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in Phascolarctobacterium spp.
using 16S rRNA and
metagenome sequencing
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Background: The microbiome has been implicated in the initiation and

progression of colorectal cancer (CRC) in cross-sectional studies. However,

there is a lack of studies using prospectively collected samples.

Methods: From the Norwegian Colorectal Cancer Prevention (NORCCAP) trial,

we analyzed 144 archived fecal samples from participants who were diagnosed

with CRC or high-risk adenoma (HRA) at screening and from participants who

remained cancer-free during 17 years of follow-up. We performed 16S rRNA

sequencing of all the samples and metagenome sequencing on a subset of 47

samples. Differences in taxonomy and gene content between outcome groups

were assessed for alpha and beta diversity and differential abundance.

Results: Diversity and composition analyses showed no significant differences

between CRC, HRA, and healthy controls. Phascolarctobacterium succinatutens

was more abundant in CRC compared with healthy controls in both the 16S and

metagenome data. The abundance of Bifidobacterium and Lachnospiraceae spp.

was associated with time to CRC diagnosis.

Conclusion: Using a longitudinal study design, we identified three taxa as being

potentially associated with CRC. These should be the focus of further studies of

microbial changes occurring prior to CRC diagnosis.

KEYWORDS

archived fecal samples, colorectal cancer screening, microbiome, 16S rRNA,
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1 Introduction

Colorectal cancer (CRC) is the third most common cancer in

men and the second in women worldwide (1, 2). Symptoms are

often unspecific, and many cases are detected at an advanced stage

with reduced prospects for curative treatment. The progression

toward CRC passes through stages of molecular and morphological

changes from small and benign through advanced adenoma and

finally to CRC. This adenoma–carcinoma sequence is estimated to

take on average between 10 and 15 years (3). This time window

provides an opportunity to screen and potentially remove lesions

that have not yet developed into clinical cancer and advanced stages

(3, 4). Several randomized studies have estimated that CRC

screening by fecal tests reduces CRC mortality by 15%-30% (5–8).

However, fecal-based tests are hampered by both poor sensitivity

and specificity, particularly for the detection of CRC precursor

lesions (9). Therefore, there is a need for additional markers that

can be used in fecal-based screening for CRC precursor lesions.

Analyses of the gut microbiome composition, diversity, and

functional potential have demonstrated that the gut microbiome of

CRC patients is different from that of their healthy counterparts,

making it a source of potential biomarkers for CRC (10–14). The

presence of certain microbes is strongly associated with CRC. The

most frequently reported are Fusobacterium nucleatum, Bacteroides

fragilis, and pks+ Escherichia coli. The proposed mechanisms for the

role of the microbiome in carcinogenesis include DNA damage

through the secretion of genotoxic compounds, the induction of

inflammation, and the activation of procarcinogenic signaling

pathways (15, 16). While it has been shown that fecal tests in

combination with microbial biomarkers are superior at separating

healthy controls from CRC to that of a fecal test alone (17, 18), no

specific bacterial profile is recognized as a biomarker for CRC. Still,

less is known about the role of the microbiome in the early stages

of carcinogenesis.

To identify a precancerous signal in the microbiome, there is a

need for studies with sample collection prior to diagnosis and long-

term follow-up. We performed microbiome sequencing on archived

stool samples collected from screening attendees from the

Norwegian Colorectal Cancer Prevention (NORCCAP) trial, with

a 17-year follow-up time after sigmoidoscopy screening. This study

included both screening-detected cancers and CRC precursor

lesions, as well as incident post-screening cancers, and healthy

controls. We aimed at detecting community-wide and specific

differences in the microbial profiles between CRC, high-risk

adenoma (HRA), and healthy controls.
2 Material and methods

2.1 Study design and participants

Details of the NORCCAP trial have been described previously

(19–21). Briefly, NORCCAP was a randomized clinical trial in which

20,780 individuals were offered sigmoidoscopy screening in the

intervention arm, and it was performed in 1999-2000 (age group

55-64) and 2001 (age group 50-54). The study recruited participants
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directly from the population registry of the Norwegian counties Oslo

and Telemark. All participants were examined with flexible

sigmoidoscopy, while 10,387 participants additionally delivered

stool samples for an immunochemical fecal occult blood test

(iFOBT – FlexSure OBT) and a fresh-frozen stool sample for

biobanking. We selected a subset of participants with archived

fresh-frozen fecal samples for microbiome analyses (Figure 1). The

participants’ full CRC history was retrieved from the Cancer Registry

of Norway in 2015 by using personal identification numbers and

included the ICD-10 coded diagnoses C18, C19, and C20. We

included all participants diagnosed with CRC at screening or by

registry follow-up. Individuals with high-risk adenomas were defined

as those presenting with one or more adenomas of ≥10 mm, with

high-grade dysplasia or villous components regardless of polyp size,

or those with three or more adenomas regardless of size, dysplasia,

and villosity. We included a subset of HRA samples matching the

CRC group on sex, age, and examination date. The control group was

selected from a pool of participants with no findings (i.e., no lesions)

at the screening examination (including low-risk adenomas) and who

remained cancer-free during follow-up. Controls were selected by

matching sex, age, and examination date to the CRC and HRA

groups. Samples that were missing from the freezer, had a low

amount of stool, or had no DNA extracted (none detected by

Qubit) were excluded. All methods were carried out in accordance

with the Declaration of Helsinki. All participants signed the informed

consent that their samples and data could be used for research upon

enrolment in the study. The study and all experimental protocols

received ethical approval from the Regional Committees for Medical

and Health Research Ethics in South-Eastern Norway (ref: 22337).
FIGURE 1

Recruitment flowchart. Half of the NORCCAP participants were
invited to deliver a stool sample in addition to participating in
sigmoidoscopy screening. Half of these fecal samples were stored
below −20°C. A subset of samples diagnosed with CRC and HRA
and healthy controls were included in the study and homogenized
in preservation buffers. Those with sufficient DNA extracted were
included in 16S rRNA (n = 144) and metagenome sequencing (n =
47). FS, flexible sigmoidoscopy; FOBT, fecal occult blood test.
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2.2 DNA extraction, library preparation,
and sequencing

Participants were asked to collect stool samples immediately after

defecation at home in 20-ml vials and to store the samples for at most 7

days in a freezer (−20°C) before sigmoidoscopy screening. The samples

were delivered to either of the two screening centers in Oslo or

Telemark at the time of sigmoidoscopy screening where further

storage was at −20°C. We have previously demonstrated the

feasibility of obtaining microbiota profiles from these archived stool

samples (22). Prior to DNA extraction, the samples were thawed,

homogenized, and mixed with OMNIgene gut buffer. The stool

samples in NORCCAP have not been subjected to freeze–thaw

cycles previously, with a few exceptions that have been thawed once

only. The extraction of DNA was carried out using the QIAsymphony

automated extraction system, using a QIAsymphony DSP Virus/

Pathogen Midi Kit (Qiagen, Hilden, Germany), after an off-board

lysis protocol with some modifications. Each sample was lysed with

bead beating: a 500-µl sample aliquot was transferred to a Lysing

Matrix E tube (Solon, USA:MP Biomedicals) and mixed with 700 µl of

phosphate-buffered saline (PBS). The mixture was then shaken at 6.5

m/s for 45 s. After the bead beating, 800 µl of the sample was mixed

with 1,055 µl of “off-board lysis buffer” (proteinase K, ATL buffer, ACL

buffer, and nuclease-free water) and incubated at 68°C for 15 min for

lysis. Nucleic acid purification was performed on the QIAsymphony

extraction robot using the Complex800_OBL_CR22796_ID 3489

protocol. Purified DNA was eluted in 60 µl of AVE buffer (Qiagen,

Hilden, Germany). DNA purity was assessed using a NanoDrop 2000

spectrophotometer (Thermo Fisher Scientific, MA, USA), and the

concentration was measured using a Qubit instrument (Thermo

Fisher Scientific, MA, USA).

After DNA extraction and sample quality assessment, the

libraries were prepared for 16S rRNA and shotgun metagenome

sequencing. In total, 144 samples had sufficient DNA for 16S rRNA

sequencing. Sample amplification was carried out using 16S primers

S-D-Bact-0341-b-S-17 (5′CCTACGGGNGGCWGCAG′3) and S-

D-Bact-0785-a-A-21 (5′GACTACHVGGGTATCTAATCC′3) to

amplify the V3-V4 regions (23). Amplification was performed

using the TruSeq (TS)-tailed 1-step amplification protocol (24)

with random spacers to shift the sequencing start. Paired-end 300

bp sequencing of PCR amplicons was performed on the Illumina

MiSeq instrument (Illumina, Inc., CA, USA) (Figure S1A). Forty-

seven of the samples had sufficient DNA for additional whole-

genome shotgun sequencing (Figure S1B). The metagenomes

provide additional taxonomical resolution and improved

estimates of functional potential and were used for validation of

the 16S rRNA sequencing results. Samples were cleaned up and

concentrated using AMPure XP (Beckman Coulter, IN, USA) and

normalized to a total input of 4 ng of dsDNA. Sequencing libraries

were prepared using the Riptide protocol (Twist Bioscience HQ,

CA, USA) and sequenced on Illumina NovaSeq paired-end 2 × 130

bp. The Riptide protocol includes linear amplification with random

primers and dideoxy nucleotide-induced self-termination, thereby

avoiding DNA fragmentation (25). Sequencing was performed at

FIMM Technology Centre in Helsinki, Finland.
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2.3 Bioinformatics analyses

Initial quality control of 16S sequencing reads included the

removal of short reads (<50 bp) and low-quality bases with average

quality across four bases below 30 using Trimmomatic v0.35.2 (26).

The removal of primer sequences was performed using Cutadapt

v2020.2.0 (27) with the following options: forward primer:

CCTACGGGNGGCWGCAG, reverse primer: GACTACHVG

GGTATCTAATCC, primer error 0.1, and primer overlap 3.

Fastqc and multiqc (28) analyses were performed before and after

trimming to ensure high-quality data. Reads were imported into

Qiime2 v2020.2.0 (29), and amplicon sequence variant (ASV)

classification was performed using the Divisive Amplicon

Denoising Algorithm 2 (DADA2) plugin (30), including length

trimming, merging, denoising, and chimera removal. ASV

classification was carried out using the SILVA 16S rRNA database

v132 (31) at a 97% similarity threshold. ASV data were filtered for

the mitochondria and chloroplasts and were rarefied to a depth of

9,000 reads for each sample. Metagenome functional profiles were

predicted from the 16S data using Phylogenetic Investigation of

Communities by Reconstruction of Unobserved States 2

(PICRUSt2) v2.3.0 (32) with default settings, using rarefied count

tables as input and mapping to the MetaCyc database giving

pathway abundance.

Metagenome reads were trimmed using Trimmomatic v0.66.0

(26) with a sliding window approach in which reads with average

quality across four bases below 30 or a read length of less than 30

base pairs were discarded. Following trimming, Bowtie2 v2.4.2 (33)

and Samtools v1.12 (34) were used with default settings to remove

reads mapping to the human genome. MetaPhlAn3 v3.0.4 (35) was

used for taxonomic classification with default parameters. Percent

abundances generated by MetaPhlAn3 were transformed into

count-like tables by multiplying by the number of quality-

trimmed reads per sample and dividing by 100. HUMAnN3

v3.0.0.alpha.2 was used to profile gene families encoding

microbial pathways, aggregating the data according to MetaCyc

annotations using the UniRef90 v201901 database (35). Pathway

abundance data were corrected for sequencing depth by dividing by

the number of trimmed reads and multiplying by 106.
2.4 Statistical analysis

All statistical analyses were performed using R v3.5.3 and

visualized using ggplot2 v3.3.2 (36). To assess the differences

between CRC, HRA, and the control group, statistical tests were

made contrasting all three groups or by combining CRC and HRA.

Additionally, analyses were performed within the CRC group, using

time to diagnosis as the dependent variable. Differences between the

three groups were evaluated using the chi-square test for

comparisons of two categorical variables and the Kruskal–Wallis

test (or the Mann–Whitney U test for two-group comparisons) or

Spearman`s correlation for comparisons of a continuous variable

with a categorical and continuous variable, respectively. Statistical

associations were considered significant at the p < 0.05 level.
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Microbial diversity was measured on ASV and species level for

16S and metagenome data, respectively. Alpha diversity was

determined using richness, Shannon, and inverse Simpson

indices. Beta diversity was calculated using Bray–Curtis

dissimilarity, as implemented in the Phyloseq R package v1.26.1

(37). Associations between beta diversity and CRC, HRA, and

healthy controls were evaluated using permutational analysis of

variance (PERMANOVA) with 999 permutations after adjustment

for the participant’s sex and screening center, as implemented in the

adonis function of the R package vegan v2.5-7 (38).

Differential abundance analyses were performed independently

on ASV/species, genus, phylum, and pathways and were adjusted

for sex and screening center. Before differential abundance analyses,

we applied low abundance filtering, retaining all taxa/pathways with

a read count of at least 10 in at least 10% of samples. Differential

abundance analyses were performed using a negative binominal

model-basedWald test implemented in the DESeq2 package v1.22.2

(39) with the type (poscounts) to account for the sparsity of

microbiome data, and p-values were false discovery rate (FDR)-

adjusted to control for multiple testing.
3 Results

3.1 Study population

Stool samples from 144 NORCCAP screening participants were

selected for 16S sequencing based on registry follow-up data and

initial screening results. Metagenome sequencing was also

performed on 47 of these with the highest DNA amounts. All 144

participants in this study underwent sigmoidoscopy. Five cases of

CRC (3.5%) were detected during screening. Based on registry

follow-up, 23 (16%) participants received a CRC diagnosis within

17 years after screening (Figure 2 and Table 1). The median time

from screening to CRC diagnosis was 7.4 years (range 0-16 years),

and the median age at CRC diagnosis was 65.7 years (range 54-77),

including both screening-detected and follow-up diagnosed CRC.

Other screening-detected lesions included 63 HRAs (44% of the

study participants). Fifty-three (37%) participants had no findings

of adenomas or CRC during sigmoidoscopy and were cancer-free

during follow-up; these constituted the control group. The median

age for all groups at the sample collection was 57 years (range 51-

65). We observed a significantly different distribution of sex and

screening center between CRC, HRA, and healthy controls (p <

0.05). In total, 87 (60%) samples were frommale participants and 89

(62%) samples were from the Telemark screening center.
3.2 Gut microbiome diversity

16S sequencing of 144 samples generated 11.8 million trimmed

reads with a median read depth per sample of 50,205 (range 5,163-

510,589). We identified a total of 7,228 ASVs mapped to 337

species, 229 genera, and 18 phyla. The median number of

observed ASVs was 213.5 (range 79-603). Metagenomic

sequencing of 47 samples resulted in 361 million trimmed reads
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with a median read depth of 6.2 million reads (0.76-20.1). In total,

561 taxa were identified, including 323 species, 116 genera, and 8

phyla. The median number of species per sample was 73 (34–107).

ASV distribution for individual samples showed one sample with

83% of reads belonging to two ASVs within the genus Escherichia-

Shigella. This was confirmed in the metagenome data in which 95%

of reads belonged to the species E. coli. As this indicated an

unrelated acute infection, the sample was excluded from further

analyses (Figure S2).

Rarefying 16S data to 9,000 reads resulted in the exclusion of

one sample with lower sequencing coverage, leaving 142 samples for

16S diversity analyses. Forty-six samples were used for metagenome

diversity analyses. We found no significant differences in alpha

(unadjusted) or beta diversity of taxa or pathways between CRC,

HRA, and healthy controls (Figures 3A–D, 4A–D, p > 0.05 for all

comparisons). This finding remained consistent when grouping

CRC and HRA cases together, when looking at the time to

diagnosis, when considering the metagenome data, and when

adjusting for sex and screening center.
3.3 Differentially abundant taxa
and pathways

We evaluated the differences in the abundance of ASV/species,

genus, phylum, and pathways between the outcome groups. We

further assessed the associations of ASVs with the time elapsed from

sample collection to CRC diagnosis.

3.3.1 CRC vs. control
For the 16S data, the ASV Phascolarctobacterium uncultured

bacterium and the phylum Firmicutes were significantly more

abundant in CRC than controls (FDR p < 0.05, Table 2; Figure 5A).
FIGURE 2

Illustration of time from sample collection to diagnosis (in years) for
the 28 participants who received a CRC diagnosis during screening
or 17 years of follow-up. Full diagnosis and cancer history was
retrieved from the Cancer Registry of Norway and included the ICD-
10 coded diagnosis C18, C19, and C20. Five participants with time to
diagnosis ≤1 year received the diagnosis during screening. Twenty-
three study participants received a CRC diagnosis during follow-up
≥1 year.
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TABLE 1 Characteristics of the study participants and samples.

16S (n = 144) Metagenome (n = 47)

Control HRA CRC Control HRA CRC

Men (%) 36 (25) 41 (28.5) 10 (6.9) 15 (31.9) 12 (25.5) 2 (4.3)

Women (%) 17 (11.8) 22 (15.3) 18 (12.5) 7 (14.9) 6 (12.7) 5 (10.6)

Telemark (%) 39 (27) 37 (25.7) 13 (9) 16 (34) 11 (23.4) 5 (10.6)

Oslo (%) 14 (9.7) 26 (18) 15 (10.5) 6 (12.8) 7 (14.9) 2 (4.3)

Age at sampling, median
(range) 57 (51-64) 57 (51-64) 60.5 (51-65) 57 (54-64) 58 (53-64) 61 (55-65)

Age at diagnosis, median
(range) – – 65.7 (54-77) – – 65.8 (61.1-74.3)

Time to diagnosis, median
(range) – – 7.4 (0-16) – – 4.8 (0-14)

Quality trimmed reads,
median (range)

61,184 (10,261-
416,286)

48,014 (5,163-
493,315)

48,314 (23,701-
510,589)

7,356,487 (757,832-
16,480,674)

5,146,988 (998,978-
20,095,193)

7,248,142 (1,757,061-
15,370,089)

Excluded 0 2ab 0 0 1b 0
F
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aOne individual was excluded from 16S diversity analyses due to the rarefaction criterion of at least 9,000 reads.
bOne individual was excluded from all the analyses (in both the 16S and metagenome datasets) because of an Escherichia coli infection.
B

C D

A

FIGURE 3

Alpha diversity: box plots with taxa/pathway richness (observed), Shannon, and inverse Simpson (InvSimpson) diversity indices in CRC, HRA, and
controls for (A) amplicon sequence variants from 16S sequencing data, (B) estimated MetaCyc pathways derived from 16S data, (C) species
abundance based on metagenome shotgun sequencing, and (D) MetaCyc pathways based on metagenome shotgun sequencing. No significant (p >
0.05) associations were identified.
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Similarly, in the metagenome data, Phascolarctobacterium

succinatutens was significantly more abundant in CRC. For the

metagenome data, in total, nine species were differentially abundant

(FDR p < 0.05, Table 2; Figure 5C). Five of these were significantly

higher in CRC compared with controls, whereas four were significantly

lower. The genus Acidaminococcus was significantly higher in CRC.

Four pathways were significantly lower in CRC compared with

controls (FDR p < 0.05, Table 2; Figure 5D).

3.3.2 HRA vs. control
For 16S data, the genera Azospirillum sp. 47_25 and Escherichia-

Shigella were lower in HRA compared with controls (FDR p < 0.05,

Table 2; Figure 5A). The phyla Proteobacteria and Firmicutes were

lower and higher in HRA compared with controls, respectively. The

direction of differences for these phyla was similar in the metagenome

data, though not significant. Twenty pathways were lower in HRA

based on 16S data. Of these, three pathways were related to heme

biosynthesis: HEMESYN2-PWY [heme biosynthesis II (anaerobic)],

PWY-5920 (superpathway of heme biosynthesis from glycine), and

PWY0-1415 (superpathway of heme biosynthesis from

uroporphyrinogen-III) (FDR p < 0.05, Table 2; Figure 5B). The

direction was similar for PWY0-1415 in the metagenome data. We

also observed differences in REDCITCYC [tricarboxylic acid (TCA)

cycle VIII (Helicobacter)] and the closely related pathways PWY0-42
Frontiers in Oncology 06
(methylcitrate cycle I), PWY-5747 (methylcitrate cycle II), and

GLYOXYLATE-BYPASS (glyoxylate cycle). For metagenome data,

the species Clostridium saccharolyticum was significantly higher and

the genus Parasutterella was significantly lower in HRA compared

with controls (FDR p < 0.05, Table 2; Figure 5C).

3.3.3 HRA and CRC vs. control
For 16S, when considering HRA and CRC as one group and

comparing it with controls, the phylum Firmicutes was significantly

higher in HRA/CRC (FDR p < 0.05, Table 2; Figure 5A). The same

non-significant trend was observed in the metagenome data. The

pathways CENTFERM-PWY (pyruvate fermentation to butanoate)

and PWY-6590 (superpathway of Clostridium acetobutylicum

acidogenic fermentation) were lower in HRA/CRC (FDR p < 0.05,

Table 2; Figure 5B). For metagenome data, the species C.

saccharolyticum was significantly more abundant in the HRA/

CRC group (FDR p < 0.05, Table 2; Figure 5C).

3.3.4 Time to diagnosis
Assessing the CRC group only, those with a longer interval

between sample collection and diagnosis had a higher abundance of

one genus, Bifidobacterium, and one ASV within the Lachnospiraceae

family. Additionally, three ASVs within Lachnospiraceae were lower in

those with a long time to diagnosis (FDR p < 0.05, Figure 5E; Table 2).
B

C D

A

FIGURE 4

Beta diversity: PCoA plots with Bray–Curtis dissimilarity indices between CRC, HRA, and controls for (A) amplicon sequence variants from 16S
sequencing data, (B) MetaCyc pathways derived from 16S sequencing data, (C) species abundance based on metagenome shotgun sequencing, and
(D) MetaCyc pathways based on metagenome shotgun sequencing. Ellipses describe 95% of group variation for the principal coordinate axes. No
significant (p > 0.05) associations were identified.
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TABLE 2 Differential abundance analyses of taxa and pathways between CRC, HRA, and healthy controls.

Contrast baseMean log2FoldChange padj Taxa/pathway

ASV taxonomy, n = 143

Control vs. CRC 41.37 11.16 0.0072 Phascolarctobacterium uncultured bacterium

Control vs. CRC 61,410.72 0.63 0.0366 Firmicutes

Control vs. HRA 33.60 −4.10 0.0464 Azospirillum sp. 47_25

Control vs. HRA 303.86 −3.47 0.0498 Escherichia-Shigella

Control vs. HRA 662.44 −1.83 0.0028 Proteobacteria

Control vs. HRA 61,410.72 0.44 0.0374 Firmicutes

Control vs. HRA and
CRC 61,410.72 0.50 0.0131 Firmicutes

ASV pathways, n = 143

Control vs. HRA 181.995 −1.125 1.80E−05 CENTFERM-PWY: pyruvate fermentation to butanoate

Control vs. HRA 135.426 −1.240 0.0002 FAO-PWY: fatty acid b-oxidation I

Control vs. HRA 48.787 −1.325 0.0397 GALACTARDEG-PWY: D-galactarate degradation I

Control vs. HRA 48.787 −1.325 0.0397
GLUCARGALACTSUPER-PWY: superpathway of D-glucarate and D-galactarate
degradation

Control vs. HRA 45.812 −2.299 0.0165
GLYCOL-GLYOXDEG-PWY: superpathway of glycol metabolism and
degradation

Control vs. HRA 60.372 −2.383 0.0155 GLYOXYLATE-BYPASS: glyoxylate cycle

Control vs. HRA 179.086 −0.713 0.0318 HEMESYN2-PWY: heme biosynthesis II (anaerobic)

Control vs. HRA 94.118 −0.814 0.0155 PWY-5177: glutaryl-CoA degradation

Control vs. HRA 25.662 −2.439 0.0333 PWY-5747: 2-methylcitrate cycle II

Control vs. HRA 58.730 −2.176 0.0029 PWY-5855: ubiquinol-7 biosynthesis (prokaryotic)

Control vs. HRA 58.730 −2.176 0.0029 PWY-5856: ubiquinol-9 biosynthesis (prokaryotic)

Control vs. HRA 58.730 −2.176 0.0029 PWY-5857: ubiquinol-10 biosynthesis (prokaryotic)

Control vs. HRA 29.454 −1.915 0.0397 PWY-5920: superpathway of heme biosynthesis from glycine

Control vs. HRA 230.973 −1.105 1.80E-05 PWY-6590: superpathway of Clostridium acetobutylicum acidogenic fermentation

Control vs. HRA 58.730 −2.176 0.0029 PWY-6708: ubiquinol-8 biosynthesis (prokaryotic)

Control vs. HRA 60.697 −1.262 0.0165 PWY0-1415: superpathway of heme biosynthesis from uroporphyrinogen-III

Control vs. HRA 132.568 −1.063 0.0317 PWY0-1533: methylphosphonate degradation I

Control vs. HRA 25.410 −2.461 0.0397 PWY0-42: 2-methylcitrate cycle I

Control vs. HRA 468.521 −0.711 0.0155 REDCITCYC: TCA cycle VIII (Helicobacter)

Control vs. HRA 56.227 −2.187 0.0029 UBISYN-PWY: superpathway of ubiquinol-8 biosynthesis (prokaryotic)

Control vs. HRA and
CRC 181.995 −0.965 0.0002 CENTFERM-PWY: pyruvate fermentation to butanoate

Control vs. HRA and
CRC 230.973 −0.949 0.0002 PWY-6590: superpathway of Clostridium acetobutylicum acidogenic fermentation

Metagenome taxonomy, n = 46

Control vs. CRC 3,436.272 −30 1.07E−09 Bacteroides finegoldii

Control vs. CRC 1,543.539 11.06101 3.12E−02 Lactobacillus rogosae

Control vs. CRC 3,173.952 −12.5276 4.94E−02 Monoglobus pectinilyticus

Control vs. CRC 80,657.51 6.196732 2.21E−03 Coprococcus eutactus

(Continued)
F
rontiers in Oncology
 07
 frontiersin.org

https://doi.org/10.3389/fonc.2023.1183039
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Bucher-Johannessen et al. 10.3389/fonc.2023.1183039
4 Discussion

Using both 16S rRNA and metagenome sequencing data, we

analyzed the microbial differences between CRC, HRA, and healthy

controls of the 144 screening attendees with long-term follow-up

data. Phascolarctobacterium spp. were more abundant in the CRC

compared with controls and four ASVs belonging to the

Lachnospiraceae family, and Bifidobacterium was associated with

time to CRC diagnosis. Several heme biosynthesis pathways were

less abundant in HRA. We did not observe compositional

differences between CRC, HRA, and healthy controls and

identified no correlation between richness and time to diagnosis

in the CRC group.

We identified Phascolarctobacterium uncultured bacterium and

P. succinatutens in the 16S and metagenome data, respectively, as

being significantly higher in CRC compared with healthy controls.

These annotations likely represent the same species. Three studies

have reported similar findings (40–42). Interestingly, Yachida et al.

found an elevation in P. succinatutens in the early stages of CRC,

from polypoid adenomas to stage 1 CRC. Phascolarctobacterium

succinatutens is broadly distributed in the GI tract and converts

succinate into propionate (42). The strain can likely not ferment

any other short-chain fatty acids or carbohydrates (43). Succinate is
Frontiers in Oncology 08
a TCA cycle intermediate and is produced both by the host and the

microbiota, including the CRC-associated bacteria B. fragilis and F.

nucleatum. Increased succinate in the colon has been linked to gut

inflammation and disease, while increased propionate is thought to

be anti-inflammatory (44, 45). Succinate is proposed to mediate

cross-talk as a signaling metabolite that acts as a positive regulator

of intestinal gluconeogenesis (45, 46) and thermogenesis (47). We

also report several pathways related to the TCA cycle to be lower in

HRA compared with controls. Vogtmann et al. found this pathway

to be increased in cancer (48).

Three pathways related to heme biosynthesis were significantly

lower in the HRA group compared with controls. While heme

uptake, biosynthesis, and export in bacteria are not fully understood

(49, 50), bleeding tumors release heme into the gut lumen. This

might create a niche for heme-scavenging bacteria that could

outcompete those who rely on heme biosynthesis.

Bifidobacterium and four ASVs belonging to the Lachnospiraceae

family were associated with time to diagnosis. Bifidobacterium is a

lactic acid-producing bacteria, aiding in colonocyte renewal and

inhibiting the growth of pathogens. Two studies found

Bifidobacterium to be lower in individuals with lesions compared

with controls (3, 51). This is in line with our findings that lower levels

are associated with a shorter time to diagnosis. We observed different
TABLE 2 Continued

Contrast baseMean log2FoldChange padj Taxa/pathway

Control vs. CRC 4,742.03 −16.8273 2.57E−03 Roseburia sp. CAG:303

Control vs. CRC 1,160.284 13.24881 3.12E−02 Firmicutes bacterium CAG:95

Control vs. CRC 3,457.533 18.9179 4.59E−04 Acidaminococcus intestine

Control vs. CRC 19,999.34 20.45545 2.88E−05 Phascolarctobacterium succinatutens

Control vs. CRC 2,400.172 −30 1.35E−11 Veillonella parvula

Control vs. CRC 3,264.922 19.253 0.0001 Acidaminococcus

Control vs. HRA 511.8308 15.320 0.0002 Clostridium saccharolyticum

Control vs. HRA 1,584.142 −30.000 7.13E−19 Parasutterella

Control vs. HRA and
CRC 511.8308 12.21184 0.0031 Clostridium saccharolyticum

Metagenome pathways, n = 46

Control vs. CRC 13.053 −24.231 5.64E−06 ENTBACSYN-PWY: enterobactin biosynthesis

Control vs. CRC 20.312 −22.480 2.46E−08 PWY-6285: superpathway of fatty acid biosynthesis (E. coli)

Control vs. CRC 5.721 −20.822 6.05E−06 PWY-6992: 1.5-anhydrofructose degradation

Control vs. CRC 3.859 −24.204 6.05E−06 THREOCAT-PWY: superpathway of L-threonine metabolism

ASV taxonomy: time to CRC diagnosis, n = 28

Time 18.42315 1.251612 0.0008 Bifidobacterium

Time 19.47221 −1.20951 0.0006 Lachnospiraceae

Time 11.94936 −1.47904 0.0001 Lachnospiraceae

Time 7.238016 −1.32495 0.0006 Lachnospiraceae

Time 13.97661 1.171725 0.0023 Lachnospiraceae
Log2FoldChange indicates the magnitude and direction of difference in abundance. Analyses were adjusted for sex and screening center. p-values were adjusted using FDR.
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members of the Lachnospiraceae family showing diverging

associations with time to diagnosis. This family was found to be

enriched in controls compared with patients with lesions (52). Some

members of the Lachnospiraceae family can produce the short-chain

fatty acid butyrate (53). Butyrate aids in the cell renewal of

colonocytes, serves as a carbon source for the TCA cycle, and has

anti-inflammatory and antitumorigenic properties (54, 55).

In contrast to several cross-sectional studies including

established CRC cases (10, 11, 56), we did not observe any

associations of bacteria including F. nucleatum, E. coli, and B.

fragilis with CRC status when assessing mostly prediagnostic

cases. These findings could indicate that shifts in the abundance

of these bacteria might be late events in colorectal carcinogenesis.

We found no difference in diversity or composition between

CRC, HRA, and controls. Results from similar studies seem to be

conflicting, both for diversity and composition analyses (11, 56–59).

Smaller differences in the microbiome of adenomas and healthy

controls have been observed than those observed between cancers

and healthy controls (3, 11). Unlike previous studies in the field,

many of our samples were collected from asymptomatic subjects,

years before the diagnosis of cancer. While our results indicate no

overall difference in diversity or composition, it is possible that we
Frontiers in Oncology 09
have been underpowered or that factors related to study design and

technical challenges have led us to miss any small differences in

these ecological measures.

This study has some other noteworthy limitations. Firstly, our

samples were stored for 17 years and could possibly be degraded.

We do know that these samples have a maximum of one freeze–

thaw cycle (22), but they were stored without a stabilizing agent,

which could to some extent influence the composition of fecal

samples (60, 61). Furthermore, we lack information on important

confounding factors, such as diet, lifestyle factors, body mass index,

and antibiotic use affecting microbiome composition (54, 62).

Confounding by these factors may have introduced false-positive

associations, and although the large effect sizes observed in many

cases could suggest a causal relationship, ultimately, our findings

will need to be validated in larger studies controlling for lifestyle

factors. Lastly, we observed a high abundance of the phylum

Firmicutes in our 16S data, but a similar composition was not

observed for the metagenome data. This is likely due to the choice of

primers, where for marker gene studies, certain primers favor the

amplification of specific taxa (63). Still, this did likely not affect the

differential abundance analyses, as the bias was uniform

across samples.
B

C D E

A

FIGURE 5

Volcano plots showing differences in the abundance of taxa and pathways between groups. FDR-significant differentially abundant taxa or pathways
are highlighted in red. Group comparisons are indicated by different shapes where the control group or a shorter time to diagnosis is considered the
reference. Differential abundance was analyzed for (A) amplicon sequence variants from 16S sequencing data, (B) MetaCyc pathways derived from
16S sequencing data, (C) species abundance based on metagenome shotgun sequencing, (D) MetaCyc pathways based on metagenome shotgun
sequencing, and (E) amplicon sequence variants from 16S sequencing data for the 28 participants who received a CRC diagnosis.
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5 Conclusions

The present study is, to the best of our knowledge, the first to

examine gut microbiome samples collected several years prior to

CRC diagnosis. We did not find any differences between the

diversity and composition of the gut microbiome and the

presence of CRC, HRA, and controls. However, analyses

identified several taxa and pathways that were differentially

abundant. Our study found that the succinate-metabolizing,

associated with inflammation, P. succinatutens was more

prevalent in individuals diagnosed with CRC than in healthy

controls, identified using both 16S and metagenome data. In this

population-based screening setting, we also show that CRC-

associated taxa are identifiable years prior to diagnosis of CRC,

including Bifidobacterium and Lachnospiraceae, which were

associated with time to diagnosis.
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