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When the transformer is running, the vibrationwhich is generated in the core and
winding will spread outward through the medium of metal, oil, and air. The
magnetic field of the core changes with the variation of the transformer
excitation source and the state of the core, so the corresponding vibration
and noise change. Therefore, the vibration and noise of the transformer contain
a lot of information. If the information can be associated with the fault
characteristics of the transformer, it is significant to evaluate the running
state of the transformer through the vibration and noise signal, which
improve the intelligence, safety, and stability of the transformer operation.
Based on this, modeling and simulation of transformer multi-point
grounding, DC bias, and short-circuit between silicon steel sheets fault
are first carried out in this paper, and vibration and noise distribution of
transformer under different faults are given. Second, a fault diagnosis method
based on transformer vibration and noise characteristics is proposed. In
the process of implementation, vibration and noise signals under multi-point
grounding, DC bias, and short-circuit between silicon steel sheets are
taken as the sample data, and the probabilistic neural network algorithm
is used to effectively predict the transformer fault. Finally, the effectiveness
of the proposed scheme is verified by identifying the simulation faults-
the proposed fault diagnosis method based on PNN can be effectively
applied to transformer.
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1 Introduction

Once a power transformer is damaged, it may cause a large area of power outage, which will
have a huge impact on the national economy. Improving the safety and reliability of power
transformer operation is of great significance to the stable operation of the entire power grid and
development of the national economy (Chen et al., 2017).

Studies have shown that transformer faults caused by DC bias, short-circuit between
silicon steel sheets, and core multi-point grounding account for more than 70% of the total
faults (Li, 2005; Xiong and Zhao, 2006; Dang et al., 2009; Li et al., 2009; Borucki, 2011;
Mazurek et al., 2012; Hamzehbahmani et al., 2014; Asheraf and Fatih, 2016; Pan et al., 2020).
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1.1 In the aspect of the DC bias fault

Due to the influence of geomagnetic storm, UHVDC transmission,
and other factors, DC which passes through the neutral point of the
power transformer will generate DC flux in the core, which will lead to
the asymmetry of the core magnetization curve, namely, DC bias. DC
bias will aggravate core saturation, excitation current increase, and
waveform distortion and cause transformer vibration and noise to
increase, or even cause transformer damage.

Based on this, many scholars have carried out systematic
research on the DC bias of transformers. According to the spatial
geometry structure of the core and windings of power transformers,
Li et al. (2009) propose a magnetic circuit model of DC-biased
magneto-electric circuit that can effectively reflect the coupling
relationship of the flux chain inside power transformers. Dang
et al. (2009) analyze the DC bias fault signal by combining
empirical mode decomposition (EMD) and the Hilbert
transform. The DC bias is measured accurately using this
method. The distortion time of excitation current can also be
obtained, and the frequency amplitude change of distorted signal
can be directly reflected by graphs. Through the experimental study
on DC bias of the converter transformer, Li (2005) concludes that
the main influence of DC bias on transformer is the increase of
winding heating due to overheating caused by the increase of
winding resistance loss and core loss. Wang Zezhong et al.
analyzed the variation of transformer vibration noise under
several DC bias conditions through experiments. Figure 1 shows
damage of cable insulation of the converter transformer.

1.2 Short-circuit fault between core pieces

When short circuit between silicon steel sheets occurs in
the transformer core, the short-circuit area will induce eddy
current, leading to the increase of eddy current loss in the core.
In severe cases, the heat generated will even melt the silicon steel
sheets and burn the core (Hamzehbahmani et al., 2014), (Mazurek
et al., 2012) (Asheraf and Fatih, 2016). If the abnormal state in
the operation of the transformer cannot be found in time
and eliminated, the transformer will be in an unsafe state for a
long time and may develop into a serious fault. Therefore, the
scientific and effective state detection and fault diagnosis of the
power transformer is the key to ensure the stable operation of the
power grid system.

Borucki (2011) measured vibration signals when the cores were
clamped, loosened, or completely loosened by placing the accelerometer
on the yoke above and below the cores of dry transformers. The
differences of vibration signals in different parts and under different
circumstances are compared and analyzed. Pan et al. (2020) studied the
characteristics of transformer excitation current and core acceleration
under different DC perturbations through simulation and experiment.
In the literature (Xiong and Zhao, 2006), the energy spectrum and
boundary spectrum were obtained after the Hilbert–Huang transform
of the vibration signal of the core so as to distinguish the normal
condition and the hidden fault condition of the transformer. Zhu et al.
(2018) use multi-physical field coupling to simulate vibration signals
under no-load and different harmonics, and analyze their differences
through the transformer vibration signal spectrum diagram.

1.3 In the aspect of the core multi-point
grounding fault

Under the combined action of electric and magnetic fields inside
the transformer during operation, the core and other components
have different potentials. Assuming that the core grounding is not
reliable, due to the different potentials of various parts of the core,
discharge will occur and the insulation will be destroyed. Figure 1
shows the damage of the tensile belt insulation of the converter
transformer. At the same time, when the transformer core has multi-
point grounding, the two ground points form a closed loop through
the core and the grounding wire, in which a large grounding current
will be generated and the converter transformer core grounding fault
will occur (Wang, Li, Liu, Yang).

Geng (2013) estimated the working current of transformer core
grounding at one point and established the model of the transformer
core grounding current at one-point grounding. A transformer
model with multi-point grounding connection was established,
and the influence of the transformer core homogenization was
considered by Zhou et al. (2018). Based on the online grounding
system of converter transformer core grounding current, Zhang
et al. (2019) conducted measurement research on converter
transformer core grounding current and summarized the rules of
ground current. Zhang et al. (2021) conducted an experimental
study on the harmonic characteristics of converter transformer core
ground current, obtained the data curve of converter transformer
core ground current and its harmonic characteristics under different
transmission power, and summarized the rules.

In transformer fault diagnosis, neural network, support vector
machine, Bayesian classifier, and extreme learning machine are
generally used in combination with DGA technology, and good
results have been achieved (Seifeddine et al., 2012; Javed et al., 2015;
Malik and Mishra, 2015; Li et al., 2018). Artificial neural network
(ANN) mimics biological nerves to establish connections between the
input and output. It has a good adaptive ability and self-learning ability
and has good fault tolerance in the field of fault diagnosis (Seifeddine
et al., 2012; Li et al., 2018). Malik and Mishra, (2015) combined IEC

FIGURE 1
Damage of cable insulation of the converter transformer.
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TC10 and related data sets and using RapidMiner software to analyze
and identify the characteristic variables corresponding to faults and
realized the fault classification of the transformer by ELM. After
analysis, its performance was better than that of fuzzy logic and
artificial neural network.Javed et al. (2015) used extreme learning
machine and fuzzy clustering algorithm to establish a state
prediction model for predicting possible faults of mechanical devices
and used engines for verification, proving the outstanding performance
of the algorithm based on the extreme learning machine in fault
diagnosis and prediction direction. Lin Y. proposed a method based
on the combination of the parameter optimization of variational mode
decomposition (VMD) with cuckoo search (CS) and the probabilistic
neural network (PNN) for intelligent identification of gearbox faults.
The feasibility of using the neural network algorithm for fault diagnosis
is proved by inputting experimental data into the neural networkmodel
and judging various fault modes (Javed et al., 2015). Oussama Laayati
diagnosed power transformer faults using artificial neural networks for
gas analysis of transformer oil (Lin et al., 2022).

Based on the aforementioned analysis, there is no comprehensive
research work on DC bias of the transformer, short circuit between core
pieces, and multi-point grounding fault of the core. Based on this, this
paper carries out a systematic study on the phenomenon of DC bias,
short circuit between core pieces, and multi-point grounding of the
transformer; analyzes the vibration and noise of transformer when DC
bias, short-circuit between core pieces, and multi-point grounding occur;
and takes the vibration and noise of transformer core as the characteristic
parameters. A fault prediction method of transformer DC bias, short
circuit between core pieces, and multi-point grounding based on the
probabilistic neural network algorithm is proposed. The vibration and
noise distribution of the transformer underDCbias, short circuit between
core pieces, andmulti-point grounding conditions are given. Based on the
vibration noise value, based on the probabilistic neural network
algorithm, the fault modeling and prediction of the transformer DC
bias, short circuit between core pieces, and multi-point grounding are
carried out, which provides a new idea for transformer fault diagnosis.

2 System summary

2.1 Basic parameters of the transformer

In order to accurately describe the vibration and noise
distribution of the converter transformer under DC bias, short
circuit between core pieces, and multi-point grounding fault, a
single-phase four-column transformer is used to form a converter

transformer scaling model. Table 1 shows the basic parameters of
single-phase four-column transformer. Figure 2 shows the basic
structure of a single-phase four-column transformer.

As shown in Table 1, the rated capacity of the transformer is
160 kVA, the primary side voltage is 2,000 V, the secondary side
voltage is 400 V, the primary side turns are 240, the secondary side
turns are 48, and the turns ratio is 5.

As shown in Figure 2, the transformer adopts a single-phase four-
column structure, which can effectively reduce the height of the
transformer and facilitate transportation. At the same time, the high
voltage winding and low voltage winding arewound by the left and right
core column of the transformer, and the high voltage winding and low
voltage winding on the left and right side are used in parallel.

The vibration and noise of the transformer core mainly come from
the magnetostriction effect of the core silicon steel sheet, and no-load
operation can effectively reflect the vibration and noise of the transformer
core. Therefore, the simulation state of this paper is set so that the primary
side applies the rated voltage, and the secondary side runs no-load.

2.2 Multi-physical field simulation theory
and typical fault simulation method for the
transformer

In the aspect of core fault calculation and simulation, the
homogenization modeling method is usually adopted, that is, the
difference of equivalent conductivity is used to distinguish the fault
area from the non-fault area.

The equivalent conductivity of the core failure area is set as:

σ[ ] �
σ

Fσ
Fσ

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (1)

The equivalent conductivity of the non-fault area of the core is
set to:

σ′[ ] � 0
Fσ

Fσ

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (2)

where F is the core lamination coefficient; σ and σ’ are the
electrical conductivity of silicon steel sheets.

In general, the elastic mechanics method is one of the efficient
and convenient methods in the calculation of magnetostriction
forces, as the excitation source of the structural force field. In the
structure force field, the magnetostriction force of the core is
calculated, and the acceleration distribution of each structural
part is determined as the excitation source for the calculation of
the sound field. To calculate the sound field, the acceleration of the
structure is taken as initial load of the sound field calculation, and
spatial distribution of the sound pressure is obtained. The
calculation process is shown in Figure 3.

In the calculation of the transformer magnetic field, the
unknown variable is the vector magnetic potential A. The outer
layer of the air domain is set as the boundary condition of magnetic
insulation; solving the following magnetic field governing equation:

σ
zA
zt

+ ∇× μ−1∇× A( ) � J (3)

TABLE 1 One-phase four-leg power transformer basic parameters.

Item Primary side Secondary side

Rated capacity 160 kVA 160 kVA

Rated voltage 2,000 V 400 V

Rated current 40 A 200 A

Turn electromotive force 8.3333 V/Turn 8.3333 V/Turn

Turns 240 48

Silicon steel sheet type 30ZH120 30ZH120
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B � μH � ∇× A (4)
where J is the external current density, μ is the permeability, and

σ is the material conductivity. The vector magnetic potential A of
each node is calculated according to the formula, and the magnetic
field distribution of the core under no-load condition is obtained.

The Lorenz force due to eddy currents can be achieved by
loading additional boundary conditions due to the addition of
additional boundary conditions. The dependent variable of the
transformer structure field calculation is the displacement u of

the core and other components. The acceleration of each node in
the transformer component in three directions can be obtained by
differentiating u. According to the theory of solid mechanics, the
differential equation of the structural force field is established.

m
d2u
dt2

+ ζ
du
dt

+ ku � f t( ) (5)

Among them, ζ is the damping coefficient matrix, m is a mass
matrix, the velocity of the particle vibration u, and the stiffness
matrix is k.

FIGURE 2
Basic structure of the single-phase four-column transformer.

FIGURE 3
Calculation flow of transformer electromagnetic vibration and noise.

Frontiers in Energy Research frontiersin.org04

Zhou et al. 10.3389/fenrg.2023.1169508

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1169508


As shown in Figure 3, a physical model of the transformer is first
established. The influence of core homogenization is considered in
the physical model, and the normal working mode of the core, the
short-circuit mode between core pieces, and the multi-point
grounding mode of the core are set, respectively. Second, the
electromagnetic field is calculated by applying AC voltage source
and the AC/DC hybrid power source, respectively. Finally, the
structural force field and sound field are calculated, and the
results are saved. At the same time, this paper mainly studies the
vibration and noise change rule of the transformer core under the
fault state, so the no-load simulation analysis method is adopted,
that is, in the transformer DC bias fault simulation, the primary side
of the AC/DC hybrid power supply, and the secondary side open
circuit. In the simulation of transformer short-circuit between

silicon steel sheets and core grounding fault, AC current is
applied on the primary side and kept open on the secondary side.

3 Multi-physical field simulation
analysis of the transformer under fault
conditions

3.1 Multi-physical field simulation analysis of
the transformer under DC bias

In this paper, the vibration and noise of a 160-kVA/2,000-V/400-V
single-phase four-column transformer under the condition ofDCbias are
calculated and analyzed. The single-phase four-column transformer

FIGURE 4
Transformer magnetic field distribution under different DC biases: (A) DC bias is 0 A; (B) DC bias is 1.2 A; (C) DC bias is 2.3 A.
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shown in Figure 2 is subdivided, and the calculation is carried out
according to the calculation flow shown in Figure 3.

Figure 4 shows the distribution of the transformer magnetic field
when Idc = 0 A, 1.2 A, and 2.3 A. Figure 5 shows the transformer
vibration distribution when Idc = 0 A, Idc = 1.2 A, and Idc = 2.3 A.
Figure 6 shows the transformer noise distribution when Idc = 0 A,
1.2 A, and 2.3 A.

As can be seen from Figure 4, when Idc = 0 A, the maximum
magnetic density of the positive half-cycle and negative half-cycle
core of the transformer is 1.7169T, with positive and negative half-
cycle symmetry. When Idc = 0 A, the maximum positive half-period
magnetic density of the transformer is 1.9797T, the maximum
negative half-period magnetic density is 1.5243T, and the
difference between positive and negative half-period magnetic
density is 0.4554T. When the DC bias further increases, the
asymmetry between positive and negative half-period magnetic
density of the transformer core is intensified, and the maximum
deviation is 0.6904T.

As shown in Figure 5, vibration displacement of the core and
noise increases with the increase of the DC bias. When the DC bias is
1.2 A, the maximum vibration displacement of the core is
0.4227 μm; when the DC bias is 2.3 A, the maximum vibration
displacement of the core is 0.4442 μm.

According to IEC 6007610:2016, the relationship between the
sound pressure level and sound pressure is as follows:

Lp � 10lg
p2

p2
0

, (6)

where Lp is the sound pressure level, dB. P is the sound pressure, Pa.
P0 is the reference sound pressure, Pa, which is equal to 20 × 10−6 Pa.

As shown in Figure 6, the sound pressure under different DC
magnetic biases is given, which can be converted into the noise value

(dB) by Eq. 5. When DC bias is 1.2 A, the maximum noise value is
69.96 dB; when DC bias is 2.3 A, the maximum noise value is
72.96 dB.

3.2 Multi-physical field analysis of the
transformer under core multi-point
grounding conditions

3.2.1 Modeling of the transformer core multi-point
grounding

Figure 7 shows the location of the transformer core multi-point
grounding fault point.

For the core fault area, its conductivity is set as isotropic, and its
conductivity is set as follows:

σ �
8.3

1000000
1000000

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (7)

3.2.2 Multi-point grounding and multi-physical
field coupling solution for the transformer core

The finite element simulation program of transformer core multi-
point grounding is established, and the simulation of electromagnetic
vibration and noise of transformer core multi-point grounding is
carried out. Figure 8 shows the simulation results of transformer core
multi-point grounding.

As shown in Figure 8, when multi-point grounding occurs,
the induced flux generated by eddy current cancels out the main
flux in the core, resulting in a decrease in the flux density in the
fault area, while the flux density in the non-fault area does not
change much.

FIGURE 5
Transformer vibration distribution under different DC biases.

FIGURE 6
Transformer sound pressure distribution under different DC biases.
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As shown in Figure 8, with the occurrence of multi-point
grounding fault in the transformer core, the transformer
vibration displacement and noise decrease.

3.3 Multi-physical field analysis of the
transformer under short circuit between
core plates

3.3.1 Short-circuit modeling between transformer
sheets

Figure 9 shows the setting position of short-circuit fault between
transformer pieces. For the fault position of short circuit between
core pieces, the conductivity is set as isotropic, and the conductivity
is set as shown in Eq. 7.

σ �
2020833

2020833
2020833

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (8)

According to Eq. 8, the short-circuit fault between core plates
affects the vibration and noise of the transformer by changing the
magnetic field distribution in the transformer core.

3.3.2 Multi-physical field coupling solution of short
circuit between transformer core plates

The finite element simulation program of short circuit between
transformer core pieces is established to simulate the
electromagnetic vibration and noise of short-circuit underground
between transformer pieces. Figure 10 shows simulation results of
internal short circuit of the transformer core.

As shown in Figure 10, when short circuit between core pieces
occurs, the induced flux generated by eddy current cancels out the
main flux in the core, resulting in a decrease in the flux density in the
fault area, while the flux density in the non-fault area has little change,
with the occurrence of inter-chip short-circuit fault in the transformer
core, and the transformer vibration displacement and noise decrease.

Figure 11 shows a comparison of transformer vibration
acceleration under fault conditions (normal status; short-circuit
between silicon steel sheets; core multi-point grounding). Figure 12
draws transformer noise comparison under fault conditions.

As shown in Figures 11 and 12, when the fault occurs,
transformer vibration acceleration and amplitude decrease,
resulting in the decrease of noise amplitude. This is caused by
partial flux induced by the eddy current generated after the local
failure of the core changing the distribution of the core’s main flux.
The change of the core geometry affects the spectrum distribution.

Through the finite element simulation calculation of normal
working conditions, short circuit between silicon steel sheets,
multi-point grounding, and DC bias, it can be found that there are
differences in vibration and noise values of measuring points. Based
on this, this paper uses probabilistic neural networks to learn vibration
and noise values under different working conditions and identify
faults.

4 Fault diagnosis of the transformer
core based on the probabilistic neural
network

Based on the aforementioned simulation and experimental
results, the vibration and over-hotspot database of the power
transformer, such as three-phase unbalance, overload, DC bias,
and core fault, is established. The genetic algorithm and the
neural network algorithm were used to train with the expected
output value of the fault type and the vibration and temperature
values of the power transformer housing corresponding to each fault
location as the input learning samples. Thus, the fault diagnosis of
the power transformer is completed.

4.1 Theoretical analysis of the probabilistic
neural network classifier

First, based on Bayesian decision theory:

If p wi | �x( )> p wj �x( ),∀j ≠ i, then �x ∈ Wi, (9)

where x is the faultmode of theDCbias fault, multi-point grounding
fault, and short circuit between core pieces fault corresponding to the
transformer, and p(Wi | �x) � p(Wi)p( �x | Wi).

FIGURE 7
Core multi-point grounding the fault-point setting.
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The probability density function p(Wi | �x) is estimated by the
Parzen of the Gaussian kernel, as shown in Eq. 9.

p Wi | �x( ) � 1
Ni

∑Ni

k�1

1

2π( ) 1
2σ1

exp − �x − �xik‖ ‖2
2σ2

( ), (10)

where �xik is the kth training sample belonging to class Wi, i is the
dimension of the sample vector, σ is the smoothing parameter, and
Ni is the total number of training samples of class Wi. By removing
the common elements, the discriminant function can be simplified
as follows:

gi �x( ) � p Wi( )
Ni

∑Ni

k�1
exp − �x − �xik‖ ‖2

2σ2
( ). (11)

The structure of the typical transformer fault diagnosis program
based on the PNN and input–output relationship of each layer is

shown in Figure 13. It is composed of four layers, which can
effectively calculate Eq. 10 when processed.

As shown in Figure 13, the PNN network is composed of four
parts: input layer, sample layer, summation layer, and competition
layer. The working process of the PNN is as follows: first, input
vector �x is input to the input layer. In the input layer, the network
calculates the difference �x − �xik between the input vector and
training sample vector. The absolute value of the difference ‖ �x −
�xik‖ represents the distance between the two vectors. Then, the
output vector �x − �xik of the input layer is sent to the sample layer.
The number of nodes in the sample layer is equal to the sum of the
number of training samples, N � ∑i�M

i�1 Ni, where M is the total
number of classes. The main work of the sample layer is as follows:
first, the categories related to the input vector are determined, and
then the categories with higher correlation are gathered. The output
value of the sample layer represents the degree of acquaintance.
Then, the output value of the sample layer is sent to the summation

FIGURE 8
Simulation results of transformer core multi-point grounding: (A) Magnetic flux density; (B) Current density; (C) Vibration distribution; (D) Noise
distribution.
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layer. The number of nodes in the summation layer is M, and each
node corresponds to a class. The judgment is made by the
competitive transfer function of the summation layer. Finally, the
result of the decision is output by the competition layer. Only one of
the output results is 1, and the rest results are 0. The output result of
the category with the largest probability value is 1.

4.2 Probabilistic neural network learning
algorithm derivation

In order to reduce the error, the input matrix is normalized, and
the input matrix is set as:

X �
X11 X12 / X1n

X21 X22 / X2n

/ / / /
Xm1 Xm2 / Xmn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (12)

As can be seen from Eq. 11, there are m learning samples of this
matrix, and each sample has n characteristic attributes. Before
normalizing the factors, the BT matrix must be computed:

BT � 1������∑n
k�1x

2
1k

√ 1������∑n
k�1x

2
2k

√ /
1�������∑n
k�1x

2
mk

√⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦. (13)

Furthermore, calculation of Cm×n can be obtained:

Cm×n � Bm×1 11/1[ ]1×n · Xm×n �

x11���
M1

√ x12���
M1

√ . . .
x1n���
M1

√
x21���
M2

√ x22���
M2

√ /
x2n���
M2

√
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x2mk.

The normalized m samples are sent into the network sample
layer, where m = k*c.

The following is the calculation of the mode distance. Thematrix
composed of P n-dimensional vectors is called the sample matrix to
be identified. After normalization, the input sample matrix to be
identified is:
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After the learning sample and the sample to be recognized
are normalized, the radial basis function neurons of the sample
layer are activated. Usually, a Gaussian function with standard
deviation σ = 0.1 is taken. After activation, the initial probability
matrix is obtained:

FIGURE 9
Setting of short-circuit fault point between core pieces.
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Assuming that there are m samples, it can be divided
into a total of c types, and the number of all types of samples
is the same. The initial probability is set as k, and the sum of all
types of samples can be obtained at the summation layer of the
network:
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FIGURE 10
Simulation results of internal short circuit of transformer core: (A) Magnetic flux density; (B) Current density; (C) Vibration distribution; (D) Noise
distribution.
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where Sij represents, among the samples to be recognized,
the ith sample belongs to the initial probability sum of the j-th
class.

Finally, the probability probij is calculated, that is, the probability
that the ith sample belongs to the j-th class.

probij � Sij∑c
i�1Sil

(19)

4.3 Fault diagnosis analysis of the power
transformer based on the genetic-
probabilistic neural network

4.3.1 Collection and selection of input samples
Sixty sets of data were collected in this paper. Thirty sets

of data were randomly selected from these sixty sets of data
and used to train the neural network. The remaining data were
analyzed by network simulation. In order to obtain accurate
output information of the diagnostic network, the vibration
and noise signal under DC bias, the vibration and noise
value of multi-point underground connection, and the
vibration and noise value of the inter-chip short circuit are
selected as the basic input information of the probabilistic
neural network.

4.3.2 Prototype fault analysis
A total of three types of faults were diagnosed as prototype faults.

It mainly includes DC bias fault, multi-point grounding fault, and
inter-chip short-circuit fault. If the normal state is considered as a
type, there are four states, and the four fault states are described by
binary coding, as shown in Table 2.

4.3.3 Network-training process
First, the modes to be classified are input into the network, and

the corresponding judgment function values are obtained at each

FIGURE 11
Comparison of transformer vibration acceleration under fault
conditions (normal status; short circuit between silicon steel sheets;
core multi-point grounding).

FIGURE 12
Transformer noise comparison under fault condition: (A) Noise
value of normal status; (B) Noise value of short circuit between silicon
steel sheets; (C) The noise value of multi-point grounding.
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node of the mode layer. The winners are generated by the
summation and layer. Finally, the categories of fault modes are
judged by the winners obtained by the competition layer.

4.3.4 Analysis of simulation results
In this paper, measurement parameters corresponding to four

transformer working states (normal working state, DC bias working
state, short circuit between core pieces working state, and multi-
point grounding working state) are used as a sample. All samples
constitute the sample space, and the prior probability of each fault is
assumed to be the same. The simulation results (vibration of
different point and sound) are shown in Tables 3, 4.

As shown in Table 4, the probabilistic neural network has good
classification ability for the learned samples after learning. It has a
simple learning process, overcomes the disadvantages of local
minimization and long time, and has very good classification
ability for signals with interference and noise.

FIGURE 13
Probabilistic neural network structure.

TABLE 2 Fault type and the corresponding code.

Fault mode Description

Normal 0001

DC bias 0010

Multi-point grounding 0100

Short circuit between core pieces 1000

TABLE 3 Test sample data set.

Serial number Fault mode Input learning sample (vibration displacement)

Point A Point B Point C Point D Point E Point F Point G Point H Sound

1 Normal 0.10448 0.09772 0.09760 0.09703 0.09555 0.09557 0.09579 0.10073 64.4

2.1 DC bias 0.11265 0.10356 0.10458 0.10745 0.10548 0.10675 0.10548 0.10452 68.3

2.2 0.11926 0.10932 0.11135 0.11234 0.11364 0.11731 0.11269 0.10891 71.2

3 Multi-point grounding 0.09676 0.09401 0.09469 0.09479 0.09754 0.09798 0.09889 0.09889 63.5

4 Short circuit in core 0.10099 0.09448 0.09440 0.09401 0.09262 0.09252 0.09256 0.09720 63.6
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At present, transformer fault diagnosis based on PNN is rare.
The scheme proposed in this paper can be widely used in various
transformer types.

5 Conclusion

(a) The homogenization modeling method is proposed, and the
multi-physical field coupling simulation method of
electromagnetic, force–sound field is used to establish the
fault simulation method of DC bias fault of transformer,
short circuit between core pieces, and multi-point grounding
of core. The electromagnetic vibration and noise finite
element simulation of a 160-kVA transformer under fault
conditions is carried out. The results show that the
transformer fault simulation method based on multi-
physical field coupling can well reflect the changes of
transformer acoustic and vibration characteristics caused
by the fault.

(b) Through the analysis of the electromagnetic vibration and
noise calculation results of the multi-physical field-coupled
short circuit between the core and the core multi-point
grounding of the transformer, it can be seen that when the
core multi-point grounding and the short-circuit between the
core and the chip occur in different places, the changes will be
different, and the influence on the final vibration and noise of
the transformer will be different, but the vibration and noise
will decrease overall.

(c) The analysis of the calculation results of the electromagnetic
vibration and noise of the transformer under the DC bias
shows that the vibration and noise of the transformer
increase with the increase of the DC bias. When the DC
bias increases to a certain extent (transformer
oversaturation), the vibration and noise no longer increase
and tend to be stable.

(d) Based on the vibration and noise signals of the transformer
under the fault state, the characteristic fault diagnosis of the
transformer based on the probabilistic neural network is
realized, which can effectively predict the DC bias, the
short circuit between the core pieces and the multi-point
ground fault of the core, providing an effective means of
analysis and method for the comprehensive fault analysis of
large power transformers
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TABLE 4 Output test results.

The serial number Diagnosis results Fault status code Actual results

1 Normal 0001 Normal

2.1, 2.2 DC bias 0010 DC bias

3 Multi-point grounding 0100 Multi-point grounding

4 Short circuit between core pieces 1000 Short circuit between core pieces
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