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Infertility is a global health concern inflicting a considerable burden on the global
economy and a severe socio-psychological impact. Approximately 15% of couples
suffer from infertility globally, with a male factor contribution of approximately
50%. However, male infertility remains largely unexplored, as the burden of
infertility is mostly assigned to female people. Endocrine-disrupting chemicals
(EDCs) have been proposed as one of the factors causing male infertility.
Pyrethroids represent an important class of EDCs, and numerous studies have
associated pyrethroid exposure with impaired male reproductive function and
development. Therefore, the present study investigated the potentially toxic
effects of two common pyrethroids, cypermethrin and deltamethrin, on
androgen receptor (AR) signaling. The structural binding characterization of
cypermethrin and deltamethrin against the AR ligand-binding pocket was
performed using Schrodinger’s induced fit docking (IFD) approach. Various
parameters were estimated, such as binding interactions, binding energy,
docking score, and IFD score. Furthermore, the AR native ligand, testosterone,
was subjected to similar experiments against the AR ligand-binding pocket. The
results revealed commonality in the amino acid-binding interactions and overlap
in other structural parameters between the AR native ligand, testosterone, and the
ligands, cypermethrin and deltamethrin. The estimated binding energy values of
cypermethrin and deltamethrin were very high and close to those calculated for
AR native ligand, testosterone. Taken together, the results of this study suggested
potential disruption of AR signaling by cypermethrin and deltamethrin, which may
result in androgen dysfunction and subsequent male infertility.
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1 Introduction

Male infertility is a global health issue, with nearly 30 million male people suffering from
this condition, contributing approximately 40%–50% to the overall couple infertility cases
(Agarwal et al., 2015; Bold and Swinburne, 2022; Esteves et al., 2023; Wagner et al., 2023).
Infertile men frequently experience a heavy psychological burden, such as anxiety,
depression, trauma, stress, guilt, inadequacy, and personal distress, along with social
issues, such as discrimination, ostracism, and divorce (Cui, 2010; Greil et al., 2011;
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Kumar and Singh, 2015; Lotti and Maggi, 2018; Afshani et al., 2020).
In addition to the significant economic implications, infertility in
men is increasingly becoming a marker of poor general health in
affected men (Lotti and Maggi, 2018; De Jonge and Barratt, 2019).
The available literature indicates that for the past several decades,
male reproductive health has globally shown a declining trend with a
decrease in average serum testosterone levels and semen parameters,
such as sperm concentrations and semen volume, along with an
increase in the incidence of congenital cryptorchidism and testicular
tumors (Rodprasert et al., 2021). In this regard, the causes of poor
semen quality in approximately 45% of cases of infertile men are
idiopathic with no known reasons (De Jonge and Barrat, 2019;
Alahmar et al., 2022). However, in general, the majority of the
available studies on infertility are focused on women because of the
onus of the burden of infertility on them. Hence, male aspects of
infertility remain poorly understood to a large extent. Endocrine-
disrupting chemicals (EDCs) have been regarded as one of the
factors associated with declining male fertility because of their
xenobiotic nature, ubiquitous presence, and constant exposure
through the skin, air, food, and drink (Gore et al., 2015; Sweeney
et al., 2015; Sidorkiewicz et al., 2017; Segal and Giudice, 2019;
Rodprasert et al., 2021). Environmental EDCs include pesticides,
phthalates, and bisphenol A and their analogs, parabens,
polychlorinated biphenyls, flame retardants, dioxins, solvents, and
many others (Gore et al., 2015). The pyrethroid compounds
represent an important class of pesticides used as insecticides
with extensive applications for agricultural and residential
purposes (Xu et al., 2008; Brander et al., 2016; Marettova et al.,
2017; Solecki et al., 2017; EPA U.S., 2019; Sheikh and Beg, 2022) and
are considered potential EDCs (Zamkowska et al., 2018). The past
few decades have witnessed an enormous rise in global pyrethroid
consumption (Feo et al., 2010; Ranson et al., 2011). The increased
consumption is attributed mainly to the high insecticidal potential,
slow pest resistance, and broad-spectrum application of pyrethroids.
Furthermore, other advantages, such as less tissue accumulation, low
human toxicity due to poor dermal absorption, swift metabolism,
and less environmental persistence, contribute to increased
pyrethroid consumption (Tang et al., 2018). As a result,
organochlorine and organophosphorus pesticides were gradually
phased out, which further amplified pyrethroid application in
agricultural production and household use (Fenner et al., 2013;
Saillenfait et al., 2016; Wang et al., 2016). The extensive use of
pyrethroids resulted in a substantial increase in human exposure to
pyrethroids from indoor and outdoor environmental sources (Burns
and Pastoor, 2018). The two primary routes of pyrethroid exposure
are diet and occupational exposure. The other routes of exposure
include dermal contact and inhalation of contaminated household
dust (ATSDR, 2003).

A thorough review of available epidemiological studies indicated
an association between pyrethroid exposure and male infertility
(Koureas et al., 2012; Saillenfait et al., 2015; Zamkowska et al., 2018;
Castiello and Freire, 2021). For example, pyrethroid exposure was
associated with male reproductive toxicity, and concerns regarding
semen quality, sperm DNA, reproductive hormones, pregnancy
outcomes, and developmental problems were raised (Saillenfait
et al., 2015). Other studies also reported poor semen quality,
such as low sperm count and abnormal sperm morphology in
men exposed to pyrethroids (Perry et al., 2007; Hu et al., 2020).

Nevertheless, the underlying molecular mechanisms for pyrethroid-
induced male reproductive abnormalities are poorly understood.
However, a critical review of the available literature suggested
various possible molecular mechanisms for pyrethroid-induced
male reproductive toxicity, such as steroid synthesis inhibition,
inducing oxidative stress, acting as ER modulators, and
antagonizing the AR (Wang et al., 2020). Furthermore, it was
also proposed that pyrethroids cause reproductive abnormalities
by interfering with the hypothalamic–pituitary–gonadal (HPG) axis,
including reproductive hormone receptors (Zhang et al., 2008;
Chrustek et al., 2018; Lu et al., 2019; Wang et al., 2020). In adult
men, an inverse association was found between the urinary
pyrethroid metabolites, serum inhibin B, testosterone, and free
androgen index, along with a positive association with serum
FSH and LH (Meeker et al., 2009). In addition, the anti-
androgenic activity of several pyrethroids, including cypermethrin
and permethrin, by antagonizing the androgen receptor (AR) has
been reported (Zhang et al., 2008; Sheikh and Beg, 2022). A recent
study reported that cypermethrin inhibited AR transcription by
repressing the molecular interaction between the AR and activator
proteins ARA70 and ARA55, subsequently contributing to male
reproductive toxicity (Ding et al., 2020). Another study reported that
cypermethrin displayed anti-androgenic effects by inhibiting
dihydrotestosterone (DHT)-induced amino- and carboxyl-
terminal interaction of the AR (Hu et al., 2012). Similarly, the
anti-androgenic effects of cypermethrin by enhancing the
associations of the AR with the corepressor silencing mediator
for thyroid hormone receptors (SMRT) and nuclear receptor
corepressors (NCoR) were also reported (Pan et al., 2013). The
AR is an essential steroid nuclear receptor for male reproduction,
which is activated following the binding of an androgenic hormone,
such as testosterone or DHT (Roy et al., 1999; Lu et al., 2006).
Testosterone represents a major circulating androgen synthesized
from cholesterol and is converted into DHT (a metabolic product of
testosterone), which is more active than testosterone (Sakkiah et al.,
2018). The AR acts as a DNA-binding transcription factor regulating
gene expression and plays a vital role in reproductive development
in male people ((Mooradian et al., 1987; Zhang et al., 2008). The
androgen signaling disruption by pyrethroids likely leads to
abnormalities in male reproductive development, especially
during reproductive differentiation and the development of male
fetuses during early pregnancy. Therefore, in view of the crucial role
of AR signaling in male reproductive development and the
increasing pyrethroid exposure, this study was designed and
executed to evaluate AR signaling disruption by commonly used
pyrethroids.

All pyrethroids are categorized into two groups based on their
physical properties and toxicity. The compounds included in these
two groups are represented as class I and class II (Gajendiran and
Abraham, 2018). Our previous study reported a structural binding
study of the AR with permethrin, which belongs to class I
pyrethroids (Zughaibi et al., 2022). However, in this study, we
considered two commonly used class II compounds:
cypermethrin and deltamethrin. Apparently, this is the first study
focusing mainly on the structural binding characterization of class II
compounds against the AR. In the present investigation, the ligands
cypermethrin and deltamethrin were subjected to structural binding
characterization by the molecular docking simulation approach
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against the AR ligand-binding pocket. The current study aimed to
investigate the potential interference of these compounds in
reproductive development by hindering androgen hormone
binding to the AR. In addition, this study also provided insights
into the structural binding characterization of cypermethrin and
deltamethrin in the AR ligand-binding pocket.

2 Results

The commonly used class II pyrethroids—cypermethrin and
deltamethrin—exhibited successful docking in the AR ligand-
binding pocket. Both ligands cypermethrin and deltamethrin
were placed stably in the AR ligand-binding pocket, following
induced fit docking (IFD), indicating their firm binding. The IFD
approach generated several docking poses for each ligand.
However, only the best poses were chosen and carried forward
for structural characterization. In addition, the AR native ligand,
testosterone, was also placed stably in the AR ligand-binding
pocket. Here, the best-ranking pose was also chosen for further
analysis. All the chosen poses for both ligands exhibiting
molecular interactions of amino acid residues with respective
ligands are presented (Figure 1). Cypermethrin displayed
interactions with 25 amino acid residues (Figure 1A), but
deltamethrin displayed interactions with 24 amino acid
residues of the AR (Figure 1B).

2.1 IFD of the cypermethrin ligand with AR

The cypermethrin–AR docking complex displayed several
interactions with AR amino acid residues. Overall, 25 amino acid
residues of the AR displayed various molecular interactions, such as

hydrophobic, hydrogen bonding, and van der Waals interactions,
with the ligand cypermethrin. The amino acid residues involved in
various interactions were Leu-701, Leu-704, Asn-705, Leu-707, Gly-
708, Gln-711, Trp-741, Met-742, Met-745, Val-746, Met-749, Phe-
764, Phe-770, Ser-778, Met-780, Gln-783, Cys-784, Met-787, Leu-
873, Phe-876, Thr-877, Leu-880, Phe-891, Met-895, and Ile-899.
Moreover, the pi–pi interaction was displayed by Phe-764
(Figure 1A). In addition, one hydrogen bond interaction was also
shown by Thr-877.

FIGURE 1
Molecular interactions of class II commonly used pyrethroids: (A) cypermethrin and (B) deltamethrin with residues lining AR ligand-binding pocket.

FIGURE 2
Molecular interactions of an AR native ligand, testosterone, with
residues lining AR ligand-binding pocket.
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Similarly, the molecular interaction of the AR native ligand,
testosterone, with AR amino acid residues is also presented
(Figure 2). Altogether, 22 AR amino acid residues displayed
various molecular interactions with the AR native ligand, T, that
is, Leu-707, Gly-708, Gln-711, Trp-741, Met-742, Met-745, Val-746,
Met-749, Arg-752, Phe-764, Met-780, Met-787, Leu-873, Phe-876,
Thr-877, Leu-880, Phe-891, Met-895, and Ile-899. In addition, three
hydrogen bonding interactions, each by three amino acid residues,
Asn-705, Arg-752, and Thr-877, with ligand testosterone, were
observed (Figure 2).

The other parameters, such as IFD, Dock score, and Glide score,
essential for structural binding analysis and characterization of
cypermethrin and the AR native ligand, testosterone, are also
presented (Table 1). In addition, another important parameter
essential for analysis is the binding energy. The estimated
binding energy values are also presented (Table 1). However, the
estimated binding energy values for the AR native ligand,
testosterone, and cypermethrin are very close. Moreover, the
commonality among the AR interacting amino acid residues
between the AR-native ligand and AR-cypermethrin docking
complexes was 100%.

2.2 IFD of deltamethrin ligand with AR

The docking display pose of deltamethrin exhibited 24 amino
acid residues engaged in various molecular interactions with the AR
(Figure 1B). Furthermore, the comparison between the docking
poses of the AR native ligand, testosterone, and deltamethrin
revealed approximately 96% overlap in amino acid interactions.
However, several other molecular interactions were also observed in
the deltamethrin–AR complex due to additional amino acid residues
(i.e., Ala-748, Tyr-763, and Ser-778) (Figure 1B). In addition, Ile-899
residues present in the native ligand were missing in the
deltamethrin–AR complex. Furthermore, one pi–pi interaction
was also displayed by Phe-764.

3 Discussion

This study aimed to characterize the structural binding
parameters, including the molecular interactions of commonly
used class II pyrethroids—cypermethrin and deltamethrin—in the
AR ligand-binding pocket. This study was performed to advance our
understanding of the potential AR signaling disruption by the
aforementioned ligands, which could have subsequent male
infertility consequences. The in-depth result analysis of this study
indicated the stable binding of both ligands (cypermethrin and

deltamethrin) into the AR ligand-binding pocket. Furthermore,
the stability and good quality of AR–ligand complexes were
indicated by the estimated values of structural binding
parameters, such as the IFD score, Glide score, Dock score, and
binding energy. The several molecular interactions displayed in the
AR–ligand complexes, such as hydrogen bond, pi–pi interactions,
and salt bridge, contribute significantly to the stability of these
complexes. The critical analysis of the comparison of the AR native
ligand’s (testosterone) docking pose with the best-chosen docking
pose of cypermethrin and deltamethrin indicated 80%–90%
commonality in the interacting amino acid residue lining the AR
ligand-binding pocket. Furthermore, the binding energy values
calculated for cypermethrin and deltamethrin were also similar to
the AR native ligand, testosterone. The values calculated for
cypermethrin and deltamethrin were close to the values
calculated for the AR native ligand, testosterone. Therefore, the
results of this study suggest the potential for these ligands to disrupt
the AR signaling, which might subsequently have an adverse impact
on male reproductive development and fertility.

Previous in silico studies on the structural binding
characterization of cypermethrin and deltamethrin against the AR
are unavailable. However, we recently reported the potential AR
signaling disruption by one of the commonly used pyrethroid
compounds, which is permethrin (Zughaibi et al., 2022).
Nevertheless, several in vitro and epidemiological studies
conducted on various pyrethroids, including cypermethrin and
deltamethrin, are consistent with our findings and have reported
their antagonizing action on AR, hence displaying anti-androgenic
activities (Kojima et al., 2004; Kim et al., 2006; Sun et al., 2007; Xu
et al., 2008; Tange et al., 2014). Furthermore, our findings are
supported by previous reports, which indicated HPG axis
disruption by pyrethroids, resulting in abnormal male reproductive
hormone levels, such as increased sex hormone-binding globulin and
a decrease in the free androgen index (Ye and Liu, 2019). The fact that
AR signaling is an important pathway of the HPG axis couldmake it a
potential target of pyrethroids, subsequently disturbing the HPG axis
and hampering male reproductive developmental functions (Jin and
Yang, 2014; Plant, 2015). In addition, the estrogenic or anti-estrogenic
activity of various pyrethroid compounds, including cypermethrin
and deltamethrin, was also reported by various studies. They compete
with the binding of estradiol to estrogen receptors and induce cell
proliferation (Go et al., 1999; Chen et al., 2002; Kim et al., 2004; Zhao
et al., 2008).

Numerous epidemiological association studies indicated the
adverse impact of pyrethroid exposure on reproductive health.
Pyrethroid exposure in male greenhouse workers was associated
with reduced fecundability, suggesting an association between
decreased fertility and pyrethroid exposure in men (Sallmén

TABLE 1 Structural binding indices of class II pyrethroids, cypermethrin and deltamethrin, and AR native ligand, testosterone, against AR ligand-binding pocket.

Ligand Number of
interacting residues

Percentage of interacting residues
common with native ligand (%)

IFD
score

Docking score
(Kcal/mol)

Glide score
(Kcal/mol)

MMGB-SA
(Kcal/mol)

Cypermethrin 25 100 −574.73 −10.75 −10.75 −138.39

Deltamethrin 24 95.45 −576.04 −11.23 −11.23 −137.49

Testosterone 22 100 −577.54 −12.87 −12.87 −152.82
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et al., 2003). Environmental and occupational exposure to pesticides,
including the pyrethroids reviewed for the years 2012–2022,
revealed diminished semen parameters, such as sperm
concentration, sperm motility, sperm morphology, and sperm
DNA integrity, as a consequence of pyrethroid exposure (Knapke
et al., 2022). Another study reported an association between high
fenvalerate exposure and abnormal semen quality, including
decreased sperm motion parameters, sperm progression, beat
cross frequency, and an increase in the abnormality rate of
viscidity and coagulation (Lifeng et al., 2006). In this regard, a
positive association between poor semen quality and pyrethroid
exposure level was reported in 42 Japanese male partners of couples
attending consultation in an infertility center (Toshima et al., 2012).
In several other studies, a negative association between urinary
pyrethroid metabolites and semen quality, including a decrease in
sperm count, abnormal sperm cell morphology, and reduced
testosterone levels in men, was reported (Meeker et al., 2008; Xia
et al., 2008; Radwan et al., 2014; Hu et al., 2020). In addition to
abnormal semen parameters, pyrethroid metabolite levels in urine in
several ethnic populations, such as American and Chinese, were
negatively associated with serum testosterone and inhibin B levels
and positively associated with serum gonadotropin levels (Han et al.,
2008; Meeker et al., 2009; Radwan et al., 2014). Conversely, a report
of no association between serum hormone levels and urinary
pyrethroid metabolite 3-PBA in 322 Japanese male students is
also available (Yoshinaga et al., 2014). In another study on

240 healthy male participants, a significant positive correlation
between the urinary pyrethroid metabolite 3-PBA levels and
sperm DNA fragmentation was reported (Ji et al., 2011).
Furthermore, urinary pyrethroid metabolites showed a negative
association with the Y:X sperm chromosome ratio (Jurewicz
et al., 2015; Jurewicz et al., 2016). A study conducted on the
agricultural population of the southern region of Brazil reported
that the recent application of lambda-cyhalothrin was related to the
increase in LH hormone levels in the male population, raising
concerns about reproductive health (Santos et al., 2019). An
in vitro study conducted on 20 normozoospermic semen samples
indicated altered sperm cell function and DNA damage by
cypermethrin (Zalata et al., 2014). Another study conducted on
19 fenvalerate-exposed workers revealed breaks in sperm DNA
using Comet and TUNEL assays (Xia et al., 2004).

Similarly, several association studies on animals indicated the
negative outcomes of pyrethroid exposure on reproductive health. For
example, a systematic review and a meta-analysis on pyrethroid
exposure in rodents indicated male reproductive system toxicity
(Zhang et al., 2021). Furthermore, animal studies on rats reported
an association between pyrethroid exposures and decreased levels of
follicle-stimulating hormone (FSH), luteinizing hormone (LH), and
testosterone. Furthermore, the association was also observed with
epididymis and testis weight (Navarrete-Meneses and Perez-Vera,
2019). This study is of significant importance in determining the effect
of commonly used pyrethroids on fertility outcomes in male people

FIGURE 3
Two-dimensional structure of cypermethrin, deltamethrin, and AR native ligand, testosterone.
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exploring infertility treatment. This study investigates the structural
binding characterization and molecular interactions of cypermethrin
and deltamethrin with AR leading to anti-androgenic effects and
disturbing AR signaling. However, this is a simulation study and has
its own limitations as well. Thus, more studies using in vivo and
in vitro models are warranted to further confirm the results of this
study. More specifically, an integrated multi-omics approach would
provide a significant contribution in this regard, addressing the male
infertility problems arising due to pyrethroid exposure.

4 Conclusion

This study aimed to explore the structural interactions of
commonly used class II pyrethroids—cypermethrin and
deltamethrin—with AR for potential disruption activity, which
subsequently could lead to male infertility. The structural binding
parameters for AR docking complexes with cypermethrin and
deltamethrin indicated similarity with that of the AR native
ligand docking complex (AR–testosterone), thus forming a stable
and successful docking complex. In addition, the results also
revealed high binding energy for both pyrethroids against the AR
ligand-binding pocket, which was similar to the values calculated for
the AR native ligand, testosterone. Overall, the results of the present
study suggested that both the indicated ligands (cypermethrin and
deltamethrin) have the potential to disrupt the AR signaling
function and might subsequently affect the male reproductive
functions, causing infertility.

5 Material and methods

The commonly used class II pyrethroids—cypermethrin and
deltamethrin—were chosen, and their three-dimensional structural
coordinates were downloaded from the PubChem compound
database (https://pubchem.ncbi.nlm.nih.gov/). It was followed by
structural binding characterization of these ligands using the
Schrodinger 2017 suite with Maestro 11.4 as a graphical user
interface (Schrodinger, LLC, New York, NY, 2017). The detailed
methodology is described in our previous study (Sheikh, 2016;
Zughaibi et al., 2022).

5.1 Protein preparation

The three-dimensional structural coordinates solved at 1.64 Å
resolution for the crystal complex of the ligand, testosterone, with
the AR (PDB code: 2AM9) were retrieved from Protein Data Bank
(PDB) (http://www.rcsb.org/). The retrieved coordinates were
imported to Glide docking software, and the protein crystal
complex was subjected to further processing and prepared for
docking studies using the protein preparation wizard workflow of
Schrodinger Glide (Schrodinger suite 2017-4; Schrodinger, LLC), as
described in our previous study (Sheikh, 2016; Zughaibi et al., 2022).
Briefly, the missing hydrogen atoms and charges were added, and
water molecules were removed from the crystal complex structure. It
was followed by hydrogen bond network optimization and energy
minimization.

5.2 Ligand preparation

The three-dimensional structural coordinates for the commonly
used class II pyrethroids (cypermethrin and deltamethrin) were
downloaded from the PubChem compound database (https://
pubchem.ncbi.nlm.nih.gov/). The PubChem compound identity for
the ligand cypermethrin is 2912, whereas the PubChem compound
identity for deltamethrin is 40585. These ligands were processed and
prepared for simulation studies using the LigPrepmodule of Schrodinger
(Schrodinger 2017: LigPrep, Schrodinger, LLC). The two-dimensional
structures of cypermethrin and deltamethrin are presented in Figure 3.

5.3 IFD

The Schrodinger’s IFD module was employed to perform the
docking of the AR native ligand, testosterone, and class II
pyrethroids—cypermethrin and deltamethrin—in the AR ligand-
binding pocket, as described in detail in our previous study (Sheikh,
2016; Zughaibi et al., 2022). Briefly, first, a grid was generated at the
binding site of the AR native ligand, testosterone. It was followed by
constrained minimization of the AR using the protein preparation
step. The IFD induces flexibility in both the ligand and ligand-
binding pocket of protein receptors and does not adopt a rigid
docking approach. First, initial Glide docking was performed using a
softened potential and optional side chain removal for all the
ligands, and by default, twenty docking poses were retained. The
side chains in amino acids were predicted, followed by energy
minimization for the receptor and ligand in each pose. It was
followed by Glide re-docking and IFD score estimation. Likewise,
an extended sampling protocol was also performed. Similarly, the
IFD was also performed on the AR native ligand, testosterone.

5.4 Binding affinity calculations

The binding affinity of cypermethrin and deltamethrin for the
AR ligand-binding pocket was estimated using the molecular
mechanics generalized Born surface area (MMGB-SA) function
in the Prime module of Schrodinger 2017, as described
previously (Sheikh, 2016; Zughaibi et al., 2022).
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