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prostate cancer
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Jason W. H. Chan1, Jing Cai1, W. S. Leung1*

and Shara W. Y. Lee1*

1Department of Health Technology and Informatics, The Hong Kong Polytechnic University,
Hong Kong, Hong Kong SAR, China, 2Department of Biomedical Engineering, The Hong Kong
Polytechnic University, Hong Kong, Hong Kong SAR, China, 3Research Institute for Smart Aging,
The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
Objective: High-risk prostate cancer (PCa) is often treated by prostate-only

radiotherapy (PORT) owing to its favourable toxicity profile compared to whole-

pelvic radiotherapy. Unfortunately, more than 50% patients still developed disease

progression following PORT. Conventional clinical factors may be unable to identify

at-risk subgroups in the era of precision medicine. In this study, we aimed to

investigate the prognostic value of pre-treatment planning computed tomography

(pCT)-based radiomic features and clinical attributes to predict 5-year progression-

free survival (PFS) in high-risk PCa patients following PORT.

Materials and methods: A total of 176 biopsy-confirmed PCa patients who were

treated at the Hong Kong Princess Margaret Hospital were retrospectively

screened for eligibility. Clinical data and pCT of one hundred eligible high-risk

PCa patients were analysed. Radiomic features were extracted from the gross-

tumour-volume (GTV) with and without applying Laplacian-of-Gaussian (LoG)

filter. The entire patient cohort was temporally stratified into a training and an

independent validation cohort in a ratio of 3:1. Radiomics (R), clinical (C) and

radiomic-clinical (RC) combined models were developed by Ridge regression

through 5-fold cross-validation with 100 iterations on the training cohort. A

model score was calculated for each model based on the included features.

Model classification performance on 5-year PFS was evaluated in the

independent validation cohort by average area-under-curve (AUC) of receiver-

operating-characteristics (ROC) curve and precision-recall curve (PRC). Delong’s

test was used for model comparison.
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Results: The RC combined model which contains 6 predictive features (tumour

flatness, root-mean-square on fine LoG-filtered image, prostate-specific antigen

serum concentration, Gleason score, Roach score and GTV volume) was the

best-performing model (AUC = 0.797, 95%CI = 0.768-0.826), which significantly

outperformed the R-model (AUC = 0.795, 95%CI = 0.774-0.816) and C-model

(AUC = 0.625, 95%CI = 0.585-0.665) in the independent validation cohort.

Besides, only the RC model score significantly classified patients in both

cohorts into progression and progression-free groups regarding their 5-year

PFS (p< 0.05).

Conclusion: Combining pCT-based radiomic and clinical attributes provided

superior prognostication value regarding 5-year PFS in high-risk PCa patients

following PORT. A large multi-centre study will potentially aid clinicians in

implementing personalised treatment for this vulnerable subgroup in the future.
KEYWORDS

radiomic, high-risk, prostate cancer, prognosis, progression-free survival (PFS),
radiation therapy, prostate-only radiotherapy, radiomic-clinical model
1 Introduction

Prostate cancer (PCa) ranks the second highest globally in terms

of the prevalence of male malignancies, with more than 1.4 million

new cases diagnosed in 2020 (1). High-risk PCa accounts for over

one-third of the newly diagnosed PCa population, with a three-fold

greater risk of developing distant metastasis compared to their low-

risk counterparts. The management strategies of these two cohorts

differ drastically. The low-risk PCa usually requires only active

surveillance, while high-risk ones require combined modality

therapy such as surgery, radiotherapy, systemic chemotherapy or

hormonal therapy (2). Optimising treatment strategy for the high-

risk is challenging.

Clinically undetectable occult pelvic nodal metastasis is

commonly present in up to 40% of high-risk PCa patients (3).

However, reliable detection of occult pelvic lymph node (PLN)

metastasis is yet available for clinical use (4). It remains as an

unresolved clinical challenge as to whether PLN should be

prophylactically treated. The survival benefits and toxicity profiles

of prostate-only radiotherapy (PORT), or prophylactic whole-pelvic

radiotherapy (WPRT) were vigorously investigated in large

randomised controlled trials (e.g. RTOG-9413), national database

analysis and retrospective studies among the western population

(5–9). Hence, the trade-off between better survival with WPRT and

reduced toxicities with PORT is still highly debated.

Although the 5-year survival of high-risk PCa patients

drastically increased by 23% over the years with greater emphasis

on health-related quality of life (HRQoL) (10, 11), over 50% of high-

risk PCa patients receiving PORT experienced recurrence, which

was far higher than the 12.5% recurrence from the WPRT cohort

(6). It is evident that a more refined subgrouping is necessary to

predict which high-risk patient receiving PORT would experience

recurrence within 5 years to support the clinical decision. Two
02
commonly used conventional risk stratification tools are the

National Institute for Health and Care Excellence (NICE)

guideline and the Roach formula. The NICE guideline stratified

patients into low, intermediate and high risk by clinical (c)T stage,

prostate-specific antigen (PSA) serum concentration and Gleason

score (GS) (12). Although all are prognostic markers (13–15), the

cT stage is determined by digital rectal examination (DRE) that is

subjected to high interobserver variability because (16) only a small

portion of the prostate is palpable (17). The Roach score (RS) is also

commonly used for risk stratification, based on the PSA and GS

(18). A score of ≥15% is considered high-risk. A recent study

reported that the RS has statistically significantly higher predictive

power than the NICE guideline, with a concordance index of 0.724

and 0.715 respectively (13). However, the RS tends to overestimate

the risk of occult PLN disease by 2.5 to 4 times among high-risk

patients. This would result in the over-treatment of patients and

compromise the therapeutic index (19, 20). Therefore, both NICE

and RS may not be sufficiently effective in the era of precision

medicine. There is a growing demand for developing a more

refined, personalised risk stratification method for predicting

treatment outcomes of high-risk PCa patients.

Recent advancement in artificial intelligence and radiomics

accelerates the development of precision and personalised

medicine. Radiomics adopts high-throughput methods to extract

high-dimensional radiological features, transforming them into

imaging biomarkers to improve clinical decisions (21). Magnetic

resonance imaging (MRI) has been extensively studied, employing

derived radiomic features for diagnosis or risk prediction of PCa.

They showed promising classification performance on clinical

endpoints such as GS or biochemical recurrence (BCR) (22–26).

By contrast, very few investigations were conducted on the

prognostic value of imaging biomarkers derived from the pCT of

high-risk PCa patients, despite that the prognostic power of CT-
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based radiomics has been widely reported in other types of primary

solid tumours such as non-small cell lung cancer, nasopharyngeal

carcinoma and renal cell carcinoma (27–30). Franzese et al. (31) was

the only study employing pCT-derived radiomic features to predict

metastasis-free survival in PCa patients treated by external beam

radiotherapy (EBRT). However, the included patients in their study

were treated with various kinds of treatment, including trans-

urethral resection of the prostate, high-intensity focused

ultrasound, and EBRT. The prognostic power of their model

specifically on PORT-treated high-risk PCa patients remains to

be explored.

To our best knowledge, this is the first study to investigate the

feasibility of utilising pCT-derived radiomic features and clinical

attributes to predict 5-year progression-free survival (PFS) in high-

risk localised PCa patients following PORT. Recently, a systematic

review in prostate radiomics suggested that incorporating clinical

features into a radiomic model may improve its clinical utility (32).

Given the inherently heterogeneous nature of the disease,

conventional clinical factors may provide additional prognostic

value (33). The success of this study may provide insightful

findings for clinicians to optimise treatment strategies for

managing high-risk PCa patients.
2 Methods and materials

2.1 Patients

2.1.1 Patient source
The present study was approved by the Human Subjects Ethics

Sub-committee of the Hong Kong Polytechnic University

(Reference: HSEARS20220406011) and Kowloon West Cluster

Research Ethics Committee (KWC-REC) of the Hong Kong

Hospital Authority (Reference: KW/EX-21-155 (165–05)). The

requirement for individual informed consent was waived due to

the retrospective nature of this study. One hundred and seventy-six

biopsy-proven PCa patients who underwent definitive PORT at the
Frontiers in Oncology 03
Princess Margaret Hospital (PMH) in Hong Kong between

February 2011 and December 2016 were retrospectively screened

for eligibility. Following the inclusion and exclusion criteria (IEC)

shown in Figure 1, 100 patients with localised (cT1-3, N0, M0)

disease, with RS ≥ 15% (i.e. high-risk PCa) were included in

this study.

2.1.2 Patient data
Clinical information such as the age at diagnosis, PORT start

date and disease characteristics (clinical tumour (T), nodal (N) and

distant metastatic (M) staging, histology, PSA serum concentration,

GS, RS); treatment information (prescription and period of PORT

and hormonal therapy, treatment techniques and organ contours);

imaging information (pCT registered with organ contours); and

clinical outcome (status of biochemical failure, regional and distant

metastasis) were collected retrospectively.

2.1.3 Treatment approach and clinical endpoint
All patients were treated with PORT using intensity-modulated

radiotherapy (IMRT), to a total of 70 or 74Gy. The treatment

regimen also included neoadjuvant and concurrent antiandrogen

and/or luteinising hormone-releasing hormone analogue (LHRHa)

for 8-12 weeks, and 3 years of adjuvant LHRHa.

For this study, the clinical endpoint was the 5-year PFS status.

Patients with disease progression manifested as biochemical

recurrence, regional or distant metastasis, or death (34) were

labelled “PFS-1”, with the others labelled as “PFS-0”. The Phoenix

criteria of biochemical recurrence, defined as > 2 ng/mL rise from

nadir PSA (35), was adopted in this study.

2.1.4 Patient stratification
The enrolled patients with treatment commenced on or before

the date of 08/11/2016 were allocated to a training dataset (n = 75),

and the remaining ones were assigned to an independent validation

dataset (n = 25). The PFS-1 to PFS-0 ratio between the training and

independent validation cohort was set at 6:4, referencing a similar

work adopting temporal stratification (36). This patient
FIGURE 1

Patient stratification and inclusion-exclusion criteria. PMH, Princess Margaret Hospital; n denotes number of patients; TRUS, transrectal ultrasound;
RS, Roach Score; pCT, planning computed tomography; GTV, gross tumour volume; PORT, prostate-only radiotherapy; AJCC, American Joint
Committee on Cancer; PSA, prostate specific antigen; GS, Gleason score.
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stratification approach has been widely adopted in similar studies

(36–38), which complies with the recommendation provided in the

Transparent Reporting of a Multivariable Prediction Model for

Individual Prognosis or Diagnosis (TRIPOD) type-2b

classification (39).
2.2 Planning CT acquisition and volume-
of-interest segmentation

Patients underwent iodinated contrast-enhanced (intravenous

injection of 120mL Omnipaque 300 mg/dL at 3 mL/second with 75

seconds scan delay) on one of the two CT scanners: 16-slice GE

LightSpeed RT16 or GE BrightSpeed (GE Medical Systems, WI,

USA). The pCT acquisition parameters included: X-ray tube voltage

120 kVp or 140 kVp; X-ray tube current 114-376 mA; field-of-view

500-650 mm; body filter; standard convolution kernel; matrix size

512x512; pixel spacing 0.98-1.27 mm; and reconstruction thickness

2.5 mm. The pCT scans were acquired 24 (range, 6-47) days on

average before PORT commencement. All pCT scans were stored in

Picture Archiving and Communication System (PACS) in Digital

Imaging and Communications in Medicine (DICOM) format. All

pCTs scans were registered with GTV segmentation, which was the

VOI for radiomic feature extraction and modelling in this study.

The GTV of all patients were segmented by experienced oncologists

on the Eclipse ARIA system (version 8.6.15 or 13.0.26, Varian

Medical System). The delineation of VOI is performed according to

the ESTRO ACROP consensus guideline (40). A team of oncologists

with expertise in prostate cancer radiotherapy delineated the ROI.

To address the inter-observer variabilities, the contours were all

reviewed and approved by a Consultant Oncologist before use.

Calcification, necrosis, nor artifacts due to fiducial markers were not

found in all the included cases in this study. The GTV segmentation

of a representative patient is illustrated in Figure 2.
2.3 CT image pre-processing

All pCT images were pre-processed before radiomic feature

extraction, in compliance with the recommendations provided in

the internationally accepted Image Biomarker Standardisation

Initiative (IBSI) guideline (41). All steps were implemented by an

in-house developed pipeline (IhDP) which used an open-source
Frontiers in Oncology 04
Pyradiomics v2.2.0 with SimpleITK v1.2.4 package on Python

v3.7.3 platform. pCT was first resampled to 1 mm isotropic

voxels by B-spline interpolation to account for voxel spacing

variation while avoiding longitudinal image oversampling (41).

Resampled pCT were discretized to 10-Hounsfield unit (HU) bins

to homogenise intensity resolution (42). The GTV was re-

segmented by HU thresholding, bounded by -150 and 180 HU

(43). Six kernel sizes of Laplacian of Gaussian (LoG) filters, 0.5, 1, 2,

3, 4 and 5 mm, were used to reconstruct the image, facilitating fine

and coarse texture feature extraction at different resolutions (44).
2.4 Feature extraction & feature
normalization

A total of 665 radiomic features from the GTV were extracted

using the IhDP. Types of the extracted features of both unfiltered

and LoG-filtered images included shape (n = 14), first-order

intensity (n = 108) and texture (n = 543). Details of the extracted

features classes and their distributions are shown in

Supplementary Material.

Before analysis, all radiomic features were normalised by using

z-score transformation using R software (version 4.1.3). Specifically,

features were centred and scaled firstly in the training cohort in

which each feature had a mean of 0 and a standard deviation of 1.

The normalisation factors obtained in the training cohort were then

used to perform feature normalisation in the independent

validation cohort.
2.5 Feature selection & model
development

Relevant feature selection processes including the Spearman

correlation coefficient (SCC) and Mann-Whitney U test were

performed on the training cohort before the use of Ridge

regression algorithms (44–46). The independent validation cohort

was adopted for independent model validation. All model training

and validation were performed using the R software.

For the radiomic model development, the SCC was first

calculated for each pair of radiomic features in the training

cohort using the R package “caret”. When the absolute

correlation coefficient (r) was ≥ 0.6 in any of the feature pairs, the

feature with a higher mean absolute correlation was removed from

the original feature set to minimise the likelihood of

multicollinearity and model overfitting (21). The clinical

significance of the remaining features was assessed by using a

two-sided, unpaired Mann-Whitney U test in the training cohort

by executing the “wilcox.test’ function in the R software, while

features with p > 0.1 were removed. A L2 regularisation was

performed using ridge regression in the R package “glmnet”.

Ridge regression penalises regression coefficients through

hyperparameter (l) tuning in a grid search. The l yielding a

minimum cross-validation error was then chosen. The objective

function was optimised through cyclical coordinate descent in the R

package “glmnet”.
FIGURE 2

Representative example of a GTV segmentation on contrast-
enhanced pCT of a high-risk prostate cancer patient.
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For the clinical model development, clinical features including

PSA serum concentration, GS, RS and GTV volume formed the

initial feature set. PSA was categorised into< 10, 10-20 and > 20 ng/

mL while GS was classified into five groups (14). RS was divided

into 4 categories: 15-25%, > 25-35%, > 35%-45% and > 45% (18). All

clinical features were tested for correlation using the SCC test in the

training cohort. The same correlation threshold of r ≥ 0.6 as in the R

model was applied. Ridge regression was also performed.

To develop the radiomic-clinical (RC) combined model, all

selected radiomic and clinical features were combined and fitted

into the ridge regression. A 5-fold cross-validation was employed

with 100 iterations to obtain the average predictive performance

model. The model score was calculated as

Model Score = (Coefficient)� (Feature Value) + Intercept

Three model scores were calculated for each patient: R (R-

score), C (C-score) and RC combined (RC-score) models. The R

package “cvAUC” and “PRROC” were used to compute the

averaged area under the receiver-operating characteristics (ROC-

AUC) curves and precision-recall curve (PRC). Other performance

indicators including sensitivity, specificity, accuracy and the

Youden index (YI) were calculated by the R package “pROC”.

The optimal cut-off in each model was determined using the

Youden method (47).
2.6 Statistical analysis

All continuous variables have been verified for conformity by

the Shapiro-Wilk test. Statistical differences of continuous clinical

and demographic variables were evaluated by the Mann-Whitney U

test, while categorical variables were assessed by Chi’s square or

Fisher-exact test as appropriate. Performance of the R, C and RC

combined models were compared using the Delong test, based on

their averaged ROC-AUC in both training and independent

validation cohorts. The correlations between RC-score, radiomic

and clinical variables were evaluated by SCC to reveal any dominant

features in the model that contribute heavily to the RC-score. SCC

was also used to assess inter-feature correlation in the training

cohort for feature screening. All statistical tests were two-sided with

a value of p< 0.05 considered statistically significant.
3 Results

3.1 Patient characteristics

Among 176 patients screened for eligibility, 100 cases met the

inclusion criteria. 10 included patients who experienced disease

progression were labelled as “PFS-1”, in which 6 (8%) and 4 (16%)

were allocated to the training and independent validation cohorts

respectively. Table 1 summarises the characteristics of the

enrolled patients.

No statistically significant difference was detected in the

distribution of age, PSA serum concentration, GS, RS, GTV

volume, neoadjuvant hormonal therapy (NHT), concurrent
Frontiers in Oncology 05
hormonal therapy (CHT) and adjuvant hormonal therapy (AHT)

regimen between training and independent validation cohorts,

except for the PORT dose scheme (p< 0.001). Furthermore, PSA,

GS, RS and GTV volumes were not significantly different between

PFS-1 and PFS-0 patients in both cohorts, except for the

CHT regime.
3.2 Model development

A simplified modelling workflow is illustrated in Figure 3. In the

R model, 40 features with high independence (r< 0.6) shown in the

correlation map (Supplementary Material) underwent further

elimination. Among them, the unfiltered-shape-flatness and LoG-

1mm-filtered root-mean-square (RMS) features were chosen for the

development of the R model. In the C model, the Spearman

correlations between PSA, GS, RS and GTV volume were less

than 0.6 (Supplementary Material). Therefore, all 4 clinical

features were used for modelling. The R and C models consisted

of 2 radiomic and 4 clinical features respectively, while these 6

features were combined in the RC model.

Table 2 lists the intercepts and coefficients of all three models.

Patients with model scores higher than the optimal cut-off were

classified as high-risk of having disease progression within 5 years

since the commencement of treatment, or vice versa.
3.3 Model evaluation

The performance of each model in both the training and

independent validation cohorts is summarised in Table 3. The

ROC and PR curves are shown in Figure 4. Boxplots of the model

scores are presented in Figure 5.

The RC combined model yielded the highest ROC-AUC (0.797,

95%CI = 0.786-0.826) in the independent validation cohort

compared to the R (0.795, 95%CI = 0.774-0.816) and C (0.625,

95%CI = 0.585-0.665) models. The DeLong test showed that the RC

combined model had a ROC-AUC significantly higher than the C

model in both training (0.747 vs. 0.554, p< 0.001) and independent

validation (0.797 vs. 0.625, p< 0.001) cohorts. A similar finding was

also observed with the RC model demonstrating a higher ROC-

AUC than the R model in the independent validation cohort (0.797

vs. 0.795, p<.001). Moreover, the RC combined model had the

highest PR-AUC, accuracy and YI compared to R and C models in

the independent validation cohort. The RC combined model also

attained a relatively high sensitivity and specificity of 0.808 and

0.722 in the training cohort and 0.793 and 0.653 in the independent

validation cohort, respectively.

Of note, the RC combined model was the only model that

resulted in a significantly different RC-score between PFS-1 and

PFS-0 patients in both the training (median: -2.428 vs. -2.447, p =

0.01) and independent validation cohorts (median: -2.411 vs.

-2.451, p = 0.03). On the other hand, the R model failed to render

a significantly different R-score in the independent validation

cohort (median: -2.368 vs. -2.491, p = 0.08). Similarly, the C

model did not yield any significant difference in C-score for
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https://doi.org/10.3389/fonc.2023.1060687
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ching et al. 10.3389/fonc.2023.1060687
TABLE 1 Patient characteristics.

Patient Characteristics Whole
Cohort

Training Cohort Validation Cohort
p**

All PFS-1 PFS-0 p* All PFS-1 PFS-0 p*

Patients, n 100 75 6 69 – 25 4 21 – –

Age at PORT start date, median
(range)

72
(52–86)

72
(55-84)

70
(58-78)

72
(55-84)

0.66 70
(52-86)

69
(52-86)

73.5
(68-82)

0.32 0.93

PSA before PORT, ng/mL,
n (%)

0.37 0.80 0.11

< 10 10 (10) 6 (8) 0 (0) 6 (8.7) 4 (16) 1 (25) 3 (14.3)

10-20 29 (29) 19 (25.3) 3 (50) 16 (23.2) 10 (40) 1 (25) 9 (42.9)

> 20 61 (61) 50 (66.7) 3 (50) 47 (68.1) 11 (44) 2 (50) 9 (42.9)

GS grade group, n (%) 0.75 0.64 0.11

GS ≤ 6 11 (11) 11 (14.7) 0 (0) 11 (15.9) 0 (0) 0 (0) 0 (0)

GS = 3 + 4 21 (21) 14 (18.7) 2 (33.3) 12 (17.4) 7 (28) 1 (25) 6 (28.6)

GS = 4 + 3 17 (17) 13 (17.3) 1 (16.7) 12 (17.4) 4 (16) 0 (0) 4 (19.0)

GS = 8 24 (24) 20 (26.7) 1 (16.7) 19 (27.5) 4 (16) 0 (0) 4 (19.0)

GS = 9-10 27 (27) 17 (22.7) 2 (33.3) 15 (21.7) 10 (40) 3 (75) 7 (33.3)

RS, n (%) 0.94 0.61 0.71

15-25% 29 (29) 22 (29.3) 1 (16.7) 21 (30.4) 7 (28) 0 (0) 7 (33.3)

> 25-35% 19 (19) 16 (21.3) 2 (33.3) 14 (20.3) 3 (12) 0 (0) 3 (14.3)

> 35-45% 22 (22) 15 (20) 1 (16.7) 14 (20.3) 7 (28) 2 (50) 5 (23.8)

> 45% 30 (30) 22 (29.3) 2 (33.3) 20 (29.0) 8 (32) 2 (50) 6 (28.6)

GTV volume, cm3, median
(range)

42.7
(15.7-170.6)

43.5 (15.7-
170.6)

40.9
(24.9-
86.8)

43.5
(15.7-
170.6)

0.52 35.6 (18.1-
100.4)

34.1
(22.5-
63.7)

41.7
(18.1-
100.4)

0.92 0.10

PORT dose/fractionation,
n (%)

0.29 0.16 <
0.001

70Gy/35fr 31 (31) 31 (41.3) 4 (66.7) 27 (39.1) 0 (0) 0 (0) 0 (0)

74Gy/35fr 67 (67) 43 (57.3) 2 (33.3) 41 (59.4) 24 (96) 3 (75) 21 (30.4)

74Gy/37fr 2 (2) 1 (1.3) 0 (0) 1 (1.4) 1 (4) 1 (25) 0 (0)

NHT, n (%) >
0.99

0.42 0.18

Antiandrogen only 4 (4) 2 (2.7) 0 (0) 2 (2.9) 2 (8) 1 (25) 1 (4.8)

Antiandrogen with LHRHa 94 (94) 72 (96) 6 (100) 66 (95.7) 22 (88) 3 (75) 19 (90.5)

LHRHa only 1 (1) 0 (0) 0 (0) 0 (0) 1 (4) 0 (0) 1 (4.8)

None 1 (1) 1 (1.3) 0 (0) 1 (1.4) 0 (0) 0 (0) 0 (0)

CHT, n (%) 0.71 0.003 0.88

Antiandrogen only 18 (18) 12 (16) 1 (16.7) 11 (15.9) 6 (24) 3 (75) 3 (14.3)

Antiandrogen with LHRHa 59 (59) 45 (60) 5 (83.3) 40 (58) 14 (56) 0 (0) 14 (66.7)

LHRHa only 18 (18) 14 (18.7) 0 (0) 14 (20.3) 4 (16) 0 (0) 4 (19)

None 5 (5) 4 (5.3) 0 (0) 4 (5.8) 1 (4) 1 (25) 0 (0)

AHT, n (%) 0.11 0.11 0.80

Antiandrogen only 2 (2) 1 (1.3) 0 (0) 1 (1.4) 1 (4) 1 (25) 0 (0)

Antiandrogen with LHRHa 7 (7) 5 (6.7) 1 (16.7) 4 (5.8) 2 (8) 1 (25) 1 (4.8)

(Continued)
F
rontiers in Oncology
 06
 frontie
rsin.org

https://doi.org/10.3389/fonc.2023.1060687
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ching et al. 10.3389/fonc.2023.1060687
either the training (median: -2.405 vs. -2.440) or independent

validation cohort (-2.383 vs. -2.425).
3.4 Correlation analysis among RC-scores,
radiomic and clinical features

TheaverageabsoluteSCC(r)ofR featureswithRC-scores (r=0.603)

was ~2.6 times higher than that of C features with RC-scores (r = 0.235).

Among radiomic features, LoG-1mm-filtered RMS had the highest

correlation with the RC-score (r = 0.797), followed by the unfiltered-

shape-flatness (r = 0.409). The clinical features with the highest and

lowest correlationwithRC-scorewereGS(r=0.411)andGTVvolume(r

= 0.105) respectively. Between radiomic and clinical features, unfiltered-

shape-flatness and LoG-1mm-filtered RMS had the highest correlation

with RS (r = 0.372) and GTV volume (r = 0.228), respectively. The

correlation matrix (Supplementary Material) described in detail the

correlation between RC-scores of patients in the independent validation

cohort and their corresponding R and C features.
4 Discussion

For the first time, we demonstrated that combining CT-based

radiomic (unfiltered-shape-flatness, LoG-1mm-filtered RMS) and
Frontiers in Oncology 07
clinical attributes (PSA, GS group, RS group and GTV volume)

provided superior prognostic value for 5-year PFS in high-risk PCa

patients following PORT. The DeLong test revealed that the ROC-

AUC of the RC combined model was significantly higher than those

of the R and Cmodels in the independent validation cohort. The RC

model had the highest overall accuracy and YI. Only the RC model

score significantly classified patients into “progression” (PFS-1) and

“progression-free” (PFS-0) groups according to their 5-year PFS in

both training and independent validation cohorts (both p< 0.05).

These findings suggested the potential of the RC combined model in

supporting clinicians to implement personalized treatment for this

vulnerable patient subgroup in the future. For instance, if a patient

is classified into the “progression” (PFS-1) group ahead of the

commencement of the PORT treatment, clinicians may consider a

more aggressive therapy (e.g., WPRT) for improving the prognosis

of the given patient.

The two identified radiomic features (unfiltered-shape-flatness

and LoG-1mm-filtered RMS) are in line with previous studies using

CT images (27, 28, 48, 49). Unfiltered-shape-flatness is a shape

feature calculated by the square root of the least axis length divided

by the major axis length (48). A value closer to zero indicates the

tumour is flatter. This feature was reported in another CT radiomic

model for predicting tumour response in lung cancer patients

receiving EBRT (49). Additionally, the RC-score was negatively
TABLE 1 Continued

Patient Characteristics Whole
Cohort

Training Cohort Validation Cohort
p**

All PFS-1 PFS-0 p* All PFS-1 PFS-0 p*

LHRHa only 81 (81) 61 (81.3) 3 (50) 58 (84.1) 20 (80) 2 (50) 18 (85.7)

None 10 (10) 8 (10.7) 2 (33.3) 6 (8.7) 2 (8) 0 (0) 2 (9.5)
frontie
PORT, prostate-only radiotherapy; PSA, prostate specific antigen; GS, Gleason score; RS, Roach score; GTV, gross tumour volume; NHT, neoadjuvant hormonal therapy; CHT, concurrent
hormonal therapy; AHT, adjuvant hormonal therapy; LHRHa, luteinizing hormone-releasing hormone analogue; n denotes the number of patients; PFS, progression-free survival, *refers to p
derived from univariate analysis on association of each patient characteristics with the status of 5-year PFS, **refers to p derived from patient characteristics comparison between the training and
validation cohorts.
FIGURE 3

Models construction workflow. R, Radiomics; RC, Radiomic-clinical; C, clinical; n denotes number of features; ROC, receiver-operating
characteristic; PR, precision-recall; YI, Youden index.
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correlated to the flatness, with a lower flatness value indicating a

poorer prognosis. Such a finding is consistent with Khodabakhshi’s

study, which predicted the OS of patients with renal cell carcinoma

(27). The feature LoG-1 mm-filtered RMS is calculated by the mean

of all squared intensity values in LoG-1mm-filtered ROI (48).

Similar to flatness, it is negatively correlated to the RC-score. The

RMS has been reported in a CT radiomic model study for lung

adenocarcinoma, in which a lower value was associated with poorer

PFS and OS (28). The prognostic implications of these features have

not been reported for PCa, and the association between the selected

pCT radiomic features and biological properties remains unclear.

Indeed, the RC model was dominated by the R features since the

absolute SCC of R features with RC-score was ~2.6 times higher

than those of clinical features (Supplementary Material). Further

investigation is needed to explore the biological mechanism of

radiomic features.

Another notable finding is the lack of textural features in the RC

combined model. It may be attributed to the intrinsic property of

pCT images and the clinical endpoint of our study. Most prostate

radiomic studies use MRI-derived features for prognostic prediction

(22–24, 50). In a study using T2-weighted MRI, features with the

highest predictive value originated from the gray-level run-length

matrix (GLRLM) texture feature class (23). Another two studies

using apparent diffusion coefficient (ADC) MRI for radiomics

modelling (23, 24) suggested that the gray-level co-occurrence
Frontiers in Oncology 08
matrix (GLCM) texture feature class contained the most

predictive features. However, in a prostate radiomic study (51)

exploring interfraction cone-beam CT, both shape and first-order

features have excellent capability in predicting patient outcomes,

which was similar to our study. In addition, these two features were

also found to be capable of predicting PFS in both nasopharyngeal

carcinoma (NPC) and NSCLC (29, 30). Meanwhile, texture features

dominate in MRI-based NPC radiomic studies (52, 53). These

observations suggested that the feature class selected for PFS

prediction could be influenced by the choice of imaging modality.

This may be explained by the inherently lower soft-tissue contrast

characteristic in CT than in MRI, resulting in less prominent texture

features that may be relevant to the PFS. Texture features in CT and

MRI have been regarded as the manifestation of tumour

heterogeneity. Hence, the dominant feature class may vary

according to different clinical endpoints. For instance, texture

features are often selected in both CT and MRI prostate radiomic

studies when GS is chosen as the clinical endpoint (25, 42). It is not

surprising since GS is the gold standard for characterising prostate

heterogeneity, while texture features measure the same physical

property. The current study demonstrated that both shape

(unfiltered-shape-flatness) and first-order features (LoG-1mm-

filtered RMS) have similar predictive performance compared to

MRI radiomic studies (23, 24, 50). Nonetheless, a further study

involving a larger external validation cohort is needed to validate
TABLE 2 Intercepts and selected radiomic and/or clinical features of the R, C and RC combined models.

Intercept and Coefficients
Values of Intercept and Coefficients of Each Model

R Model C Model RC Combined Model

Intercept -2.463 -2.450 -2.445

Raw_shape_flatness -0.052 — -0.010

LoG_1mm_first-order_root-mean-square -0.101 — -0.017

PSA — -0.032 -0.005

GS — 0.015 0.004

RS — 0.033 0.004

GTV volume — -0.044 -0.006
R, radiomics; C, clinical; RC, radiomic-clinical; LoG, Laplacian of Gaussian; PSA, prostate specific antigen; GS, Gleason score; GTV, gross tumour volume.
—, feature absent.
TABLE 3 Predictive performance of the R, C and RC combined models.

Model

Training Cohort Validation Cohort

ROC-AUC,
Mean (95%

CI)

PR-
AUC,
Mean

Sens. Spec. Acc. YI p*
ROC-AUC,
Mean
(95%CI)

PR-
AUC,
Mean

Sens. Spec. Acc. YI p*

R 0.798
(0.788-0.809)

0.177 0.998 0.658 0.685 0.656 0.005 0.795
(0.774-0.816)

0.357 0.825 0.605 0.640 0.430 < 0.001

C 0.554
(0.521-0.587)

0.097 0.353 0.764 0.731 0.117 <
0.001

0.625
(0.585-0.665)

0.230 0.530 0.676 0.652 0.206 < 0.001

RC
combined

0.747
(0.726-0.767)

0.172 0.808 0.722 0.729 0.530 (Ref.) 0.797
(0.768-0.826)

0.371 0.793 0.653 0.676 0.446 (Ref.)
fronti
R, radiomics; C, clinical; RC, radiomic-clinical; ROC, receiver-operating characteristic; AUC, area-under-curve; CI, confidence interval; PR, precision-recall; YI, Youden index (Sensitivity +
specificity -1); Sens., sensitivity; Spec., specificity; Acc., accuracy; Ref., reference, *refers to statistical significance of ROC-AUC differences between R and RC combined model and that between C
and RC combined model in each cohort
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the performance of these two feature classes in predicting the PFS of

high-risk PCa patients.

The C model constructed based on clinical factors had the

poorest performance. Univariate analysis did not show any

statistical significance of these clinical features between PFS-1 and

PFS-0 patients in both cohorts. The most probable explanation is

that these clinical features are homogeneous within the high-risk

subgroup of PCa patients (32). Thus, using the C model alone

would lead to the poorest prediction performance. Statistically, the

C model also failed to differentiate the 5-year PFS status in both

cohorts. These findings are in line with those reported by Fernandes

et al. (23) and Bourbonne et al. (26), who have also incorporated

PSA and GS in their clinical models. They also retrospectively

investigated the clinical predictive model for high-risk PCa patients

treated by EBRT (23) and radical prostatectomy during a 5-year

follow-up (26). The sensitivity and specificity of the C model were

also comparable to those reported by Bourbonne et al. (26)

(Sensitivity: 0.53 vs 0.68; Specificity: 0.53 vs. 0.59). These clinical

features, however, are not without predictive values when combined

with the R model. It is demonstrated by the increase in overall

accuracy in both the training and independent validation cohorts

after combining R with C models. The potential complementary
Frontiers in Oncology 09
role between R and C features for prognosis warrants future

investigation (54).

Overall, this study explored the potential of combining pCT-

derived radiomic and clinical features in the prognostic prediction

of high-risk PCa patients receiving PORT. Our study has

demonstrated that the classification performance of the combined

RC model was comparable to the combined MRI-derived radiomic

and clinical models. Among all included features, the shape and

first-order features are considered more intuitive than other

complex features when interpreting the classifier in predicting 5-

year PFS of high-risk patients in the clinical setting (51). Our patient

stratification methodology is highly standardised by adopting a

temporal validation as in type-2b study according to the TRIPOD

guideline (39). Moreover, the use of pCT is preferable due to its

higher standardisation, repeatability and calibration of CT over

diagnostic MRI (33). For instance, HU in pCT directly quantifies

the electron density of the tissue while the pixel value in MR is

arbitrarily allocated.

This study has several limitations. First, the sample size is

relatively small. This can be attributed to the strict inclusion and

exclusion criteria enforced to ensure high-quality radiomics and

clinical data. Nonetheless, numerous studies have also contributed
B

C D

A

FIGURE 4

The ROC and PR curves of R, C and RC combined models. Boxplots (A, B) Averaged ROC curves of the training and independent validation cohort.
Boxplots (C, D) The PR curves of both cohorts. ROC, receiver-operating characteristic; PR, precision-recall; R, radiomic; C, clinical; RC, radiomic-
clinical; AUC, area under curve.
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insightful findings to the community with a similar sample size as

our work (32, 55–57). Second, this work only performed modelling

based on data from a single centre as COVID-19 has restricted the

research team from conducting data collection from multiple

centres. Third, owing to the small sample size and temporal

stratification, a class imbalance exists in which only 10% are PFS-

1 patients. Although a similar situation was observed in Bosetti’s

(2020) work analysing cone-beam CT performance for predicting

prostate cancer clinical progression, further study with a larger

sample size and proportion of PFS-1 patients would be beneficial to

minimise modelling and evaluation bias. Minority class-boosting

techniques should also be implemented if appropriate. Fourth, an

external testing set was not employed. This would be essential to

demonstrate satisfying model generalisability in a multi-centre

study before actual clinical application (58). Moreover, Ridge

regression, which was a relatively straightforward modelling

strategy, was adopted in this work for demonstrating the

proposed feasibility of using radiomic-clincial factors to predict

patient outcomes. To render the model fit for clinical application,

more robust modelling methodologies such as non-linear machine

learning techniques and random oversampling should be

incorporated when processing multi-centre data sets.
5 Conclusion

This study demonstrated the feasibility and potential of using pCT-

derived radiomic and clinical features for predicting 5-year PFS in

high-risk PCa patients receiving PORT, which is an important clinical

research gap that previously lacks investigation The RC combined

model provided statistically superior predictive performance than both

R and C models in the independent temporal validation cohort. These

findings lay the ground for the future development of a combined

radiomic-clinical model involving robust modelling techniques,
Frontiers in Oncology 10
multicentre data and external validation. We hope that this work will

bring attention to the academic community and encourage future work

to address this on a larger scale towards clinical implementation.

Ultimately, it could potentially act as a supportive decision tool

predicting the outcome of different treatment regimens to facilitate

personalised management of high-risk PCa patients.
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