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Objective: To develop and test a deep learning (DL) model to distinguish
acetabular fractures (AFs) on pelvic anteroposterior radiographs (PARs) and
compare its performance to that of clinicians.

Materials and methods: A total of 1,120 patients from a big level-I trauma center
were enrolled and allocated at a 3:1 ratio for the DL model’s development and
internal test. Another 86 patients from two independent hospitals were collected
for external validation. A DL model for identifying AFs was constructed based on
DenseNet. AFs were classified into types A, B, and C according to the three-
column classification theory. Ten clinicians were recruited for AF detection. A
potential misdiagnosed case (PMC) was defined based on clinicians’ detection
results. The detection performance of the clinicians and DLmodel were evaluated
and compared. The detection performance of different subtypes using DL was
assessed using the area under the receiver operating characteristic curve (AUC).

Results: Themeans of 10 clinicians’ sensitivity, specificity, and accuracy to identify
AFs were 0.750/0.735, 0.909/0.909, and 0.829/0.822, in the internal test/external
validation set, respectively. The sensitivity, specificity, and accuracy of the DL
detection model were 0.926/0.872, 0.978/0.988, and 0.952/0.930, respectively.
The DL model identified type A fractures with an AUC of 0.963 [95% confidence
interval (CI): 0.927–0.985]/0.950 (95% CI: 0.867–0.989); type B fractures with an
AUC of 0.991 (95% CI: 0.967–0.999)/0.989 (95% CI: 0.930–1.000); and type C
fractures with an AUC of 1.000 (95% CI: 0.975–1.000)/1.000 (95% CI:
0.897–1.000) in the test/validation set. The DL model correctly recognized
56.5% (26/46) of PMCs.

Conclusion: ADLmodel for distinguishing AFs on PARs is feasible. In this study, the
DL model achieved a diagnostic performance comparable to or even superior to
that of clinicians.
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Introduction

Acetabular fractures (AFs) are one of the most complex traumas
treated by orthopedic surgeons, which are mostly caused by high-
energy trauma and have complicated and variable imaging features
(Ziran et al., 2019). They are regularly accompanied by other
concomitant injuries and occur in approximately 3–8 cases per
100,000 people (Laird and Keating, 2005; Melhem et al., 2020;
Lundin et al., 2021). In addition, the hip joint is an essential
weight-bearing joint with a wide range of motion, and its injury
has a significant detrimental effect on an individual’s physical
function, ability to work, and participation in social activities
(FFA et al., 2021). Hence, AFs must be accurately and promptly
detected, since diagnostic failure can lead to hip instability, post-
traumatic osteoarthritis, and other poor outcomes (Scheinfeld et al.,
2015).

A pelvic anteroposterior radiograph (PAR) provides
visualization of the continuity and integrity of the bones in the
pelvic and upper femur regions. It is the first choice for screening
AFs (Trauma, 2018; Kitamura, 2020). Generally, traumas such as
AFs are initially diagnosed and tended to by young trauma
orthopedic surgeons because of their emergency nature (Oka
et al., 2021). However, the diagnosis of AFs on X-ray images is
difficult because AFs are uncommon, the femoral head and
acetabulum overlap, and the potential existence of a single
smaller fragment (Scheinfeld et al., 2015). Furthermore,
radiologists are not always readily available, particularly in local
hospitals or rural areas, which increases the uncertainty of diagnosis
(Cheng et al., 2021; Zech et al., 2022). Thus, a new solution for the
accurate and rapid detection of AFs is urgently required.

Deep learning (DL) is a group of artificial intelligence techniques
that enable algorithms to learn from input data, identify features,
and classify data after multiple iterations (Kuo et al., 2022; Zech
et al., 2022). DL has evolved in leaps and bounds in the last few years
and has been increasingly applied in radiology, orthopedics, and
traumatology (Jones et al., 2020; Kuo et al., 2022). Previous studies
have shown that fracture detection using DL can be on par with or
exceed the diagnostic performance of physicians (Yamada et al.,
2020; Cheng et al., 2021; Kuo et al., 2022). Although the detection of
hip and pelvic ring fractures using DL on PAR has been reported
(Kitamura, 2020; Yamada et al., 2020; Cheng et al., 2021; Liu et al.,
2022), to our knowledge, studies focusing on identifying AFs are
lacking. This study aimed to develop a DL model for detecting AFs
on PAR and validate the strength of the model by comparing its
diagnostic performance with that of orthopedic clinicians.

Materials and methods

This study was approved by the institutional review board. The
requirement for informed consent was waived owing to the
retrospective nature of the study.

Data selection

Consecutive patients with AFs who underwent PAR from
January 2013 to October 2021 at a big level I trauma center were

retrospectively reviewed. Moreover, AF patients from two external
hospitals from January 2020 to December 2020 were selected as
validation data. Images were collected from a picture archiving and
communication system (PACS). The inclusion criteria were as
follows: 1) AFs with a clear history of trauma, 2) adults
(>18 years old), and 3) the first PAR was taken after the patient
arrived at our hospital. The exclusion criteria were as follows: 1)
pathological fractures; 2) congenital hip malformations; 3) poor
image quality or foreign bodies occluding the acetabulum. More
advanced imaging examination evidence from PACS, such as CT,
MRI (if any), and clinical information from patient files provide
sufficient support for the diagnosis and classification of AFs.

Demographic characteristics, including age, sex, injured side,
and mechanism of injury, were recorded from patient files. Two
traumatic orthopedic surgeons evaluated the fracture type (one with
6 years of experience and the other with 10). When an inconsistency
occurred, they discussed this and made a final decision with another
orthopedic specialist with more than 25 years of experience. All AFs
were classified into three main types: type A, type B, and type C,
based on the “Three-column classification of AFs” (Zhang et al.,
2019). According to the above classification, types A, B, and C
represent fractures involving one, two, and three columns of the
acetabulum, respectively, and indicate more severe and complicated
fractures.

Data preprocessing

The original panoramic images of pelvic radiographs were
obtained from the PACS with sizes of 1,024 × 1,024 pixels and
32-bit depth. The regions of interest (ROIs) containing the
acetabulum were manually cropped using a 256 × 256 square
bounding box with Snipaste software (v2.4.0-Beta) and converted
to 8-bit depth grayscale images to match the predefined input image
of the DL model. Both sides of the acetabulum were extracted
individually and labelled as normal (negative) or not (positive).
Moreover, because the left and right acetabula are symmetrical, the
cropped left acetabular images were flipped horizontally and used as
right acetabular developing images (Figure 1). DL often requires a lot
of data to achieve satisfactory results. Data augmentation is a
commonly used data preprocessing technique in DL that can
increase the quantity of data for training. To improve the
robustness of the model, the development dataset was augmented
15 times by brightness control, rotation, blurring, and noise
addition. Details of the data augmentation are provided in the
Supplementary Material.

Model architecture and developing

Our DL network model was built based on DenseNet-169
architecture (Huang et al., 2017). DenseNet introduced dense
connections to extract features from images. Compared with
other convolutional networks, it can alleviate the vanishing-
gradient problem, reduce the complexity of the model, and
implement feature reuse (Huang et al., 2017). Our model was
mainly composed of a 7 × 7 convolutional layer, followed by a
max pooling layer, four dense blocks, three transition layers between
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dense blocks, and a classification layer at the end. Inside each dense
block, 1 × 1 convolutional bottleneck layers and 3 × 3 convolutional
layers were connected to each other in series. Pre-activation was
introduced to each convolutional layer. The final classification layer
was constructed using a fully connected layer, followed by sigmoid
calculation. The output of the complete model was described as the
probability of indicating the result of the prediction (Supplementary
Table S1). The model was programmed using TensorFlow 2.5.0.
PAR images were processed using OpenCV 4.5.4.60. The input
images were grayscale images with a size of 256 × 256 pixels, and the
value of each pixel was normalized from 0 to 1. The growth rate in
the model was 12. Twelve feature maps were extracted in the
bottleneck layers to decrease the model complexity and
calculation computation.

Themodel was designed to classify whether the acetabular image
included fractures. The training parameters were as follows: the
batch size was set to 15 and the learning rate was initially set to
0.003 and was decreased every 10 epochs by 10%. An Adam
optimizer was used, and a drop-box with a dropout rate of
0.2 was applied for training.

Detecting tests for clinicians

We recruited five residents and five attending orthopedic
surgeons with 1–4 and 5–8 years of acute trauma-related
experience, respectively, for the diagnostic tests. The aim was to
compare the diagnostic performance of clinicians with that of the
DL model. Before testing, all 10 clinicians were instructed to focus
on only one question, to indicate whether there was an AF. Then, the

ROI images of the test set were automatically presented on a screen
one by one at 5-s intervals to each participating clinician. The entire
experiment was divided into two parts, and 280 images were
captured simultaneously. This process was adopted to ensure
fairness between DL and clinicians and between clinicians, even
though the test process was different from that in real clinical
settings. The ROI images from the validation set were also
performed at one time as described above. Based on the test
results, a potential misdiagnosed case (PMC) was defined as a
fracture missed by five or more of the 10 clinicians. The
sensitivity, specificity, positive predictive value, negative
predictive value, and accuracy were calculated to evaluate the
clinicians’ diagnostic performance.

Statistical analysis

R 4.1.0 with “pROC” and “ggplot2” packages was used for
statistical analyses and graphs. Continuous variables were
compared using the Mann–Whitney U test, and categorical
variables were compared using the chi-square and Fisher’s
exact tests. The detection performance of the DL model was
evaluated and compared using the receiver operating
characteristic (ROC) curve and the area under the ROC curve
(AUC) with 95% corresponding confidence intervals (CIs), which
were estimated by bootstrapping (2,000 times). The optimal
threshold value was determined using Youden’s J-statistic.
McNemar’s test was used to compare the sensitivity and
specificity between the DL model and clinicians. The statistical
significance level was set at p < 0.05.

FIGURE 1
The workflow of acetabular fracture detection by artificial intelligence, including image preprocessing and the framework of the DL model.
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Results

A total of 1,120 patients in a single trauma center were enrolled and
randomly divided into development and test sets at a ratio of 3:1.
Among the 1,120 selected patients, 8 had bilateral AFs. Therefore,
840 patients with 846 injured acetabula and 834 normal acetabula in the
development set and 280 patients with 282 broken acetabula and
278 normal acetabula in the test set were obtained. Additionally,
420 type A, 412 type B, and 296 type C AFs were identified and
classified into 1,128 ROI fracture images. A total of 86 patients with
86 injured acetabula containing 33 type A, 36 type B, and 17 type CAFs
from two hospitals were enrolled. The patients’ demographic data are
shown in Table 1. Regarding age, sex, injured side, mechanism of injury,
and fracture classification, there were no statistical differences (all p >
0.05) between the test and validation sets.

For the test/validation set comprising 560/172 ROI images, the
sensitivity, specificity, positive predictive value, negative predictive
value, and accuracy of the DL detection model were 0.926/0.872,
0.978/0.988, 0.978/0.987, 0.928/0.885, and 0.952/0.930, respectively.
The ROC curve with visual AUC is shown in Figure 2. The optimal
threshold value was 0.637/0.256, and the Youden index was 0.911
(sensitivity, 0.926; specificity, 0.985)/0.883 (sensitivity, 0.895;
specificity, 0.988) for the test/validation sets.

Table 2 shows the diagnostic performance of the DL model,
clinicians, and their comparisons. The mean sensitivity, specificity,
positive predictive value, negative predictive value, and accuracy of

the 10 clinicians were 0.750/0.735, 0.909/0.909, 0.894/0.890, 0.786/
0.774, and 0.829/0.822 for the test/validation sets, respectively.
Moreover, the mean results of the five attending orthopedic
surgeons are higher than that of the residents. However, the DL
model performed better (p < 0.05) with respect to sensitivity and
specificity, except for the sensitivity of one clinician and specificity of
three clinicians in the test set and the sensitivity and specificity of
four clinicians in the validation set.

For types A, B, and C AFs, the DL model had the best diagnostic
performance for type C fractures, with an AUC value of 1.000 (95%
CI: 0.975–1.000)/1.000 (95% CI: 0.897–1.000); type A fracture was
the worst, with an AUC value of 0.963 (95% CI: 0.927–0.985)/0.950
(95% CI: 0.867–0.989); and type B had an AUC value of 0.991 (95%
CI: 0.967–0.999)/0.989 (95% CI: 0.930–1.000) in the test/validation
sets (Figure 3). The gradient-weighted class activation mapping
(Grad-CAM) method was applied to visualize the probable AF
regions of different fracture types determined by the DL model
(Supplementary Figure S1) (Selvaraju et al., 2017).

A total of 46 PMCs were misdiagnosed by at least five
clinicians in the internal test and external validation sets,
including five PMCs by five clinicians, eight PMCs by six
clinicians, eight PMCs by seven clinicians, six PMCs by eight
clinicians, ten PMCs by nine clinicians, and nine PMCs by ten
clinicians. Of the 46 PMCs, 40 were type A fractures, 6 were type
B, and none were type C. The DL model correctly recognized
26 of the 46 PMCs (Supplementary Figure S2).

TABLE 1 Patient demographics.

Variables Internal single-center dataset External validation dataset p-valuea

Total Development set Test set Total Hospital A Hospital B

Patients 1,120 840 280 86 37 49

Age, mean (range), years 46.41 (18–89) 46.53 (18–89) 46.06 (18–88) 49.05 (19–93) 49.54 (19–88) 48.67 (21–93) 0.202

Sex 0.192

Male 771 573 198 67 31 36

Female 349 267 82 19 6 13

Injured side 0.639

Left 489 378 111 39 20 19

Right 623 456 167 47 17 30

Both 8 6 2 0 0 0

Mechanism of injury 0.598

Vehicle accident 587 458 129 38 15 23

Fall 427 304 123 43 19 24

Height < 2 m 160 116 44 16 8 8

Height > 2 m 267 188 79 27 11 16

Others 106 78 28 5 3 2

Fracture typeb 0.526

Type A 420 319 101 33 18 15

Type B 412 304 108 36 14 22

Type C 296 223 73 17 5 12

ap values are acquired by comparison between the test set and total of external validation set.
bFracture types are categorized according to the “Three-column classification of acetabular fractures.” Type A, B, and C represent fractures involving single one, two, and three columns of the

acetabulum, respectively.
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FIGURE 2
The receiver operating characteristic (ROC) curve of the detection algorithm for acetabular fractures in the (A) internal testing and (B) external
validation sets. The cyan area indicates AUC. The red cross mark represents the performance on the probability cutoff value calculated by Youden’s J
statistic. The purple, orange, and green spots represent the performance of five attending orthopedic surgeons, five residents, and ten clinicians,
respectively.

TABLE 2 Performance comparison between the DL model and clinicians in detecting acetabular fractures.

SEN SPE PPV NPV ACC

Internal External Internal External Internal External Internal External Internal External

DL model 0.926 0.872 0.978 0.988 0.978 0.987 0.928 0.885 0.952 0.930

Attending orthopedics 1c 0.775 0.791 0.889 0.884 0.876 0.872 0.795 0.809 0.831 0.837

Attending orthopedics 2b–d 0.812 0.802 0.944 0.930 0.937 0.920 0.832 0.825 0.878 0.866

Attending orthopedics 3b 0.691 0.756 0.963 0.907 0.950 0.890 0.755 0.788 0.826 0.831

Attending orthopedics 4c 0.832 0.826 0.899 0.919 0.893 0.910 0.840 0.840 0.865 0.872

Attending orthopedics 5a, c, d 0.886 0.872 0.926 0.942 0.924 0.938 0.889 0.880 0.906 0.907

Mean 0.799 0.809 0.924 0.916 0.916 0.906 0.822 0.828 0.861 0.863

Resident 1b 0.731 0.686 0.944 0.919 0.930 0.894 0.776 0.745 0.837 0.802

Resident 2 0.795 0.756 0.889 0.919 0.879 0.903 0.811 0.790 0.842 0.837

Resident 3d 0.592 0.512 0.896 0.930 0.852 0.880 0.684 0.656 0.743 0.721

Resident 4d 0.667 0.640 0.926 0.953 0.901 0.932 0.733 0.726 0.795 0.797

Resident 5 0.721 0.709 0.815 0.791 0.798 0.772 0.742 0.731 0.767 0.750

Mean 0.701 0.660 0.894 0.902 0.872 0.871 0.749 0.727 0.797 0.781

Mean of above 10 surgeons 0.750 0.735 0.909 0.909 0.894 0.890 0.786 0.774 0.829 0.822

DL, deep learning; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; ACC, accuracy.

Results for the internal testing set.
aExcept for this clinician, all have significant difference (p < 0.05) between the DL model and a clinician in SEN.
bExcept for these clinicians, all have significant difference (p < 0.05) between the DL model and a clinician in SPE. Results for the external validation set.
cExcept for these clinicians, all have significant difference (p < 0.05) between the DL model and a clinician in SEN.
dExcept for these clinicians, all have significant difference (p < 0.05) between the DL model and a clinician in SPE.
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Discussion

In this study, we first developed a specific DL model to detect
AFs on PARs with high sensitivity, specificity, and accuracy.
According to our results, the diagnostic performance of the DL
model was equal to or even better than that of the clinicians. Our
model showed the highest performance in detecting the most
complex type C fractures among all AF types. Furthermore, the
model successfully identified 26 of the 46 cases in which the
clinicians had a high probability of misjudgment. This shows that
the model has a promising ability to detect PMCs.

The overall miss rate of fractures identified by clinicians on
PARs was estimated to be 10% (Hakkarinen et al., 2012). However,
unlike fractures in other areas, clinicians cannot easily identify Afs
on PARs. In a recent study, only 42.4% (61/144) of AFs were
detected by an attending trauma radiologist on PARs (Benjamin
et al., 2022). Another study involving 129 patients showed that AFs
were the most commonly missed trauma on PARs (Kessel et al.,
2007). Similarly, our study found that clinicians missed up to 20% of
the AFs cases. As mentioned above, diagnosis by humans is not very
accurate. Nevertheless, we did not find previous specific studies on
DL for detecting AFs on PARs, and insufficient image data on AFs
could be one of the barriers to the development of an appropriate DL
model. A 2019 study reported that AFs could be detected using
traditional machine learning methods, achieving an accuracy of 80%
in a test set containing as few as five cases (Castro-Gutierrez et al.,
2019). Therefore, we conducted this study to prove that our DL
model has great potential for diagnosing AFs.

Kuo et al. (2022) analyzed 37 studies of DL on X-rays for fracture
detection from January 2018 to July 2020 and demonstrated that the
median number of participants, the median size of development sets,
the pooled sensitivity of test sets, and the pooled specificity of test
sets were 1,169 (interquartile range, 425–2,417), 1,898 (interquartile
range, 784–7,646), 92% (95% CI: 88–94), and 91% (95% CI: 88–93),

respectively. Although both the number of participants and
development set in this study were comparatively low, similar
sensitivities and specificities were obtained. This indicates that
the DL model is efficient.

AFs are classified based on radiographic imaging features.
The Letournel-Judet criterion (Letournel, 1980) is the most
widely applied classification of AFs, but it only covers 80% of
them (Herman et al., 2018). The choice of an appropriate
classification theory capable of covering and classifying all AFs
is essential for presenting and discussing the test results in this
study. Therefore, a more comprehensive three-column
classification theory was adopted. All AFs were classified into
three types, with higher grades indicating more areas involved
and more severe fractures. The results showed that the DL model
had excellent recognition ability for type C fractures, where
injuries were severe and likely to be combined with other
injuries, and low recognition ability for type A fractures,
where injuries were relatively mild. This helps to quickly
diagnose and save critically injured patients with AFs.

Clinician experience is negatively associated with fracture
misdiagnosis rates; however, timely specialist consultations are usually
unavailable (Williams et al., 2000). In this study, we defined the concept of
PMC. PMC was neither summarized by the results of X-ray reports nor
conferred by experienced specialists, but was based on the test results of
10 clinicians, which is closer to the real situation. DL algorithms are liable
to misdiagnosis when abnormal features are subtle, even for experienced
radiologists (Li et al., 2021). Although our model identified only 56.5%
(26/46) of PMCs, it could still be a valuable solution compared with
clinicians’ performance. Furthermore, a previous study demonstrated the
utilization of theGrad-CAMalgorithm inmedical education and practice
(Cheng et al., 2020b). Grad-CAM was used in this study to provide a
reference for clinicians to assist in fracture diagnosis. The heat maps
generated by Grad-CAM enable improved diagnostic accuracy with
limited learning cases (Cheng et al., 2020b).

FIGURE 3
ROC curve analysis for types A, B, and C fractures based on the three-column classification of acetabular fractures in the (A) internal testing and (B)
external validation set.
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DenseNet was selected in this study because it has the main
advantage of balancing the performance on the development, test
and validation sets compared to some other common models
(Cheng et al., 2020a). In addition, it has the following
advantages: 1) a smaller number of parameters, 2) encouraging
feature reuse, 3) easier network training, and 4) alleviating the
problems of gradient vanishing and model degradation (Huang
et al., 2017). Many successful presentations of the DenseNet model
have been reported in the field of orthopedics, such as vertebral
compression fractures (Monchka et al., 2021), proximal femoral
fractures (Oakden-Rayner et al., 2022), distal radio-ulnar fractures
(Kim et al., 2021), hip fractures (Krogue et al., 2020; Cheng et al.,
2021), and hip osteoarthritis (von Schacky et al., 2020).

This study has some limitations. First, ROI images were
generated by manual cropping, which resulted in subtle
variations. Second, the diagnostic performance of clinicians may
be underestimated because the procedure is not a real clinical
scenario; for example, no information was available regarding
patients’ clinical backgrounds. Lastly, intra-observer variability
could be affected by the factors such as the surroundings and the
clinician’s self-efficacy, which may affect the study findings. The
algorithm should be externally validated by large numbers of cases in
a multicenter prospective clinical setting in the future.

In conclusion, we developed a DL algorithm for detecting AFs,
which achieved a diagnostic performance comparable to or even
superior to that of clinicians. The algorithm has an excellent
detection rate for severely injured type C fractures and is useful for
detecting inconspicuous AFs. Future studies should conduct prospective
controlled trials in real-world clinical settings to further demonstrate that
DL can be used as a tool to aid clinicians in AF diagnosis.
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