrichment was critical in revealing new nodes 
and pathways to watch out for in promoting biomedical advances in tendon 
healing and developing targeted therapeutic strategies to improve current 
clinical interventions.
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1. Introduction

Tendons are fibro-elastic structures that connect muscles to bones 
allowing movement and conferring resistance even to extreme tensile 
loads. During the processes of development, the tissue profoundly 
changes by transforming the tendon from a plastic into a highly 
specialized structure with a significantly reduced ability to recover 
homeostasis (regeneration) after injury.

Current therapies for tendinopathies have limited success (1, 2). 
Most patients do not return to pre-injury activity performance, 
greatly increasing the likelihood of recurrences as re-ruptures, 
disability, pain, and impairment of movement. Tendinopathies 
require prolonged rehabilitation (at least 10 months in humans and 
up to 18 months in horses), leading to a dramatic socioeconomic 
impact (3) by combining the absence of a valid therapeutic, 
rehabilitative, and diagnostic predictive protocol (4) with the rise in 
life expectancy.

The estimated socioeconomic burden is over €180 billion in the 
USA and EU, with a forecast of +25% over the next 5 years, because of 
the absence of an efficacious therapeutic solution and variations in life 
expectancy, lifestyle, and working stat. In veterinary medicine, 46% of 
racehorses suffer from tendinopathy and the related reduced 
performance generates a loss of €400 Bn worldwide (5–7).

The clinical relevance of tendinopathies relies on the inability of 
adult tissue to activate regenerative processes, which is probably 
related to its poor cellularity, vascularization, and slow metabolism 
(4, 8–12).

Indeed, tendon healing predominantly relies on reparative 
processes during the adult age, which involves the deposition of 
fibrous disorganized tissue (scar) instead of a hierarchically organized 
extracellular matrix (ECM). Repairing instead of regenerative healing 
compromises the biomechanical properties (4, 13–15). On the other 
hand, tendon healing results to be greatly efficient during the early 
stage of an individual lifetime. In particular, during the fetal stage, it 
is characterized by the activation of a regenerative process which 
results in the complete restoration of the native structural and 
functional tendon properties occurring without any deposition of 
intermediate scar/fibrous tissue (16, 17).

Based on the fragmentary information collected to date, fetal and 
adult tendon differences in healing properties might depend on a 
complex interaction between the mechanisms involving both local 
and systemic conditions. Local conditions that may be responsible for 
the progressive reduction of tendon healing involve changes in the 
precursor cell niche, the activities of cell-intrinsic pathways (16, 18–
20), and the reduction of paracrine response to tissue injury (21–23). 
Furthermore, different levels of key growth factors and cytokines have 
been identified from early gestation to the post-natal period, which 
could explain the age-related scarless reparative phenotype (22).

Overall, these findings may explain the increased cellular 
migration, tenocyte synthetic activity (24–30), and cell-to-cell 
communication observed in fetal tissues (25–35), implying that the 
greater plasticity of the fetal tendon is required to express a high 
healing performance (12), even though the conclusive mechanisms 
remain unknown.

As a result, understanding the mechanisms involved in early 
successful tenogenesis and the related key molecular pathways is 
critical to innovate tendon diagnosis and therapy based on solid 
biological foundations.

Because of these needs, it is relevant to stress that animals play a 
triple role in each field of tendon biomedicine: patiently awaiting 
clinical solutions, predictive models which collect experimentally the 
tissue stage-specific biological information, and, finally, the 
translational role supporting indirectly medical clinic advances.

Several animal models, in particular, are recognized to have a 
clinical translational value in addition to allowing researchers to 
investigate regenerative mechanisms at an early stage of life when 
biomechanical and physiological tendon properties are still preserved. 
Considering fragmentary clinical data in adulthood, these models 
must be exploited to obtain information related to factors, molecules, 
and signaling pathways with key roles in driving the proper 
regeneration of tendon tissue. Nevertheless, these molecules may 
potentially offer clinical therapeutic solutions to enhance tissue 
regeneration avoiding unsuccessful adaptive reparative processes.

Based on these premises, the present research has been designed to 
map the genetic factors underlying tendon development during 
embryo/fetal and pre-puberal life stages identified to date to generate 
either literature or enriched-derived data collections. This systemic 
molecular survey was the premise to decipher tendon biology by 
exploiting computational biology to generate species-specific networks.

The Tendon NETworks offered a data-driven computational 
framework based on molecules (upstream, transcription factors, and 
downstream levels) and a stage-stratified (fetal vs. prepubertal) model 
useful to identify the main players of tenogenesis. In addition, taking 
advantage of computational network enrichment, it was possible to 
decode signaling cascades and physiological paths driving toward an 
efficient and complete tenogenesis in early-stage organisms.

Overall, this study highlights the value of mapping complex and 
partially known biological processes using comparative systems 
biology. At the same time, the obtained results confirm the role of 
systems biology in making more comprehensive the evidence collected 
to date and, what is more important, in proposing new nodes and 
pathways to promote biology advances potentially impacting clinics.

2. Materials and methods

2.1. Data collection retrieval and 
organization

The bibliographic data collection was carried out following the 
Preferred Reporting Items for Systematic Review and Meta-analysis 
(PRISMA) Statement 2020 Checklist Guidelines.1 Scientific literature 
published in the past 30 years in the peer-reviewed international index 
Advanced Search of Web of Science [v.5.35] “Core collection” archive2 
was considered.

A combination of the following keywords was adopted: “tendon,” 
“biology,” “tenogenesis,” “fetal,” “fetus,” “develop,” “mechanism,” and 
“pathway.” The words “injury,” “disease,” “rupture,” “inflammation,” 
and “tendinopathies” were excluded from the research. “TS” was used 
as a Field tag, “AND,” “OR,” and “NOT” were used as Boolean 
operators, and * as wild cards.

1 http://www.prisma-statement.org/

2 https://apps.webofknowledge.com/WOS_AdvancedSearch

https://doi.org/10.3389/fvets.2023.1175346
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
http://www.prisma-statement.org/
https://apps.webofknowledge.com/WOS_AdvancedSearch


Peserico et al. 10.3389/fvets.2023.1175346

Frontiers in Veterinary Science 03 frontiersin.org

In total, 2,332 publications were retrieved including original 
articles and reviews, and duplicates were removed. Filtering criteria 
adopted included the following: (I) selection of original articles 
written in English; (II) original papers concerning the early stage of 
tendon development during embryo–fetal and pre-puberal life were 
exclusively considered; (III) original articles regarding tenogenic 
differentiation of stem cells and/or related to regeneration or 
pathology were discarded; and (IV) reviews were not included in the 
data collection; however, their content was examined to better support 
and discuss the acquired data. Finally, 37 publications of original 
scientific manuscripts describing molecular interactions including 
direct (physical) and indirect (functional) association met the 
inclusion criteria (Supplementary File 1) and those constituted the 
final data collection considered to build the species-specific 
tenogenesis networks (TendonNETs). This methodological procedure 
was successfully applied and previously validated by our group (36, 
37). In detail, molecular interactions including physical and functional 
associations have been depicted as follows in the data collection. Each 
interaction has an input molecule that begins the signal and a target 
molecule that receives the signal. The signal could be mediated by 
physical interaction allowing the deposition of post-translation 
protein modifications regulating protein activity and/or genome 
accessibility. Moreover, the signal could be mediated by the functional 
association in the case of studies that use correlative data supporting 
upregulation and/or downregulation of the activity of the target 
molecule dependent on the presence and/or absence of the input 
molecule. The type of signal transmitted has been referred into the 
data collection sheet as a link (Supplementary File 2). Microsoft Excel 
(file .xls /Version 16.71/23031200) was used for data collection.

2.2. Tenogenesis network creation, 
visualization, and analysis

Data collection referred to each model organism was used as input 
to build a species-specific tenogenesis network using the Cytoscape 
3.9.1 software.3 Seven networks were obtained. Each species-specific 
network was then analyzed with the dedicated plug-in Network 
Analyzer of Cytoscape by computing the following topological 
parameters: number of nodes, number of edges, the average number 
of neighbors, network diameter, network radius, characteristic path 
length, clustering coefficient, network density, and connected 
components. Additional analyses applied to networks and nodes have 
been listed in the following sub-sections. Microsoft Excel (file .xls /
Version 16.71/23031200) was used for data visualization and/or 
analysis. Detailed methodological procedures supporting the present 
study are reported in Figure 1.

2.2.1. Identification of hyperconnected (hub) 
nodes

The hubs, defined as hyperconnected nodes, were identified as 
nodes with a degree of at least one standard deviation above the 
network mean as previously described (37–39).

3 http://www.cytoscape.org

2.2.2. Node degree
Each network node was ranked based on the node degree value. 

Node degree is defined as the number of connections that the node 
has to other nodes in the network (7).

2.2.3. MCL and local network clustering
The Markov Cluster Algorithm (MCL), based on the simulation 

of a stochastic flow in graphs, was computed to define clusters of 
highly related nodes in each analyzed network flow. Clustering data 
were obtained by setting 3 as the inflation parameter. A local network 
clustering algorithm was applied to each MCL-derived cluster to 
measure control over information flows between just the immediate 
neighbors of the cluster. MCL and local network clustering algorithms 
were supplied by the Search Tool for the Retrieval of Interacting 
Genes/Proteins (STRING) platform (STRING).4

2.2.4. STRING enrichment analysis
A Search Tool for the Retrieval of Interacting Genes/Proteins 

(STRING, see text footnote 4) (40) was used to enrich the data 
collection by including known and predicted protein interactions. 
They could be  either direct (physical) or indirect (functional) 
associations and were derived from different sources: genomic 
context, high-throughput experiments, conserved coexpression, and 
previous knowledge. A new network was obtained by adopting a 
medium confidence score (0.400). For the enrichment procedures, the 
false discovery rate (FDR) value was set to be <0.05, and three cycles 
of enrichment were performed.

2.2.5. KEGG analysis
Pathways characterizing the tenogenesis network were retrieved 

from the Kyoto Encyclopedia of Genes and Genomes (KEGG). KEGG 
is a database resource for understanding high-level functions and 
utilities of the biological system, and from molecular-level 
information, especially large-scale molecular datasets generated by 
genome sequencing and other high-throughput experimental 
technologies.5

2.2.6. Venn diagram
A Venn diagram tool6 was used to visually represent the differences 

and similarities among species-specific tenogenesis networks.

3. Results

3.1. A multi-organism data collection 
strategy to depict the backbone of the 
tenogenesis signaling events

To compose the knowledge regarding tenogenic molecular events, 
evidence-based data including molecular interactions or signaling 
events (hereinafter referred to as interactions) were collected from the 
available literature (Supplementary File 1) to build up a data collection 

4 https://string-db.org/

5 http://www.genome.jp/kegg/

6 https://bioinformatics.psb.ugent.be/webtools/Venn/
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encompassing the interspecific tenogenesis pathways 
(Supplementary File 2).

First, the interactions were collected according to the model 
organism and classified based on the developmental stage of 
occurrence (embryo–fetal and prepubertal stage). The molecular data 
were retrieved from seven model organisms, most of them belonging 
to the Mammalia class: Mus musculus (m), Rattus norvegicus (r), 
Homo sapiens (h), Equus caballus (e), and Bos taurus (b). Two 
additional models were represented belonging to the Aves and 
Actinopterygii classes, respectively: Gallus gallus (g) and Danio rerio 
(d) (Figure 2).

Among Mammalia class, half of the interactions belong to m 
(145/286; 51%), approximately 10% to r and e (28 and 28 out of 286, 
respectively), 3% to h (9/286), and a minority of them to b 
(2/286; 0.7%).

Interactions retrieved from g accounted the 25% (70 out of 286), 
whereas d contributed only 1.4% (4/286) (Table 1).

The data collection was also designed to distinguish between 
embryonic (155 out of 286; 54%) and prepubertal (131/284; 46%) vital 
stages (Table 1).

Second, the set of interactions identified in each model was used 
as input to generate a species-specific system network (hereinafter 

collectively referred to as TendonNET identified through the species-
specific acronymous), whose topological parameters were computed 
as reported in Figure 3 and Supplementary File 3. The TendonNETs 
independently of the species displayed a scale-free topology with a 
very low clustering coefficient value, according to the Barabási-Albert 
(BA) model.

Third, nodes composing each TendonNETs were assembled using 
the MCL-clustering algorithm7 to define the main paths of the 
molecular flow and to depict what is currently known about them in 
each model organism.

The MCL approach enabled us to classify 12 clusters in the 
mTendonNET, 3 of them in the gTendonNET and 2 in dTendonNET 
and hTendonNET, whereas both rTendonNET and eTendonNET 
recognized exclusively 1 cluster (Table 2). Then, paths characterizing 
each TendonNET cluster were identified by using the local algorithm 
supplied by the STRING platform (see text footnote 4) and selected 
by applying the False Discovery Rate (FDR) value of <0.05 (Table 2 
and Supplementary File 4). Coherent tissue-specific paths were 

7 http://micans.org/mcl/

FIGURE 1

The methodological flow of the study. The study recognizes a stepwise approach focused on four main tasks: (1) The bibliographic survey performed 
by accessing Web of Science collection related to tenogenesis molecular events aimed to the selection of pertaining publications and data collection; 
(2) TendonNET generation was based on literature evidence and aimed to build up species-specific interaction networks supporting tenogenesis and 
to identify hubs (hyperlinked nodes) of each species-specific network. Species-specific networks and hub identification were obtained by using the 
Cytoscape tool. Only data collected from the Mus musculus (m) were also processed by distinguishing networks of interactions occurring during the 
embryo and prepubertal developmental phase; (3) the hubs of each species-specific TendonNETs were used as input for the generation of networks of 
new interactions of the tenogenesis (STRING TendonNETs) by using the STRING tool; (4) finally, combining interactions collected by literature evidence 
(TendonNETs) with potential new interaction (STRING TendonNET), species-specific enriched networks (Enriched TendonNETs) were generated. The 
organization of signaling events was then investigated by stratifying signaling paths supporting tenogenesis into three interconnected layers, such as 
upstream, processing TF (Transcription factors), and downstream. Specific abbreviations were used for each model organism (otherwise referred to as 
species). Mus musculus (m), Rattus norvegicus (r), Homo sapiens (h), Equus caballus (e), Bos taurus (b), Gallus (g), and Danio rerio (d). Created with 
BioRender.com.
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identified. In detail, m, h, and eTendonNETs shared target molecules 
of collagen formation paths. Consistently, tendon-related paths were 
highly conserved (m, r, h, and d), as well as TGFB signaling (m, g, and 
r) and extracellular matrix (ECM) organization (m and gTendonNETs, 
respectively). Of note, neuronal-related pathways were also 
widespread: NGF appears among the GFs in mice path while an entire 
neuronal path (neuronal-related process: microglia cell activation) has 
been recognized in e. Probably, because of the early-stage development 
of the selection of molecules, skeletal muscle-related paths were also 
identified such as bone formation and skeletal muscle fiber 
development in r and d, respectively. Growth and development paths 
involved common molecules (in d, r, and m) such as insulin, vascular, 
and hedgehog.

Finally, to identify and prioritize the influential molecules of each 
TendonNET, hyperconnected nodes, defined as hubs, were identified, 
and ranked based on their node degree value (Figure  4). On the 
contrary, the bottleneck was not accomplished because of the small 
number of interactions in each TendonNET.

Among the 14 hubs identified, upstream molecules belonging to 
the TGFB family and key TF (TF), such as SCX, MKX, FHL2, and SIX 
2, have been recognized. Of note, SCX and members of the TGFB 
superfamily (TGFB1, TGFB2, TGFB3, and TWSG1) appeared to 
be highly conserved since they are shared in four different model 
organisms (Figure 4).

3.2. Tenogenesis signaling identified by 
TendonNETs is strictly developmental 
stage-dependent

To provide timing to the identified molecular interactions of 
mTendonNET, the nodes were further classified on the bases of the 
developmental stage to build two stage-specific NETs: embryo 
TendonNET (including interactions of both embryo and fetal stages) 
and prepubertal TendonNET. This analysis was carried out exclusively 
for the mouse model since it only offered enough interactions in both 
vital stages.

A low overlapping degree (14%; 13 nodes) was found among the 
nodes composing embryo TendonNET (64 molecules) and 
prepubertal TendonNET (40 molecules) (Figure 5).

Interestingly, their MCL-clustering algorithm showed that these 
13 nodes belong to common paths in both embryo or prepubertal 
TendonNETs (Collagen fibril formation, ECM organization and 
Keratan sulfate biosynthesis, growth factor signaling, and tendon 
skeletal muscle formation) even if they take part in different 
interactions that appeared to be  strictly vital stage-dependent 
(Figure 6 and Supplementary File 5).

More in detail, the collagen fibril formation path recognized 
POSTN, COL1A1, and COL5A1 as shared molecules which clustered 
with COL11A1  in the embryoTendonNET or with COL3A1 and 

FIGURE 2

Model organisms identified by collecting literature data on signaling events in embryonic and prepubertal tenogenesis.

TABLE 1 Classification of interactions collected from literature and classified according to the organism model and the stage of development (embryo 
or prepubertal stage).

Class Model organism 
(acronymus)

Interactions

Total edges Developmental stage

Embryo Prepubertal

Mammalia

Mus musculus (m) 145 71 74

Rattus norvegicus (r) 28 0 28

Homo sapiens (h) 9 9 0

Equus caballus (e) 28 3 25

Bos taurus (b) 2 0 2

Aves Gallus gallus (g) 70 68 2

Actinopterygii Danio rerio (d) 4 4 0

Total interaction numbers 286 155 131

The acronyms of each model organism were indicated as m for Mus musculus, r for Rattus norvegicus, h for Homo sapiens, e for Equus caballus, g for Gallus gallus, and d for Danio rerio.
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FIGURE 3

Main topological parameters of species-specific TendonNETs. Topological analysis was not accomplishable for the Bos taurus dataset based on the 
limited number of retrieved nodes.
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COL2A1  in the prepubertal TendonNET. Similarly, the ECM 
organization path shared THBS4, ELN, ASPN, COL1A1, POSTN, 
TNMD, TNC, and COL5A1 clustering with COL11A1 and NID2 in 
the embryo TendonNET or with COL3A1, COL2A1, DCN, and LOX 
in the prepubertal TendonNET.

Furthermore, FMOD and PRG4 were shared nodes of the 
Keratan sulfate biosynthesis and clustered with CHST5 and KERA 
in the embryo TendonNET and with LUM in the 
prepubertal TendonNET.

Tendon/skeletal muscle formation path shared the 
transcription factors (TF) SCX and MKX clustering with MYF5, 
MYOD, SOX5, SOX6, HOXC10, and PITX1  in the embryo 
TendonNET and with GLI1, RUNX2, and IHH1  in the 
prepubertal TendonNET.

Concerning the growth factor signaling path, MAPK1 was 
identified as a shared node clustering with IGF1, FGF4, FGF6, and 
FGF10  in the embryo TendonNET and with EGR1, SMAD8, 
BMP2, IGF downstream molecules PI3K, and nerve growth factor 
signaling molecules NGF and NGFR in the 
prepubertal TendonNET.

Furthermore, the topological properties of the embryo and 
prepubertal TendonNETs were computed allowing to define the 
relative hubs, which also showed a limited level of overlapping. More 
in detail, the tendon-specific transcription factor SCX was the unique 
hub of the embryo TendonNET that resulted even to be a shared node. 

A higher number of hubs was identified in the prepubertal 
TendonNET. They recognized upstream molecules (TGFB1 and 
NGF), TF (SCX), and downstream nodes (COL1A1, BGN, signaling 
pathway-related molecules SHP2, and hedgehog SMO: Table 3 and 
Supplementary File 6). Overall, the different interconnections 
depicted by the two NETs’ topological parameters reflect the diverse 
mechanisms underlying tissue organization during the embryo and 
early post-natal stages.

3.3. Knowledge-based network enrichment 
identifies new molecular players of the 
tenogenesis process working in a 
multi-layered signaling system

To overcome the main limitation due to the small number of 
evidence-based data concerning the molecular interactions in 
tenogenesis, the hubs identified in species-specific TendonNETs were 
used as input for seeking new functional protein associations by using 
the STRING tool.

Based on the limited number of interactions collected for the b, 
all nodes were used as input for further analyses.

Functional enrichment allowed the generation of string-derived 
species-specific networks (hereinafter referred to as StringNETs) 
bearing new nodes predicted to be associated with signaling pathways 
supporting tenogenesis (Supplementary File 7).

Specifically, 77 out of 99 nodes characterizing StringNETs were 
new (Figure 7).

First, all nodes composing the StringNETs were stratified into 
three main signaling layers:

 a. Upstream molecules enclosing growth factors and their related 
intracellular transduction factors. In total, there were 52 molecules, 
of which 38 were newly identified by STRING (73%).

 b. TF-bearing skeletal muscle and neuronal-related TF, homeobox 
genes, oncogenes, and chromatin remodelers. In total, there 
were 23, of which 15 were newly defined by STRING (65%).

 c. Downstream effectors include 24 molecules involved in the ECM 
organization, neuronal cytoskeleton factors, and cell adhesion and 
binding activities. In total, there were 24, of which 15 were identified 
as new by STRING (62%).

The stratification analysis allowed to depict a model composed of 
molecules working at different layers of the signaling events primed 
by extra cell stimuli and conveyed by cytoplasmic signaling molecules 
toward the activation of tendon/skeletal muscle-critical TF, which are 
responsible for priming tendon/skeletal muscle development and 
organization (Figure 8).

More in detail, the stratification enabled us to depict connections 
among the three identified layers of the tenogenic signaling 
as follows.

The signal starts with molecules characterizing the upstream 
layer that included growth factors and intracellular components 
belonging to the TGF (ACRVRs, TGFBs, TGFBRs, BMPs, SMADs, 
TWSG1, GDFs, and LTBP1), WNT (CTNNA, CTNNBs, LEF, APC, 
and GSK3B), mitogenic (MAPKs, DUSP6, FGFs, and IGFs), 
hormone-responsive (NR4A1, FST, and BCL9), and metabolic (HIF1 

TABLE 2 Tenogenesis network flow definition by MCL-clustering 
algorithm.

Tenogenesis 
networks

MCL cluster 
numbers

Main MCL recognized 
paths

mTendonNET 12  - Collagen fibril and keratan sulfate 

biosynthesis and degradation

 - ECM organization

 - Tendon formation

 - Growth factor (NGF, TGFB, IGF, 

VEGF, and Hedgehog) signaling

rTendonNET 1
 - Tendon formation

 - Bone formation

 - TGFB signaling

hTendonNET 2
 - Tendon formation

 - Collagen formation

eTendonNET 1
 - Collagen formation

 - Neuronal-related process (microglia 

cell activation)

bTendonNET No significant enrichment detected

gTendonNET 3
 - TGFB and BMP signaling

 - ECM organization

dTendonNET 2
 - Tendon formation

 - Skeletal muscle fiber development

The number of clusters retrieved in each TendonNET was classified for their main paths. 
Clustering data were not generated for the b TendonNET for the limited number of 
interactions. FDR was set at <0.05 value. For detailed information, see Supplementary File 4.
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and AK1) pathways. Signaling converges on the intracellular 
transcriptional machinery recognizing tendon (SCX, MKXs, EYA, 
and SIXs), muscle skeleton (FOXH1, MEOX, MYOD, CFBF, and 
RUNX2), and neuronal (EGR1 and TCF7L2) TF. The transcriptional 
program is addressed to modulate the expression of the extracellular 
matrix (ECM) assembly (LUM, BGN, SPARC, POSTNB, and FHL2), 
maturation (PCOLCE, FN1, MMP2, and TNMD), and adhesion 
(ITGAs, ITGBs, and TLR2), as well as molecules constituting the 
essential structural blocks of the ECM (COL1, COL3, COL5, COL6, 
and ACAN) could be out lighted as the functional outcomes of the 
signaling cascade.

3.4. Enriched TendonNETs predict 
intriguing new hubs of tenogenesis 
signaling

To unveil new potential branches of the tenogenesis signaling, all 
the nodes identified in both TendonNET and StringNET data 
collections were merged using Cytoscape to generate species-specific 
Enriched TendonNETs (Supplementary File 8). Kyoto Encyclopedia 
of Genes and Genomes (KEGG) mapping tool was then applied, 
respectively, to the nodes of TendonNETs and Enriched TendonNETs 
(Supplementary Files 9, 10).

FIGURE 4

Hubs of TendonNETs. Hubs were identified and ranked based on the hub node degree value. The different colors of the hub molecules allow to 
identify the signaling layer of pertinence. In orange were reported nodes of the upstream layer; in green nodes of the TF layer, and in light blue nodes 
of the downstream layer.

FIGURE 5

Venn diagram representing the shared nodes of the embryo TendonNET and the prepubertal TendonNET of m model organism. The classification of 
nodes in the embryo or prepubertal category was defined during the data collection (Supplementary File 2).
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KEGG paths were grouped into macro-categories according to the 
BRITE hierarchy criteria8 (see, respectively, Supplementary Files 9, 10) 
and those related to the physiology of tendon annotated as shown in 
Table 4.

Based on the collected data, KEGG applied to TendonNETs 
allowed us to draw the backbone of the signaling supporting 
tenogenesis. KEGG analysis of the Enriched TendonNETs allowed to 
enrich the network map defining new paths and/or network links. 
This was clear by looking at the increased number of paths recognized 

8 www.genome.jp

in each macro-categories for each NET. Also, the total physiological 
number of paths retrieved, respectively, in TendonNETs and Enriched 
TendonNETs reflected this aspect. Indeed, physiological paths 
recognized in TendonNETs (23) are triplicated when compared with 
paths of the Enriched TendonNETs (62) (Supplementary File 11). 
Also, the analysis unveiled biological coherent paths shared among 
different model organisms, specifically identifying in three out of 
seven species, upon enrichment, paths belonging to BRITE macro-
categories such as (1) growth, differentiation, and survival, (2) 
morphogenesis and cell motility, (3) nervous system, (4) and 
endocrine system. All paths are recognized by the literature-based 
data of Mus musculus, the best-characterized model organism. 
Importantly, enrichment allowed a consistent representation of 
macro-categories that were under-represented in TendonNETs, 
including endocrine (retrieved in six species) and nervous (retrieved 
in three species) system-related paths.

Furthermore, topological analyses of the Enriched TendonNETs 
were performed to rank the hubs (Figure 9 and Supplementary File 12).

Interestingly, the topological analysis of the Enriched 
TendonNETs allowed us to better articulate the flow of information 
in tenogenesis by consistently increasing the number of hubs. In 
total, 25 new hubs were identified in the Enriched TendonNETs, 
which combine with the 14 outlined in the TendonNETs. 
Importantly, as highlighted in Figure  9, hubs of the Enriched 
TendonNETs nourished each layer of the tenogenic signaling with 
new key upstream, transcription, and downstream molecules and 
improved layer interconnections.

Moreover, the hubs retrieved into the upstream and TF layers of 
the tenogenic signaling of the different organisms confirmed a high 
degree of conservation (Table 5).

FIGURE 6

Nodes clustering of the mouse embryo and prepubertal TendonNETs. The table summarizes the results of clustering classified for MCL-recognized 
paths by indicating within the gray boxes the 13 shared nodes. In orange were reported nodes of the upstream layer, in green nodes of the TF layer, 
and in light blue nodes of the downstream layer.

TABLE 3 Hub molecule identification and ranking in embryo TendonNET 
and prepubertal TendonNET.

HUB

Embryo TendonNET PrebubertalNET

Hub Node degree Hub Node degree

SCX 55 SCX 12

TGFB2 11

SMO 10

SHP2 10

COL1A1 9

BGN 7

NGF 7

The ranking was based on the value of the hub node degree.
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Finally, to give a fuller picture of tenogenesis signaling and its 
regulatory mechanisms, all paths related to tendon physiology, which 
showed a high degree of conservation among species, were further 
considered (see Supplementary Table 10) by showing the relative hubs 
in Figure 10.

Taking advantage of the enrichment procedure, all paths were 
populated with hubs belonging to each signaling layer (upstream 
molecules, TF, and downstream molecules), except for the nervous 
system paths which did not recognize, to date, controller (hubs) 
belonging to downstream layers. The upstream layer was the most 
populated, enclosing the hub nodes of the TGFB, WNT, and mitogenic 
families. The intermediate layer was represented by specific tendon/
skeletal TFs and the downstream layer by nodes involved in ECM 
deposition activities.

4. Discussion

The high prevalence and impact of tendinopathies worldwide 
involve humans (5–10 cases per 100,000 subjects9) and pets or sportive 
animals10 by generating a high clinical demand which cannot 
be properly managed to date, and, as a result, a progressively increasing 

9 https://www.grandviewresearch.com/industry-analysis/

tendonitis-treatment-market-report

10 https://www.grandviewresearch.com/industry-analysis/

veterinary-orthopedics-market

trend in expenditure and commitment of healthcare systems 
is observed.

The present computational study has been carried out to map the 
molecular information available to date (37 original articles were 
analyzed) involved in tenogenesis during the embryo–fetal and 
prepubertal lifetimes (16, 17) to discover which are the main 
controllers and molecular interactions leading to the early high 
homeostatic performance. More in detail, this study granted the 
dissection of tenogenesis molecular events by distinguishing three 
operative levels and a stage-dependent set of molecules and 
interactions responsible for signaling differentiation and 
morphogenesis of tendon tissue. Upstream molecules stimulating the 
activation of TF responsible for directing the tendon transcriptional 
program, as well as downstream targets of the above signaling 
molecules, have been defined. Moreover, this has allowed the 
identification of new potential interactors belonging to the neuronal 
and endocrine axes which might be exploited for properly directing 
signaling events to the definition of a mature tendon structure.

4.1. TendonNET nodes and interactions 
revealed a high degree of preservation in 
tenogenesis

Based on these premises, the present computational system has been 
set up to take advantage of the data available in the literature on different 
model organisms by making species-specific data collections containing 
molecular interactions, which control tenogenesis in the early life of the 
most studied organisms. Data collection generated with the literature 

FIGURE 7

Overview of nodes composing StringNETs. StringNETs were obtained using the STRING tool (https://string-db.org/) with the hubs of the TendonNETs 
as input except for b where the few nodes identified in TendonNET were used. The classification presented in the figure was aimed to distinguish inside 
each model organism the hub molecules of TendonNETs (in yellow), the StringNETs enriched nodes (in light blue), and the common nodes between 
TendonNETs and StringNETs (in red).
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data allowed us to build seven species-specific networks (TendonNETs) 
by recognizing the relative nodes and hubs. Their comparative analysis 
has demonstrated a high level of preservation. Using Venn diagram 
analysis, several shared clustering nodes were identified; these were 
primarily represented by paracrine controllers such as IGF, the TGFB 
family, and neurotrophic factors (see Table 2). Moreover, the analysis of 
the species-specific TendonNETs allowed us to identify shared 
hyperconnected nodes (hubs) that represented inside each network the 
role of controllers of tenogenesis belonging to upstream molecules 
(TGFB1, TGFB2, TGFB3, and TWSG1) and tendon-related TFs (SCX: 
see Figure 4). The high degree of preservation of the TendonNETs seems 
to suggest great feasibility in exploring the molecular machinery 
controlling tenogenesis encompassing the interspecific barrier also when 
the animal models are not as closely connected from an evolutionary 
point of view.

4.2. MCL-clustering paths of mice embryo 
and prepubertal TendonNETs identified 
common molecular players but 
stage-specific interactions

The species-specific data collections showed a greater 
availability of molecular information specifically in the mouse 
model (mTendonNET) where a sizeable number of the retrieved 
interactions could split the mTendonNET into two sub-networks: 
mEmbryo and mPrepubertal TendonNETs. Interestingly, the 
comparative analysis of the stage-specific TendonNETs revealed 
that tenogenesis during embryo and prepubertal phase operates 
using some common nodes which, however, engage strictly stage-
dependent interactions occurring at upstream, TF, and 
downstream levels.

FIGURE 8

Multi-layered organization of the overall molecules composing the TendonNETs and the StringNETs. New molecules identified by STRING have been 
reported in bold. The different colors of the nodes allow to identify the signaling layer of pertinence. In orange were reported nodes of the upstream 
layer; in green nodes of the TF layer, and in light blue nodes of the downstream layer.
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Indeed, the intracellular mediator MAPK1 (otherwise known as 
ERK2), which was the unique common upstream molecule, works in 
sensing the signal of mitogenic growth factors in Embryo TendonNETs 
(IGF and FGF families: see Figure  6), whereas it seems to 
be preferentially the transducer of the neurotrophic signals (EGR1, 
NGF, and NGFR) or molecules belonging to the TGFB family 
(SMAD9 and BMP2) and PI3K during the prepubertal period of life 
(see Figure 6).

Recent studies appear to confirm a key role for neurotropic axis 
molecules, such as NGF and its downstream cognates EGR1 and 
EGR2, in managing the transition from immature tendon cells to 
tenocytes (41), thus accompanying the structural evolution from 
neonate to early post-natal tendons (42), which recognize an increased 
level of complexity.

Additionally, two tendon master TFs, SCX and MKX, were also 
found to play a crucial role during both embryonic and early post-
natal tenogenesis (43) as confirmed by null mice (44–46). 
Moreover, SCX, under the control of TGF, mediates the 
transduction signaling of mechanical stimuli throughout the life of 
the mouse and zebrafish organisms by modulating the spatial 
regulatory changes of the actin cytoskeleton in stretched tenocytes 
(47–49).

Similarly, MKX (also known as Iroquois homeobox-like 1) has 
been recognized as crucial for the regulation of tendon differentiation 
during embryo development or collagen assembly during post-natal 
life, particularly in Achilles and tail tendons as confirmed in MKX KO 
mice (50–52). First, MKX controls the late phase of tendon 
development (E16.5), when collagen fibrils appear to be normal in 
terms of size even if they express lower levels of COL1A1, FMOD, 
DNC, and TNMD (51, 53).

The15ompareson of SCX and MKX KO mice phenotypes suggests 
that the TFs exert a complementary function, with SCX playing a key 
role at the beginning of tendon differentiation and MKX in tissue 
growth and collagen fibril assembly (51).

Furthermore, systems biology revealed that during both the 
embryonic and early post-natal stages, these shared TFs are involved 
in exerting indirect control of close districts composing the muscle-
skeletal system, albeit through different nodes. More in detail, the two 
master tendon TFs in mEmbryo TendonNET mainly interacted with 
MYF5, MYOD, SOX5, SOX6, and PITX1, thus confirming that tendon 
embryo development requires the coordinated commitments of TFs 
controlling muscle, cartilage, and bone cell lineages’ commitment.

Even in mPrepubertal TendonNETs, SCX and MKX interact with 
molecules involved in the maturation of tendon fibrocartilaginous 

TABLE 4 KEGG paths grouped into BRITE macro-categories related to TendonNETs and Enriched TendonNETs.

NETs TendonNETs EnrichedNETs

Physiological and 
diseaseKEGG 
paths number

Macro-categories of 
physiological KEGG paths

Physiological and 
disease KEGG 
paths number

Macro-categories of 
physiological KEGG paths

m 46 Growth, differentiation, and survival (12)

Morphogenesis and cell motility (5)

Nervous system (2)

Endocrine system (2)

56 Growth, differentiation, and survival (15)

Morphogenesis and cell motility (6)

Nervous system (2)

Endocrine system (2)

r 10 Growth, differentiation, and survival (5)

Morphogenesis and cell motility (2)

126 Growth, differentiation, and survival (29)

Morphogenesis and cell motility (9)

Nervous system (10)

Endocrine system (12)

h 7 Growth, differentiation, and survival (2)

Morphogenesis and cell motility (2)

38 Growth, differentiation, and survival (13)

Morphogenesis and cell motility (4)

Nervous system (1)

Endocrine system (1)

e 11 Growth, differentiation, and survival (1)

Morphogenesis and cell motility (2)

Endocrine System (1)

36 Growth, differentiation, and survival (8)

Morphogenesis and cell motility (2)

Endocrine system (1)

b – n.d. 49 Growth, differentiation, and survival (13)

Morphogenesis and cell motility (6)

Endocrine system (1)

g 5 Growth, differentiation, and survival (3)

Morphogenesis and cell motility (1)

Endocrine System (1)

10 Growth, differentiation, and survival (4)

Morphogenesis and cell motility (5)

Endocrine system (1)

d – n.d. 10 Growth, differentiation, and survival (7)

Morphogenesis and cell motility (3)

Total unique 

paths count*

50 23 142 62

*The number of total paths retrieved was counted excluding duplicate paths in the different NETs. See Supplementary File 11, columns “Total unique physiological path count” and “Total 
unique path count” for further details.
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system such as molecules belonging to the Hedgehog (Hh) signaling 
pathway (GLI1, IHH1, and RUNX2) (54, 55).

Several downstream effectors are represented as common nodes 
classified into three MCL-clustering-derived paths: collagen fibril 
formation (COL1A1, COL5A1, and POSTN), ECM organization 
(THBS4, ELN, ASPN, TNMD, COL1A1, POSTN, TNC, and 
COL5A1), and keratan sulfate path (PRG4 and FMOD).

The literature evidence confirmed the consistency of the nodes and 
interaction of mEmbryo TendonNET. More in detail, the early COL1A1 
fibril formation path requires POSTNB, COL5A1, and COL1A11A1. 
Specifically, lowering COL11A1 expression leads to fewer fibril formations 
in vivo and in vitro (56–58). At the same time, a synergic action between 
POSTNB and COL1A1 has been demonstrated as crucial for the 
regulation of COL1A1 fibrillogenesis leading to final biomechanical 
properties (4, 59). Furthermore, COL5A1 was found to join these 
processes during Embryo TendonNET, participating in the network of 
assembly molecules together with COL11A1 (58, 60–62).

Of note, prepubertal TendonNET highlighted the occurrence of 
additional interactions which are required to sustain early post-natal 
fibrillogenesis. Indeed, it appears that COL1A1-primed fibrillogenesis 
needs to recruit other collagen components including COL3A1 and 
COL2A1. Although COL3A1 starts to be expressed during embryo 
development (63), it becomes the major component of the ECM 
together with COL1A1 in the post-natal stage where it regulates the 
early events of post-natal tendon development (8, 64). Importantly, a 
precise ratio of COL3A1 to COL1A1 has been shown to define proper 
tendon organization, and perturbations have been observed in several 
pathologies over time (65).

The common nodes of the ECM organization path (THBS4, ELN, 
ASPN, TNMD, COL1A1, and POSTN) also recognized a stage-
specific interaction, clustering with COL11A1, NID2, and TNC in the 
mEmbryo TendonNET or with COL2A1 and COL3A1, DCN, and 
LOX in the mPrepubertal one. Focusing on the Embryo TendonNET, 
POSTNB (66) and COL1A1 (67) activities have been linked to the 
glycoprotein NID2. NID2 has been shown to interact with COL1A1 in 
the embryo phase (67) and to be a shared target of SCX together with 
POSTNB (66).

Consistently, the non-structural matricellular glycoprotein TNC 
was found as a stage-dependent molecule specifically involved in 
embryo development and morphogenesis.

On the other hand, THBS4, the glycoprotein regulating many 
ECM protein–protein and protein–cell interactions (68) interacted 
with COL2A1 and COL3A1 in the prepubertal TendonNET. Their 
interaction has consistently been shown to be  dependent on the 
availability of divalent cations Zinc (Zn2+) (69). THBS4 null mice had 
abnormal collagen fiber size and organization with increased spacing, 
indicating that THBS4 is required in post-natal life for correct fibril 
assembly and, most likely, for interaction with other ECM proteins 
and/or the maintenance of the correct ECM composition in the 
tendon (68, 70).

Moreover, DCN, the ubiquitous small interstitial dermatan sulfate 
proteoglycan of mPrepubertal TendonNET, has been recognized to 
interact with several ECM components including COL1A1, COL6A1, 
ELN, and THBS (71, 72). DCN was shown to be involved in elastic 
fiber biology suggesting its involvement in the stabilization of the 
fibrillin-containing microfibrils and the deposition of tropoelastin 
onto the microfibrils in the early stages of elastinogenesis (72). 
Moreover, DCN exerts an anti-adhesive role since it delayed fibroblast 
attachment on THBS substrate (73).

Scientific studies have also confirmed the interaction of COL1A1, 
COL2A1, DCN, and ASPN, a proteoglycan expressed in collagen-rich 
tissues, such as tendon, within mPrepubertal TendonNET (74). More 
in detail, it has been demonstrated that binding between ASPN and 
COL1 was inhibited by full-length DCN suggesting a competitive 
effect between ASPN and DCN in binding to collagen (74).

Finally, the Keratan Sulfate Biosynthesis path included FMOD 
and PRG4 as stage-independent nodes which cluster with CHST5 and 
KERA within the mEmbryo TendonNET and with LUM in the 
mPrepubertal one.

Limited information is available on the Embryo TendonNET 
KERA node, a proteoglycan previously thought to be ‘corneal-specific’ 
and currently recognized as abundant also in the tendon where it 
regulates collagenous ECM (75). Mapping the embryo development, 
KERA was found to interact with lubricin, also known as PRG4 or 

FIGURE 9

Hub identification and ranking in each Enriched TendonNET. The ranking was based on the value of the hub node degree. No bold font indicates 
molecules with a hub role in the TendonNETs (detailed in Figure 4). The different colors of the hub molecules allow us to identify the signaling layer of 
pertinence. In orange were reported nodes of the upstream layer, in green nodes of the TF layer, and in light blue nodes of the downstream layer. ES, 
extracellular signaling; IS, intracellular signaling; R, receptor; GF, growth factor.
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superficial zone protein, a boundary lubricant anti-adhesive 
component in diverse tissues by protecting them against frictional 
forces (76).

Conversely, LUM became a preferential interactor within the 
Prepubertal TendonNET. Consistently, either in vitro and in vivo data 
confirmed that LUM and FMOD share the same binding region on 
COL1A1, hence affecting collagen fibrillogenesis (77–79).

In contrast to the MCL-clustering analysis, direct bibliographical 
source analysis appears to indicate a stage-independent role for 
LUM. Although evidence is limited, some research findings indicate 
that LUM is involved in fibrillogenesis during tendon organogenesis, 
with decreased LUM having an inverse behavior with respect to 
FMOD, implying that the different observed patterns might 
be  important in regulating this process (80). The complementary 
stage-dependent phenotype of tendons derived from LUM and 
FMOD KO strongly supported this hypothesis (80).

4.3. Research evidence collected from KO 
models embodies the consistency of node 
interactions of the enriched TendonNETs

Methodologically, string enrichment was adopted to further fill 
out the molecular information flow. This computational approach 
allowed us to significantly increase the number of nodes within each 
species-specific network at the three operative layers of control, by 
identifying new upstream node molecules belonging to TGF, WNT, 
mitogenic, hormonal, and metabolic axes (see Figure  8). Among 
them, TGFB1, TGFB2, TGFB3, BMP7, and TWSG1 assumed a 
conserved role of controllers (hubs) of tenogenesis as demonstrated 
by the high degree of interconnection in m, h, e, b, and g 
Enriched TendonNETs.

Accordingly, the central role of TGFB in tendon development was 
corroborated by several pieces of evidence displaying the expression 
of TGFB ligands in tendon progenitor cells and, more importantly, the 
failure of tendon development after TGFBR2 or TGFB2 genetic 
deletions (81–83). Also, SMAD3 defective mice, a TGFB intracellular 
signaling member, led to altered tendon architecture (84).

WNT cascade was also enriched by the String approach. 
Interestingly, a recent study by Kishimoto and colleagues gave some 
insights into the contribution of the WNT cascade on tenogenesis. 
Indeed, the authors showed that WNT antagonizes the TGFB path 
and that a perturbation of their crosstalk might be responsible for 
tendon healing conditions (85).

Growth factors of the FGF family linking for the mitogenic 
cascades involving the intracellular mediators belonging to the MAPK 
family were also enriched, suggesting, according to preliminary 
literature data on null mice, a regulatory role of tenogenesis for 
mitogenic signal events (86–88).

Furthermore, enrichment in nodes belonging to the hormonal 
cascade, such as FST and NR4A1, allowed us to take into consideration 
additional mechanisms working concomitantly to tightly regulate the 
differentiation signal of the above-mentioned cascades. For example, 
the role of the FST hormone may unfold the master blocking signal of 
TGFB-mediated tenogenesis (64).

Moreover, the hormone-retinoid receptor NR4A1, a new node in 
Enriched TendonNET, was found to regulate the expression of the 
tenogenic differentiation genes SCX and TNMD in rat tendon-derived 
stem cells and, most importantly, its activity was enhanced by 

TABLE 5 Representation of the hubs of the Enriched TendonNETs organized 
into the multi-layered tenogenic signaling and classified for organism model.

Degree of inter specie-specific conservation of hubs of 
the Enriched TendonNETs classified into the three multi 

layered tenogenic signaling

PATHs HUBs Organism models

Upstream molecules

TGF path TGFB1 m, e, b, d

TGFB2 m, e, g

TGFB3 m, h, e, g

SMAD2 m, h, g, d

SMAD3 m, h, g, d

SMAD4 m

SMAD7 m, d

TGFBR1 m, e, b, g

TGFBR2 m, e, b, g

TGFBR3 e

BMP4 h, g

BMP7 h

CHRD g

TWSG1 g

WNT path CTNNB1 r, g

Mitogenic path MAPK1 r

MAPK3 r

MAPK8 r

FGF2 h

FGF8 h

Metabolic path AK1 e

TF

Tendon/skeletal muscle 
TFs

SCX m, e, g

RUNX2 m

MKX r

SIX2 g

Neuronal related TFs EGR1 r

Ubiquitous JUN (b/d) r

FOS r

EP300 r

Downstream effectors

ECM maturation FN1 b

ECM deposition COL1A1 m, d

COL1A2 m

COL3A1 m

ACAN b

ECM assembly BGN b

FHL2 g

LUM e

Data reported in this table derived from the application of the Venn diagram and stratification 
analyses to the hubs of the Enriched TendonNETs. The 24 new hubs derived after STRING 
enrichment are reported in bold. The different colors of the hub molecules allow to identify 
the signaling layer of pertinence. In orange were reported nodes of the upstream layer, in 
green nodes of the TF layer, and in light blue nodes of the downstream layer.
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photo-biomodulation therapy (89), a useful approach under 
investigation for the development of clinical therapeutic protocols 
enhancing tissue regeneration (90).

Additionally, String enrichment valorized the tendon influence on 
metabolic axis members. This computational evidence emphasizes an 
auxiliary role of the metabolism in controlling tendon homeostasis during 
development. One of the key members of the metabolic axis enriched by 
the present study was HIF1. Even though few studies focused on HIF 

action during tendon development, a murine phenotype corroborating 
its involvement in events related to tenogenesis has been observed in HIF 
defective mice which showed short limbs (ID of the KO mouse available 
in the11 with the ID: MGI:3621466).

11 https://www.informatics.jax.org

FIGURE 10

Identification of new paths sustaining tenogenesis signaling. Physiological-related BRITE macro-categories include (1) growth, differentiation, and 
survival, (2) morphogenesis and cell motility, (3) endocrine system, and (4) nervous system. For each macro-category, the internal KEGG paths were 
listed based on the number of sharing model organisms (from the most shared to the less one) and identified by specific numbers following the # sign. 
The different colors of the hub molecules allow to identify the signaling layer of pertinence. Yellow color indicates upstream molecules, green is TFs, 
and light blue is the downstream effectors. Created with BioRender.com.
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Consistent studies have been collected focusing on its role during 
tendon regeneration. Importantly, HIF1 has been described to 
be  implicated in managing glycolytic reprogramming following a 
stress stimulus in a in vivo mouse model of tendinopathy (91). 
Furthermore, HIF1 increased activity was found in biopsies of patients 
with tendinopathies (92). Accordingly, its inhibition has been 
proposed as a solution to attenuate Achilles tendinopathies (93).

Moving to the TF layer, SCX and MKX displayed a conserved hub 
role into m, e, g, d, and rTendonNETs.

The master role of the tendon controller of SCX is recognized in 
controlling diverse target genes: 32 activated by the TF and 17 
suppressed during early tendon development (66). Among the target 
genes EYA1, SIX2, MKX, TNMD, FMOD, and IGF1, SPARC has been 
retrieved by the present computational analysis.

Second, SCX upstream molecules, such as those of the TGFB and 
FGF cascades, which coordinately induce the development of axial 
and limb tendon progenitors via SCX action, have been recognized 
(48, 81–83, 94–97).

Differently, the upstream MKX expression has not been clarified 
yet, but several downstream molecules identified by the NETs have 
been confirmed by null mice models (51).

Like SCX, MKX was found to be  involved in several ECM 
molecules during the peri e post-natal lifetime. MKX appeared to 
regulate COL11A1 by influencing the pre-natal expression and 
controlling the later process of deposition (post-natal) (51, 53). 
Collagen fibril assembly was also found to be inhibited through the 
downregulation of tendon-associated molecules binding to fibril 
surfaces such as DCN, FMOD, and LUM (51, 53).

Because proper tendon development is the result of a coordinated 
commitment of the other skeletal muscle cell lineages (muscle, 
cartilage, and tendon) (98), additional TF, ensuring mutual control, 
was consistently retrieved using the computational approach to ensure 
mutual control. Among them, MEOX belonged to dTendonNET, and 
SIX2, EYA, and FHL2 derived from gTenonNETs. MYOD1 and 
FOXH1 were retrieved by String enrichment in bStringNET. Of note, 
FHL2 and SIX2 were hubs of the gTendonNET.

Neuronal-related TF were finally included and represented the 
mediators of the NGF/NGFR signaling that was recognized upstream 
in the mTendonNET. Neuronal-related TF included ERG1, working 
as a hub in rTendonNET and TCF7L2 and retrieved as a node of the 
gEnriched TendonNET.

Analogously, String enrichment fills out the downstream layer by 
adding new nodes and hubs responsible for ECM deposition, 
assembly, maturation, and binding. Among these, some members of 
the ECM deposition family including COL1A1 and ACAN, and ECM 
assembly nodes, such as BGN, were identified as hubs in m and 
bTendonNETs, respectively.

Consistent with the signaling flow, two molecules retrieved by the 
present analysis, COL1A1 and TNMD, were found to be  direct 
downstream targets of the SCX activity.

Also, the promoter of COL1A1 was found to be responsive to 
additional TF, such as ERG1 and ERG2, which have been found to 
be  recruited to the COL1A1 promoter region and promote its 
transactivation (99).

Like COL1A1, other ECM molecules of the Enriched 
TendonNETs, such as COL1A2, COL3A1, and COL5A1, have been 
described as targets of EGR1 and EGR2 during tendon cell 
differentiation in mouse and chick limbs (99).

A key role for ECM organization was also recognized for 
COL6A1, a new node of the dEnriched TendonNET. Literature 
data corroborate its inclusion into the network of events supporting 
tendon development. Its peculiar function has been associated 
with the fibroblast-matrix interface. Indeed, COL6A1 was found 
enriched in peri-cellular regions of tendon fibroblasts. However, 
the precise mechanism and interaction in which it is involved still 
need to be defined (100).

The class of molecules responsible for ECM assembly was densely 
filled by String enrichment with new members, such as SPARC, LUM, 
and POSTNB. Although data concerning molecular mechanisms 
encompassing their influence on tendon development are still 
required, defective mouse models supported their function in 
tenogenesis (77, 80, 101–105).

4.4. Computational enrichment of node 
interactions of early tenogenesis 
empowers four physiological pathways, 
including the endocrine and nervous 
systems

Finally, to define the physiological processes in which the 
Enriched TendonNETs nodes participate, a KEGG analysis was 
performed, which identified four macro-categories of physiological 
paths including (I) growth, differentiation, and survival, (II) 
morphogenesis and cell motility, and (III) endocrine and (IV) 
nervous systems.

Of note, the nervous and endocrine systems, which populated 
almost all NETs following enrichment, emerged as crucial paths for 
managing early tenogenesis (see Table 5).

In more detail, the nervous system included paths related to 
neurotrophin signaling and axon guidance recognized as key 
mediators of neuronal factors such as NGF, NGFR (otherwise known 
as p75NTR), EGR, TCF7L2, NAB1, and NAB2 nodes.

NGF and its receptors were found in Achilles tenocytes (106), 
and in vivo rats studies confirmed that NGF signaling is associated 
either with connective tissue homeostasis or pathological tendon 
characterized by adverse collagen deposition. NGF signaling, for 
example, is compromised during tendon healing in diabetic 
organisms (107) where the accumulation of advanced glycation 
end-products (AGE) mediated changes in ECM collagen by 
primarily damaging the process of collagen fibrils’ 
reorganization (108).

The action of NGF signaling is switched on through nerve-related 
receptor NGFR and Tyrosine receptor kinases (Trk-a and Trk-b). Of 
note, the latter receptor family can be activated also by other growth 
factors regulating cell proliferation and differentiation whose activity 
might be  useful to reinforce the signaling cascade promoted by 
NGF (109).

In line with this premise, the topological analysis of Tendon 
EnrichedNETs unveiled as a controller node (hub) within the nervous 
system, and the mitogenic intracellular mediator MAPK1 and the 
morphogenic growth factor BMP7 (see Figure 10) were involved in 
this process of indirect paths activation of NGF signaling.

NGF signaling, on the other hand, has been shown to activate 
ERG1, one of the neuronal TF identified by Tendon NETs, by 
activating downstream key tendon-related genes that code for 
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molecules involved in ECM deposition (COL1, COL3, COL5, COL6, 
and COL14), assembly (BGN and DCN), and maturation (FN1) (110).

In addition to ERG1, another neurogenic TF, TCF7L2, has been 
identified. It was found to be downstream of the WNT cascade in 
various contexts and to be temporally regulated to ensure the smooth 
development of oligodendroglia lineage cells (111, 112) of the brain 
(113, 114), thus potentially playing a role in numerous cellular 
processes ranging from early development to adult tissue homeostasis 
(115–117).

Notably, two neuronal targets populated the downstream 
layer in the rEnriched TendonNETs, namely, Nab1 and Nab2. 
Nab1 and Nab2 are neural tissue-specific actin filament-binding 
proteins involved in the dynamic organization of actin filaments 
controlling morphology, migration, and function during neurite 
formation and axon outgrowths that have never been studied 
until now in tendon systems.

Even though Nab1 and Nab2 showed closely related aminoacidic 
sequences, they display distinct functions, modulatory 
phosphorylation/dephosphorylation patterns, and subcellular 
localization (118). More in detail, Nab1 is present in spines and the 
lamellipodia of the growth cone during the development of neurons 
(119), whereas Nab2 is also named Spinophilin for its exclusive 
localization in dendritic spines (120). Nab1 operates as a neuronal-
specific scaffold protein that binds at the same time F-actin and 
diverse functional proteins were implicated in cytoskeletal dynamics 
transduction responses [e.g., phosphatase 1 (PP1) and p70 ribosomal 
S6 protein kinase]. Taking advantage of these multiprotein complexes, 
Nab1 controls actin rearrangement and membrane activity involved 
in the promotion of dendritic spine formation and function of 
mammalian neurons (121–123).

Analogously, Nab2 acts as a scaffold, anchoring more than 30 
partner molecules including cytoskeletal factors, cell adhesion 
molecules, guanine nucleotide exchange factors (GEF), a regulator 
of G-protein signaling protein, membrane receptors, and ion 
channels (118). Although the physiological significance of the 
majority of these interactions is unknown, scientific evidence to 
date indicates that Nab2 plays an important role in the regulation 
of spine morphology and density, synaptic plasticity, and neuronal 
migration, thus contributing to nervous system development and 
remodeling specifically inducing the regenerating growth cones to 
repair the functional neuronal connections, at least, in the central 
nervous system after injury (118). However, there is no scientific 
evidence to date that Nab1 and Nab2 are involved in the 
mechanisms of tendon tissue differentiation, maturation, and 
homeostasis control.

The endocrine pathway is also noteworthy, as its influence on 
tendon morphology and function was only recently discovered. More 
evidence has been gathered to date to demonstrate a negative 
relationship between tendon homeostasis and endocrine disorders. 
Indeed, in vitro and in vivo studies on animals and humans have 
revealed that subjects with hormonal imbalances have changes in their 
tendon microarchitecture and function that are solely hormone-
dependent (124).

In more detail, the endocrine system was composed of four main 
pathways including relaxin, aldosterone regulating sodium adsorption, 
prolactin, and melanogenesis signaling.

The available scientific data confirmed that metabolic changes 
caused by relaxin and prolactin hormonal disorders could induce 

tendinopathies affecting both tendon and ligament structures during 
pregnancy (125). Specifically, relaxin has been found to alter the 
properties of cartilage and tendons by activating collagenase 
enzymes (126).

Similarly, increased systemic prolactin concentrations during 
pregnancy have been linked to the release of proinflammatory 
cytokines and matrix metalloproteinases responsible for connective 
tissue disease from fibroblast-like cells. The observation of 
decreased tendon reflexes of the patellar and Achilles tendons in 
patients with high serum prolactin levels supported this hypothesis 
(127, 128).

Furthermore, aldosterone signaling has been shown to influence 
muscle skeletal metabolism by serving as a potential etiological cause 
of chronic disorders in which aldosterone overproduction induces a 
variety of muscle conditions (129) or tendon degeneration (130, 131). 
As proof, a case report study showed a correlation between the 
aldosteronism condition and calcification of the Achilles tendons and 
knees (130). Accordingly, Saiki and colleagues showed impaired 
tendon reflexes (131).

In contrast, there is no evidence of a link between the path of 
melanogenesis and tendon physiology or pathology. Although 
many efforts have been made to clarify the relationship between 
the nervous and endocrine axis and changes in the architecture and 
function of the Achilles tendon, the topic still warrants 
further investigation.

4.5. Conclusion

Overall, the data show that computational approaches were able 
to design tight and time-dependent molecular interactions, either 
empowering each signaling layer or establishing how information flow 
moves within the network, converging toward the more connected 
nodes (hub) of TendonNET, the main controller of early tenogenesis.

First, the high degree of preservation of the Tendon and Enriched 
TendonNETs seems to suggest great feasibility in navigating the 
molecular interaction controlling tenogenesis encompassing the 
interspecific barriers, even when the animal models are not as closely 
related evolutionarily.

Second, the computational map of tenogenesis established a 
stepwise process recognizing stage-specific molecular interactions that 
merit further experimental investigation to improve biological 
knowledge of this system as a prerequisite for developing the targeted 
therapeutic strategies that the medical and veterinary sectors have 
been waiting for. Given the variety of molecular interconnections 
revealed by the embryonic and prepubertal mouse TendonNETs, it 
seems reasonable to favor the latter as the experimental model with 
the greatest translation value for the discovery of mechanisms that 
could be used in adult tissue.

Finally, the present research unveiled a hierarchical 
organization of the signals managing tendon homeostasis during 
development identifying, after the computational enrichment, a 
new and not fully characterized level of signals belonging to the 
nervous and endocrine systems. Molecules identified with their 
positive influence during normal tendon development even in an 
early post-natal lifetime could be  exploited for confirming 
experimentally its role in controlling tissue homeostasis and 
healing during adulthood.
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Glossary

ACAN AGGRECAN

ACTA1 ACTIN ALPHA 1, SKELETAL MUSCLE

ACVR1 ACTIVIN RECEPTOR 1

ACVR1B ACTIVIN RECEPTOR 1

ACVR1BLIKE ACVR1B ACTIVIN A RECEPTOR TYPE 1B

ACVR1C ACTIVIN RECEPTOR 1C

ACVR2A ACTIVIN RECEPTOR 2A

ACVR2B ACTIVIN RECEPTOR 2B

ACVRL1 ACTIVIN A RECEPTOR LIKE TYPE 1

ADGRB3 ADHESION G-PROTEIN-COUPLED RECEPTOR B3

ADGRG2 ADHESION G-PROTEIN-COUPLED RECEPTOR G2

AFF3 ALF TRANSCRIPTION ELONGATION FACTOR 3

AK1 ADENYLATE KINASE 1

ALPL ALKALINE PHOSPHATASE, BIOMINERALIZATION ASSOCIATED

AMPK AMP-ACTIVATED CATALYTIC SUBUNIT ALPHA 1 PROTEIN KINASE

APC APC REGULATOR OF WNT SIGNALING PATHWAY

AQP1 AQUAPORIN 1

ASPN ASPORIN

ATF3 ACTIVATING TRANSCRIPTION FACTOR 3

BCL9 BCL9 TRANSCRIPTION COACTIVATOR

BGN BIGLYCAN

BMP2 BONE MORPHOGENETIC PROTEIN 2

BMP4 BONE MORPHOGENETIC PROTEIN 4

BMP5 BONE MORPHOGENETIC PROTEIN 5

BMP6 BONE MORPHOGENETIC PROTEIN 6

BMP7 BONE MORPHOGENETIC PROTEIN 7

BMPER BMP BINDING ENDOTHELIAL REGULATOR

BMPR1 BONE MORPHOGENETIC PROTEIN RECEPTOR TYPE 1

BMPR1A BONE MORPHOGENETIC PROTEIN RECEPTOR TYPE 1A

BMPR1AA BONE MORPHOGENETIC PROTEIN RECEPTOR TYPE 1AA

BMPR1AB BONE MORPHOGENETIC PROTEIN RECEPTOR TYPE 1AB

BMPR1BA BONE MORPHOGENETIC PROTEIN RECEPTOR TYPE 1BA

BMPR2 BONE MORPHOGENETIC PROTEIN RECEPTOR TYPE 2

C1QTNF3 C1Q AND TNF RELATED 3

CACNB2 CALCIUM VOLTAGE-GATED CHANNEL AUXILIARY SUBUNIT BETA 2

CBFB CORE-BINDING FACTOR SUBUNIT BETA

CCBE1 COLLAGEN AND CALCIUM BINDING EGF DOMAINS 1

CCDC85A COILED-COIL DOMAIN CONTAINING 85A

CCDC88A COILED-COIL DOMAIN CONTAINING 88A

CCN1 CELLULAR COMMUNICATION NETWORK FACTOR 1

CDK1 CYCLIN-DEPENDENT KINASE 1

CHDL1 CHROMODOMAIN HELICASE DNA BINDING PROTEIN 1 LIKE

CHDL2 CHROMODOMAIN HELICASE DNA BINDING PROTEIN 2 LIKE

CHRD CHORDIN

CHST5 CARBOHYDRATE SULFOTRANSFERASE 5
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CLEC3B C-TYPE LECTIN DOMAIN FAMILY 3 MEMBER B

CLIP2 CAP-GLY DOMAIN CONTAINING LINKER PROTEIN 2

COL11A1 COLLAGEN TYPE XI ALPHA 1 CHAIN

COL14A1 COLLAGEN TYPE XIV ALPHA 1 CHAIN -

COL1A1 COLLAGEN TYPE I ALPHA 1 CHAIN

COL22A1 COLLAGEN TYPE XXII ALPHA 2 CHAIN

COL2A1 COLLAGEN TYPE II ALPHA 1 CHAIN

COL2A2 COLLAGEN TYPE II ALPHA 2 CHAIN

COL3A1 COLLAGEN TYPE III ALPHA 1 CHAIN

COL4A COLLAGEN TYPE IV ALPHA 4 CHAIN

COL5A1 COLLAGEN TYPE V ALPHA 1 CHAIN

COL5A2 COLLAGEN TYPE V ALPHA 2 CHAIN

COL6A1 COLLAGEN TYPE VI ALPHA 1 CHAIN

COMP CARTILAGE OLIGOMERIC MATRIX PROTEIN

CTNNA1 CATENIN ALPHA 1

CTNNB1 CATENIN BETA 1

CTNNBIP1 CATENIN BETA INTERACTING PROTEIN 1

CX32 GAP JUNCTION PROTEIN BETA 1

CX43 GAP JUNCTION PROTEIN ALPHA 1

CXCL12 C-X-C MOTIF CHEMOKINE LIGAND 12

CYR61 CELLULAR COMMUNICATION NETWORK FACTOR 1

DAN NBL1, DAN FAMILY BMP ANTAGONIST

DCN DECORIN

DIO2 IODOTHYRONINE DEIODINASE 2

DOCK4 DEDICATOR OF CYTOKINESIS 4

DSC2 DESMOCOLLIN 2

DUSP6 DUAL SPECIFICITY PHOSPHATASE 6

E2F4 E2F TRANSCRIPTION FACTOR 4

EGR1 EARLY GROWTH RESPONSE 1

ELN ELASTIN

ENG ENDOGLIN

ENPP2 ECTONUCLEOTIDE PYROPHOSPHATASE/PHOSPHODIESTERASE 2

EP300 E1A BINDING PROTEIN P300

EPHA3 EPH RECEPTOR A3

EPHA4 EPH RECEPTOR A4

ERK2 MITOGEN-ACTIVATED PROTEIN KINASE 1

EYA1 EYA TRANSCRIPTIONAL COACTIVATOR AND PHOSPHATASE 1

FAT3 FAT ATYPICAL CADHERIN 3

FGF10 FIBROBLAST GROWTH FACTOR 10

FGF2 FIBROBLAST GROWTH FACTOR 2

FGF23 FIBROBLAST GROWTH FACTOR 23

FGF4 FIBROBLAST GROWTH FACTOR 4

FGF6 FIBROBLAST GROWTH FACTOR 6

FGF8 FIBROBLAST GROWTH FACTOR 8

FGFR1 FIBROBLAST GROWTH FACTOR RECEPTOR 1

FHL2 FOUR AND A HALF LIM DOMAINS 2

FIBIN FIN BUD INITIATION FACTOR HOMOLOG
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FKBP1 FKBP PROLYL ISOMERASE 1

FKBP1A FKBP PROLYL ISOMERASE 1A

FMOD FIBROMODULIN

FN1 FIBRONECTIN 1

FOS FOS PROTO-ONCOGENE, AP-1 TRANSCRIPTION FACTOR SUBUNIT

FOSB1 FOSB PROTO-ONCOGENE, AP-1 TRANSCRIPTION FACTOR SUBUNIT

FOSL1 FOS LIKE 1, AP-1 TRANSCRIPTION FACTOR SUBUNIT

FOXH1 FORKHEAD BOX H1

FST FOLLISTATIN

FSTL1 FOLLISTATIN LIKE 1

FSTL5 FOLLISTATIN LIKE 5

GDF5 GROWTH DIFFERENTIATION FACTOR 5

GDF6 GROWTH DIFFERENTIATION FACTOR 6

GDF6A GROWTH DIFFERENTIATION FACTOR 6A

GLI1 GLI FAMILY ZINC FINGER 1

GPC3 GLYPICAN 3

GSK3B GLYCOGEN SYNTHASE KINASE 3 BETA

HDAC4 HISTONE DEACETYLASE 4

HIF1A HYPOXIA INDUCIBLE FACTOR 1 SUBUNIT ALPHA

HOXA13 HOMEOBOX A13

HOXC10 HOMEOBOX C10

HSPG2 HEPARAN SULFATE PROTEOGLYCAN 2

HTRA3 HTRA SERINE PEPTIDASE 3

IBSP INTEGRIN BINDING SIALOPROTEIN

IGF1 INSULIN GROWTH FACTOR 1

IGF1-LIKE INSULIN LIKE GROWTH FACTOR 1

IGF2BP1 INSULIN LIKE GROWTH FACTOR 2 MRNA BINDING PROTEIN 1

IGH3 TRANSFORMING GROWTH FACTOR BETA INDUCED

IHH1 INDIAN HEDGEHOG SIGNALING MOLECULE 1

INHBA INHIBIN SUBUNIT BETA A

ITGA1 INTEGRIN SUBUNIT ALPHA 1

ITGA5 INTEGRIN SUBUNIT ALPHA 5

ITGB1 INTEGRIN SUBUNIT BETA 1

ITGB2 INTEGRIN SUBUNIT BETA 2

ITGB3 INTEGRIN SUBUNIT BETA 3

ITGB6 INTEGRIN SUBUNIT BETA 6

ITGB8 INTEGRIN SUBUNIT BETA 8

JUN B JUN PROTO-ONCOGENE, AP-1 TRANSCRIPTION FACTOR SUBUNIT B

JUN D JUN PROTO-ONCOGENE, AP-1 TRANSCRIPTION FACTOR SUBUNIT D

KERA KERATOCAN

KLB KLOTHO BETA

LDB2 LIM DOMAIN BINDING 2

LEF1 LYMPHOID ENHANCER BINDING FACTOR 1

LINGO2 LEUCINE-RICH REPEAT AND IG DOMAIN CONTAINING 2

LOX LYSYL OXIDASE

LTPB1 LATENT TRANSFORMING GROWTH FACTOR BETA BINDING PROTEIN 1

LUM LUMICAN
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MAP K1 MITOGEN-ACTIVATED PROTEIN KINASE 1

MAP K3 MITOGEN-ACTIVATED PROTEIN KINASE 3

MAP K8 MITOGEN-ACTIVATED PROTEIN KINASE 8

MAP K9 MITOGEN-ACTIVATED PROTEIN KINASE 9

MEF2C MYOCYTE ENHANCER FACTOR 2C

MEOX1 MESENCHYME HOMEOBOX 1

MKX MOHAWK HOMEOBOX

MKXA MOHAWK HOMEOBOX A

MKXB MOHAWK HOMEOBOX

MMP1 MATRIX METALLOPEPTIDASE 1

MMP11 MATRIX METALLOPEPTIDASE 11

MMP13 MATRIX METALLOPEPTIDASE 13

MMP16 MATRIX METALLOPEPTIDASE 16

MMP2 MATRIX METALLOPEPTIDASE 2

MMP3 MATRIX METALLOPEPTIDASE 3

MSN MOESIN

MTCL1 MICROTUBULE CROSSLINKING FACTOR 1

MTCL1 MICROTUBULE CROSSLINKING FACTOR 1

MYF5 MYOGENIC FACTOR 5

MYOD1 MYOGENIC DIFFERENTIATION 1

NAALAD2 N-ACETYLATED ALPHA-LINKED ACIDIC DIPEPTIDASE 2

NAALAD2 N-ACETYLATED ALPHA-LINKED ACIDIC DIPEPTIDASE 2

NAB1 NGFI-A BINDING PROTEIN 1

NAB2 NGFI-A BINDING PROTEIN 2

NEDD4L NEDD4 LIKE E3 UBIQUITIN PROTEIN LIGASE

NGF NERVE GROWTH FACTOR

NGFR NERVE GROWTH FACTOR RECEPTOR

NID2 NIDOGEN 2

NOG NOGGIN

NR4A1 NUCLEAR RECEPTOR SUBFAMILY 4 GROUP A MEMBER 1

OLFML2B OLFACTOMEDIN LIKE 2B

PCOLCE PROCOLLAGEN C-ENDOPEPTIDASE ENHANCER

PI3K PHOSPHATIDYLINOSITOL-4,5-BISPHOSPHATE 3-KINASE

PITX1 PAIRED LIKE HOMEODOMAIN 1

PLCG1 PHOSPHOLIPASE C GAMMA 1

PLCH1 PHOSPHOLIPASE C ETA 1

POSTN PERIOSTIN

POSTNB PERIOSTIN B

PRG4 PROTEOGLYCAN 4

RAVER2 RIBONUCLEOPROTEIN, PTB BINDING 2

RCN3 RETICULOCALBIN 3

RFLNB REFILIN B

RNASE4 RIBONUCLEASE A FAMILY MEMBER 4

RUNX2 RUNX FAMILY TRANSCRIPTION FACTOR 2

SCUBE2 SIGNAL PEPTIDE, CUB DOMAIN, AND EGF-LIKE DOMAIN CONTAINING 2

SCX SCLERAXIS BHLH TRANSCRIPTION FACTOR

SCXA SCLERAXIS BHLH TRANSCRIPTION FACTOR
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SDC4 SYNDECAN 4

SFRP2 SECRETED FRIZZLED-RELATED PROTEIN 2

SHC1 SHC ADAPTOR PROTEIN 1

SHP2 PROTEIN TYROSINE PHOSPHATASE NON-RECEPTOR TYPE 11

SIX1 SIX HOMEOBOX 1

SIX2 SIX HOMEOBOX 2

SKIA SKI PROTO-ONCOGENE

SKILA SKI-LIKE PROTO-ONCOGENE

SMAD1 SMAD FAMILY MEMBER 1

SMAD2 SMAD FAMILY MEMBER 2

SMAD3 SMAD FAMILY MEMBER 3

SMAD3A SMAD FAMILY MEMBER 3A

SMAD3B SMAD FAMILY MEMBER 3B

SMAD4 SMAD FAMILY MEMBER 4

SMAD5 SMAD FAMILY MEMBER 5

SMAD7 SMAD FAMILY MEMBER 7

SMAD8 SMAD FAMILY MEMBER 8

SMO SMOOTHENED, FRIZZLED CLASS RECEPTOR

SMOC2 SPARC-RELATED MODULAR CALCIUM BINDING 2

SMURF2 SMAD-SPECIFIC E3 UBIQUITIN PROTEIN LIGASE 2

SOX5 SRY-BOX TRANSCRIPTION FACTOR 5

SOX6 SRY-BOX TRANSCRIPTION FACTOR 6

SOX9 SRY-BOX TRANSCRIPTION FACTOR 9

SP1 SP1

SP7 SP7 TRANSCRIPTION FACTOR

SPARC SECRETED PROTEIN ACIDIC AND CYSTEINE RICH

SPP1 SECRETED PHOSPHOPROTEIN 1

SSC5D SCAVENGER RECEPTOR CYSTEINE RICH FAMILY MEMBER WITH 5 DOMAINS

ST8SIA1 ST8 ALPHA-N-ACETYL-NEURAMINIDE ALPHA-2,8-SIALYLTRANSFERASE 1

SULF1 SULFATASE 1

SYT7 SYNAPTOTAGMIN 7

TBX4 T-BOX TRANSCRIPTION FACTOR 4

TCF7L2 TRANSCRIPTION FACTOR 7 LIKE 2

TGFB1 TRANSFORMING GROWTH FACTOR BETA 1

TGFB2 TRANSFORMING GROWTH FACTOR BETA 2

TGFB3 TRANSFORMING GROWTH FACTOR BETA 3

TGFBLIKE TRANSFORMING GROWTH FACTOR BETA-LIKE

TGFBR1 TRANSFORMING GROWTH FACTOR BETA RECEPTOR 1

TGFBR1A TRANSFORMING GROWTH FACTOR BETA RECEPTOR 1A

TGFBR1B TRANSFORMING GROWTH FACTOR BETA RECEPTOR 1B

TGFBR2 TRANSFORMING GROWTH FACTOR BETA RECEPTOR 2

TGFBR3 TRANSFORMING GROWTH FACTOR BETA RECEPTOR 3

TGIF1 TGFB INDUCED FACTOR HOMEOBOX 1

THBS2 THROMBOSPONDIN 2

THBS4 THROMBOSPONDIN 4

TIMP2 TIMP METALLOPEPTIDASE INHIBITOR 2

TLL1 TOLLOID LIKE 1
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TLR2 TOLL-LIKE RECEPTOR 2

TMEM44 TRANSMEMBRANE PROTEIN 44

TNC TENASCIN C

TNFSF11 TNF SUPERFAMILY MEMBER 11

TNMD TENOMODULIN

TP53 TUMOR PROTEIN P53

TRIM33 TRIPARTITE MOTIF CONTAINING 33

TWIST TWIST FAMILY BHLH TRANSCRIPTION FACTOR 1

TWSG1 TWISTED GASTRULATION BMP SIGNALING MODULATOR 1

WNT3 WNT FAMILY MEMBER 3

WNT3A WNT FAMILY MEMBER 3A

WNT6 WNT FAMILY MEMBER 6

WNT7 WNT FAMILY MEMBER 7

XIRP2A XIN ACTIN BINDING REPEAT CONTAINING 2

ZFP185 ZINC FINGER PROTEIN 185 WITH LIM DOMAIN

ZFYVE9 ZINC FINGER FYVE-TYPE CONTAINING 9

https://doi.org/10.3389/fvets.2023.1175346
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org

	Mammal comparative tendon biology: advances in regulatory mechanisms through a computational modeling
	1. Introduction
	2. Materials and methods
	2.1. Data collection retrieval and organization
	2.2. Tenogenesis network creation, visualization, and analysis
	2.2.1. Identification of hyperconnected (hub) nodes
	2.2.2. Node degree
	2.2.3. MCL and local network clustering
	2.2.4. STRING enrichment analysis
	2.2.5. KEGG analysis
	2.2.6. Venn diagram

	3. Results
	3.1. A multi-organism data collection strategy to depict the backbone of the tenogenesis signaling events
	3.2. Tenogenesis signaling identified by TendonNETs is strictly developmental stage-dependent
	3.3. Knowledge-based network enrichment identifies new molecular players of the tenogenesis process working in a multi-layered signaling system
	3.4. Enriched TendonNETs predict intriguing new hubs of tenogenesis signaling

	4. Discussion
	4.1. TendonNET nodes and interactions revealed a high degree of preservation in tenogenesis
	4.2. MCL-clustering paths of mice embryo and prepubertal TendonNETs identified common molecular players but stage-specific interactions
	4.3. Research evidence collected from KO models embodies the consistency of node interactions of the enriched TendonNETs
	4.4. Computational enrichment of node interactions of early tenogenesis empowers four physiological pathways, including the endocrine and nervous systems
	4.5. Conclusion

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Glossary

	 References

