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ABSTRACT

Graph theoretical analysis of the structural connectome has been employed successfully to
characterize brain network alterations in patients with traumatic brain injury (TBI). However,
heterogeneity in neuropathology is a well-known issue in the TBI population, such that group
comparisons of patients against controls are confounded by within-group variability. Recently,
novel single-subject profiling approaches have been developed to capture inter-patient
heterogeneity. We present a personalized connectomics approach that examines structural
brain alterations in five chronic patients with moderate to severe TBI who underwent
anatomical and diffusion magnetic resonance imaging. We generated individualized profiles
of lesion characteristics and network measures (including personalized graph metric GraphMe
plots, and nodal and edge-based brain network alterations) and compared them against
healthy reference cases (N = 12) to assess brain damage qualitatively and quantitatively at the
individual level. Our findings revealed alterations of brain networks with high variability
between patients. With validation and comparison to stratified, normative healthy control
comparison cohorts, this approach could be used by clinicians to formulate a neuroscience-
guided integrative rehabilitation program for TBI patients, and for designing personalized
rehabilitation protocols based on their unique lesion load and connectome.

AUTHOR SUMMARY

Single-subject profiling captures heterogeneity of the structural connectome to characterize
brain network alterations in patients with traumatic brain injury (TBI). We profile individual
patients based on their unique brain graphs in comparison to healthy controls, to provide
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insights into brain network disruption otherwise obscured by group-level approaches. Our
implementation extends current methods by analyzing TBI structural profiles when automatic
sub/cortical segmentation or parcellation of MRIs fail in the presence of lesions. Our approach
highlights the translational potential for single-subject network analyses in the study of brain
injury. Personalized connectome profiling provides a novel user-friendly framework for
leveraging graph metrics to benefit the individual patient, by characterizing network-level
brain alterations with potential prognostic relevance.

INTRODUCTION

Moderate to severe traumatic brain injury (TBI) can result in diverse focal lesions and white
matter pathology. The locations of these lesions greatly contribute to functional outcomes
following TBI, whereby cognitive functions that rely on broadly distributed circuits in the brain
are affected due to disruptions to axonal pathways and cortical structures (Bressler & Menon,
2010; Catani & Ffytche, 2005; Hampshire et al., 2016). In TBI patients, diffusion-weighted MRI
(dMRI) studies have shown altered topological properties of structural brain networks, as
indexed by graph metrics at the group level (Caeyenberghs et al., 2014; Kim et al., 2014;
Raizman et al., 2020; van der Horn et al., 2017). In our recent meta-analysis (Imms et al.,
2019), we found that only two of 14 graph metrics (characteristic path length and normalized
clustering coefficient) showed significant differences in TBI patients compared with controls,
reflecting the heterogeneous nature of TBI patients. This heterogeneity, including complex
structural profiles, variation in lesion location, severity, response to treatment, as well as varied
secondary injury trajectories, poses a challenge for the prediction of functional and cognitive
symptoms of TBI patients. As a result, there is growing impetus for subject-tailored approaches
that enable injury characterization and treatment planning (Irimia, Chambers, et al., 2012;
Irimia, Wang, et al., 2012; Jolly et al., 2021).

Recent studies have addressed heterogeneity in clinical cohorts by performing individual-
ized analyses of dMRI-derived fractional anisotropy (FA), T1-derived cortical thickness, and
streamline counts (Attyé et al., 2020; Jolly et al., 2021; Lv et al., 2020) at the level of white
matter tracts or gray matter regions, respectively. For example, Lv et al. (2020) found no group
consensus in anatomic locations of lower FA and reduced cortical thickness in schizophrenia
patients, and as such group-level FA and cortical thickness maps were not representative of
individuals. To date, however, few studies have analyzed brain networks at the level of indi-
vidual patients, an approach known as personalized connectomics (Irimia, Wang, et al., 2012).

Pioneered by Irimia, Chambers, et al. (2012), personalized connectomics enables the use of
an individual’s brain network as a “fingerprint” of brain network topology (Sanz Leon et al.,
2013; Schirner, Rothmeier, Jirsa, McIntosh, & Ritter, 2015). Personalized connectomics allows
the visualization of individual white matter atrophy profiles (as indexed by dMRI-inferred
streamline counts) using circular plots and considering patients’ scores relative to a healthy
cohort. These individualized graphs can be used by clinicians to develop personalized reha-
bilitation programs, by detailing network-level abnormalities that may indicate specific cogni-
tive deficits following injury (Irimia, Chambers, et al., 2012). No study to date has examined
TBI patients’ network alterations using graph metrics, whereby a literature-driven selection of
graph metrics that summarize segregation, integration, and centrality are represented for indi-
vidual patients (Rubinov & Sporns, 2010). Since graph metrics were recently shown to have
prognostic potential (Roine et al., 2022; van der Horn et al., 2017), this type of approach could

Traumatic brain injury (TBI):
A large force to the head that causes
damage to the gray and white matter
tissues of the brain.

Graph metrics:
Summary measures that characterize
graphs based on nodes (vertices) and
edges (connections).

Personalized connectomics:
Individual brain network profiling of
disease characteristics using
connectomics, in comparison to a
healthy (normative) cohort.
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provide valuable information to clinicians, leading to neuroimaging-guided strategies to
improve functional outcomes of TBI patients. However, personalized connectomics in
moderate to severe TBI cohorts with diverse brain injuries pose a serious technical challenge,
as the available tools for MRI processing to generate connectomes fail in such conditions
(King et al., 2020).

The present study introduces personalized measurement and analysis of individual connec-
tomic profiles in five chronic moderate to severe TBI patients with varying lesion loads, mech-
anisms of injury, age at injury, and burden of neural/cognitive symptoms. Our implementation
extends current methods by addressing the long-standing and prominent challenge of analyz-
ing TBI structural profiles when automatic sub/cortical segmentation or parcellation of MRIs
fail in the presence of lesions (King et al., 2020). Significantly, this problem is addressed here
by synergizing connectomic analysis with virtual brain repair, where the lesion is replaced by
healthy-looking tissue in the T1-weighted images (lesion inpainting). The capabilities of our
implementation of personalized connectomics in TBI include the following: (a) lesion masking
undertaken in a semiautomated manner from anatomical T1 MRI scans to identify the affected
brain regions in individual patients; (b) the use of the recently developed Virtual Brain Grafting
(VBG) toolbox to overcome the challenges of segmentation and parcellation of focal lesions
using lesion inpainting (Radwan et al., 2021); (c) graphical representation of the structural con-
nectome using innovative tools for graph metric profiling (GraphMe plots) to delineate subject-
specific changes in brain network integration, segregation, and centrality; and (d) regional
assessment of network hub regions and edge alterations in individual TBI cases. Together,
these innovative solutions overcome major, long-standing methodological impediments in
the field of macroscale TBI profiling. Our implementation is the first to allow the comprehen-
sive generation of lesion-aware connectomic profiles, thus moving closer to the crucial aim of
quantifying brain network alterations in the individual TBI patient.

METHODS

Participants

Patients with chronic moderate to severe TBI were recruited from St. Vincent’s Hospital in
Melbourne. The definition of moderate to severe TBI was based on (a) a Glasgow Coma Scale
score between 3 and 12 at the time of hospital admission (Teasdale & Jennett, 1974); (b) loss of
consciousness of at least 30 min; (c) post-traumatic amnesia of at least 24 hr (Rabinowitz &
Levin, 2014); and (d) positive findings of gross injury on MRIs as per evaluation by a neuro-
radiologist (PB). Patients who met the following inclusion criteria were contacted to take part
in the study: (a) between 18 and 65 years of age; (b) no history of head injury prior to the TBI
for which they were included in this study; (c) fluency in English; (d) no history of psychiatric
illness prior to the TBI; and (e) no contraindications for MRI. Ten moderate to severe TBI
patients who had sustained closed head injuries due to sports or motor vehicle accidents more
than 6 months prior to the study were recruited. Informed written consent was obtained from
each subject in accordance with the Declaration of Helsinki. Because of time constraints dur-
ing scanning, dMRI were not acquired from four TBI patients, who were subsequently
removed from further analysis (see Table 1). One participant was removed from personalized
connectome construction because of excess movement in the scanner during dMRI, which
caused a severe motion artifact (see Supplementary Material 1 in the Supporting Information
for their quality assessment). For the reference group, 12 healthy controls were recruited from
the general population using flyers and the snowball method. Ethical approval was granted by
the St. Vincent’s Hospital Melbourne ethics committee for human research (Project No. 250/17).

Virtual brain repair:
Inpainting is used to mask lesions,
which are then filled in with healthy
tissue prior to anatomical
segmentation and parcellation.
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Table 1. Participant demographics and injury characteristics

ID Agea Sex TSIb Mechanism Pathology (at time of study)c DAId

HC 35.7 ± 11.4 M = 4 F = 8 – – No incidental or age-related findings, other than small deep
white matter T2 hyperintensities (within normal limits
for age).

–

TBI1 40s M 21y Vehicle accident Modest encephalomalacia in the (R) precentral gyrus. 0

TBI2 40s M 15y Vehicle accident Severe encephalomalacia involving both ant. F and inf. F
lobes, (R) T lobe and (R) parietotemporal region extending
to the (R) post. F lobe. Focal T1 hypointensities in the
anteromedial portion of the (L) thalamus. Encephalomalacia
and T1 hypointensity on the ant. body and genu of the
corpus callosum.

2

TBI3 40s F 3y Fall Bilateral ant. and inf. F encephalomalacia, (R) greater than (L),
and (R) ant. T encephalomalacia. Small deep white matter
T2 hyperintensities med. (R) P lobe, likely associated with
non-hemorrhagic oedema. Small focal T1 hypointensity in
the ant. body of the corpus callosum.

2

TBI4 30s F 15y Fall Bilateral inf. F and (L) ant. T encephalomalacia. Modest
encephalomalacia in the (L) sup. F gyrus. (R) F
ventriculostomy with underlying ventricular drain tract.

0/1

TBI5 50s M 18y Vehicle accident Two small (<2 mm3) deep white matter T2 hyperintensities in
the (R) P lobe (within normal limits for age).

0

TBI6 30s F 5y Fall Small T1 hypointensity in the splenium of corpus callosum.
Approx. 6 scattered punctate T2 hyperintensities in both
cerebral hemispheres.

2

a Age: Shown in 10-year age bracket to minimize identifiable information, HC age is in mean ± standard deviation.
b TSI: Time since injury.
c Abbreviations: (R) = right, (L) = left, ant. = anterior, post. = posterior, inf. = inferior, mid. = middle, med. = medial, sup. = superior, F = frontal, P = parietal, O = occipital, T = temporal.
d Grading of diffuse axonal injury (DAI) occurred according to Adams et al. (1982); a grade of 0 indicates no confirmed DAI present; 1 indicates DAI present in white matter of cerebral
hemispheres, corpus callosum, brain stem, cerebellum; 2 indicates there is also a focal lesion in corpus callosum; and 3 identifies an additional lesion in dorsolateral quadrants of brain stem.
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Data Acquisition

MRI scans were acquired at the Royal Children’s Hospital using a 3T Siemens PRISMAwith a
64-channel head coil. dMRI data were acquired using a single-shot echo planar imaging
sequence (twice-reinforced spin echo, multiband acceleration factor of 2, 70 contiguous sag-
ittal slices) and a high angular resolution diffusion imaging (HARDI) gradient scheme with 66
noncollinear gradient directions (total acquisition time [TA] = 6:17 min, b = 3,000 s/mm2, field
of view [FOV] = 260 mm2, voxel size = 2.3 mm isotropic, repetition time [TR] = 3,500 ms,
echo time [TE] = 67 ms, seven volumes with b = 0, two reverse phase-encoded volumes with
b = 0, b being the constant of diffusion weighting). T1-weighted MRIs were also acquired using
a magnetization-prepared rapid acquisition gradient-echo (TA = 5:48 min, 208 contiguous
slices, FOV = 256 mm2, voxel size = 0.8 mm isotropic, TR = 2,100 ms, TE = 2.22 ms, flip
angle = 8°).

Lesion Masking

Manual lesion delineation for computation of lesion load and for improvement of anatomical
segmentation was performed by an assessor (ED), who was trained in lesion identification by
neuroradiologist (PB). Lesions were drawn in the T1 native space using FSLeyes version 0.27.3
in FSL version 6.0.1 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). An in-house systematic search
method and lesion identification protocol was implemented by JD, KC, ED, and PB. Abnor-
malities resulting in tissue loss, such as regions of encephalomalacia and damage from surgical
drainage tracts, were included in binarized lesion masks. Enlarged ventricles and hyperinten-
sities often occurring in proximity to the skull (e.g., from surgical craniotomies) were not
included in the lesion masks. Lesion load was computed (in cm3) as the total volume of the
binary lesion masks in FSL. Grading of diffuse axonal injury (DAI) was performed by expert
raters PB and ED (Table 1; Adams, Graham, Murray, & Scott, 1982).

Personalized Connectome Construction

Our connectome processing pipeline is showcased in Figure 1 and in Supplementary Material
2 in the Supporting Information, and in our previous publication (Imms et al., 2021). Our per-
sonalized connectomics implementation performs state-of-the-art, single-subject analyses of
structural MRI scans. Briefly, raw dMRI data were processed using MRtrix3Tissue (v5.2.8;
https://3tissue.github.io), a fork of MRtrix3 (Tournier et al., 2019). White matter fiber orienta-
tion distributions were estimated using single-shell 3-tissue constrained spherical deconvolu-
tion (SS3T-CSD; Dhollander & Connelly, 2016; Khan et al., 2020). Whole-brain, anatomically
constrained tractography (ACT) was performed (Smith, Tournier, Calamante, & Connelly,
2012) and 22 million streamlines were generated per subject (Yeh, Smith, Liang, Calamante,
& Connelly, 2018). The spherically informed filtering of tractograms (SIFT2) algorithm was
applied to match the fiber density of the reconstructed streamlines to that of the underlying
white matter structures (Smith, Tournier, Calamante, & Connelly, 2015a, 2015b; Yeh et al.,
2018). Thus, edges encode filtered streamlines count. Compared with tractograms recon-
structed simply by the number of streamlines, SIFT2 modulates the weight of individual
streamlines so that the tractogram is aligned with the underlying image data (Smith, Calamante,
et al., 2020; Smith, Raffelt, et al., 2020; Smith et al., 2015a, 2015b). SIFT2 has high reproduc-
ibility (Girard et al., 2020; Koch et al., 2022) and increases the biological interpretability of the
white matter tracts estimated (Frigo et al., 2020; McColgan et al., 2018). McColgan et al. (2018)
also found that compared with unfiltered tractograms, SIFT2 improved the detection of group
differences and lead to stronger clinical correlations.

Diffuse axonal injury (DAI):
Trauma-induced shearing of
axonal bundles caused by
acceleration/deceleration forces that
shift and rotate the brain inside the
bony skull.

Single-shell 3-tissue constrained
spherical deconvolution (SS3T-CSD):
Differential resolution of fiber
orientation distributions in gray
matter, white matter, and
cerebrospinal fluid separately.

Anatomically constrained
tractography:
Facilitates seeding of streamlines
from the gray/white matter boundary
during tracking by integrating
anatomical information extracted
from additional T1-weighted MRI.

Spherical-deconvolution informed
filtering of tractograms (SIFT2):
Uses spherical deconvolution to
make the weight of the streamlines
proportional to the underlying fiber
orientation distribution.
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T1 anatomical MRIs were parcellated into 84 regions of the Desikan-Killiany atlas (Desikan
et al., 2006) using FreeSurfer’s recon-all function (v6.0; https://surfer.nmr.mgh.harvard.edu/;
Fischl & Dale, 2000). Two patients (TBI3 and TBI4) had significant segmentation failures
due to gross pathology, and were therefore processed utilizing VBG v0.37 (Radwan et al.,
2021). Rather than lesion masking and manual editing, which are subjective and time-
consuming, VBG automatically fills uni- and bilateral brain lesions using synthetic healthy
donor tissue to permit or to improve segmentation. To illustrate the performance of VBG in
TBI, we included a report on VBG outcome for patient TBI2, who was excluded from person-
alized connectomics because of movement during HARDI acquisition but otherwise had a
quality control compliant T1-weighted volume (see Supplementary Material 3 in the

Figure 1. Overview of the processing pipeline for connectome mapping. (A) In the raw diffusion images, noise (Cordero-Grande et al., 2019;
Veraart et al., 2016), Gibbs ringing artifacts (Kellner et al., 2016), as well as distortions induced by motion, eddy current artifacts, and
EPI/susceptibility distortions were detected and corrected (Andersson et al., 2003; Andersson & Sotiropoulos, 2016). (B) Concurrently, T1
volumes were registered to diffusion volumes. The advanced normalization tools package (ANTS; Avants et al., 2009) was used to remove
non-brain structures from the T1-weighted images for white matter extraction (Zhang et al., 2011). FSL FLIRT (Jenkinson et al., 2002; Jenkinson
& Smith, 2001) was used to perform the boundary-based registration between brain-extracted anatomical and diffusion images. Registered
images are provided to (i) 5ttgen (brain extracted), to create priors for anatomically constrained tractography (ACT), and (ii) FreeSurfer (non-
brain extracted), to parcellate the nodes for the connectome analysis. All subcortical gray matter structures were segmented (Fischl et al.,
2002); image intensity normalized (Sled et al., 1998); pial surfaces and the gray-white matter boundaries estimated (Dale et al., 1999); and
the entire brain “inflated” to smooth the gyri and sulci (Fischl et al., 1999). (C) Lesion masks of subjects who failed the quality assessment after
FreeSurfer parcellation were provided along with the T1 image to VBG. (D) Average response functions for white matter, gray matter, and
cerebrospinal fluid were estimated from the dMRI data using an automated unsupervised approach (Dhollander et al., 2019; Dhollander
et al., 2016). Preprocessed data were upsampled to a voxel size of 1.3 mm3 to assume higher spatial resolution for image registration before
binary masks were created. Fiber orientation distributions (FODs) were estimated from the group average response functions on upsampled
images, and corrected for intensity inhomogeneity and global intensity level differences (Raffelt et al., 2017). (E) Anatomically constrained
tractography (ACT) was performed using the FODs from panel D and the 5ttgen images from panel B(i). The FOD cutoff threshold, step size,
and angle were determined to attain a reasonable trade-off between false negatives and false positives (seed points = dynamic; maximum
length = 250 mm; minimum length = 5 mm; step size = 1.25; angle = 45°; FOD amplitude = 0.08). Spherically informed filtering of tractograms
(SIFT2) is applied to make the weight of the streamlines proportional to the underlying fiber orientation distribution. (F) The connectome is
created using the FreeSurfer parcellation and the sifted tractogram.
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Supporting Information). Given that VBG artificially reconstructs lesioned nodes, part of our
quality control also included ensuring streamlines were not aberrantly assigned to these nodes.
Connectivity matrices were generated using edge weights from SIFT2 and nodes defined as
brain regions from FreeSurfer and VBG.

Robustness testing was performed on this exact pipeline (except VBG) in our recent publi-
cation (Imms et al., 2021), where a series of control analyses were performed assessing (a)
atlas/parcellation schemes, (b) streamline normalization to regional volume, and (c) weight-
to-length remapping procedures. The results of control analyses indicated optimal perfor-
mance using (a) the Desikan-Killiany atlas (Desikan et al., 2006), (b) streamline weighting
variant to the volume of each node (Smith, Calamante, et al., 2020), and (c) the use of standard
remapping procedures (Rubinov & Sporns, 2010; Seguin, van den Heuvel, & Zalesky, 2018).

Global network properties were quantified in terms of strength, global efficiency, charac-
teristic path length, navigation efficiency, average local efficiency, clustering coefficient, nor-
malized clustering coefficient, and average betweenness centrality (Table 2) using the Brain
Connectivity Toolbox (Rubinov & Sporns, 2010). These graph metrics were chosen from all
available metrics as the most clinically informative/intuitive according to our meta-analysis
(Imms et al., 2019), and graph theory studies in TBI (Jolly, Scott, Sharp, & Hampshire, 2020;
Raizman et al., 2020; S. Wang et al., 2021) published after our meta-analysis. Specifically, we
selected (a) normalized clustering coefficient and characteristic path length, which showed
robust alterations in TBI patients compared with healthy controls (Imms et al., 2019); (b) global
efficiency, betweenness centrality, strength, average local efficiency, and clustering coefficient,
which showed significant differences with healthy controls and correlations with cognitive
outcome measures in TBI patients (as shown in Table 2); and (c) navigation efficiency as a
biologically meaningful measure of brain network communication and proxy for cognition
(Imms et al., 2021; Seguin et al., 2019; Seguin et al., 2020).

Brain Network Profiles

Graph metric spiderplots (GraphMe plots) show results for each TBI patient in a concise and
intuitive manner relative to mean scores from the healthy controls with 95% confidence inter-
vals (see Supplementary Material 4 in the Supporting Information). Selected graph metrics
(characteristic path length, normalized clustering coefficient, and betweenness centrality—
Table 2) were inverted (1/x) to facilitate interpretation (so that higher scores on any graph
metric denote better brain network structure). Correction for differences in brain sizes was
performed by dividing each graph metric by the inverse of their total intracranial volume.
Important to note, node area-size normalization was not performed, as we have previously
found that variance in node size is a feature of interest in the human brain network when using
edge weights based on SIFT2, which lead to stronger correlations with cognition (Imms et al.,
2021; Smith, Raffelt, et al., 2020). Graph metrics of individual patients were categorized as
follows: normal (if the scores/metrics fell within the 95% confidence interval); supra-normal
(higher than the 95% confidence interval); or infra-normal (lower than the 95% confidence
interval) (Lv et al., 2020).

Regional Brain Network Analyses

A key component of personalized connectomics is to localize network alterations in the brain
relative to a healthy cohort. Nodal hubs and weakest edges were also examined for each indi-
vidual patient based on comparison to the healthy controls. Betweenness centrality was used
to identify brain regions essential for communication within the brain network (Freeman,
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Table 2. Graph metric descriptions and interpretations

Graph metric Description Higher values mean …
Previous studies
(Adult msTBIa) Related to …

Integration

Characteristic
path length

The shortest path is the fastest and
most direct communication
pathway between two network
nodes. Characteristic path
length is defined as the average
shortest path length between all
node pairs in a network (Watts &
Strogatz, 1998).

A higher characteristic path
length indicates that the
fastest communication
pathways between regions
are, on average, longer and
less efficient.

Higher characteristic path
length (Caeyenberghs
et al., 2014; Hellyer
et al., 2015; Kim et al.,
2014; Pandit et al.,
2013; S. Wang et al.,
2021).

Verbal learning, executive
dysfunction (Kim et al.,
2014). Intelligence,
working memory span
(Königs et al., 2017).
Cognitive flexibility and
information processing
(Hellyer et al., 2015).

Global efficiency The inverse average shortest path
efficiency between all possible
pairs of nodes in a network,
where efficiency is computed as
the inverse of the shortest path
length (Latora & Marchiori,
2001).

A higher global efficiency
indicates a greater capacity
for efficient integration of
information (in parallel)
across the network.

Lower global efficiency
(Caeyenberghs et al.,
2014; Kuceyeski et al.,
2016; Pandit et al.,
2013; S. Wang et al.,
2021).

Switching task/attention
(Caeyenberghs et al.,
2014).

Navigation
efficiency

Navigation paths use a
decentralized and geometrically
greedy heuristic (Boguna et al.,
2009). Navigation efficiency is
defined as the average
navigation path efficiency
between all possible pairs of
nodes in a network (Seguin
et al., 2018).

Higher navigation efficiency
indicates greater capacity
for efficient integration of
information across the
network.

Not yet investigated, but
lower navigation
efficiency observed in
stroke patients (X.
Wang et al., 2019).

Segregation

Clustering
coefficient

The number of existing
connections between the
neighbors of a node, divided by
all the possible connections,
calculated for each node
individually and averaged
across the entire network (Watts
& Strogatz, 1998).

A higher average clustering
coefficient implies that a
greater proportion of
connections are made
between node neighbors,
compared with the
connections possible, and
indicates more clustered
connectivity around
individual nodes.

Lower clustering
coefficient (Hellyer
et al., 2015; Raizman
et al., 2020).

Cognitive flexibility and
information processing
(Hellyer et al., 2015).
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Table 2. (continued )

Graph metric Description Higher values mean …
Previous studies
(Adult msTBIa) Related to …

Normalized
clustering
coefficient

Clustering coefficient of the
network normalized to a
random network.

Higher normalized clustering
indicates higher local
specialization, with a value
of 1 being equivalent to a
random network. If greater
than 1, the network has
greater than random
clustering. There may be a
point of diminishing
returns, where greater local
specialization comes at the
cost of communication
efficiency.

Higher normalized
clusteringb

(Caeyenberghs,
Leemans, De Decker,
et al., 2012; Verhelst
et al., 2018).

Processing speed (van der
Horn et al., 2017).

Local efficiency The local efficiency is the average
of inverse shortest path length in
a local area. Mean local
efficiency is the efficiency of
each node in the network
averaged over the total number
of nodes (Latora & Marchiori,
2001).

A higher local efficiency
means greater capacity for
integration between the
immediate neighbors of a
given node.

Higher local efficiency
(Jolly et al., 2020); and/
or lower local
efficiency
(Caeyenberghs,
Leemans, De Decker,
et al., 2012).b

Reasoning, working
memory (Jolly et al.,
2020).

Centrality

Strength The strength of a node is the sum
of the weights of its edges. Mean
strength is the average of all the
normalized strength values
across each node of the
network.

A higher strength indicates a
greater average edge
weight for each node.

Lower strength (Raizman
et al., 2020).

Betweenness
centrality

The proportion of shortest paths
that pass through node i
between its neighboring nodes,
calculated for each node and
averaged across the network
(Freeman, 1978).

Higher betweenness
centrality means the node
lies on more shortest paths
in the network, and thus
the node is more central
and important to the
network. A high network /
average betweenness
centrality indicates a high
number of nodes that are
central to shortest paths.

Higher betweenness
centrality
(Caeyenberghs,
Leemans, De Decker,
et al., 2012).b

Associative memory
(Fagerholm et al.,
2015).

a msTBI: Moderate to severe traumatic brain injury.
b This study is of young adults and children with TBI.
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1978; Rubinov & Sporns, 2010), as done previously (Caeyenberghs, Leemans, Heitger, et al.,
2012; Fagerholm, Hellyer, Scott, Leech, & Sharp, 2015; Raizman et al., 2020). The top 10%
(n = 8) highest scoring nodes were identified as hubs; for the healthy control group these are
shown in Figure 2, and for the TBI patients these are shown in Figures 3 to 7.

Z-Score Matrix for Regional Analysis

An edge analysis scrutinized the white matter connections that drive overall differences in the
network properties in greater detail (Wills & Meyer, 2020). A z-score matrix Zi, j was derived,
which describes the distance from the healthy control mean, divided by the healthy control
standard deviation, between each subject’s connectivity matrix Ti, j and the controls Hi, j

according to equations from a previous edgewise analysis (Wills & Meyer, 2020):

Zi;j ¼
Ti;j − μ Hi;j

� �

σ Hi;j
� � :

Positive scores represent stronger edges in the TBI patient compared with controls, while
negative scores represent weaker edges. False discovery rate correction (Benjamini &
Yekutieli, 2001) was performed to determine which unique edges (of the upper triangle only,
n = 3,528) were significantly different from the healthy control group. These edges are dis-
played on a glass brain. The same procedure was applied to examine how node strength in
TBI patients deviated from healthy controls. Node strengths were calculated as the sum of
strengths at each node (Rubinov & Sporns, 2010) and converted to z-scores using the healthy
control mean and standard deviation. Positive scores represent stronger node strength in the
TBI patient compared with controls, while negative scores represent weaker strength.

RESULTS

TBI1

TBI1 (Figure 3) had a relatively small lesion load (0.75 cm3) spanning the posterior segment of
the right superior frontal gyrus and right precentral gyrus, and a DAI grade of 0. Registration
between structural and diffusion images was unaffected by this lesion. There were no failures
in the FreeSurfer pipeline and there was no need for VBG. FODs were generated at the site of
the lesion (see red arrow) but did not meet streamline criteria for ACT. The GraphMe plot indi-
cated that TBI1 has slightly weaker integration than healthy controls, including infra-normal

Figure 2. Healthy control hubs (top 10% of nodes with highest betweenness centrality), in teal. Larger nodes represent higher values. Hubs
(bilaterally) were the superior frontal gyrus (BCleft = 1,493; BCright = 1,533), superior parietal gyrus (BCleft = 610; BCright = 665), precentral gyrus
(BCleft = 588; BCright = 616), and thalamus (BCleft = 336; BCright = 346). The strongest edges (0.5th percentile) are colored by strength (yellow =
weaker; red = stronger). Visualization in NeuroMArVL (https://immersive.erc.monash.edu/neuromarvl/).
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navigation efficiency, strength, and clustering coefficient. Four alterations in the hub arrange-
ment for TBI1 were observed, whereby the left thalamus (BCleft = 814) and putamen (BCleft =
730), and the bilateral superior frontal (BCleft = 3,224; BCright = 3,394), superior parietal,
(BCleft = 1,546; BCright = 1,810), and lateral occipital gyri (BCleft = 646; BCright = 618) were
hubs and the bilateral precentral gyri and right thalamus did not meet the hub threshold. Four
nodes, the left (z = −3.41, p = 6.50e−04) and right (z = −3.44, p = 5.61e−04) precentral gyri and

Figure 3. Personalized connectome profile for TBI1 including (A) lesion profile; (B) quality assessment; (C) radar plot showing the patient’s
personalized connectome profile (red indicates patient’s scores, dark blue indicates healthy control average and the 95% CI is represented by
the blue shade); and (D) (i) hub nodes (size indicates betweenness centrality value) and (ii) regional analysis (blue = edges/nodes lower than
the healthy control average; red = edges/nodes stronger than the healthy control average).
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left (z = −3.79, p = 1.51e−04) and right (z = −3.79, p = 1.50e−04) superior frontal gyri, had
significantly lower strength than the healthy controls, while strength of the left (z = 4.18,
p = 2.85e−05) and right (z = 3.44, p = 2.585e−04) nucleus accumbens were significantly higher.
Weaker edges (n = 46 out of a total of 3,528 edges) were observed projecting across frontal,

Figure 4. Same as Figure 3, for TBI3.
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parietal, temporal, and subcortical areas, in particular the edges between the left posterior
cingulate cortex and the right frontal pole (z = −7.57, p = 3.79e−14); the left thalamus and
the left temporal pole (z = −6.47, p = 9.71e−11); the left lateral orbitofrontal gyrus and the left
temporal pole (z = −8.19, p = 2.22e−16); and the left medial frontal gyrus and left temporal

Figure 5. Same as Figure 3, for TBI4.
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pole (z = −6.59, p = 4.23e−11). One stronger edge was observed between the right superior
temporal gyrus and the right temporal pole (z = 5.96, p = 2.43e−09).

TBI3

TBI3 (Figure 4) had a relatively large lesion load (15.46 cm3) involving primarily frontal regions
(predominantly on the left), white matter hyperintensities in the medial right parietal lobe and
the corpus callosum, and a DAI grade of 2. Prior to VBG, 10 nodes failed the quality assess-
ment: VBG repaired nine nodes for parcellation. Registration showed that streamlines were not
assigned to lesioned nodes. The GraphMe plot demonstrated an infra-normal graph metric

Figure 6. Same as Figure 3, for TBI5.
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profile in all domains. Two hub alterations were observed, whereby the bilateral putamen
(BCleft = 871; BCright = 932) were hubs, and the bilateral precentral gyri were not. Two nodes,
the right medial orbitofrontal gyrus (z = −3.76, p = 1.68e−04) and the right pars orbitalis (z =
−3.71, p = 2.09e−04), had significantly lower strength than the healthy controls. Weaker edges
(n = 64) projected across the whole brain, especially the right frontal regions, including
between the left frontal pole and the right superior frontal gyrus (z = −6.69, p = 2.15e−11)
and right putamen (z = −8.96, p < 1.00e−20); the right medial orbitofrontal gyrus and the left
insula (z = −7.75, p = 9.32e−15); the right insula and the right nucleus accumbens (z = −7.89,
p = 2.88e−15); the right frontal pole and the right superior frontal gyrus (z = −8.15, p =
4.44e−16); and the right pars orbitalis and the right lingual gyrus (z = −7.92, p = 2.22e−15)
and right cuneus (z = −6.57, p = 4.88e−11). No stronger edges were observed.

TBI4

TBI4 (Figure 5) had a relatively large lesion load (17.59 cm3) involving bilateral frontal lesions
and right temporal lesions, and white matter hyperintensities in the medial right parietal lobe

Figure 7. Same as Figure 3, for TBI6.
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and the corpus callosum. However, the DAI grade was low (0/1). Prior to VBG, nine nodes
failed the quality assessment. All lesions overlapping with these nodes were repaired by VBG.
Alignment between VBG-repaired nodes and streamlines indicated that any aberrant stream-
lines generated in areas with oedema/hemorrhage were not assigned to lesioned nodes. This
patient exhibited supra-normal graph metrics in all domains except normalized clustering
coefficient and centrality (which were infra-normal). Four alterations in the hub arrangement
were observed, whereby the bilateral putamen (BCleft = 2,246; BCright = 1,550), left palladium
(BCleft = 1,210), and left inferior parietal (BCright = 902) were hubs, and the bilateral precentral
gyri and thalamic regions were not hubs. No nodes had significantly lower strength than con-
trols, but two nodes—the left pallidum (z = 6.51, p = 7.35e−11) and the right putamen (z =
4.09, p = 4.31e−05)—had significantly higher strength. Weaker edges (n = 18) projected across
the left hemisphere, including between the entorhinal and lateral occipital gyri (z = −9.62, p <
1.00e−20); the nucleus accumbens and the posterior cingulate cortex (z = −6.96, p = 3.21e−12),
insula (z = −5.71, p = 1.10e−08), and lateral orbitofrontal gyrus (z = −6.65, p = 1.58e−08); the
inferior temporal gyrus and the hippocampus (z = −6.57, p = 1.38e−08) and the amygdala (z =
−6.17, p = 6.42e−10); and inter-hemispherically between the medial orbitofrontal gyri (z =
−6.45, p = 1.08e−10). In the right hemisphere, weaker edges projected between the right insula
and right accumbens (z = −5.97, p = 2.32e−09). One stronger edge was observed between the
pars triangularis and postcentral gyrus (z = 5.80, p = 6.65e−09).

TBI5

TBI5 (Figure 6) had no MRI-discernible lesion load and a DAI grade of 0. Many weaker edges
were observed relative to healthy controls that connected the parietal, temporal, and subcor-
tical lobes. There were no failures in the FreeSurfer pipeline, and no manual edits were
necessary. FODs were generated correctly and registration between segmentation and tracto-
graphy was free of error. The GraphMe plot revealed infra-normal strength and navigation.
Two alterations in hub arrangement were observed, whereby the bilateral putamina were hubs
(BCleft = 1,182; BCright = 1,110), whereas the bilateral thalami were not. No significant differ-
ences in node strength were observed. Weaker edges (n = 25) projected inter-hemispherically
across parietal, temporal, and subcortical areas. Weaker edges (n = 25) mostly projected
to/from the left subcortical areas, such as between the amygdala and the temporal pole (z =
−6.08, p = 1.17e−09) and the inferior temporal gyrus (z = −8.28, p = 2.22e−16); the inferior
temporal gyrus and the hippocampus (z = −6.04, p = 1.46e−09) and the thalamus (z =
−6.62, p = 3.53e−11); and the left cerebellum and the left middle temporal gyrus (z =
−5.23, p = 1.61e−07) and right superior temporal gyrus (z = −5.59, p = 2.21e−08). One stronger
edge was observed between the left postcentral gyrus and the left lateral occipital gyrus (z =
5.77, p = 2.13e−08).

TBI6

TBI6 (Figure 7) had a small lesion in the splenium of the corpus callosum (0.5 cm3), and a DAI
grade of 2. There were no failures in the FreeSurfer pipeline, and no manual edits were nec-
essary. FODs were generated at the site of the lesion but did not meet streamline criteria for
ACT. The GraphMe plot showed infra-normal global efficiency and navigation efficiency.
Three hub alterations were observed, whereby the right caudate nucleus (BCright = 722), right
hippocampus (BCright = 606), and right inferior parietal gyrus (BCright = 680) were hubs, and
the bilateral precentral and right superior parietal regions were not hubs. No significant differ-
ences in node strength were observed. No edges were weaker or stronger than the healthy
control connectome.
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DISCUSSION

For the first time, we showcase an implementation of personalized connectomics in chronic
moderate to severe TBI patients. In the following sections we discuss the defining character-
istics of our single-subject profiles and explore ways in which our approach can contribute to
improving existing methods of personalized structural connectome analyses in TBI patients.

Single-Subject Network Profiling Observations

Our observations highlight a major caveat to approaches that attempt to identify a single graph
metric that can be used as an adequate and parsimonious descriptor of structural network
alterations in TBI patients (Imms et al., 2019). In accordance with Lv et al. (2020), we observed
that each TBI patient showed a unique pattern of graph metric alterations, regardless of lesion
load. For example, while both TBI1 and TBI5 patients had small lesion loads, patient TBI1 had
lower brain network integration and segregation measures, compared with nonsignificant
deviation from the normal range for patient TBI5. By comparison, TBI3 and TBI4 both had
much larger lesions, but patient TBI3’s brain network profile showed infra-normal integration
and segregation measures, while patient TBI4’s brain network was supra-normal. Our results
highlight the benefit of using a multivariate profile of graph metrics that reveal individual dif-
ferences in brain network topology otherwise obscured by group-level analyses. Importantly,
with the incorporation of individual edge and hub comparisons, the location of the lesion can
be compared with edge deterioration in single patients.

The sensitivity of individual graph metrics to cognitive impairments is still an active area of
research. For example, there is evidence that communication measures such as navigation
efficiency and global efficiency are sensitive to different types of processing speed in healthy
controls (Imms et al., 2021), and that global efficiency is related to working memory improve-
ments in TBI patients (Caeyenberghs et al., 2014). Table 2 and our previous meta-analysis
(Imms et al., 2019) provide further evidence for the link between different graph metrics
and cognitive outcome/performance. Such evidence suggests that with further validation,
there may be benefits from distinguishing between patients with, for example, poor network
communicability versus low clustering or centrality. Subsequently, graph metrics would hold
value as proxies for network disruption that is indicative of different types of cognitive impair-
ment, and as such could be useful in determining the type of cognitive program required by
individuals.

Improving Methods for Personalized Connectomics

Advancing individual brain network profiling has the potential to inform neuroimaging-guided
personalized rehabilitation programs by providing network-based summary statistics with
prognostic capabilities (Dichter, Sikich, Song, Voyvodic, & Bodfish, 2012; Stoeckel et al.,
2014; Wing, Tucker, Fong, & Allen, 2017). More precisely, our approach can help to assess
network alternations in TBI patients in the following three ways. First, regional connectome
maps can be used as profiles of patients’ brain network topographies, thereby providing clini-
cians with time-efficient visual summaries of network disruption, asymmetry, hub alterations,
and overall reductions in strength. Second, by comparing an individual patient with a healthy
control reference group, we can observe portions of brain networks that are topologically
altered but correspond to brain regions beyond the site of initial injuries. Finally, the GraphMe
plots can be used longitudinally to map how the brain undergoes progressive secondary
damage, recovery, and/or functional reorganization over time (Meningher, Bernstein-Eliav,
Rubovitch, Pick, & Tavor, 2020; Osmanlioglu, Alappatt, Parker, Kim, & Verma, 2019).
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The current best practice methods for inclusion of TBI patients’ scans that fail the FreeSurfer
segmentation because of the presence of gross pathology—lesion masking and manual editing
(Siegel, Shulman, & Corbetta, 2017)—are time-consuming and have low inter-rater reliability
(Beelen, Phan, Wouters, Ghesquière, & Vandermosten, 2020). By contrast, use of the semiau-
tomated lesion inpainting program VBG reduces the burden imposed by having to manually
delineate lesions and avoids the exclusion of cases with large focal lesions that fail segmen-
tation (e.g., from FreeSurfer; Radwan et al., 2021). Furthermore, we observed that the SS3T-
CSD model (Dhollander et al., 2020; Dhollander, Mito, Raffelt, & Connelly, 2019) was suitable
for constructing connectomes in the presence of lesions in all our TBI patients. SS3T-CSD
removes the contributions from gray matter and cerebrospinal fluid components to increase
the specificity of FODs to the white matter, while avoiding overestimation into gray matter
and cerebrospinal fluid signal from the lesioned area (Khan et al., 2020). Combined with
ACT tractography (Smith et al., 2012), streamlines are not generated in lesioned areas (e.g.,
see TBI1, Figure 3, panel C), and therefore anatomically disconnected regions do not have
to be removed from connectivity matrices. This allowed us to calculate graph metrics from
connectivity matrices of the same dimensions as those extracted from the healthy controls.

Our recent work (Caeyenberghs et al., 2018) together with other findings (Irimia, Chambers,
et al., 2012; Irimia, Wang, et al., 2012; Williams & Gordon, 2010) suggest that we should
utilize objective neuroimaging measures together with cognitive measures to improve the effi-
ciency of training (i.e., a neuroscience-guided training approach using integrated cognitive
training programs). Specifically, we should derive different brain and cognitive metrics to
quantify subject-specific changes and locate them relative to a reference cohort. This informa-
tion can assist clinicians in tailoring treatment plans based on the unique connectome and
cognitive profile of each patient to better suit the needs of TBI patients. For example, compared
with a reference healthy cohort, a patient with reduced values of graph metrics, like strength,
efficiency, or centrality, in the presence of deficits in planning performance (e.g., as measured
through, for example, the Tower of London test) may be used by a clinician as the evidence
base to justify, design, and deliver a working memory training program (e.g., BrainGames
[Verhelst, Vander Linden, Vingerhoets, & Caeyenberghs, 2017]; or Cogmed, https://www
.cogmed.com), for this patient to ameliorate recovery.

Current approaches rely largely on clinical expertise of physicians/neurologists; the avail-
ability of a quantitative biomarker of white matter disconnectivity in moderate to severe TBI
patients would be beneficial to supporting their expertise. However, future studies need to
characterize individual variability of the human brain and behavioral outcomes in healthy
controls, as well as clinical populations (Scarpazza et al., 2020). Specifically, we need to
develop healthy reference ranges using large data repositories (e.g., Human Connectome
Project, https://www.humanconnectome.org/; or Enhancing Neuro Imaging Genetics through
Meta Analysis, https://enigma.ini.usc.edu/) for network metrics of structural brain networks
across the adult life span. A reference standard of brain health would enable automated brain
health reports for clinicians to compare against patients, allowing for personalized treatment
programs. For the clinical utility of our approach to be useful, site-specific control data will
also be necessary, to overcome inter-scanner variability, which systematically alters graph
metrics (Kurokawa et al., 2021).

Limitations

The implementation of personalized connectomics requires extensive validation and assess-
ment of test-retest reliability. However, our study provides an initial framework of this
approach using five TBI patients and a small healthy control reference group (N = 12; Attyé
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et al., 2020). Given the small number of healthy controls available from this dataset, we are
limited in our ability to match healthy controls to TBI patients, or to provide a normative
healthy control cohort against which to confidently distinguish deviance from healthy variabil-
ity. This paper is a demonstration of a design that enables such comparisons. In future, healthy
control norms will be created that match requirements for statistical comparison. As with any
normative analysis (e.g., neurocognitive assessments), this would require the creation of large
healthy control norm groups (N > 100) that are stratified by age bracket, sex, and possibly level of
education, against which an individual patient can be matched for assessment of clinically
meaningful differences using techniques such as quartile regression (Bourke et al., 2022; Jolly
et al., 2021; Lv et al., 2020). Personalized connectomics should also include a patient group
as an additional reference cohort (N > 100), to help clinicians understand how a patient is evolv-
ing with reference not only to healthy controls but also to patients with the same condition. The
current work is intended as a demonstration of a new framework to which analysis of the clinical
significance of graph metric alterations can be applied, rather than as a deliverable diagnostic
tool in its current state.

Furthermore, our study utilized only T1 images for lesion identification; in the future, other
structural imaging modalities such as fluid attenuated inversion recovery (FLAIR) and
susceptibility-weighted imaging (SWI) should also be used in accordance with best practice
guidelines for lesion identification (Olsen et al., 2020). Despite multiple expert raters and use
of an established procedure (Adams et al., 1982), DAI grading remains subjective and requires
independent confirmation of reliability. There is no consensus on the definition of hubs in the
literature. In the present study, hubs were defined on the basis of values of betweenness cen-
trality (Caeyenberghs et al., 2010; Fagerholm et al., 2015; Freeman, 1978; Raizman et al.,
2020; Rubinov & Sporns, 2010). Other studies have employed multiple metrics including cen-
trality, shortest path length, and clustering to identify a brain region as hub, which has been
shown to be more stable (van den Heuvel, Mandl, Stam, Kahn, & Hulshoff Pol, 2010). Finally,
cognitive outcomes associated with graph measures are still being evaluated; this progress will
be essential for providing clinically informative personalized connectomes (Imms et al., 2021).

Methodological choices in the processing pipeline of diffusion MRI data can impact the
biological interpretability and results of structural connectivity (Jeurissen, Leemans, Tournier,
Jones, & Sijbers, 2013; Jones, 2010). Thus, we applied a state-of-the art diffusion MRI sequence
and processing pipeline in MRtrix to avoid biases that may result in false pathways. Specifi-
cally, we used (a) SS3T-CSD with fiber orientation distributions estimated in the gray matter,
white matter, and cerebrospinal fluid (to avoid overestimating the volume of white matter in
voxels containing both signal types; Jeurissen, Tournier, Dhollander, Connelly, & Sijbers,
2014); (b) ACT to accurately determine where streamlines should be generated (Smith
et al., 2012); and (c) an advanced tractogram reconstruction SIFT2 technique to provide a
more biologically accurate representation of streamline count (Smith et al., 2015a) with the
potential for stronger clinical relationships (McColgan et al., 2018). SIFT2 is found to decrease
intersubject variability and increase biological accuracy of the structural connectome (Smith,
Calamante, et al., 2020; Smith, Raffelt, et al., 2020; Smith et al., 2015a).

CONCLUSIONS

Our results emphasize the translational potential for single-subject network analyses in the
study of brain injury. Profiling individual patients based on their unique presentation provides
insights into brain network disruption that are otherwise obscured by group-level approaches.
The GraphMe profiling provides a novel user-friendly framework for leveraging graph metrics
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to benefit the individual patient by characterizing network-level brain alterations with poten-
tial prognostic relevance. Implementation of such a framework with stratified healthy control
norms, and further evidence of diagnostic/prognostic ability of graph metrics, would enable us
to progress towards a personalized medicine approach. Alongside group-based comparisons
of patients against controls, such individual-level assessment frameworks are essential for
translating connectomics to evidence-based clinical practice.
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