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Introduction: The causes of thrombocytopenia (TP) in critically ill patients are 
numerous and heterogeneous. Currently, subphenotype identification is a 
popular approach to address this problem. Therefore, this study aimed to identify 
subphenotypes that respond differently to therapeutic interventions in patients 
with TP using routine clinical data and to improve individualized management of 
TP.

Methods: This retrospective study included patients with TP admitted to the 
intensive care unit (ICU) of Dongyang People’s Hospital during 2010–2020. 
Subphenotypes were identified using latent profile analysis of 15 clinical variables. 
The Kaplan–Meier method was used to assess the risk of 30-day mortality for 
different subphenotypes. Multifactorial Cox regression analysis was used to 
analyze the relationship between therapeutic interventions and in-hospital 
mortality for different subphenotypes.

Results: This study included a total of 1,666 participants. Four subphenotypes were 
identified by latent profile analysis, with subphenotype 1 being the most abundant 
and having a low mortality rate. Subphenotype 2 was characterized by respiratory 
dysfunction, subphenotype 3 by renal insufficiency, and subphenotype 4 by 
shock-like features. Kaplan–Meier analysis revealed that the four subphenotypes 
had different in-30-day mortality rates. The multivariate Cox regression analysis 
indicated a significant interaction between platelet transfusion and subphenotype, 
with more platelet transfusion associated with a decreased risk of in-hospital 
mortality in subphenotype 3 [hazard ratio (HR): 0.66, 95% confidence interval (CI): 
0.46–0.94]. In addition, there was a significant interaction between fluid intake 
and subphenotype, with a higher fluid intake being associated with a decreased 
risk of in-hospital mortality for subphenotype 3 (HR: 0.94, 95% CI: 0.89–0.99 per 
1 l increase in fluid intake) and an increased risk of in-hospital mortality for high 
fluid intake in subphenotypes 1 (HR: 1.10, 95% CI: 1.03–1.18 per 1 l increase in fluid 
intake) and 2 (HR: 1.19, 95% CI: 1.08–1.32 per 1 l increase in fluid intake).

Conclusion: Four subphenotypes of TP in critically ill patients with different 
clinical characteristics and outcomes and differential responses to therapeutic 
interventions were identified using routine clinical data. These findings can help 
improve the identification of different subphenotypes in patients with TP for 
better individualized treatment of patients in the ICU.

OPEN ACCESS

EDITED BY

Rahul Kashyap,  
WellSpan Health, United States

REVIEWED BY

Saraswathi Lakkasani,  
Saint Michael’s Medical Center, United States
Mack Sheraton,  
Trinity Health System, United States

*CORRESPONDENCE

Xuandong Jiang  
 lxqjiang@hotmail.com

RECEIVED 15 February 2023
ACCEPTED 10 April 2023
PUBLISHED 

CITATION

Jiang X, Zhang W, Pan Y and Cheng X (2023) 
Identification of subphenotypes in critically ill 
thrombocytopenic patients with different 
responses to therapeutic interventions: a 
retrospective study.
Front. Med. 10:1166896.
doi: 10.3389/fmed.2023.1166896

COPYRIGHT

© 2023 Jiang, Zhang, Pan and Cheng. This is 
an open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic practice. 
No use, distribution or reproduction is 
permitted which does not comply with these 
terms.

TYPE Original Research
PUBLISHED 
DOI 10.3389/fmed.2023.1166896

27 April 2023

27 April 2023

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2023.1166896&domain=pdf&date_stamp=2023-04-26
https://www.frontiersin.org/articles/10.3389/fmed.2023.1166896/full
https://www.frontiersin.org/articles/10.3389/fmed.2023.1166896/full
https://www.frontiersin.org/articles/10.3389/fmed.2023.1166896/full
https://www.frontiersin.org/articles/10.3389/fmed.2023.1166896/full
https://www.frontiersin.org/articles/10.3389/fmed.2023.1166896/full
mailto:lxqjiang@hotmail.com
https://doi.org/10.3389/fmed.2023.1166896
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2023.1166896


Jiang et al. 10.3389/fmed.2023.1166896

Frontiers in Medicine 02 frontiersin.org

KEYWORDS

thrombocytopenia, subphenotypes, fluid resuscitation, artificial intelligence, latent 
profile analysis, critically ill

1. Introduction

Thrombocytopenia (TP) is generally defined as having a platelet 
count of <100 × 109/L. This condition is common among critically ill 
patients in both medical and surgical intensive care units (ICUs), with 
a global prevalence of 21–77% (1, 2). The causes of TP in ICU patients 
vary, including sepsis, trauma, surgery, and medication (2, 3). Most 
patients develop TP within 4 days of admission to the ICU. A long 
duration of TP is associated with a poor prognosis (4, 5). Numerous 
studies have demonstrated that TP is an independent risk factor for 
mortality in ICU patients, being associated with severe bleeding 
events and increased transfusion requirements as well as with the 
duration of ICU stay and an increased incidence of acute kidney 
injury (AKI) (6, 7). Unfortunately, the efficacy of current interventions 
and treatment methods for TP in ICU patients is limited (8, 9).

Previous studies based on standardized treatment regimens for 
patients with TP have failed to yield satisfactory treatment outcomes. 
For example, a meta-analysis of the therapeutic efficacy of recombinant 
human thrombopoietin in patients with TP with sepsis by Zhang et al. 
revealed no significant difference in 28-day mortality (10). A recent 
review reported that the use of platelet transfusion, glucocorticoids, and 
intravenous immune globulin for the treatment of immune TP requires 
further study (11). The possible reasons for the unsatisfactory treatment 
outcomes in patients with TP include the significant heterogeneity of 
TP, which is associated with the presence of multiple pathogenic factors, 
such as inflammation, endothelial dysfunction, coagulopathy, 
hemodilution, and altered platelet production, in critically ill patients 
(12). Subphenotyping, a precision medicine-based treatment option, is 
currently a very common approach for addressing disease heterogeneity 
and has been applied to common critical illnesses, such as sepsis, AKI, 
and acute respiratory distress syndrome (ARDS) (13–15).

Most studies have focused on determining prognosis by staging, 
and only few studies have focused on different responses to treatment 
after staging. For example, Zhang et al. retrospectively analyzed 14,993 
patients with severe sepsis and identified four subphenotypes of sepsis 
using latent profile analysis, each of which responded differently to 
fluid resuscitation (16). Bhatraju et al. used latent class analysis to 
classify a critically ill AKI population and applied it to AKI patients in 
the Vasopressin and Septic Shock Trial. The result of the initial analysis 
was negative, but subphenotyping revealed that vasopressin therapy 
had survival benefits in patients with subphenotype 1 (17). However, 
only few studies have reported on the subphenotypes of severe TP, and 
even fewer studies have reported on its response to different 
therapeutic interventions (12).

Therefore, this study aimed to identify different subphenotypes 
in TP patients admitted to the ICU of our hospital over the last 
10 years with different clinical outcomes and different responses to 
therapeutic interventions, using latent profile analysis based on 
routine clinical data, with the aim of improving prognosis 
prediction and treatment of critically ill patients and providing 
guidance for clinicians to achieve individualized management 
of patients.

2. Materials and methods

2.1. Study design

This study followed the Strengthening the Reporting of 
Observational Studies in Epidemiology guidelines 
(Supplementary Table S1). In this retrospective study, 1,666 patients 
with TP who were first admitted to the ICU of Dongyang People’s 
Hospital between January 1, 2010, and October 31, 2020, were 
included. The inclusion criteria were first admission to the ICU and 
ICU stay of ≥48 h. The exclusion criteria were age < 18 years, 
hematological malignancy, liver cirrhosis, or previous splenectomy.

2.2. Data collection and grouping

2.2.1. Data collection
Data were collected using the medical record information mining 

software provided by Shanghai Le9 Healthcare Technology Co., Ltd. 
(Shanghai, China). The following information was collected: (1) age, 
sex, Acute Physiology and Chronic Health Evaluation (APACHE)-II 
score, complications, vasopressor use, renal replacement therapy, fluid 
intake and urine output for 24 h after ICU admission; and biochemical 
indexes and first vital signs at ICU admission.

The therapeutic interventions include glucocorticoid use, 
immunoglobulin use, platelet transfusion during ICU stay, and fluid 
intake for 24 h after ICU admission.

The primary outcome was hospital mortality. The secondary 
outcomes included duration of mechanical ventilation, length of ICU 
stay, length of hospital stay, and hospitalization cost.

2.2.2. Diagnostic criteria
We defined TP as a platelet count of <100 × 109/L in the first 48 h 

after ICU admission (2, 3).

2.3. Data processing

Variables with >20% missing values were deleted. If the incidence 
of missing values was <2%, the mean value of the variable was 
substituted for the missing values. The missing values of variables with 

Abbreviations: AKI, Acute kidney injury; APACHE, Acute physiology and chronic 

health evaluation; ARDS, Acute respiratory distress syndrome; BIC, Bayesian 

information criterion; CI, Confidence interval; ICU, Intensive care unit; LPA, Latent 

profile analysis; LRT, Likelihood ratio test; HR, Hazard ratio; TP, Thrombocytopenia.

https://doi.org/10.3389/fmed.2023.1166896
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Jiang et al. 10.3389/fmed.2023.1166896

Frontiers in Medicine 03 frontiersin.org

loss rates of >2 and < 15% were replaced using multiple imputations. 
Outliers were handled as missing values.

2.4. Latent profile analysis

Latent profile analysis (LPA), an unsupervised machine learning 
algorithm, is a modeling approach for classifying latent variables that 
focuses on identifying potential subgroups within a population, based 
on a specific set of variables, using an expectation–maximization 
algorithm to estimate the parameters of the latent class model (18). The 
variables included in LPA modeling are clinical and are incorporated 
from domain expertise and from the relevant literature (16, 19, 20). 
Pearson’s correlation analysis was used to determine the correlations 
among characteristic variables, and variables with correlation coefficients 
>0.7 were removed. Finally, the following 15 common clinical variables 
were selected: platelet count at initial admission to ICU, age, creatinine 
level, glucose concentration, systolic blood pressure, respiratory rate, 
oxygen saturation, heart rate, white blood cell count, hematocrit level, 
lactate level, pH, partial pressure of oxygen, partial pressure of carbon 
dioxide, and bicarbonate level. The number of categories was determined 
using the Bayesian information criterion (BIC), entropy, and bootstrap 
likelihood ratio tests. Lower BIC values indicated a better model fit. 
Entropy ranged from 0 to 1, with higher values indicating higher 
accuracy of categorization. The Vuong–Lo–Mendell–Rubin likelihood 
ratio test (LRT) was used to assess the number of mixture components 
in a given finite mixture model parameterization, and value of ps were 
reported to compare n-class and (n − 1)-class models (21). A value of p 
of <0.05 indicated statistical significance in the LRT. In addition, the 
proportion of patients in each potential class with a number of patients 
of >5% of any other potential class should be assigned to a class with a 
minimum probability greater than 0.8, otherwise members of this class 
were considered unstable (22). The number of potential classes was 
determined in conjunction with clinical interpretation.

2.5. Statistical analyses

Descriptive statistics were analyzed conventionally using the 
CBCgrps package in R1 (23). Normally distributed measurement data 
are expressed as mean and standard deviation (x ± s), and non-normally 
distributed data are expressed as median [interquartile range (IQR): 
P25, P75]. Comparisons across groups on baseline characteristics were 
performed using analysis of variance for continuous variables and the 
chi-square tests for categorical variables. All statistical analyses were 
performed using R (software version 4.1.3; https://www.r-project.
org/). A value of p <0.05 was considered statistically significant.

The Kaplan–Meier method was used to analyze the relationships 
of the four subphenotypes with in-hospital 30-day mortality. 
Multivariate Cox regression models were used to investigate the 
independent association between therapeutic interventions and 
mortality. Variables with p < 0.1 in the univariate regression analysis 
and the important clinical variables were selected for the Cox model 
to test for interactions between different categories and therapeutic 

1 https://www.r-project.org/

interventions. The model was adjusted for the following covariates: 
age, sex, APACHE II score, vasopressor used, surgery, sepsis and white 
blood cell count. Platelet transfusion and fluid intake separately 
interacted with each category. The hazard ratio (HR) and associated 
95% confidence interval (CI) for the effect of platelet transfusion and 
each 1 l increase in fluid intake on mortality outcomes are reported.

2.6. Ethics approval

This study was approved by the Ethics Committee of Dongyang 
People’s Hospital (DRY-2023-YX-016) and followed all related local 
guidelines and regulations, including the human genetics-related 
regulations. The need for obtaining informed consent was waived by 
the Ethical Committee of Dongyang People’s Hospital, due to the 
retrospective nature of this study, and the study involved no human 
tissue collection and storage process. The data were analyzed 
anonymously by removing personal information of the patients.

3. Results

3.1. Study population

The flow diagram of this study is shown in Figure  1. After 
excluding 8,702 patients, 1,666 participants with a mean age of 
61.5 ± 16.6 years were finally included. Of these, 61.6% were male. The 
overall mortality rate was 23.4%.

3.2. Selection of optimal categories

The Akaike information criterion and sample size-adjusted BIC 
value decreased from the 2-class model to the 10-class model, but the 
decrease began to slow from the 4-class model to the 5-class model. 
The 4-class model had the largest entropy and minimum probability 
of <0.8, starting at the 5-class model, suggesting that the minimum 
probability assigned to this class was <0.8, and the 5–10-class models 
were considered unstable (Figure 2). Therefore, the optimal selection 
was a 4-class model.

3.3. Clinical characteristics and outcomes 
of subphenotypes

The characteristics of the four subphenotypes are shown in Figure 3 
and Table 1. Subphenotype 1 was the most abundant one of the four 
categories, with a total of 1,097 patients, accounting for 66% of all 
patients. The values of all variables were approximate of the means. 
Thus, subphenotype 1 was considered as the baseline category. 
Subphenotype 2 was characterized by low oxygen saturation [94, IQR: 
93–96%], low partial pressure of oxygen (97.4 ± 41.9 mmHg), and the 
highest partial pressure of carbon dioxide (36.1 ± 8.2 mmHg) and was 
considered as the respiratory failure category. Subphenotype 3 was 
characterized by the highest serum creatinine level (272, IQR: 
216–272 mmol/L) and low bicarbonate levels (17.6 ± 3.7 mmol/L) and 
was considered as the renal insufficiency category. Subphenotype 4 was 
characterized by the highest lactate level (7.90, IQR, 6.40–10.05 mmol/L), 
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low systolic blood pressure (116.4 ± 23.8 mmHg), and low bicarbonate 
level (17.0 ± 2.7 mmol/L) and was considered as the shock category.

Table 2 shows a comparison of clinical outcomes. Subphenotype 
1 had the lowest mortality rate (17.4%), the lowest duration of 
mechanical ventilation, the shortest duration of ICU stay and hospital 
stay, and the lowest hospitalization cost. Subphenotype 3 had the 
highest mortality rate (47.4%), the highest APACHE II score 
(25.0 ± 8.1), and the highest proportion of renal replacement therapy 
(47.4%). Subphenotype 4 had a mortality rate of 31.3%, the longest 
duration of hospital stay (23 days, IQR: 12–34 days), and the highest 
hospital cost (CNY 108 × 103, IQR: CNY 52 × 103–149 × 103). 
Subphenotypes 2 and 4 had similar mortality rates (Figure 4).

3.4. Therapeutic interventions

There were significant differences in the proportion of platelet 
transfusion among the four subphenotypes (p < 0.001). Subphenotype 
1 had the lowest platelet transfusion rate (11.9%), and others had a 

platelet transfusion rate of >20%. After adjusting for age, sex, APACHE 
II score, vasopressor used, white blood cell count, surgery, and sepsis, 
multivariate Cox regression models indicated that there was a 
significant interaction between platelet transfusion and each category, 
with higher platelet transfusion associated with a decreased risk of 
in-hospital mortality in subphenotype 3 (HR: 0.66, 95% CI: 0.46–0.94; 
Table 3). The total fluid intake at 24 h after admission to the ICU was 
4.0 (IQR: 3.3–5.2) L, and the total urine output was 2.3 (IQR: 1.6–3.1) 
L in all patients. Subphenotype 1 had the lowest fluid intake (3.91, 
IQR: 3.28–4.84) L and highest urine output (2.4, IQR: 1.7–3.1) 
L. Subphenotype 4 had the highest fluid intake (4.66, IQR: 3.72–6.51) 
L, and subphenotype 3 had the lowest urine output (1.3, IQR: 0.4–2.3) 
L (Table 2). However, a significant interaction was noted between fluid 
intake and each category, with higher fluid intake associated with a 
decreased risk of in-hospital mortality in subphenotype 3 (HR: 0.94, 
95% CI: 0.89–0.99 per 1 l increase in fluid intake) but associated with 
an increased risk of in-hospital mortality in subphenotypes 1 (HR: 
1.10, 95% CI: 1.03–1.18 per 1 l increase in fluid intake) and 2 (HR: 
1.19, 95% CI: 1.08–1.32 per 1 l increase in fluid intake; Table  4). 
Figure 5 shows platelet transfusion and risk of hospital mortality, 
stratified by four subphenotypes, whereas Figure 6 shows fluid intake 
and risk of hospital mortality, stratified by four subphenotypes.

3.5. Sensitivity analysis

We deleted 203 patients with missing data, retained outliers for 
sensitivity analysis, and obtained similar results in LPA analysis 
(Supplementary Figure S1). The maximum value of entropy was in 
four categories; therefore, the best classification was four categories, 
and the features of the four categories were also similar.

4. Discussion

In this study, we identified four clinical subphenotypes of TP, with 
different physiological characteristics and in-hospital mortality, using 
only routine clinical data. We  also found an interaction between 
subphenotypes and platelet transfusion and fluid intake, suggesting 
the involvement of these subphenotypes in precision medicine-based 
approaches to the treatment of TP.

FIGURE 1

Flow chart of the study. ICU, intensive care unit.

FIGURE 2

Best number of classes for latent profile analysis. The value of p was reported for the bootstrap likelihood ratio test comparing the current model (k 
class) to the model with k-1 class. AIC, Akaike information criterion; SABIC, sample size-adjusted Bayesian information criteria.
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Platelet transfusion is a common treatment for patients with PT, 
but it can be  ineffective for various reasons, such as infection, 
medication, disseminated intravascular coagulation, etc. (24–26). In 
some cases, platelet counts transiently increase after transfusion, and 
several studies have demonstrated that platelet transfusion does not 
improve patient outcomes (27). Our study demonstrated that platelet 
transfusion can improve in-hospital mortality rates in patients with 
subphenotype 3 of TP, indicating that identifying subphenotypes is a 
potential method for addressing platelet transfusion in critically 
ill patients.

Intravenous fluids are the cornerstone of patient care in the ICU; 
both inadequate fluid intake and fluid overload increased mortality. 
Overall, in-hospital mortality increased with higher fluid intake in our 
study, which is consistent with the finding of previous studies (28, 29). 

However, in subphenotype 3 cases, increased fluid intake was 
associated with improved outcomes. This may be associated with the 
clinical characteristics of subphenotype 3, including renal dysfunction, 
metabolic acidosis. Most clinicians are now aware that AKI patients 
require fluid restriction; however, excessive fluid restriction may lead 
to insufficient effective blood volume (30, 31). Therefore, a more 
precise volume assessment is necessary for this patient subpopulation. 
Subphenotype 4 exhibited the highest lactate level, a high fluid intake, 
and a high urine output but lower mortality than that exhibited by 
subphenotype 3, which may be related to less fluid overload. Previous 
studies have demonstrated that fluid overload is positively correlated 
with mortality in critically ill patients (32, 33). Therefore, we believe 
that precise fluid management based on subphenotypic classification 
is a promising future direction.

FIGURE 3

Characteristics of the four subphenotypes identified by latent profile analysis. All numeric values were scaled for better visualization on the vertical axis. 
Profile 1 is the largest class over all study days with all variables in average value (the baseline class). Profile 2 is characterized by low oxygen saturation 
and partial pressure of oxygen, the highest partial pressure of carbon dioxide (the respiratory failure class). Profile 3 is characterized by the highest 
serum creatinine and low bicarbonate levels (renal dysfunction class). Profile 4 is characterized by the highest lactate level, and low systolic pressure 
and bicarbonate level (the shock class). FMM, finite mixture modeling; WBC, white blood cell; PO2, partial pressure of oxygen; PCO2, partial pressure of 
carbon dioxide. *p < 0.05, ****p < 0.001.

TABLE 1 Continuous variables included in the mixture modeling.

Characteristic Profile 1 (n = 1,097) Profile 2 (n = 209) Profile 3 (n = 114) Profile 4 (n = 246) p

Age (years) 61.3 ± 16.6 65.0 ± 15.8 68.2 ± 14.2 56.2 ± 16.5 <0.001

Platelet (×109/L) 87.1 ± 28.7 83.0 ± 33.1 91.7 ± 38.2 89.8 ± 36.8 0.041

White blood cell (×109/L) 11.2 ± 5.0 12.3 ± 6.7 13.7 ± 7.7 15.2 ± 6.1 <0.001

Hematocrit 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 <0.001

pH 7.4 ± 0.1 7.4 ± 0.1 7.4 ± 0.1 7.3 ± 0.1 <0.001

PO2 (mmHg) 171.0 ± 54.9 97.4 ± 41.9 126.6 ± 49.0 169.6 ± 57.8 <0.001

PCO2 (mmHg) 34.8 ± 6.4 36.1 ± 8.2 31.5 ± 7.0 34.8 ± 7.4 <0.001

Bicarbonate (mmol/L) 21.4 ± 2.9 19.7 ± 4.1 17.6 ± 3.7 17.0 ± 2.7 <0.001

Lactate (mmol/L) 2.20 (1.50, 3.20) 2.70 (1.50, 5.00) 2.60 (1.50, 3.68) 7.90 (6.40, 10.05) <0.001

Creatinine (mmol/L) 70 (55, 91) 106 (70, 170) 272 (216, 272) 90 (71, 121) <0.001

Glucose (mmol/L) 8.3 (6.8, 10.1) 8.9 (7.2, 11.5) 9.2 (7.2, 11.5) 11.4 (8.9, 13.9) <0.001

Systolic pressure (mmHg) 133.1 ± 28.8 116.7 ± 26.1 121.9 ± 24.7 116.4 ± 23.8 <0.001

Heart rate (/min) 88.0 ± 19.0 105.4 ± 19.9 99.8 ± 21.2 103.6 ± 20.2 <0.001

Respiratory rate (/min) 14 (12, 16) 18 (14, 26) 18 (14, 25) 14 (12, 19) <0.001

Oxygen saturation (%) 100 (100, 100) 94 (93, 96) 100 (99, 100) 100 (99, 100) <0.001

Continuous variables are described by means and quarterbacks. Categories variables are analyzed by χ2 test and continuous variables are analyzed by Wilcoxon rank sum test. PO2, partial 
pressure of oxygen; PCO2, partial pressure of carbon dioxide.
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Previous classifications of TP were based only on the severity of 
platelet count decrease, and some critically ill patients often 
presented with transient TP that was not well reflective of patient 
prognosis or therapeutic efficacy. Wu et  al. reviewed three 
subphenotypes based on possible mechanisms of sepsis-associated 
TP: increased platelet consumption, decreased platelet production, 
and increased platelet destruction (34). In a similar study, Bedet et al. 
used hierarchical clustering of 60 patients with septic shock and 
identified five subphenotypes of patients with septic TP, which 
facilitated further understanding of the mechanisms of TP (12). 

However, their study included 27 endogenous mediators associated 
with sepsis, and the clinical applicability of this classification system 
may be limited.

In the present study, the classification of clinical subphenotypes of 
TP was based on LPA, which can be  used to assess continuous 
indicators commonly measured in clinics. In contrast to cluster 
analysis, LPA considers measurement errors and uses objective criteria 
to determine the optimal categories, making it more robust and 
reliable, with a minimum class membership probability of >0.8 
indicating good model stability (35). Similar techniques have been 

TABLE 2 Categorical variables and outcome variables not included in the mixture modeling.

Characteristic Profile 1 (n = 1,097) Profile 2 (n = 209) Profile 3 (n = 114) Profile 4 (n = 246) p

Male [n(%)] 646.0 (58.9%) 143.0 (68.4%) 90.0 (78.9%) 147.0 (59.8%) <0.001

Smoking [n(%)] 377.0 (34.4%) 89.0 (42.6%) 49.0 (43.0%) 90.0 (36.6%) 0.056

Alcohol drinking [n(%)] 404.0 (36.8%) 83.0 (39.7%) 48.0 (42.1%) 91.0 (37.0%) 0.637

Comorbidities [n(%)]

Hypertension 312.0 (28.4%) 78.0 (37.3%) 60.0 (52.6%) 58.0 (23.6%) <0.001

Diabetes 86.0 (7.8%) 28.0 (13.4%) 24.0 (21.1%) 27.0 (11.0%) <0.001

Congestive heart failure 32.0 (2.9%) 15.0 (7.2%) 13.0 (11.4%) 16.0 (6.5%) <0.001

Chronic obstructive pulmonary 

disease

75.0 (6.8%) 35.0 (16.7%) 17.0 (14.9%) 9.0 (3.7%) <0.001

Input_24h (L/h) 3.91 (3.28, 4.84) 4.02 (3.27, 5.14) 4.27 (2.98, 5.97) 4.66 (3.72, 6.51) <0.001

Uo_24h (L/h) 2.4 (1.7, 3.1) 2.3 (1.3, 3.2) 1.3 (0.4, 2.3) 2.3 (1.6, 3.1) <0.001

APACHE-II score 18.2 ± 7.0 21.9 ± 8.3 25.0 ± 8.1 20.8 ± 7.4 <0.001

Vasopressor used [n(%)] 651.0 (59.3%) 167.0 (79.9%) 98.0 (86.0%) 202.0 (82.1%) <0.001

Glucocorticoid used [n(%)] 460 (41.9) 104 (49.8) 38 (33.3) 123 (50) 0.004

Immunoglobulin used [n(%)] 9 (0.8) 13 (6.2) 4 (3.5) 3 (1.2) <0.001

Platelet infusion [n(%)] 130 (11.9) 43 (20.6) 29 (25.4) 59 (24) <0.001

Renal replacement therapy [n(%)] 20.0 (1.8%) 31.0 (14.8%) 54.0 (47.4%) 28.0 (11.4%) <0.001

Biochemical indexes on ICU admission

Red blood cell (×109/L) 3.4 ± 0.6 3.6 ± 0.8 3.3 ± 0.8 3.3 ± 0.8 <0.001

Potassium (mmol/L) 4.1 ± 0.5 4.1 ± 0.6 4.5 ± 0.7 4.0 ± 0.6 <0.001

Sodium(mmol/L) 142.0 ± 4.1 142.5 ± 4.6 141.8 ± 5.4 144.5 ± 4.3 <0.001

Calcium (mmol/L) 2.0 ± 0.2 1.9 ± 0.2 1.9 ± 0.2 1.9 ± 0.2 0.013

Urea (mmol/L) 7.3 (5.5, 9.3) 10.3 (7.1, 15.2) 19.6 (14.6, 20.7) 7.9 (6.0, 10.3) <0.001

Prothrombin time (s) 15.6 (14.5, 16.8) 15.9 (14.4, 18.5) 17.0 (14.9, 19.4) 16.7 (15.0, 20.0) <0.001

International normalized ratio) 1.25 (1.13, 1.38) 1.28 (1.13, 1.55) 1.38 (1.18, 1.65) 1.35 (1.19, 1.68) <0.001

Activated partial thromboplastin 

time (s)

40 (36, 46) 46 (40, 55) 47 (41, 58) 43 (37, 59) <0.001

D.dimer (μg/L) 5.3 (2.1, 13.6) 7.0 (2.6, 16.0) 6.6 (2.7, 16.0) 8.1 (2.6, 16.0) 0.001

Outcome

Hospital_mortality [n(%)] 191.0 (17.4%) 68.0 (32.5%) 54.0 (47.4%) 77.0 (31.3%) <0.001

Ventilation duration (days) 2 (1, 7) 4 (1, 9) 4 (0, 10) 3 (1, 10) 0.017

ICU length of stay (days) 5 (3, 11) 7 (4, 13) 7 (3, 14) 7 (4, 13) <0.001

Length of hospital stay (days) 21 (13, 31) 17 (10, 30) 16 (8, 26) 23 (12, 34) <0.001

Cost (×103 yuan) 67 (40, 101) 57 (32, 99) 57 (32, 97) 108 (52, 149) <0.001

Continuous variables are described by means and quarterbacks. Categories variables are analyzed by χ2 test and continuous variables are analyzed by Wilcoxon rank sum test. APACHE, acute 
physiology and chronic health evaluation; Input_24h, fluid input for 24 h on ICU admission; Uo_24h, urine volume for 24 h on ICU admission; ICU, intensive care unit; Hosp. LOS, length of 
hospital stay.
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successfully applied to analyze therapeutic heterogeneity among 
subgroups of ARDS patients (36, 37).

This study had some limitations. First, the nature of the study was 
retrospective, and no causal inferences could be drawn. Moreover, the 
variables investigated were selected with reference to previous studies. 
Information on some underlying variables (such as height and weight) 
and inflammation-related variables (such as C-reactive protein and 
procalcitonin levels) was not available. Thus, further validation of our 

results in prospective studies is required. Second, the study was 
conducted at a single center and lacked external validation, which 
may limit the generalizability and reproducibility of the findings. 
Future research may explore external validation to ensure the 
robustness and reliability of the subphenotypes identified. Third, 
while LPA is a useful technique for identifying subgroups within a 
population, it is still a relatively new and evolving methodology. 

FIGURE 4

Kaplan–Meier curves for 30-day survival, stratified by four subphenotypes.

TABLE 3 Cox’s proportional hazard models for platelet transfusion and 
hospital mortality in different profiles.

Characteristic HR 95% CI p

Age 0.84 0.68, 1.03 0.10

Sex 1.14 0.92, 1.42 0.2

APACHE-II score 1.10 1.08, 1.11 <0.001

Vasopressor used 3.43 2.42, 4.84 <0.001

White blood cell 0.97 0.95, 0.99 <0.001

Surgery 0.47 0.38, 0.59 <0.001

Sepsis 0.71 0.56, 0.88 0.002

Class

Profile 1 — —

Profile 2 1.01 0.71, 1.44 0.9

Profile 3 1.48 1.03, 2.13 0.036

Profile 4 1.38 1.00, 1.91 0.053

Interaction between profile and platelet transfusion

Profile 1 1.17 0.81,1.67 0.4

Profile 2 0.88 0.48, 1.64 0.7

Profile 3 0.66 0.46, 0.94 0.023

Profile 4 0.69 0.39, 1.23 0.2

HR, hazard ratio; CI, confidence interval; APACHE, acute physiology and chronic health 
evaluation; Input_24h, fluid input for 24 h on ICU admission; ICU, intensive care unit.

TABLE 4 Cox’s proportional hazard models for fluid input and hospital 
mortality in different profiles.

Characteristic HR 95% CI p

Age 0.88 0.72, 1.09 0.2

Sex 1.12 0.90, 1.40 0.3

APACHE-II score 1.09 1.08, 1.11 <0.001

Vasopressor used 3.38 2.39, 4.79 <0.001

White blood cell 0.97 0.95, 0.99 <0.001

Surgery 0.47 0.38, 0.59 <0.001

Sepsis 0.72 0.57, 0.90 0.005

Class

Profile 1 — —

Profile 2 0.81 0.44, 1.48 0.5

Profile 3 2.30 1.21, 4.36 0.011

Profile 4 1.76 0.94, 3.28 0.077

Interaction between profile 

and Input_24h

Profile 1 1.10 1.03, 1.18 0.005

Profile 2 1.19 1.08, 1.32 0.001

Profile 3 0.94 0.89, 0.99 0.029

Profile 4 1.02 0.93, 1.11 0.7

HR, hazard ratio; CI, confidence interval; APACHE, acute physiology and chronic health 
evaluation; Input_24h, fluid input for 24 h on ICU admission; ICU, intensive care unit.
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FIGURE 6

Fluid intake and risk of hospital mortality, stratified by four subphenotypes.

Further validation and refinement of this technique may be required 
to ensure its accuracy and reproducibility. Finally, we were unable to 
exclude patients with specific types of TP, such as TP due to 
pharmacological factors and immune-related TP. Fortunately, the 
overall proportion of such cases was small and did not affect the 
final results.

5. Conclusion

We identified four subphenotypes of patients with TP in the ICU, 
with different prognoses and different responses to therapeutic 
interventions, using common biochemical indicators and vital signs. 
These findings can improve our understanding of the heterogeneity of 

FIGURE 5

Platelet transfusion and risk of hospital mortality, stratified by four subphenotypes.
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patients with TP and can be  used as a basis for future studies. In 
addition, these findings may facilitate the identification of different 
subphenotypes of TP for better individualized treatment of patients in 
the ICU.
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