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ABSTRACT 

This study was performed to determine whether active optical sensors could develop an 

algorithm for N recommendation for the potato crop (Solanum tuberosum L.). The 

experiment was conducted in Maine State, (USA) during the growing season of 2018-2019. 

Six N rates (0-280 kg ha
-1

) were applied on eleven locations under a randomized complete 

block design (RCBD), with four replications. Data of normalized difference vegetation index-

(NDVI) were collected via active sensors, GreenSeeker-(GS), and Crop Circle-(CC). Sensors 

measurements collected at the 20
th

 of the leaf stage were significantly associated with tuber 

yield, where the exponential model exhibited a better fit for the regression curve. 

Conventionally, 168 kg N ha
-1

 produced the maximum potato yield. The N rate computed 

based on in-season sensors reading reduced by about 12-14% from the total N rate that 

growers use to apply based on the conventional approach. Studying potato cultivars 

separately in the same soil properties can improve the algorithm accurately. 

Keywords: nitrogen, greenseeker, crop circle, in-season estimated yield 

 
 وآخرون زعين                                                                                  504-491(:2)54: 2023-مجلة العلوم الزراعية العراقية 

 باستخدام أجهزة الاستشعار البصرية النشطة المحصول البطاط السماد النيتروجيني توصية
 5اندري اليخون      4اررون بازا       3سكوندر بالي       2الاكيش شارم       1زعين اسعد احمد

 استاذ     استاذ مساعد         استاذ مساعد           استاذ مساعد               مدرس                  
-جامعة فلوريدا3، فلوريدا - قسم التربة والمياه –امريكا-جامعة 2، جامعة بغداد - العلوم كلية - وحدة الاستشعار عن بعد1

 امريكا.-جامعة مين-قسم البايولوجي 5امريكا، -جامعة مين-محطة بحوث ارستوك4امريكا، -قسم  البيئة
 المستخلص

لمحصول  النتروجينالبحث لتحديد ما إذا كانت المستشعرات الضوئية النشطة يمكن أن تولد خوارزمية لتوصية  هذا إجريت
-2018 للموسم الزراعي نفذت التجربة في ولاية مين في الولايات المتحدة الامريكية. (.Solanum tuberosum L) االبطاط
، ة( على أحد عشر موقعًا بتصميم القطاعات العشوائية الكامل1-م هكتارغك 280-0تم تطبيق ستة معدلات نيتروجين ) .2019

، المستشعرات الضوئية النشطةبواسطة  ري( المعياNDVIمع أربعة مكررات. تم الحصول على بيانات فهرس الغطاء النباتي )
GreenSeeker  وCrop Circle صول عليها في المرحلة العشرين )عدد اوراق(. ارتبطت قياسات المستشعرات التي تم الح 

م غك 168 المعدل  مة أفضل لمنحنى الانحدار. تقليديًا ، أنتجئنموذج الأسي مل ، حيث أظهر الا رتباطًا وثيقًا بإنتاجية الدرناتا
N معدل النيتروجين المحسوب على أساس قراءة أجهزة الاستشعار في الموسم انخفض اأقصى إنتاجية من البطاط 1-هكتار .

يمكن أن بناءً على النهج التقليدي. ٪ تقريبًا من إجمالي معدل النيتروجين الذي استخدمه المزارعون لتطبيقه 14-12بنسبة 
 صل في خصائص التربة المماثلة إلى تحسين الخوارزمية بدقة.بشكل منف اتؤدي دراسة أصناف البطاط

 الانتاجية المحسوب في الحقل.، رين سيكير، كروب سيركلكالمتحسس ا الكلمات المفتاحية:
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INTRODUCTION 
It has been a fact that unreasonable application 

of N fertilizer to the potato crop causes low 

tuber production due to excessive vegetative 

growth, lower tuber quality (low specific 

gravity, large size with hollow heart, delay in 

maturity, etc.), and lower N use efficiency 

(NUE) that causes the leaching of a large part 

of N to groundwater and leads to a high risk of 

environmental contamination (of the 

atmosphere by nitrous oxides and water by 

nitrate, etc.) (6, 17, 51).  N deficiency, in 

contrast, can considerably decrease crop yield 

(68). Furthermore, the potato production 

system is well known for low NUE, varying 

between 50 and 60% (14,55), and this could be 

due to shallow and poorly developed root 

systems. Typically, loss of N occurs when 

mineral N (NH4
+
 and NO3

−
) is present in the 

soil, in amounts higher than plant requirements 

(28). Consequently, inadequate 

synchronization between soil N supply and 

crop demand is one of the main reasons for 

low N fertilizer use efficiency (3,4,14,41,38). 

Potato growers in developed countries are 

under immense pressure to keep profitability 

against new environmental restrictions, such as 

the commitment to the nitrate directive 

(91/676/EEC) and a recent increment in N 

fertilizer prices, to motivate them for precise 

input management. Nevertheless, having 

adequate food supplies globally is a challenge 

that fertilizer application cannot be achieved 

(56). In such a meaning, it is essential to 

develop instruments and procedures for potato 

growers that could help them determine “the 

right N fertilizer rate at the right time and 

place.” It is generally acknowledged that a 

temporary field-specific N recommendation 

for potato at planting time can never be 

accurate. Furthermore, it is challenging to 

predict crop N requirements during the 

growing season (61) due to numerous 

predictable or unpredictable factors, such as 

chemical, physical, and biological soil 

characteristics, soil organic matter, cultural 

practices, crop maturity time, and weather 

conditions. Nitrogen fertilization 

recommendation with estimated requirements 

during crop growing seasons can essentially 

aid in matching crop N requirement times and 

rates with supplies. Accordingly, N fertilizer 

efficiency can be improved (5,61). Precision 

agriculture technology allows growers to apply 

the correct quantity of fertilizer in real-time 

based on the crop’s current growth status 

without negatively affecting the final yield. A 

modeling strategy (N recommendation at field-

specific scale) of crop N status monitoring can 

lead to helpful decision-support methods to 

enhance N fertilizer use efficiency. It has been 

found that the approach of using crop N status 

assessment to determine crop demands is more 

reliable than predicting the available soil N 

supply (48). Plants are often considered a good 

indicator (mirror) of growing conditions (45). 

Most of the available crop monitoring 

techniques depend on the magnitudes of 

reflected light above the crop canopy (49). A 

remote sensing approach can be performed at 

several spatial scales: ground-based, airborne, 

or space-borne (31,57). All these scales focus 

on measuring plant canopy formation factors, 

such as the leaf area index (LAI) and leaf 

chlorophyll, among others, with well-

established science that these factors are 

strongly related to each other and plant N 

status (47). The most common precision 

agriculture tools used for grain crops, such as 

corn (Zea mays L.), wheat (Triticum aestivum 

L.), and sunflower (Helianthus annuus L.), 

among others, are ground-based active optical 

sensors such as GS, Cropscan, N-sensor, and 

Holland CC (12). The GS and CC are the most 

prevalent ground-based sensors in North 

America for research and commercial use. 

GreenSeeker (GS) has been widely used for 

developing N recommendations (46), and with 

which an algorithm for wheat crop increased 

nitrogen use efficiency by more than 15% 

(23). In another study in Oklahoma, the 

coefficient of variation (CV) from NDVI data 

was used to evaluate plant density in wheat 

(11). Similar techniques were used in wheat 

and rice (Oryza sativa L.) grown in Northwest 

India and attained higher NUE than 

conventional methods (20,47). The CV was 

further used to adjust the algorithm in wheat 

(19). Another in-season N uptake was 

developed for rice, which increased the NUE 

and yields (9). Crop characteristics have been 

used in various methods to calculate optimum 

N requirements (20). Several other research 
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studies have used plant biomass (11,19) and 

plant N content (9, 10) to determine N 

requirements. Spectral measurements have 

also been used to assess yield potential (YP0) 

(43,54). Yield potential is a function of the 

growing environment (28) and is essential for 

fertilizer N calculation methods. The YP0 has 

been predicted in-season utilizing optical 

sensors (49). In addition, the NDVI has been 

used to determine in-season estimated yield 

(INSEY) (49), which is a measurement of 

biomass produced per day as NDVI; (Large, 

1954) (34) divided by the number of growing 

degree days (GDD). A few studies have 

utilized active optical sensors to predict leaf N 

content (8,25) and yield (47) studies developed 

an algorithm for N recommendations for 

potato crops. Therefore, this study aimed to 

use the data of active optical sensors (NDVI) 

to develop N recommendation and compare it 

with what potato growers commonly applied 

in Maine, USA. 

MATERIALS AND METHODS  

Research locations: The experimentation was 

performed in   Aroostook County, Maine, 

USA (Figure1), in the period of 2018 and 

2019. Eleven investigation locations, six of 

them in Presque Isle, Aroostook Farm (AF1, 

Lat.46.66134° and Long.-68.01808°), New 

Sweden-1 (NS-1, Lat.46.95156° and Long.-

68.14779°), Frenchville (FV, Lat. 47.21676° 

and Long. -68.41153°), and New Sweden-2 

(NS-2, Lat.46.95271° and Long.-68.14572°), 

Caribou (CA1, Lat. 46.88227° and Long.-

68.02895°), and Wood Land (WL,Lat. 

46.88520° and Long.-68.12577°), were 

selected to experiment in 2018. In 2019, five 

research sites were chosen to conduct the 

investigation, two in Presque Isle, Aroostook 

Farm (AF2 and AF3, Lat. 46.66134° and 

Long. -68.01808°), Limestone (LM, Lat: 

46.96186° and Long. -67.83333°), two in 

Caribou (CA2, Lat. 46.89628° and Long. -

68.07750°), and (CA3, Lat: 46.89180° and 

Long.-68.04055°). All locations have a 

separate average annual precipitation and 

temperature, where AF1, 2, and 3 locations 

had yearly average precipitation of 91.0 cm 

and an annual mean temperature of 5.15 °C. 

The sites WL, NS (1 and 2), as well as CA1, 2, 

and 3 had average yearly rainfall of 97.9 cm 

and a yearly mean temperature of 4.3 °C, 

whereas FV had average annual precipitation 

of 85.5 cm and an annual mean temperature of 

3.6 °C (59). 

 
Figure 1. The study area, Aroostook County 

within Maine state, USA (62). 

Experimental materials 

The investigation covered three potato 

cultivars: Russet Burbank, Shepody, and 

Superior. Russet Burbank was planted in all 

sites, while Shepody and Superior were 

planted in AF. The planting space was 30 cm 

within rows, where the row width was about 

90 cm. 

Experimental treatments and design 

Six N rates of fertilizer, 0, 56, 112, 168, 224, 

and 280 kg ha
-1

, as ammonium sulfate 

((NH4)2SO4) in the first year and ammonium 

nitrate (NH4NO3) in the second year, were 

used on all the locations a randomized 

complete block design, RCBD, with four 

replications. Phosphorus (P), potassium (K), 

and sulfur (S) were used as instructed by the 

University of Maine Soil Laboratory (Maine). 

Each subplot was 9.14 m long × 3.65 m wide 

and had four rows. A distance of 1.50 m was 

left between replicates as a buffer zone. All 

managing procedures, such as disease, pest, 

insect control, and weeding, were employed 

for all locations. Planting was conducted 

between the middle and end of May; 

harvesting was accomplished between 

September and October. 

Soil properties 

Pre-plant soil samples were sampled from each 

location, and then samples were examined at 

the University of Maine Soil Laboratory. The 

USDA-Natural Resources Conservation 
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Service-NRCS (United States Department of 

Agriculture) was utilized for physical soil 

properties (Table 1). The locations NS-1, NS-

2, and WL were subjected to three-year crop 

rotation (potato-grain-cover crop), whereas 

CA1 and FV locations had a two-year crop 

rotation (potato-grain). The AF1, 2, and 3 

locations did not follow any crop rotation plan, 

where the grass was grown continually over 

seven years. The locations CA2, CA3, and LM 

locations subjected to two-year crop rotation 

(potato, (mustard, radish)), (potato, (red, white 

clover), rye), and (potato, (clover, oat-grains)) 

respectively, (Table 1). 

Measurements 

Active sensors and data collection: Active 

optical sensors (GS and CC) (Figure 2) were 

employed to assemble NDVI data weekly, 

where sensing began once plants reached the 

fourth leaf stage till the twentieth (4, 8, 10, 12, 

16, and 20) (22). The NDVI data were 

acquired at 60 cm over the top of the plant 

from the middle row of each plot, where about 

40–60 readings were collected from each plot. 

The excel and in-house macro programs for 

Visual Basic were utilized to compute the 

mean of sensing data (21). The NDVI data 

were normalized by calculating in-season yield 

estimation (INSEY) and then combined 

according to leaves number (22), counted 

during each sense date. Data collection was 

continued until completing the twentieth leaf 

stage. After that, plants start laying down, and 

greenness declines, preparing to enter the 

maturing stage. Table 2 shows how sensors 

provided NDVI data during walk-throughs of 

plant rows; due to the long Excel columns, the 

table has been truncated to indicate the 

beginning and end of the data series. Table 2 a 

shows the beginning of collecting data, while 

(Table 2 b) with a marked row represents a 

new data collection for the following plot in 

the RCBD.  

 
Figure 2. GreenSeeker sensor that was used in the experiment 



Iraqi Journal of Agricultural Sciences –2023:54(2):491- 503                                               Ahmed & et al. 

495 

Table 1. Soil chemical data, crop rotation, and soil series (66) 
Site pH OM NO3 NH4 P Ksat Casat Mgsat S Bo Cu Fe Mn Zn CEC Crop 

Rotation 

Soil Series 

g kg-1  ----------------------------------------------------mg kg-1-------------------------------------------------------------- me 100g-1 

AF1 6.5 27 7 4.0 21.5 98000 680000 222000 4.0 0.2 0.42 2.0 2.9 0.3 7.0 >3 yrs Fine-Loamy, mixed, Frigid  Typic 

Haplorthods 

AF2 7.0 18 6 9.0 17.0 80000 660000 250000 4.0 0.1 0.38 3.3 2.7 0.7 6.2 >3 yrs Fine-Loamy, mixed, Frigid  Typic 

Haplorthods 

AF3 6.0 18 12 8.0 15.0 70000 430000 162000 5.0 0.2 0.57 8.9 4.9 0.5 6.3 >3 yrs Fine-Loamy, mixed, Frigid  Typic 

Haplorthods 

CA1 6.5 37 6 1.0 23.6 128000 692000 180000 8.0 0.3 0.67 5.0 3.2 1.3 7.9 2 yrs Fine-Loamy, mixed, Frigid Aquic 

Haplorthods 

CA2 5.0 41 8.0 3.0 19.4 90000 270000 96000 19.0 0.4 1.69 23 8.1 2.6 7.8 2 yrs Gravelly loam, Isotic, Frigid, 

Typic Haplorthods 

CA3 6.0 30 7.0 2.0 19.5 80000 800000 125000 9.0 0.3 0.95 6.2 1.3 1.4 6.2 2 yrs Gravelly loam, Isotic, Frigid, 

Typic Haplorthods 

FV 5.9 49 5 1.0 19.8 93000 771000 136000 15.0 0.3 0.85 10.0 4.2 1.3 7.3 3 yrs Fine-Loamy, mixed, Frigid Aquic 

Haplorthods, 

LM 6.0 33 3.0 2.0 19.0 90000 7700000 1370000 7.0 0.2 2.96 8.7 3.4 0.8 6.5 2 yrs Gravelly loam, Isotic, Frigid, 

Typic Haplorthods 

NS-1 5.4 45 21 6.0 18.2 46000 476000 127000 10.0 0.3 1.12 8.4 7.3 1.9 8.7 3 yrs Fine-Loamy, mixed, Frigid Typic 

Haplorthods 

NS-2 5.6 41 16 6.0 19.3 66000 541000 138000 6.0 0.3 1.33 11.0 8.8 1.7 7.9 3 yrs Coarse-Loamy, Isotic, Frigid 

Oxyaquic Haplorthods 

WL 5.8 41 15 5.0 16.5 99000 626000 147000 9.0 0.3 0.71 6.0 8.4 1.6 7.3 3 yrs Fine-Loamy, mixed, Frigid Aquic 

Haplorthods 
Soil reaction was estimated in a 1:1 ratio of soil to deionized water (63), organic matter was estimated utilizing loss on ignition (LOI) approach (7), micro and macronutrients and were extracted utilizing modified 

Morgan extraction approach (38), and estimated by ICP-OES (Inductively coupled plasma optical emission spectroscopy)
 
(25), but phosphorus was estimated utilizing colorimetric (34), NO3 was extracted utilizing 

KCL (33), cation exchange capacity (CES) was estimated utilizing ammonium acetate approach (25).
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Table 2. Represents data (NDVI) collected by the GS*, a) starting a plot, b) ending the 

previous plot, and starting the next, as the marked row showing. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*GreenSeeker 

Sensor description and sensing procedure: 

Two handheld active optical sensors (GS-

Trimble Navigation Limited, Sunnyvale, CA, 

USA) and (CC-ACS-430 sensor Holland 

Scientific, Inc., Lincoln, NE, USA) were used 

in this investigation. The GS sensor estimates 

incident and reflected light from the plant 

canopy at a wavelength in R and NIR bands 

(Table 3) (50). In GreenSeeker, a ray is 

transmitted from light-emitting diodes at 

different duration, such that the visible source 

pulses for 1.0 ms, and then the NIR diode 

source pulses for 1.0 ms with 40,000 Hz. The 

light covers about 60 cm in width by 1.0 cm in 

length, with a long dimension positioned 

vertically in the running path. The Crop Circle 

sensor emits white light and employs three 

types of filters, which are  R, red-edge, and 

NIR (Table 3), in order to segregate the 

reflected light. The sensor collects nearly 2–20 

of NDVI readings per second, so with each 

recorded value in a 6.0 m plot length with 5.0 

km hr
-1

 of walking speed, there is an average 

of 4000 NDVI readings. Sensor outputs are 

(a)  A B C D 

Time Plot Count NDVI 

 37010 27 1 0.689 

437110 27 2 0.798 

437210 27 3 0.829 

437310 27 4 0.832 

437410 27 5 0.852 

437510 27 6 0.722 

437610 27 7 0.828 

437710 27 8 0.847 

437810 27 9 0.851 

437910 27 10 0.871 

438010 27 11 0.855 

438110 27 12 0.871 

438210 27 13 0.864 

438310 27 14 0.842 

438410 27 15 0.838 

438510 27 16 0.856 

438610 27 17 0.866 

438710 27 18 0.865 

438810 27 19 0.881 

438910 27 20 0.878 

439010 27 21 0.856 

439110 27 22 0.878 

439210 27 23 0.872 

439310 27 24 0.876 

439410 27 25 0.861 

439510 27 26 0.811 

439610 27 27 0.874 

439710 27 28 0.845 

439810 27 29 0.828 

439910 27 30 0.809 

440010 27 31 0.815 

440110 27 32 0.854 

440210 27 33 0.828 

440310 27 34 0.809 

440410 27 35 0.815 

(b)  A B C D 

440510 27 32 0.854 

440610 27 33 0.828 

440710 27 34 0.815 

440810 27 35 0.864 

440910 27 36 0.847 

441010 27 37 0.856 

441110 27 38 0.868 

441210 27 39 0.875 

441310 27 40 0.837 

441410 27 41 0.839 

441510 27 42 0.853 

441610 27 43 0.842 

441710 27 44 0.795 

441810 27 45 0.836 

441910 27 46 0.769 

442010 27 47 0.43 

442110 27 48 0.256 

442210 27 49 0.258 

442310 27 50 0.256 

442410 27 51 0.456 

442510 27 52 0.514 

442610 27 53 0.589 

442710 27 54 0.682 

442810 27 55 0.764 

442910 27 56 0.668 

443010 27 57 0.767 

443110 27 58 0.689 

444610 27 59 0.874 

444710 28 60 0.821 

444810 28 61 0.878 

444910 28 62 0.787 

445010 28 1 0.846 

445110 28 2 0.847 

445210 28 3 0.846 

445310 28 4 0.835 

445410 28 5 0.819 
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reflectance values that allow the calculation of 

vegetation indices (50). 

The equation for red-NDVI and red-edge 

NDVI is : 

Red NDVI =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
      ….(1)        Red Edge 

NDVI = 
𝑁𝐼𝑅−𝑅𝑒𝑑 𝐸𝑑𝑔𝑒

𝑁𝐼𝑅+𝑅𝑒𝑑 𝐸𝑑𝑔𝑒
 ..(2)   Where NIR=near-

infrared band 

Red= red band 

RedEdge= rededge band         

Table 3. Spectral properties for sensors 

Properties 
Sensors 

GreenSeeker Crop Circle 

R (nm) 656 630 

Red-edge (nm) - 730 

NIR (nm) 774 780 

Total covered 

area (cm
2
) 

92 741 

Due to the insignificant differences in the 

growth stages among locations, NDVI data 

were normalized employing the INSEY 

procedure. The in-season estimate of yield 

(INSEY) could be beneficial if NDVI data 

were combined from different sites and years. 

The in-season estimate of yield (INSEY) (43) 

was calculated by dividing NDVI data on the 

GDD that started from the planting date to the 

date of taking sensor readings (58), as shown 

in equation (3). 

GDD = [(T_max+T_min)/2 ]- C ..…(3)        

where: Tmax. and Tmin. describes the daily 

maximum and minimum temperatures, which 

is the base growing temperature for potato 

(10°C). Sensing was performed by passing GS 

and CC at an approximate space of 60 cm over 

the plant canopy, resulting in a similar portion 

of reflectance at all locations and each growth 

stage (21). 

Yield harvesting and calculation 

A three 3.0-m random plot length selected 

from the two middle rows (6.0 m total) of each 

subplot was harvested mechanically utilizing a 

potato digger machine. Potato tubers were 

collected into individual paper containers of 23 

kg capacity, then cleaned from plant and soil 

debris, and graded to four different sizes using 

a potato grading machine. The length of the 

two middle rows (6.0 m total length) of each 

subplot was converted to 3.0 m length and 

then utilized to estimate total yield production 

employing the equation supplied by North 

Dakota and Minnesota (equation 4) (16). The 

certain weight/acre (cwt/acre) = [lb/(10 ft). × 

multiplication Factor] ….(4)    The 

multiplication factor relies on the row width, 

where 14.5 is used when planting a row at a 

width of 36 inches (90cm). Equation (4) was 

used to calculate the total yield per area and 

then converted to the standard units (Mg ha
-1

). 

The total weight per plant was estimated by 

dividing the total weight of tubers from each 

subplot by the number of plants in a row. 

Tuber yield data has been combined from the 

two years of research based on N rates and 

statistical analysis. 

Data analysis  

Analysis of variance test (ANOVA) was used 

to examine the effect of nitrogen rates on 

potato tuber yield using SPSS software (52). 

Microsoft Excel (40) was used to plot the 

relationships between potato tuber yields and a 

series of nitrogen rates. The bar graph (Figure 

1) shows the difference between the control 

treatment (0 N kg ha
-1

) and other treatments in 

addition to the N rate that maximized the 

potato yield and the rate after which potato 

yield did not respond significantly. Regression 

analysis was conducted between potato yield 

and sensors data (INSEY) to generate models 

for yield prediction. 

RESULTS AND DISCUSSION 

A large gap was noticed among yield data 

from the 11 sites. Therefore, a multiple 

regression analysis was conducted (data not 

shown) among soil characteristics and yield, 

where OM  was found to be the main factor 

that had a high correlation with crop yield 

(R
2
= 0.78

**
) at P-value <0.01. Therefore, all 

sites were divided into soil OM ≤30 g kg
-1

 and 

≥30 g kg
-1

. The sites LM, WD, NS-1, NS-2, 

FV, CA1, CA2, and CA3, were categorized as 

≥ 30.0 g kg
-1

 OM, while the sites AF1, AF2, 

and AF3 were categorized as ≤30 g kg
-1

 OM. 

It is crucial to note that the Superior and 

Shepody potato cultivars had only one location 

each that came under ≤30 g kg
-1

 OM.  

Yield responses to nitrogen rates 

Potato yields at various N rates are shown in 

(Figure 3), showing the association between N 

rates and potato yields for locations with ≤ 30 

g kg
-1

 of OM, ≥ 30 g kg
-1

 of soil OM, and an 

average of all locations combined. The potato 

yield remarkably enhanced with N fertilizer 

applications at all the abovementioned 
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locations. Compared with the control remedy, 

0 kg N ha
-1

, the yields under 56, 112, 168 kg 

ha
-1

 treatments were enhanced by 10.75%, 

20.71%, and 18.76%, concerning the rates of 

56 kg N ha
-1

; 13.3%, 28.8%, and 25.4%, 

respectively, for 112 kg N ha
-1

, 21.72%, 

42.73%, and 37.74%, respectively for 168 kg 

N ha
-1

. For all locations, potato yields 

enhanced as the N rate increased from 0 kg N 

ha
-1

 to 168 kg N ha
-1

. Nonetheless, no 

substantial increase was seen for 224 kg N ha
-

1
, indicating that the 168 kg N ha

-1
 was the 

highest economic rate for potato yield 

production. 

 
Figure 3. The potato yield response to various N fertilizer rates from all locations during two 

growing seasons (2018-2019) when P-value < 0.05 (2). 

Procedure (1) for nitrogen recommendation 

Generating the nitrogen fertilizer 

optimization algorithm (NFOA) 

Algorithms for managing N rates for numerous 

crops and regions have been established (28). 

They can be practiced in a sensor-based N rate 

calculator produced by agronomists at 

Oklahoma State University to feed in zone-

specific sensor data for determining the in-

season crop yield and N response index (RI). 

The algorithm of N rate recommendation for 

sensor-based information is (41); 

N rate = 
[(𝒀𝑷𝟎 ×𝑹𝑰)−𝒀𝑷𝟎] × 𝑵%

𝐍𝐔𝐄
   ….(5)       

where YP0 is the maximum achievable crop 

yield with no applied N. 

RI is the response index 

N% is the percentage of N in the yield, 0.026 

(2.6%) (1).  

NUE is the nitrogen use efficiency (yield ratio 

to fertilizers) (18). 

Yield potential (YP0) 

YP0 is defined as the maximum achievable 

crop yield with no applied N. Considered the 

backbone of any N fertilizer rate 

measurements, YP0 can be predicted from the 

relationship between crop yield and INSEY 

(35,43). The yield potential (YP0) is presented 

by  

YP0 = Ae b 
𝐍𝐃𝐕𝐈

𝐆𝐃𝐃
     …..(6)            

where: A and b indicate the intercept and 

slope, respectively, of the exponential function 

due to the regression analysis between 

potential yield and INSEY (43,52). The 

regression analysis between tuber yield (kg ha
-

1
) from the plots of 0 N kg ha

-1
 and INSEY 

data was used to generate the prediction 

equation. All growth stages were tested to 

generate the best-fitted model. The end of the 

tuber initiation of growth stage (20
th

 of leaves 

stages) was the best time to produce a 

significant coefficient of determination 

(R
2
=0.24) at P-value <0.05. The tuber 

initiation stage is when that plant uptake more 

N for tuber growth, while the stage before 

(vegetative growth) is the time to leave and 

stems from growing, so most of the N is only 

for vegetative growth. Next is the tuber 

bulking, where the N uptake is less than the 

tuber initiation stage (66). The INSEY derived 

from GS-NDVI data showed a significant 

relationship between the INSEY derived from 

CC-NDVI and CC-NDRE data.  

Response index 

The NDVI readings from the high N (N-rich) 

plot divided by the NDVI of the test plot is 

referred to as the response index (RI), which 

refers to the possibility of increment in crop 

yield with added N (30). The RI also is a 

valuable indicator of crop yield response and a 

guide to reduce Type II errors (31,41). 
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Hodgen et al. (2005) (27) concluded that when 

1 < RI < 1.1, N application will likely result in 

no yield response to any added fertilizer 

1.1 < RI < 1.25, N application will likely result 

in marginal responses 

RI > 1.25, N application will result in a 

response 

Johnson and Raun (2003) (31) first defined 

yield response to applied N as the proportion 

of crop yield of an N-reference plot to that of a 

non-N treated plot given by, 

RI Harvest = 
𝐘𝐢𝐞𝐥𝐝𝐍−𝐑𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞 𝐬𝐭𝐫𝐢𝐩

𝐘𝐢𝐞𝐥𝐝𝐧𝐨𝐧−𝐭𝐫𝐞𝐚𝐭𝐞𝐝 𝐬𝐭𝐫𝐢𝐩
    ……(7)       

The mean tuber yield produced from the N-

rich plot (280 kg N ha
-1

) was 34080.91 kg ha
-1

, 

while untreated plots (0 kg N ha
-1

) produced a 

mean of 25071.85 kg ha
-1

. As a result, the 

response index (RI) was equal to 1.36, more 

than 1.25; the N application will respond. 

Raun et al. (2002) (44) stated that the 

combined advantage of the RI concept and 

INSEY allowed an accurate top-dressed N rate 

for wheat. Total grain (yield) N removed from 

each area is measured, and the difference 

between the N-rich and farmer’s application 

values were divided by a calculated NUE 

value. 

RI NDVI = 
𝐍𝐃𝐕𝐈−𝐑𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞 𝐬𝐭𝐫𝐢𝐩

𝐍𝐃𝐕𝐈𝐧𝐨𝐧−𝐭𝐫𝐞𝐚𝐭𝐞𝐝 𝐬𝐭𝐫𝐢𝐩
     

Nitrogen use efficiency 

The most fundamental description of nutrient 

use efficiency is a crop yield per unit of 

available nutrients (52), while Teboh et al. 

(2012) (53) described it as the portion of N 

input, indicating that it corresponds to the 

portion of N taken up to fulfill further yield 

needs. The information can be utilized to 

assess the nutrient use efficiency of a given 

cropping operation on an annual or multi-year 

basis. Nitrogen use efficiency (NUE) can be 

computed as defined by Baligar et al. (2001) 

(6) as follows:  
NUE  =
(𝐂𝐫𝐨𝐩 𝐲𝐢𝐞𝐥𝐝 𝐢𝐧 𝐍 𝐟𝐞𝐫𝐭𝐢𝐥𝐢𝐳𝐞𝐝 𝐩𝐥𝐨𝐭−𝐂𝐫𝐨𝐩 𝐲𝐢𝐞𝐥𝐝 𝐢𝐧 𝐧𝐨 𝐍 𝐩𝐥𝐨𝐭)

(𝐐𝐮𝐚𝐧𝐭𝐢𝐭𝐲 𝐨𝐟 𝐍 𝐟𝐞𝐫𝐭𝐢𝐥𝐢𝐳𝐞𝐫 𝐚𝐩𝐩𝐥𝐢𝐞𝐝 𝐢𝐧 𝐍 𝐟𝐞𝐫𝐭𝐢𝐥𝐢𝐳𝐞𝐝 𝐩𝐥𝐨𝐭)
   

…… (9) 

Thus, applying the data of potato yield and 

sensors in equation (5) resulted in 195 kg ha
-1

 

being the N recommendation for the potato 

crop, which is about 14% lower than the 

amount that potato growers have previously 

applied, 224 kg N ha
-1

. 

Procedure (2) nitrogen recommendation 

This procedure differs from procedure number 

(1) mathematically; however, the materials 

(yield and sensor data) are still the same. 

Sharma (2014) (47) used procedure number 

(2) to generate an N recommendation for the 

corn crop, as in equation (10). 

N rate in kg ha
-1

 = 
[(Y1−Y2) ×N%]

NUE
 …….(10)  

where: Y1 is the predicted yield from the N-

rich plot in kg ha
-1 

Y2 is the predicted yield from farmer practice 

plot in kg ha
-1 

N% is nitrogen percent in potato tuber, 0.026 

(2.6%) (1). 

NUE is the nitrogen use efficiency. As 

mentioned before, the N-rich plot is the plot 

that has been provided with a complete 

fertilizer to be an unlimited N area. Nitrogen 

(N) at 280 kg N ha
-1

 was applied to fulfill the 

N-rich plot, while 224 kg N ha
-1 

was the rate 

practiced by potato growers in Maine. A 

regression analysis was conducted between 

potato tuber yield and sensor data (INSEY) to 

generate an algorithm for potato yield 

prediction at p-value <0.05. The exponential 

model was the best to fit that curve for both 

Y1 and Y2, respectively. The twentieth leaf 

stage was most likely to have a significant 

relationship between yield data and INSEY. 

The GS and CC sensors showed a significant 

association with yield data, but the 

determination coefficient for the CC-NDRE 

was higher than those for other wavelengths 

(NDVI from GS and CC) (Figure 5 a-d). At 

the 20
th

 leaf stage, the plant vegetation density 

is maximum, called the NDVI saturation 

condition. The red (R) wavelength from GS 

and CC is sensitive only for a low range of 

chlorophyll (3–5 µg.cm
-2

) in comparison to the 

CC red-edge wavelength that is sensitive to a 

wider range (0.3–45 µg cm
-2

) (23). As a result, 

applying the potato yield data and sensor data 

in equation (10) resulted in 199 kg ha
-1

 being 

the N recommendation for potato crops, which 

is about 12% lower than the amount that 

potato growers used to apply, 224 kg N ha
-1

. 

Although the coefficient of determination (R
2
) 

was statistically significant but not very strong 

(0.13, 0.24, 0.27, and 0.38), it could still be 

considered a step toward utilizing active 

optical sensors for the nitrogen 

recommendation potato crop. Experimenting 

with sites with different soil properties is a 
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reason to have representative samples from 

multiple locations. However, having a massive 

gap among sites could be a problem, especially 

for statistical analysis. That was our problem; 

there was a significante gap in the yield data 

between locations. Classifying or grouping 

sites is an excellent idea to overcome this 

issue, but running a regression analysis for a 

single N rate (0, 224, 280 kg N ha
-1

) using a 

few points are considered insufficient. 

Therefore, experimenting with enough 

numbers sites would be the solution to this issu 

 
Figure 4. The schematic demonstrates the algorithm of nitrogen recommendation’s work 

 
Figure 5. The relationship between potato tuber yield (kg ha

-1
) and the sensor reading 

(INSEY) derived from a) NDRE, b) GS-NDVI for the N-rich plots, and c) NDRE, d) GS-NDVI 

for the farmers practiced rate r, at p-value<0.05 

CONCLUSIONS 

At the twentieth leaf stage, the sensing time 

has been observed to give a significant yield 

estimation. Although the determination 

coefficient between tubers yield and sensor 

data is not very strong due to uncontrolled 

factors such as temperature and rain, it still can 

give good results regarding yield prediction. 

Despite satellite and aerial images covering 

large areas; still, there are some uncontrolled 

restrictions, such as clouds issues and temporal 

resolution (16 days for Landsat-8). Ground-

based sensors have advantages that let users 

overcome some of these disadvantages. For 

instance, there is no problem with cloudy 

day’s condition that affects the sunlight to 

reach ground targets, where ground-based 

sensors do not depend on sunlight as a source 
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of light; it sends and collects its lights. 

Ground-based sensors can be used anytime 

unless there is no rain or muddy soil (64). The 

disadvantages of active sensors are the high 

initial cost. The used sensors may be 

somewhat expensive ($4000.0), but a small GS 

can do the same job. GS provides only the 

NDVI resulting from the NIR and R 

wavelengths, and it is cheap ($400.0) and easy 

to use. There is news that Trimble, the 

producer of the handheld GS, is working on 

updating the sensor; we hope that they will add 

the red edge wavelength as well. In procedure 

(1), the calculation depended totally on the 

predicted yield from the control treatment (0 

kg N ha
-1

). There was no chlorophyll 

saturation issue, so the R wavelength showed a 

considerable association with yield data. In 

contrast, procedure (2) calculations depended 

on the N-rich and farmer-practice plots (280 

and 224 kg N ha
-1

), respectively. The 

chlorophyll saturation issue happens 

commonly, so the red-edge wavelength was 

the best to overcome this issue and showed a 

significant relationship with yield data. The N-

recommendation rates from both procedures 

(1&2) (195 and 199 kg N ha
-1

), respectively, 

were lower than the average rate that potato 

growers in Maine are applying annually (224 

kg ha
-1

). Procedure (1) can save about 14% of 

the rate that potato growers apply, while 

procedure (2) can save about 12%. So far, 

these were valuable results and a good step 

toward utilizing active optical sensors to 

generate N recommendations. However, to be 

more accurate, the sites had to be classified 

into the soil with high OM content and soils 

with low OM content, but according to 

literature from other crops, calculations cannot 

be conducted with a small number of sites. 

Therefore, separating our sites into two classes 

will be scientifically a good idea, but when we 

have at least ten to fifteen sites experimenting 

with different soil types can help determine 

whether soil properties have a significant 

effect on the N-recommendation outcome or 

not. The same issue holds for potato cultivars 

when planting specific cultivars in a particular 

soil type; it can expose whether potato 

cultivars significantly affect the N-

recommendation outcome. 
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