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Fractional differential equations can model various complex problems in physics
and engineering, but there is no universal method to solve fractional models
precisely. This paper offers a new hope for this purpose by coupling the homotopy
perturbationmethodwith Aboodh transform. The new hybrid technique leads to a
simple approach to finding an approximate solution, which converges fast to the
exact one with less computing effort. An example of the fractional casting-mold
system is given to elucidate the hope for fractional calculus, and this paper serves
as a model for other fractional differential equations.
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1 Introduction

Fractional calculus has triggered much interest in both physics and mathematics [1, 2].
Traditional differential equations cannot accurately represent many physical problems, and
the fractional partner can provide deeper insight into these complex physical phenomena
with ease. In general, this newly developed field is for studying real-world applications in the
fractal space, so most literature labeled it as the fractal–fractional calculus [3–5] or the local
fractional calculus on the Cantor set [6]. A continuum medium, e.g., water or air, becomes a
fractal space (porous medium) when we observe it on a molecule’s scale. Any phenomena
arising in molecules’ perturbation have to be modeled by the fractal–fractional model [7]. As
an example, we consider a nanoparticle’s motion in the air, which is stochastic and difficult to
be modeled by the traditional differential equation; however, if the air is considered as a
fractal space on a molecule’s scale, its motion is determinate and can be modeled by the
fractal–fractional model. So, we need two scales for a porous medium; one is large enough so
that the continuum assumption works, and the other is small enough so that the porosity can
be measured, as pointed out by Ji-Huan He that “seeing with a single scale is always
unbelieving” [8]. Another example is the motion of the Moon, which is naturally periodic;
however, if we measure its motion at an extremely far distance, its motion becomes
stochastic, and the Heisenberg-like uncertainty principle works for the Moon [9]. He
and Qian showed that the fractal diffusion process in water depends on the fractal
dimensions [10], and other scientists also discussed the fractional
advection–reaction–diffusion process [11] and the fractal diffusion–reaction process [12].
A cocoon’s air/moisture permeability and its thermal property can best be revealed by the
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fractal–fractional model [13, 14], and the fractal micro-
electromechanical systems show even more amazing properties
[15–18].

Fractional calculus is a good and reliable tool for scientists
and engineers but a mixed blessing for practical applications
because an intractable problem arises; that is, fractional models
are extremely difficult to be solved. Researchers have been racing
to test various analytical methods which were originally proposed
to solve traditional differential equations. Though there are many
famous analytical methods in the literature, for example, the
homotopy perturbation method [19–23] and its various
modifications [24–26], the decomposition method [27], the
variational iteration method [28–30], the exp-function method
[31], and the differential transform method [32], so far, there is
not a universal approach to solving exactly fractional differential
equations, and this paper offers a new hope for this purpose by
coupling the homotopy perturbation method [33, 34] and the
Aboodh transform [35].

The homotopy perturbation method (HPM) was first proposed
by Chinese mathematician Prof. Ji-Huan He in the later 1990s [33];
it is mathematically simple and physically insightful. The method is
equally suitable for linear or non-linear, homogeneous or
inhomogeneous, and initial and/or boundary value problems. The
solution is expressed in an infinite series and typically converges to
the exact solution. The HPM is now considered a matured tool for
almost all kinds of problems, and many researchers have used this
method for an accurate insight into the solution properties of a
complex problem [36–38].

The Aboodh transform (AT) was proposed by Aboodh [35]
and derived from the classical Fourier integral. This transform is
now considered a simple technique for solving linear differential
equations but is unable to solve non-linear ones. By coupling AT

with the HPM, one has the capability to solve linear and non-
linear problems, and a lot of literature works have been witnessed
to utilize this coupling for solving various types of problems.
Using AT–HPM, Manimegalai et al. [39] solved strongly non-
linear oscillators with great success. Jani and Singh [40] found it
had obvious advantages over the decomposition method, Yasmin
[41] revealed the dynamic behavior of the fractional
convection–reaction–diffusion process, and Jani and Singh
[42] extended it to the soliton theory.

Though much work was achieved, in this study, we will show
that AT–HPM is a universal tool for fractional calculus. As an
example, we consider the time-fractional casting-mold system
which is used in manufacturing various medical equipment,
ranging from injections to the COVID-19 tool-kit [43]. The
significant findings reveal that AT–HPM is an accurate and
effective approach that reduces the computational work with
fast convergence ratio.

2 Aboodh transform-based homotopy
perturbation technique

This section is divided into two sections. In the first section, the
methodology will be proposed, and the convergence of the suggested
technique will be discussed in the second section.

TABLE 1 Aboodh transform of some elementary functions.

f(t) 1 t tn ebt sin bt cos bt sinh bt cosh bt

F(u) 1
u2

1
u3

n!
un+2

1
u2−bu

b
u(u2+b2)

1
u2+b2

b
u(u2−b2)

1
u2−b2
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2.1 Methodology

In this section, we give a brief introduction to the Aboodh
transform [35] and homotopy perturbation method [33, 34].

If f is a continuous piecewise function of time t, then the Aboodh
transform of f(t) is F(u) that can be expressed as follows [35]:

A f t( )[ ] � F u( ) � 1
u
∫∞
0

f t( )e−utdt, t≥ 0, k1 ≤ u≤ k2, (1)

where k1 and k2 are positive and can be finite or infinite. f(t) is
considered a function of the exponential order, which assures the
convergence of the integrand. e−ut is the kernel of the transform,
and u is the transform variable. Table 1 includes the Aboodh
transformation of some elementary functions helpful for this
manuscript. This table can also be used for inverse Aboodh transform.

The Aboodh transform of the partial derivative of time can be
obtained using the following formula:

A
znf w, t( )

ztn
[ ] � unF w, u( ) −∑n−1

k�0

1
u2−n+k

zkf w, 0( )
ztk

, (2)

where w is the independent variable. Now, suppose the general
system of PDEs is expressed as

Ltx + Lwy +N1 x, y( ) � g1,
Lty + Lwx +N2 x, y( ) � g2,

(3)

where L is the linear operator, N1, N2 are the non-linear operators,
x, y are the dependent variables, and g1, g2 are the inhomogeneous
functions. We assume the initial conditions as

x w, 0( ) � h1 w( ),
y w, 0( ) � h2 w( ), (4)

where h1 and h2 are known functions of the independent variable w.
Themethodology composed of initially applying the Aboodh transform
to both sides of the system of equations written in Eq. 3 and then
employing the given initial conditions expressed in Eq. 4, thus yielding

A Ltx[ ] + A Lwy[ ] + A N1 x, y( )[ ] � A g1[ ],
A Lty[ ] + A Lwx[ ] + A N2 x, y( )[ ] � A g2[ ]. (5)

By employing the differential characteristic of Aboodh
transform, we can express Eq. 3 as

uA x w, t( )[ ] − x w, 0( )
u

+ A Lwy[ ] + A N1 x, y( )[ ] � A g1[ ],
uA y w, t( )[ ] − y w, 0( )

u
+ A Lwx[ ] + A N2 x, y( )[ ] � A g2[ ], (6)

and after using the initial conditions, we have

A x w, t( )[ ] � h1 w( )
u2 − 1

u
A Lwy[ ] − 1

u
A N1 x, y( )[ ] + 1

u
A g1[ ],

A y w, t( )[ ] � h2 w( )
u2 − 1

u
A Lwx[ ] − 1

u
A N2 x, y( )[ ] + 1

u
A g2[ ]

or

x w, t( ) � K1 w( ) − A−1 1
u

A N1 x, y( )[ ] + A Lwy[ ]{ }( ),
y w, t( ) � K2 w( ) − A−1 1

u
A N2 x, y( )[ ] + A Lwx[ ]{ }( ), (7)

where K1(w) and K2(w) denote the terms arising from the initial
condition. According to the standard homotopy perturbation method
[33, 34], the solution x and y can be expanded into an infinite series as

x �∑∞
n�0

pnxn, y �∑∞
n�0

pnyn , (8)

where p ∈ [0, 1] is the embedding parameter. Also, the non-linear
terms N1 and N2 can be written as

N1 x, y( ) �∑∞
n�0

pnH1n x, y( ), N2 x, y( ) �∑∞
n�0

pnH2n x, y( ) , (9)

whereH1n andH2n are He’s polynomials [44] and can be generated
by the recursive formula

Hn x0, x1,/, xn( ) � 1
n!

zn

zpn N ∑∞
i�0
pixi

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦
∣∣∣∣∣∣∣∣∣∣
p�0

n � 0, 1, 2,/ .

(10)
By substituting Eqs 7, 8 in Eq. 6, we get

∑∞
n�0

pnxn � K1 w( ) − p A−1 1
u

A H1n[ ] + A Lwy[ ]{ }( )[ ],
∑∞
n�0

pnyn � K2 w( ) − p A−1 1
u

A H2n[ ] + A Lwx[ ]{ }( )[ ].
(11)

Comparing the coefficients of like powers of p, we have

p0: x0 � K1 w( ),
p1: x1 � −A−1 1

u
A H10[ ] + A Lwy0[ ]{ }( ),

p2: x2 � −A−1 1
u

A H11[ ] + A Lwy1[ ]{ }( ),
..
.

(12)

p0: y0 � K2 w( ),
p1: y1 � −A−1 1

u
A H20[ ] + A Lwx0[ ]{ }( ),

p2: y2 � −A−1 1
u

A H21[ ] + A Lwx1[ ]{ }( ).
..
.

(13)

We can obtain the best approximation for the solution as

x � lim
p→1

xn � x0 + x1 + x3 +/,

y � lim
p→1

yn � y0 + y1 + y3 +/. (14)

2.2 Convergence analysis

To show that the series solution of the system in Eq. 14 converges to
the solution of Eq. 3, we are to prove the sufficient condition of the
convergence, and the following theorem will help us.

Theorem: We assume that X and Y are Banach spaces and
M: X → Y is a non-linear contractive mapping such that

∀s, s* ∈ X: M s( ) −M s*( )‖ ‖≤ λ s − s*‖ ‖, 0< λ< 1.
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Then, according to Banach’s fixed point theorem, M has a
unique fixed point μ, that is, M(μ) � μ. Supposing that the
sequence in Eq. 14 can be written as

Sn � M Sn−1( ), Sn−1 �∑n−1
i�0

Si, n � 1, 2, 3,/

and considering that S0 � s0 ∈ Br(s), where Br(s)
� s* ∈ X | ‖s* − s‖< r{ }, we have

(i) Sn ∈ Br(s)
(ii) lim

n→∞ Sn � s

Proof: (i) By the principle of mathematical induction, for n � 1,
we have

S1 − s‖ ‖ � M S0( ) −M s( )‖ ‖≤ λ s0 − s‖ ‖.
Assuming ‖Sn−1 − s‖≤ λn+1‖s0 − s‖ as an induction hypothesis,

we get

Sn − s‖ ‖ � M Sn−1( ) −M s( )‖ ‖≤ λ Sn−1 − s‖ ‖≤ λn s0 − s‖ ‖.
By employing the definition of Br(s), we have

Sn − s‖ ‖≤ λn s0 − s‖ ‖≤ λnr< r which implies Sn ∈ Br s( ).
(ii) As ‖Sn − s‖≤ λn‖s0 − s‖ and lim

n→∞ λn � 0,

lim
n→∞

Sn − s‖ ‖ � 0, that is, lim
n→∞

Sn � s.

Hence, the given statement is proved.

3 Numerical examples

In this section, three examples are presented to illustrate the idea
explained in Section 2. First, we will study the method for a
homogeneous linear system of PDEs. Second, the analytical
solution will be obtained for an inhomogeneous linear system of
PDEs. Finally, the inhomogeneous non-linear system of PDEs will
be examined.

3.1 The system of homogeneous linear PDEs

We consider the following linear system:

xt + yw − x + y( ) � 0,
yt + xw − x + y( ) � 0,

(15)

with initial conditions

x w, 0( ) � sinh w,
y w, 0( ) � cosh w.

(16)

By employing the Aboodh transform method, we have

uA x w, t( )[ ] − x w, 0( )
u

� −A yw[ ] + A x + y[ ],
uA y w, t( )[ ] − y w, 0( )

u
� −A xw[ ] + A x + y[ ]. (17)

Using the initial conditions given in Eq. 16, we reach

A x w, t( )[ ] � sinhw

u2 − 1
u

A yw[ ] − A x + y[ ]( ),
A y w, t( )[ ] � coshw

u2 − 1
u

A xw[ ] − A x + y[ ]( ) (18)

or

x w, t( ) � sinhw − A−1 1
u

A yw[ ] − A x + y[ ]( )( ),
y w, t( ) � coshw − A−1 1

u
A xw[ ] − A x + y[ ]( )( ). (19)

The Aboodh transform-based homotopy perturbation method
considers a series solution given by

x w, t( ) �∑∞
n�0

pnxn w, t( ), y w, t( ) �∑∞
n�0

pnyn w, t( ). (20)

By using the aforestated equation, the system of equations in Eq.
19 gets the form

∑∞
n�0

pnxn w,t( ) � sinhw−pH1 xn,yn( )� sinhw

−pA−1 1
u
A ∑∞

n�0
pnyn w,t( )⎛⎝ ⎞⎠

w

− ∑∞
n�0

pnxn w,t( )+∑∞
n�0

pnyn w,t( )⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠,

∑∞
n�0

pnyn w,t( ) � coshw−pH2 xn,yn( )� coshw
−pA−1 1

u
A ∑∞

n�0
pnxn w,t( )⎛⎝ ⎞⎠

w

− ∑∞
n�0

pnxn w,t( )+∑∞
n�0

pnyn w,t( )⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠.

(21)

By comparing like powers of p from the aforestated equation, we
obtain

p0:
x0 w, t( ) � sinhw
y0 w, t( ) � coshw,

{ (22)

p1:
x0 w, t( ) � t coshw
y0 w, t( ) � t sinhw,

{ (23)

p2:

x0 w, t( ) � t2

2
sinhw

y0 w, t( ) � t2

2
coshw,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (24)

..

.

..

.

Hence, the series solution by using Eq. 14 can be
expressed as

x w, t( ) � 1 + t2

2!
+ t4

4!
+/( )sinhw + t + t3

3!
+ t5

5!
+/( )coshw,

y w, t( ) � 1 + t2

2!
+ t4

4!
+/( )coshw + t + t3

3!
+ t5

5!
+/( )sinhw

(22a)
or in a closed form as

x w, t( ) � sinh w + t( ),
y w, t( ) � cosh w + t( ), (23a)

which is the exact solution of Eq. 15.
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3.2 The system of inhomogeneous linear
PDEs

Suppose the following inhomogeneous linear system of PDEs:

xt − yw − x − y( ) � −2,
yt + xw − x − y( ) � −2, (24a)

with initial conditions

x w, 0( ) � 1 + ew,
y w, 0( ) � −1 + ew.

(25)

Applying the Aboodh transform on each side of the equations in
Eq. 24 and then putting on the given initial conditions, we obtain

A x w, t( )[ ] � 1 + ew

u2 − 2

u3 +
1
u

A yw[ ] + A x − y( )[ ]( ),
A y w, t( )[ ] � −1 + ew

u2 − 2

u3 +
1
u

A x − y( )[ ] − A xw[ ]( ) (26)

or

x w, t( ) � 1 + ew − 2t + A−1 1
u

A yw[ ] + A x − y( )[ ]( )( ),
y w, t( ) � −1 + ew − 2t + A−1 1

u
A x − y( )[ ] − A xw[ ]( )( ). (27)

By using the Aboodh transform-based homotopy perturbation
method, the series solution is expressed by

x w, t( ) �∑∞
n�0

pnxn w, t( ), y w, t( ) �∑∞
n�0

pnyn w, t( ). (28)

The system of equations in Eq. 27 gets the following form after
employing the aforestated equation:

∑∞
n�0

pnxn w,t( ) � 1+ ew −2t+p A−1 1
u
A ∑∞

n�0
pnyn w,t( )⎛⎝ ⎞⎠

w

⎡⎢⎢⎣⎛⎝⎧⎪⎨⎪⎩
+ ∑∞

n�0
pnxn w,t( )−∑∞

n�0
pnyn w,t( )⎛⎝ ⎞⎠])},

∑∞
n�0

pnyn w,t( ) � −1+ ew −2t

+p A−1 1
u
A ∑∞

n�0
pnxn w,t( )−∑∞

n�0
pnyn w,t( )⎛⎝ ⎞⎠⎡⎢⎢⎣⎛⎝⎧⎨⎩

− ∑∞
n�0

pnyn w,t( )⎛⎝ ⎞⎠
w

])}.
(29)

By comparing the coefficient of like powers of p, we have

p0:
x0 w, t( ) � 1 + ew − 2t
y0 w, t( ) � −1 + ew − 2t,

{ (30)

p1:
x1 w, t( ) � tew + 2t
y1 w, t( ) � −tew + 2t,

{ (31)

p2:

x2 w, t( ) � t2

2!
ew

y2 w, t( ) � t2

2!
ew,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (32)

p3:

x3 w, t( ) � t3

3!
ew

y3 w, t( ) � −t
3

3!
ew,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (33)

..

.

..

.

Therefore, the solution in the form of an infinite series by using
Eq. 14 can be expressed as

x w, t( ) � 1 + ew 1 + t + t2

2!
+ t3

3!
+/( ),

y w, t( ) � −1 + ew 1 − t + t2

2!
− t3

3!
+/( )

(34)

or in its convergent form as

x w, t( ) � 1 + ew+t,
y w, t( ) � −1 + ew−t,

(35)

which is the exact solution of Eq. 24.

3.3 The system of inhomogeneous non-
linear PDEs

Suppose the following inhomogeneous non-linear system of
PDEs:

xt + xwy + x � 1,
yt − xyw + y � 1,

(36)

with initial conditions

x w, 0( ) � ew,
y w, 0( ) � e−w.

(37)

Employing the Aboodh transform on each side of the equations
in Eq. 36 and then applying the given initial conditions give

x w, u( ) � ew

u2 +
1

u3 −
1
u

A xyw[ ] + A x[ ]( ),
y w, u( ) � e−w

u2 + 1

u3 +
1
u

A xyw[ ] + A y[ ]( ). (38)

Taking the inverse Aboodh transform on each side, we obtain

x w, t( ) � ew + t − A−1 1
u

A xyw[ ] + A x[ ]( )( ),
y w, t( ) � e−w + t + A−1 1

u
A xyw[ ] + A y[ ]( )( ). (39)

According to the Aboodh transform-based homotopy
perturbation method, the solution functions x(w, t) and y(w, t)
are series solutions, and inserting these series into both sides of each
equation of the system yields

∑∞
n�0

pnxn w, t( ) � ew + t − p A−1 1
u

A ∑∞
n�0

pnH1n x, y( )⎡⎣ ⎤⎦⎛⎝ ⎞⎠ +∑∞
n�0

pnxn w, t( )⎛⎝ ⎞⎠⎧⎨⎩ ⎫⎬⎭ ,

∑∞
n�0

pnyn w, t( ) � e−w + t + p A−1 1
u

A ∑∞
n�0

pnH2n x, y( )⎡⎣ ⎤⎦⎛⎝ ⎞⎠ +∑∞
n�0

pnyn w, t( )⎛⎝ ⎞⎠⎧⎨⎩ ⎫⎬⎭,

(40)
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where the non-linear terms xwy and xyw are denoted by He’s
polynomials H1n(x, y) and H2n(x, y), respectively. A few He’s
polynomials are

H10 x, y( ) � y0x0w,
H11 x, y( ) � y1x0w + y0x1w,
H12 x, y( ) � y2x0w + y1x1w + y0x2w,

..

.

..

.

(41)

H20 x, y( ) � x0y0w,
H21 x, y( ) � x1y0w + x0y1w,
H22 x, y( ) � x2y0w + x1y1w + x0y2w,

..

.

..

.

(42)

By comparing the coefficient of like powers of p, we have

p0:
x0 w, t( ) � ew + t
y0 w, t( ) � e−w + t,

{ (43)

p1:

x1 w, t( ) � − t + t2

2!
+ tew + t2

2!
ew( )

y1 w, t( ) � − t + t2

2!
+ te−w + t2

2!
e−w( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
, (44)

p2:

x2 w, t( ) � t2

2!
+ t2ew

y2 w, t( ) � t2

2!
+ t2e−w,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (45)

..

.

..

.

Therefore, the solution in the form of an infinite series by using
Eq. 14 can be expressed as

x w, t( ) � ew 1 − t + t2

2!
− t3

3!
+/( ),

y w, t( ) � e−w 1 + t + t2

2!
+ t3

3!
+/( )

(46)

FIGURE 1
Error estimations for the casting process at β = 1 and x = 0.5, 1, 2.

FIGURE 2
Error estimations for the molding process at β = 1 and x = 0.5, 1, 2.
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or in its convergent form as

x w, t( ) � ew−t,
y w, t( ) � e−w+t,

(47)

which is the exact solution of Eq. 36.

4 Time-fractional casting-mold system

Now, we turn back to a time-fractional casting-mold system
which models the temperature distribution in the casting and
molding processes. For this, two heat conduction equations are
used with initial and Dirichlet boundary conditions [45]. The
mathematical model is depicted as follows:

zβZ t, x( )
ztβ

� a
z2Z t, x( )

zx2 ,

zβN t, x( )
ztβ

� b
z2N t, x( )

zx2 ,

(48)

where a, b are parameters,Z,N are functions of time t and space x that
represent the temperature on casting and molding plates, respectively,
and β is the fractal dimension. For more details on the modeling aspect
of the aforementioned model, readers can see [45].

It is necessary to point out that Eq. 48 was originally studied in [45],
where the series solution was presented and no closed-form solution was
formulated. Our aim here is to overcome the main shortcomings in [45]
and to offer a totally new hope for numerical approximation. To this end,
applying the Aboodh transform in the aforementioned system, we have

A Z t, x( )[ ] � 1

uβ ∑m−1

k�0

Z k( ) 0, x( )
u2−β+k + A a

z2Z t, x( )
zx2[ ]⎛⎝ ⎞⎠,

A N t, x( )[ ] � 1

uβ
∑m−1

k�0

N k( ) 0, x( )
u2−β+k + A b

z2N t, x( )
zx2[ ]⎛⎝ ⎞⎠.

(49)

Now, by inverse Aboodh transformation, we obtain

Z t, x( ) � A−1 1

uβ
∑m−1

k�0

Z k( ) 0, x( )
u2−β+k + A a

z2Z t, x( )
zx2[ ]⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,

N t, x( ) � A−1 1

uβ ∑m−1

k�0

N k( ) 0, x( )
u2−β+k + A b

z2N t, x( )
zx2[ ]⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,

(50)

which can further be written as

Z t, x( ) � Z 0, x( ) + A−1 1

uβ
A a

z2Z t, x( )
zx2[ ]( )[ ],

N t, x( ) � N 0, x( ) + A−1 1

uβ
A b

z2N t, x( )
zx2[ ]( )[ ].

(51)

According to the standard HPM [33, 34], the solution Z and N
can be expanded into a finite series as

Z � ∑∞
m�0

pmZm, N � ∑∞
m�0

pmNm. (52)

By substituting Eq. 52 in Eq. 51, the solution can be
written as

∑∞
m�0

pmZm � Z 0, x( ) + p A−1 1

uβ
A a

z2Z t, x( )
zx2[ ]( )[ ]( ),

∑∞
m�0

pmNm � N 0, x( ) + p A−1 1

uβ
A a

z2Z t, x( )
zx2[ ]( )[ ]( ).

(53)

Equating coefficients of powers of p, we yield the following:

p0:
Z0 t, x( ) � Z 0, x( )
N0 t, x( ) � N 0, x( ),{ (54)

p1:

Z1 t, x( ) � A−1 1

uβ
A aZ0( )[ ]

N1 t, x( ) � A−1 1

uβ
A bN0( )[ ],

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (55)

p2:

Z2 t, x( ) � A−1 1

uβ
A aZ1( )[ ]

N2 t, x( ) � A−1 1

uβ
A bN1( )[ ],

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (56)

..

. ..
.

..

. ..
.

The approximate solution can be obtained as

Z � Z0 + Z1 + Z2 +/,
N � N0 +N1 +N2 +/.

(57)

4.1 Example

We consider the system expressed in Eq. 48 for the case
a � 1, b � 1,Z(0, x) � e2x,N(0, x) � ex. By utilizing Eqs 54–56, we
have

Z0 � e2x, N0 � ex,

Z1 � e2xtβ

Γ 1 + β( ), N1 � extβ

Γ 1 + β( ),
Z2 � e2xt2β

Γ 1 + 2β( ), N2 � ext2β

Γ 1 + 2β( ),
Z3 � e2xt3β

Γ 1 + 3β( ), N3 � ext3β

Γ 1 + 3β( ),
..
. ..

.

..

. ..
.

By employing Eq. 57, the solution can be written as

Z t, x( ) � e2x + e2xtβ

Γ 1 + β( ) + e2xt2β

Γ 1 + 2β( ) + e2xt3β

Γ 1 + 3β( ) +/,

N t, x( ) � ex + extβ

Γ 1 + β( ) + ext2β

Γ 1 + 2β( ) + ext3β

Γ 1 + 3β( ) +/.

(58)
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The expressions are similar to those obtained by the fractional
complex transform [46–49]. In the closed form, we obtain

Z t, x( ) �∑n
k�0

e2xtkβ

Γ 1 + kβ( ) � e2xEβ tβ( ),
N t, x( ) �∑n

k�0

extkβ

Γ 1 + kβ( ) � exEβ tβ( ),
(59)

where Eβ(tβ) is the Mittag-Leffler function [50]. One can check that
Eq. 59 is an exact solution of Eq. 48 for the said parameters.

4.2 Results and discussion

This section is devoted to test the applicability and validity of
the suggested technique for the time-fractional casting-mold
system over the series-based solution of the same model.

Figures 1, 2 present the errors of the series solutions obtained
by the HPM [45] for the fractal dimension β = 1. It is observed
that for all the parameters and for both casting and molding
processes, the errors grow exponentially for the case of a series
solution [45] and can be reduced by adding more terms in the
solution. On the other hand, the suggested solution has the exact
solution, and there is no chance of error even for a larger range of
t. Therefore, based on these findings, we can say that the
proposed technique is more effective than the previous
method [45].

5 Conclusion

The Aboodh transform-based homotopy perturbation
method is successfully employed to solve traditional
differential equations and fractional differential equations
successfully. This approach has been shown to have the
potential to solve both linear and non-linear problems. For a
linear system, the exact solution is predicted, while for a non-
linear system, with the help of He’s polynomials, a series
solution is obtained, which converges fast to the exact one.
So, the method pushes the progress of non-linear science and
will make a “big change” to increase the number of practical
applications, and this paper serves as a model for other
applications.
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Nomenclature

f continuous piecewise function

A Aboodh transform operator

w independent variable

L Linear operator

x, y dependent variable

p purturbation parameter

A−1 inverse Aboodh transform operator

M mapping from X to Y

λ parameter

Z temperature at casting plate

Eβ(.) Mittag-Leffler function

β fractal dimension

t time

u transformed variable

g1 , g2 functions of independent variables

N1 ,N2 Nonlinear operators

K1 ,K2 functions of variable w

H He’s polynomials

X,Y Banach spaces

μ fixed point

s, s* elements of Banach space

N temperature at molding plate

Γ(.) Gamma function

a, b parameters of casting and molding
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