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ABSTRACT OF DISSERTATION

Normalization Techniques for Sequential and Graphical Data

Normalization methods have proven to be an invaluable tool in the training of deep
neural networks. In particular, Layer and Batch Normalization are commonly used
to mitigate the risks of exploding and vanishing gradients. This work presents two
methods which are related to these normalization techniques. The first method is
Batch Normalized Preconditioning (BNP) for recurrent neural networks (RNN) and
graph convolutional networks (GCN). BNP has been suggested as a technique for
Fully Connected and Convolutional networks for achieving similar performance ben-
efits to Batch Normalization by controlling the condition number of the Hessian
through preconditioning on the gradients. We extend this work by applying it to
Recurrent Neural Networks and Graph Convolutional Networks, two architectures
which are prone to high computational costs and therefore benefit from the training
acceleration provided by BNP. The second method is Assorted-Time Normalization
(ATN). ATN is a normalization technique designed for use in sequential problems. It
combines information from the hidden layers of the model with temporal data across
the sequence dimension, which remedies a weakness of Layer Normalization in these
applications.

KEYWORDS: Machine Learning, Preconditioning, Batch Normalization, Recurrent
Neural Networks, Graph Convolutional Neural Networks
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Chapter 1 Machine Learning Introduction

In recent years, Machine Learning has found itself as the buzzword of choice in the
computer programming adjacent world and as such its use in many aspects of life has
become ubiquitous. Since it has become a catchall term in the public consciousness,
similar to the use of quantum in popular science fiction, it is important to clarify
what exactly is meant when talking about Machine Learning. To that end, this
section will first discuss some general ideas about Machine Learning: what it is, how
it works, and what its ideal uses are. From there, we will discuss in more detail
the particular architectures upon which the later sections of this work will be based,
Recurrent Neural Networks and Graph Convolutional Networks. Finally, we will give
an overview of two popular normalization algorithms, Batch Normalization and Layer
Normalization, which use various statistics from their inputs to rescale and recenter
a model’s hidden states and improve performance.

1.1 Types of Machine Learning

At its most basic level, Machine Learning is any method by which a model takes in
data and adapts its parameters to perform some task based upon that data. These
tasks generally fall into two main categories: regression and classification. In re-
gression tasks, the goal of the model is to produce a value on a continuous scale,
while classification tasks sort datasets into different discrete categories. Examples of
regression tasks are things such as determining how positive or negative a product
review is, or predicting interest rates based on economic factors. Classification tasks
can include determining which subfield an academic paper belongs in, or determining
which digit a handwritten number is supposed to be.

The different varieties of these tasks generally fall within three main categories,
usually depending on the available dataset: supervised learning, unsupervised learn-
ing, and semi-supervised learning. Supervised learning is when the dataset is com-
pletely labeled. For each datapoint, the model is given either the category that it
belongs in, or the value that the regression model is supposed to output. This setup
is the most straightforward when it comes to determining how well a model performs
since every example comes with a clear definition of success or failure. With classifi-
cation tasks, either the model correctly identifies the associated label and succeeds,
or it mislabels the example and fails. For regression tasks, there is also generally an
idea of the scale of the model’s success since the labels are on a continuum which
allows for an idea of distance. So we are able to tell a difference between predicting
something that is wildly different from the true value, versus something that is just
a bit off. The tasks in the rest of this work fall in the category of supervised learning

Unsupervised learning happens when the model is given data which does not
have associated labels. Examples of unsupervised learning include anomaly detection
and clustering. The lack of labels means that the model has the preliminary task of
deciding what the data should look like before it can move on to the general regression

1



or classification tasks. In anomaly detection, this means that the method builds an
understanding of what the majority of data points looks like, what trends to expect,
and so on, and once it has built this expectation it can then provide a score describing
how similar a given example is to what is expected and whether or not it is likely to be
an anomaly. For clustering tasks, the goal is to sort the examples into categories like
in a classification problem, but the model must first determine what those categories
should be. An example of this would be image sorting. When given a selection of
pictures of farmyard animals, the model can recognize that things with udders go
together and so do things with curly tails without needing to be told that they are
cows or pigs.

Semi-supervised learning, as the name suggests, is a mix between supervised and
unsupervised learning. In these tasks, a mixture of labeled and unlabeled data is
fed into the model. This helps to blend the strengths of these approaches and is
generally more feasible for novel applications. One major problem with supervised
learning is that the creation of labeled data in many applications involves a large
expenditure of time and effort, potentially very expensive time if the application is
in a specialized field which requires particular knowledge or expertise to create the
training set. A problem with unsupervised learning is that models are generally able
to perform better when they have labels off of which to work. So by utilizing a blend
of labeled and unlabeled data, semi-supervised learning is largely able to mitigate
these issues and give better results than unsupervised learning at a smaller cost than
supervised learning.

1.2 When to use Machine Learning

When it comes to the ideal use case for machine learning, there are a number of
factors that a particular task should have. The first of these is that the end goal
should be some form of generalization. If everything that the model is trying to
predict is already known, then it is much more efficient to use any number of search
algorithms or look-up tables to perform the task. The idea behind the machine
learning algorithm is to recognize relationships between patterns and then to find
those patterns in new data. The next thing that a machine learning task should
have is a suitably large scale. Machine learning models need a lot of information to
train efficiently. Without access to enough information, the model will not be able to
learn properly, or even worse, could learn incorrect patterns. Finally, the desired task
should be something that can be determined with the available inputs. If there is
some independent variable which is omitted entirely from the dataset, then the model
is only really capable of viewing its effects as random noise and cannot be expected
to make truly accurate predictions.

2



1.3 Neural Networks

1.3.1 Forward Propagation

There are a large number of architectures for machine learning models, such as binary
trees and support vector machines, but this work will be focusing on neural networks.
Neural networks in their most basic form consist of stacked layers of weights and
nonlinear activation functions between them; these are called feed-forward neural
networks since all of the information flows in one direction from the input to the
output. This takes a given input, x1, x2, . . . , xn, and produces outputs ŷ1, ŷ2, . . . , ŷm,
via a sequence of what are called hidden states, h

(l)
1 , h

(l)
2 , . . . , h

(l)
k , at each interior

layer, l. For each of these states, there is an associated weight between them, w
(l)
i,j ,

that takes h
(l)
i to h

(l+1)
j . Every weighted input into a particular state is then added

together and fed into a nonlinear activation function, σ, to create the new state. So,
for a given state h

(l+1)
j , its update equation is given by

h
(l+1)
j = σ(w

(l)
1,jh

(l)
1 + w

(l)
2,jh

(l)
2 + . . .+ w

(l)
k,jh

(l)
k ).

These weights and states are generally given in a more concise form as matrix opera-
tions, where the vector h(l+1) is updated using the product of the matrix W (l) = [wi,j]
and the vector h(l). This equation being

h(l+1) = σ(W (l)h(l)) = σ



w

(l)
1,1 w

(l)
1,2 . . . w

(l)
1,n

w
(l)
2,1 w

(l)
2,2 . . . w

(l)
2,n

...
...

. . .
...

w
(l)
k,1 w

(l)
k,2 . . . w

(l)
k,n

 ·

h
(l)
1

h
(l)
2
...

h
(l)
n


 .

These models are called fully connected neural networks, a diagram of which can
be seen in Figure 1.1. Despite the name, not every term in every layer needs to be
connected to previous layers. In fact, most models have a specific term for each layer
that is isolated from the previous portion of the model; this is called the bias term,
b(l). This provides a weight which is generally taken as a separate vector that is added
to the product of the weights and the nodes:

h(l+1) = σ(W (l)h(l) + b(l)) = σ



w

(l)
1,1 w

(l)
1,2 . . . w

(l)
1,n

w
(l)
2,1 w

(l)
2,2 . . . w

(l)
2,n

...
...

. . .
...

w
(l)
k,1 w

(l)
k,2 . . . w

(l)
k,n

 ·

h
(l)
1

h
(l)
2
...

h
(l)
n

+


b
(l)
1

b
(l)
2
...

b
(l)
n


 .

Bias can be included in the hidden state to form an augmented hidden state by
creating a h

(l)
0 whose associated weights are w0,j = bj. As we go through the layers,
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Figure 1.1: A Fully Connected Neural Network with bias terms for each hidden layer

each state builds on the previous ones so that we end up with a nested expression

h(3) = σ(W (2)h(2) + b(2))

= σ(W (2)σ(W (1)h(1) + b(1)) + b(2))

= . . .

= σ(W (2)σ(W (1)σ(W (0)x+ b(0)) + b(1)) + b(2))

Because we are using a nonlinear activation function, σ, this cannot be simplified fur-
ther which allows the model to be more expressive than simple linear transformations.
The choice of function is dependent on the model’s architecture and intended task,
but we generally use functions which are well-behaved. Since the learning process
for neural networks involves the computation of gradients, the behavior that we want
from our activation functions is being continuous and nicely differentiable almost
everywhere. Some of the most common of these are the Sigmoid function, Hyperbolic
Tangent, Rectified Linear Unit (ReLU) and Leaky ReLU. Graphs of all of these
functions can be found in Figure 1.2.

The Sigmoid function refers to a particular logistic curve whose equation is

σ(x) =
1

1 + e−x
.

It is an S shaped function whose limit towards negative infinity is zero and whose
limit towards positive infinity is one. Because its range is between zero and one it is a
natural choice when picturing an output as a probability. This is generalized into the
SoftMax function which is used to give probabilities for a set of categories 1, . . . , C

SoftMaxj(x) =
ej∑C
i=1 e

i
.

An advantage of the Sigmoid function is that its gradient is rather easily computed
since

σ′(x) =
e−x

(1 + e−x)2
= σ(x) · (1− σ(x))

4



Since we can nicely parameterize the derivative of the Sigmoid function in terms of
the function itself, and we will have already computed the function values on the
forward pass, Sigmoid is a nice choice for gradient descent based neural networks.
One potential issue that we have comes when the x values are particularly large, in
either the positive or negative direction. Because Sigmoid approaches zero and one
at the left and right tail, extreme values of x will give derivatives which are very close
to zero. This is called the vanishing gradient problem. Since learning is based on the
gradients, if they are too close to zero the model will not learn anything and training
will stagnate.

Hyperbolic Tangent is another example of an S shaped logistic curve. Its equation
is

tanh(x) =
ex − e−x

ex + e−x

Similarly to the Sigmoid function, hyperbolic tangent benefits from being in a set
range, from negative one to positive one. It also has a nicely computed derivative
since

tanh′(x) =
(ex + e−x)2 − (ex − e−x)2

(ex + e−x)2
= 1− tanh2(x).

This also has issues with vanishing gradients towards infinity, but the gradients for
values close to 0 are slightly larger than they would be for the sigmoid function which
can contribute to faster convergence with otherwise equivalent models.

Rectified Linear Unit (ReLU) is a piecewise linear function given by the equation
ReLU(x) = max(0, x). The simplicity of the function and its derivative are big draws
for ReLU, since the derivative is just 1 for positive values and 0 for negative ones.
This is not differentiable at 0, but standard practice is to use a derivative of 0 there.
A downside of this function is that it fails to provide information on negative values.
Since everything is just mapped to 0, there is no visible difference between small
negative values and large ones. To fix this, ReLU has been generalized to Leaky
ReLU, given by the piecewise function:

σ(x) =

{
αx x ≤ 0

x x > 0

The alpha factor allows for some information to pass through from negative values,
but is generally chosen to be close to zero so that there is still an appreciable difference
between positive and negative entries.

Once the data has been passed through all the layers, the model output and the
ground truth labels are fed into a loss function, L, which determines how erroneous
the predictions are. The particular loss function that is chosen depends on the task
and the model, but they are almost always differentiable metric functions. This is
because the desired outcome of a neural network is generally substituted by the task of
minimizing the loss function through a gradient descent algorithm. To use gradient
descent, we need gradients and therefore our function needs to be differentiable;
to have the optimization problem be meaningful, we need the positive definiteness,

5



(a) Sigmoid (b) Hyperbolic Tangent

(c) ReLU (d) Leaky ReLU

Figure 1.2: Common Nonlinear Activation Functions

reflexivity, and triangle inequality that come with metrics. For regression tasks, one
of the most common loss functions is Mean Squared Error or L2 loss,

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

where yi is the true label for a given training example and ŷi is the corresponding
predicted label. For classification tasks, Cross Entropy Error is one of the most
common loss functions,

CrossEntropyLoss = −(yi log(ŷi) + (1− yi) log(1− ŷi))

While there are other metrics on which we could want to judge a model’s performance,
like accuracy for prediction tasks or semantic values for translation tasks, those can
only be improved upon if they are related to the chosen loss function since that is all
that the model is capable of directly optimizing.

1.3.2 Back Propagation

Once the loss has been computed, the portion of training called forward propagation
is finished and back propagation begins. In this stage, we work on optimizing the
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loss function through an iterative process called gradient descent. First we calculate
gradients of the loss function with respect to the weights and biases of the model.This
is why our activation and loss functions were chosen to be easily differentiated as
gradient calculations can become computationally expensive for models which have
more layers, called deep models. The back propagation process begins at the output
layer and moves backwards through the model until reaching the input. This reversed
direction is because later layers are dependent on earlier layers in the forward pass,
so the error in earlier layers is dependent on the error later on. This can be seen by
using the chain rule to expand the gradient:

∂L
∂w

(l)
i,j

=
∂L

∂h
(l+1)
j

∂h
(l+1)
j

∂w
(l)
i,j

Adding an additional step to this expansion shows how quickly the dependencies can
grow. Since every hidden unit in the next layer is a function of h

(l+1)
j , we get a term

for each of them. So we now have the following sum for our gradient:

∂L
∂w

(l)
j,k

=
n∑

k=1

∂L
∂h

(l+2)
k

∂h
(l+2)
k

∂w
(l+1)
j,k

∂w
(l+1)
j,k

∂h
(l+1)
j

∂h
(l+1)
j

∂w
(l)
i,j

Once we have the gradients, we are able to predict the changes that the loss
function will undergo based on changes to the weights. As we approach a minimized
loss function, we expect the gradients to approach zero, so we are able to interpret
the size of the gradients as being correlated with the size of the change we need to
make to that particular weight. The sign of the gradient tells us the direction that
the weight update needs to be applied. Since we want to approach zero, we always
want to move against the gradient, analogous to moving downhill. Formulaically, this
is expressed as

w̃ = w − α
∂L
∂w

where the original weight is w, the updated weight is w̃, and α is the learning rate.
The choice of a learning rate is a key component to training any gradient descent
based machine learning model. Ideally, the learning rate is small enough that it
controls the scale of the gradient so that the update step does not overshoot the
minimum, while being large enough so that the update steps are not too small to
efficiently train. Once each of the weights has been updated, the model is ready for
another set of inputs.

1.3.3 Data Processing

While it is theoretically possible for a model to take in every possible input each
training iteration, there are a multitude of reasons why this typically does not happen
in practice. The first of these is that seeing every potential input would make it very
difficult to assess how well-suited a model is for practical performance. The ideal use
case for a machine learning model is to make predictions for a set of inputs it has
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not seen before. If we use all of our data in training, then we have no reference for
how well our model can process something new. To fix this, we generally separate
our dataset into three groups: a training set, a validation set, and a testing set. The
training set is used for the forward and back propagation steps mentioned above. The
testing set is reserved until training is completed, in order to give an accurate picture
of how the model might perform in real world inference tasks. The validation set is
used during training as a surrogate for the testing set. Every so often, the validation
set is used as input for the forward propagation step to test the model’s performance
on data outside of the training set. The validation loss is not used for a gradient
update, but can be used as a signal to change certain settings to help convergence.
Most of these settings have to do with avoiding a phenomenon called overfitting. This
is when the model learns the distribution of the training set so well that it becomes
less capable of generalizing to other sets. Signs of this are when there is considerable
gap between the training and validation losses and when the validation loss starts
to stagnate or even increase while the training loss is still decreasing. In order to
avoid this problem, we can schedule changes to the model’s parameters based on the
behavior of the validation loss. Some examples of this are learning rate decay and
early stopping. With learning rate decay, we decrease the learning rate when the
validation loss tells us that we are at risk of overfitting, usually by plateauing or
starting to increase. This also has the benefit of allowing faster initial convergence
and finer control of the parameters as we get closer to the minimum, since we are
not stuck with either a large or small learning rate. Early stopping, as the name
suggests, is when the validation loss is used to trigger the end of training. This allows
the model to get an idea of when it was best at inference and ignore the changes past
that point. Without early stopping, we can only hope that the model became the
best it could be whenever we told it to stop training.

Once we have the training, validation, and testing splits decided, we begin forward
and back propagation with the training set. Whenever the model has seen the entire
training set, we call this an epoch. Training continues with occasional uses of the
validation set until a set epoch limit is reach, when the final model state is determined
and the testing set is used to give a final performance metric. The number of epochs
depends on a number of factors such as the complexity of the model, the size and
complexity of the dataset, computational or time constraints, and more.

In many cases, the size of the training set can be too large for all of it to be fed into
the model at once. When this happens, we need to break the training set into smaller
mini-batches. These are small subsets of training examples chosen at random from
the training set without replacement. Once the mini-batch is fed through forward
propagation, we then compute the mini-batch gradients and use those to update the
model’s parameters. Since these mini-batch gradients are not necessarily the same
as what we would get with whole batch training, this process is called stochastic
gradient descent.
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1.4 Recurrent Neural Networks

The remainder of this chapter will focus on specialized architectures and methods
which will be used in the following chapters. The first of these architectures is the
Recurrent Neural Network (RNN). These are models which are designed to be used
with sequential data, such as words or sentences. Popular tasks for these models
include things like machine translation and natural language processing. The primary
problem with using Fully Connected Neural Networks for these tasks is that the
inputs do not have a set length. For example, suppose that we want to predict
the next word in a sentence. The first thing we need to do is embed the existing
words in vector form, generally of a set length e.g. vectors of length 20. If we
feed that in as a concatenated input, then the initial weight matrix needs to be
20 × (number of words) × (hidden size). This then locks us into only being able
to predict the sixth word in a sentence, or at least only being able to look back five
words. So we want a fix that prevents the length of the input from changing with the
number of words. An option is to give each word its own weight matrix, but then we
do not have a trained matrix for our words if any sentence in the testing or validation
sets are longer than the sentences in the training set. We also want to capture the
dependencies as we go through a sentence, for example, if we see the word ‘neither’
then we should be expecting to see ‘nor’ soon. To see these relationships, we want
words further in the sentence to be included deeper in the model, but then we have
the same issue of needing long enough sentences in our training set to have enough
layers for the testing set. The Recurrent Neural Network fixes these problems by
reusing weights, allowing it to be as long as needed to include inputs of any length.
It also brings in a new word at each layer, so we can see those dependencies in the
sequence direction. The forward step of an RNN is

h(t) = σ(Wh(t−1) + Ux(t) + b)

where the trainable parameters are the hidden to hidden weight, W , the input to
hidden weight, U , and the bias term, b, and σ is a nonlinear activation function.
In many cases, we want to have a many-to-many mapping which takes a sequence
as input and provides another sequence as output. To do this, we have an output
weight, C, which produces an output, y(t), corresponding to each hidden state, h(t).
We can adjust to one-to-many, many-to-one, or one-to-one mappings by omitting the
corresponding connections. A graphical representation of an RNN can be seen in
Figure 1.3

While reusing the weights simplifies the forward step, the back propagation be-
comes more complicated. The specialized process of calculating gradients for RNNs
is called back propagation through time (bptt). For the output weights, there are no
sequence direction dependencies since y(t) never reenters the model. Therefore the
gradient is just the sum of the gradients at each step

∂L
∂C

=
τ∑

t=1

∂L
∂y(t)

∂y(t)

∂C
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Figure 1.3: A Recurrent Neural Network

The complication for the hidden-to-hidden weights happens because there are multiple
paths from the weight to the loss function and the weight is reused in some of those
paths. For example, we will look at the gradient of L with respect to W at time step
l which we will specify using W (t). First, we have a path to the loss function through
the output at that time step, so we have one term

∂L
∂W (t)

=
∂L
∂y(t)

∂y(t)

∂h(t)

∂h(t)

∂W (t)
+ f

We also have a path by first going to the next time step and then going to the
output layer. This gives us the term

∂L
∂W (t)

=
∂L

∂y(t+1)

∂y(t+1)

∂h(t+1)

∂h(t+1)

∂h(t)

∂h(t)

∂W (t)
+ g

In fact, we get a term like that for each time step in the sequence after t. Writing
out the full expansion becomes unwieldy, so we combine all of these terms into one
via the chain rule. This gives us that the contribution to the gradient at time step t
is

∂L

∂W (t)
=

∂L

∂h(t)

∂h(t)

∂W (t)

Since the same weight is used at every time step, the entire gradient is given by the
aggregate of each of these gradients

∂L
∂W

=
τ∑

t=1

∂L
∂h(t)

∂h(t)

∂W
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A similar calculation gives the gradients for the input weights

∂L
∂U

=
τ∑

t=1

∂L
∂h(t)

∂h(t)

∂U

One major problem that RNNs have is that they are particularly susceptible to
exploding and vanishing signals. In forward propagation, the reuse of the hidden-to-
hidden weight matrix can easily cause the contribution of the hidden states to vanish
or explode if the matrix norm is not suitably close to one. While the activation
function does influence the behavior, we still have that by time step t, the initial
hidden state will have essentially been multiplied by W t times. If the weight matrix
is too small, this will zero out the initial steps and eliminate any information from the
start of the sequence. If the weight matrix is too large, then it will cause divergence.
One of the methods that has been used to help combat this problem with vanishing
signals is the inclusion of gates into the model. This gives us two specialized versions
of an RNN: the Long Short Term Memory Model (LSTM), and the Gated Recurrent
Unit Model (GRU)

The LSTM was first proposed by [Hochreiter and Schmidhuber, 1997] and builds
off of the RNN structure by creating a more complex method for an activation function
and adding a memory cell c(t) to preserve information across time. It features three
different gates: the forget gate f , the input gate i, and the output gate o. These
are found by calculating the product of the hidden state with a weight matrix and
then feeding the result into a sigmoid function to produce a value between zero and
one. If a gate is close to zero, it represents being closed and will prevent information
from passing through it, while a value close to one represents being open and having
unimpeded flow through the gate. The idea behind this is that the model will learn
when information is important and will preserve those dependencies while forgetting
things that are no longer relevant. The structure of the LSTM is

f (t)

i(t)

o(t)

g(t)

 = Wh(t−1) +Ux(t) + b

c(t) = σ(f (t))⊙ c(t−1) + σ(i(t))⊙ tanh (g(t))

h(t) = σ(o(t))⊙ tanh (c(t))

where W ∈ R4dh×dh , U ∈ R4dh×dx and b ∈ R4dh , σ is the sigmoid function, tanh is
the hyperbolic tangent, and ⊙ is element-wise matrix mulitplication, also called the
Hadamard product.

The Gated Recurrent Unit was proposed in [Cho et al., 2014] as an alternative
to the LSTM and features a number of differences. Instead of having the long-term
memory on its own, the GRU combines it as part of the hidden state. GRU also has
fewer gates than LSTM, featuring only an update gate u and a reset gate r. The
update gate takes the role of both the input and forget gates. If u is zero then the
forget gate is closed and the input gate is open, and vice versa for when u is one.
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This lets the GRU replicate the long-term dependency behavior of the LSTM while
having fewer parameters. The structure of the GRU is

r(t) = σ
(
Wrx

(t) + Urh
(t−1) + br

)
u(t) = σ

(
Wux

(t) + Uuh
(t−1) + bu

)
c(t) = tanh

(
Wcx

(t) + Uc

(
r(t) ⊙ h(t−1)

)
+ bc

)
h(t) =

(
1− u(t)

)
⊙ h(t−1) + u(t) ⊙ c(t)

where Wr, Wu, and Wc are input weights in Rn×m, Ur, Uu, and Uc are recurrent
weights in Rn×n, and br, bu and bc are the bias parameters in Rn. Here, m represents
the dimension of the input data and n represents the dimension of the hidden state.
The activation functions σ and tanh are sigmoid and hyperbolic tangent function
respectively, and ⊙ is the Hadamard product. This can also be represented as a
stacked matrix product like the LSTM.

1.5 Graph Convolutional Networks

Graph Convolutional Networks are Neural Networks which are designed to run on
inputs that are mathematical graphs, also called networks. A mathematical graph is
a collection of nodes or vertices, V , and connections or edges, E, where each edge
connects two vertices in V . These have become particularly interesting to the machine
learning community recently because they provide the flexibility to represent many of
the datasets that people want to know things about. In general, any task that relies on
knowing something about objects and relationships between them can be represented
using a graph. A Graph Convolutional Network (GCN) differs from Fully Connected
Networks because they include an aggregation method to collect information from
neighboring nodes as well as the usual weight multiplication and nonlinear activation.
The most basic GCN cell, proposed by [Kipf and Welling, 2017], is

x
(t)
i = ϕ

(
Ax

(t−1)
i W (t−1)

)
where x

(t)
i is the value of the ith node at the tth time step, W (t) is a trainable weight

matrix, and A is the augmented adjacency matrix. The adjacency matrix is where the
information about a graph’s edges is contained. For nodes i and j, if there is an edge
between them then the (i, j)th entry of A is 1, otherwise it is 0. For more complicated
graphs, these values can change. For instance, a weighted graph would have the edge’s
weight instead of 1 and a directed graph would have positive or negative values if
the edge goes from i to j or from j to i respectively. For the purposes of GCNs,
we augment the adjacency matrix in two ways. First, we add the identity matrix
making all the diagonal entries 1. This represents a loop at each node which gives
a path for a node’s state to influence itself in the next layer. Next, we multiply on
both sides by a diagonal matrix containing the reciprocal square root of each node’s
degree, its number of neighbors. This serves to normalize the states of the nodes
otherwise well connected nodes could have states that are much larger than isolated

12



Figure 1.4: An Example of a Graph

nodes since they have so many neighbors contributing to their state. A single layer of
GCN can only see information from a node’s immediate neighbors, so finding trends
from larger neighborhoods requires the use of multiple layers. After the first layer,
the neighbors of our node will have been updated based on their neighbors, and so a
second layer will provide our node with data from up to two steps away. To better
see how this propagation works, we will go through an example of finding the output
of a three layer GCN for node 3 of the graph in Figure 1.4

First we need our augmented adjacency matrix.

A = D



0 1 1 0 0
1 0 1 0 0
1 1 0 1 0
0 0 1 0 1
0 0 0 1 0

+ I

D

Where

I =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , and D =


1√
2

0 0 0 0

0 1√
2

0 0 0

0 0 1√
3

0 0

0 0 0 1√
2

0

0 0 0 0 1√
1


To figure out which nodes are involved in the creation of our final state, we need

to find every node within (τ − t) steps, where τ is the depth of the network and t
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is the layer that we are look at. This gives us the following update scheme where
x
(t)
i is the state for node i at layer t with layer 0 being the initial input, αij is the

degree factor from the D matrices, (didj)
−1/2, w(t) is the weight matrix for layer t,

and x
(t)
i = ϕ(y

(t)
i )

Layer 1

y
(1)
1 =

(
α11x

(0)
1 + α12x

(0)
2 + α13x

(0)
3

)
W (1)

y
(1)
2 =

(
α21x

(0)
1 + α22x

(0)
2 + α23x

(0)
3

)
W (1)

y
(1)
3 =

(
α31x

(0)
1 + α32x

(0)
2 + α33x

(0)
3 + α34x

(0)
4

)
W (1)

y
(1)
4 =

(
α43x

(0)
3 + α44x

(0)
4 + α45x

(0)
5

)
W (1)

y
(1)
5 =

(
α54x

(0)
4 + α55x

(0)
5

)
W (1)

Layer 2

y
(2)
1 =

(
α11x

(1)
1 + α12x

(1)
2 + α13x

(1)
3

)
W (2)

y
(2)
2 =

(
α21x

(1)
1 + α22x

(1)
2 + α23x

(1)
3

)
W (2)

y
(2)
3 =

(
α31x

(1)
1 + α32x

(1)
2 + α33x

(1)
3 + α34x

(1)
4

)
W (2)

y
(2)
4 =

(
α43x

(1)
3 + α44x

(1)
4 + α45x

(1)
5

)
W (2)

Layer 3

y
(3)
3 =

(
α31x

(2)
1 + α32x

(2)
2 + α33x

(2)
3 + α34x

(2)
4

)
W (3)

When it comes to back propagation, we are in a similar position as with the
recurrent neural networks. The final layer is straightforward, but as we go to earlier
layers, we need to take into account the various paths that our nodes can take to
reach the final node. For Node 1 in our example, we have three different ways to
reach Node 3 in the two steps we take from Layer 1: we can stay at 1 for a step
then move to 3, we can move to 3 then stay there for a step, and we can move to 2
and then to 3. So in a complete expansion of the gradient of our loss function with
respect to W (1) we have three terms coming just from Node 1. Like in the case of
the recurrent neural networks, we can use the chain rule to clear up our notation.
So all the terms for Node 1 can be included in one term, and we can do so for every
node included in that layer. With that we can express the gradient for the weight at
a given layer as

∂L
∂W (i)

=
1

|G|
∑
i∈G

∑
n∈Nτ−t(i)

∂L
∂y

(t)
n

∂y
(t)
n

∂W (t)
(1.1)

where Nτ−t(i) is the neighborhood around node i, and |G| is the number of vertices
in the graph G.

In practice, many of the graphs are too large to be processed at once, so we use
mini-batching like in the previously discussed neural networks. Where this differs
from the previous examples is that mini-batching may still not be enough to avoid
needing too much of the graph. For even a small mini-batch and a small number of
layers, if the graph is well-connected enough, a few-step neighborhood around our
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example points can still reach a huge area. To avoid this, we use neighborhood sam-
pling. This picks a specified number of random neighbors at each layer, preventing
the selection from growing too large. With these in place, we can work on suitably
sized subgraphs, preventing our potential memory issues. These subgraphs are gen-
erated by going backwards through the model, starting with the output node and
selecting its sampled neighbors, then sampling neighbors for the selected nodes and
so on until we reach the beginning of the model.

1.6 Normalization

An additional aspect of many deep learning models is the inclusion of normalization
modules in their architectures. Two of the most common of these are Batch Normal-
ization (BN) and Layer Normalization (LN). The idea behind these normalization
techniques is to attempt to fix the problem of internal covariate shift. This is the
phenomenon where the distribution of the layer inputs constantly changes during
training. When a layer’s parameters are updated during an optimization step, it is
doing so based on its performance with inputs given to it with a certain mean and
variance. However, on the next forward pass, the data it receives from the previous
layers may now be distributed rather differently since the previous layers have also
had their parameters changed. This lack of a stable base from which to learn can
make the training process much more difficult, slowing down convergence or even
preventing the model from converging at all.

Batch Normalization was proposed in [Ioffe and Szegedy, 2015a] as a way to com-
bat internal covariate shift and to speed up training. To do so, BN takes the mean
and variance over a particular mini-batch and uses them to recenter and rescale the
inputs to have a mini-batch norm of zero and variance of one. These statistics can be
too strict of a requirement to properly represent the underlying data distribution, so
learnable gain and bias parameters, γ and β, are often used to allow more flexibility.
Details of this can be seen in Algorithm 1.

Algorithm 1 Batch Normalization applied to a mini-batch of inputs, x

Input: Values of x over a mini-batch {x1, x2, . . . , xn}
A preset ε value to prevent division by zero
Outputs: Normalized values of y for each element of the mini-batch {y1, y2, . . . , yn}

µB ←
1

n

n∑
i=1

xi ▷ Collection of batch mean

σ2
B ←

1

n

n∑
i=1

(xi − µB)
2 ▷ Collection of batch variance

x̂i ←
xi − µB√
σ2
B + ε

▷ Normalization

yi ← γx̂i + β ▷ Rescaling and Recentering by learnable parameters

While Batch Normalization was proposed as a remedy for internal covariate shift,
it has been difficult to ascertain whether or not its success is actually from doing so
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or whether it assists in model performance in other ways. [Santurkar et al., 2018]
argues that batch normalization actually has little effect on internal covariate shift,
but instead acts to smooth the optimization landscape. For many problems, the
loss surface can be non-convex and difficult to optimize, but the addition of batch
normalization can remedy that which provides some explanation for why it would
speed up convergence. In addition to the argument about internal covariate shift,
[Ioffe and Szegedy, 2015a] also point to batch normalization’s role as a regularizer
as explanation of its behavior. By linking examples of the mini-batch together, the
output of the model for a particular input is no longer a deterministic problem.
Instead it can now depend on the random shuffling of the mini-batches. This helps
prevent overfitting and leads to improvements in generalization.

Although Batch Normalization has become standard in many deep learning mod-
els, there are a number of weaknesses that it suffers from. One of these is a generally
decreased performance with smaller batch sizes. Since the statistics used in the nor-
malization steps come from the batches, the selection of the mini-batches can have a
huge impact on the efficacy of the method, especially when using smaller batch sizes.
If outliers are present in a batch, they can introduce a considerable amount of noise
to the batch statistics unless there are sufficiently many normal examples included
to balance it out. While batch normalization is typically an inexpensive process, the
need for large batch sizes can require prohibitively large memory costs. Batch Norm
also suffers when it comes to adapting to sequential problems. In the inference step
of training, the model uses estimated population statistics instead of those coming
from the batch. This works well in models of specified lengths, but for variable length
problems like those RNNs are designed to model, we face the problem of having no
information to work with if we are given a test example which is longer than anything
in our training set.

Layer Normalization, proposed in [Ba et al., 2016], attempts to avoid these prob-
lems by using statistics of a given state instead of those of a training batch. LN
achieves this by taking the mean and variance over the hidden units of the state for
a single training example, as can be seen in Algorithm 2.

Algorithm 2 Layer Normalization applied to an input, x, of hidden size H

Input: An input vector x = [x1, x2, . . . , xH ]
T

A preset ε value to prevent division by zero
Outputs: A normalized vector, y

µx ←
1

H

H∑
i=1

xi ▷ Collection of mean

σ2
§ ←

1

H

H∑
i=1

(xi − µ§)
2 ▷ Collection of variance

x̂i ←
xi − µB√
σ2
B + ε

▷ Normalization

yi ← γx̂i + β ▷ Rescaling and Recentering by learnable parameters

Since this calculation does not involve any other elements of the mini-batch, LN
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is not susceptible to changes in batch size and can work even with each example
fed through individually. This has the benefit of limiting the impact of outliers on
training as well as requiring less precise tuning of the batch size hyperparameter. Also,
Layer Normalization is better suited for RNNs since there is no need for population
statistics when it comes to generalization. Since every example normalizes using
its own mean and variance, we still have the necessary statistics regardless of how
long our test examples are. Some implementations of Layer Normalization include
learnable gain and bias parameters which allows for some information to be included
across examples and through the sequence dimension, though [Xu et al., 2019] has
argued that these parameters are unnecessary.

Copyright© Cole M. Pospisil, 2023.
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Chapter 2 Batch Normalized Preconditioning (BNP)

In this chapter, we will develop a preconditioning method for Recurrent Neural Net-
works and Graph Convolutional Networks.

2.1 Preconditioned Gradient Descent

The primary method by which neural networks are trained is gradient descent. Be-
cause of this, it is important to have gradients and Hessians with desirable matrix
properties such as condition number. One common way to promote this is through
the use of a preconditioning algorithm. Supposing that we have a trainable parame-
ter vector θ, learning rate α, and a twice differentiable loss function L, the standard
gradient descent update step is

θk+1 = θk − α
∂L
∂θ

. (2.1)

Since we are seeking to converge to a local minimum of L, it is reasonable to look at
the convergence behavior as our approximations approach such a local minimizer, θ∗.
By being a minimizer, we have that ∇L(θ∗) = 0 and the Hessian matrix, ∇2L(θ∗)
is symmetric positive semi-definite. Letting λmin and λmax be the minimum and
maximum eigenvalues of ∇2L(θ∗) respectively and assuming that λmin > 0, we have
that for any ε > 0 there is a small neighborhood around θ∗ where we have

∥θk+1 − θ∗∥ ≤ (r + ε)∥θk − θ∗∥ (2.2)

for any initial approximation θ0 within that neighborhood and L2 matrix norm ∥ · ∥,
with r = κ−1

κ+1
where κ is the condition number of the Hessian. This expression is a

result of the Taylor series approximation of ∇L about the point θ∗:

θk+1 = θk − α∇L(θk) (2.3)

= θ∗ + (I − α∇2
θL(ξ))(θk − θ∗) (2.4)

for some ξ. By subtracting over the first term and applying the L2 norm to both
sides, we get

∥θk+1 − θ∗∥2 ≤ ∥I − α∇2
θL(ξ)∥2∥θk − θ∗∥2. (2.5)

Since we assumed that θ∗ is a local minimizer and ∇2L(θ∗) is therefore symmetric
positive semi-definite, we have that I −α∇2

θL(ξ) is real-valued and symmetric, so we
have that equation 2.5 can be rewritten as

∥θk+1 − θ∗∥2 ≤ (r + ε)∥θk − θ∗∥2 (2.6)

for r = max{|1−αλmin|, |1−αλmax|} [Saad, 2003, Polyak, 1964]. To get a contraction
mapping that guarantees eventual convergence, we want to have r < 1, which means
that we need α < 2/λmax = 2/∥∇2

θL(θ∗)∥. If we try to optimize r with respect to
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α we get that α = 2
λmin+λmax

. This occurs when we have either r = 1 − αλmin or
r = −1 + αλmin. To see that these in fact give us the same value for r, we need to
check both cases. Firstly, we have

r =

∣∣∣∣1− 2λmin

λmax + λmin

∣∣∣∣ (2.7)

=

∣∣∣∣λmax − λmin

λmax + λmin

∣∣∣∣ (2.8)

=

∣∣∣∣∣
λmax

λmin−1

λmax

λmin
+ 1

∣∣∣∣∣ (2.9)

=

∣∣∣∣κ− 1

κ+ 1

∣∣∣∣ (2.10)

In the second case, we use similar steps to see that r =
∣∣1−κ
κ+1

∣∣ =
∣∣κ−1
κ+1

∣∣. These
calculations show that the optimal convergence rate for our gradient descent method
is

r =
κ− 1

κ+ 1
(2.11)

where κ is the condition number of the Hessian in the L2 matrix norm,

κ = κ(∇2L(θ∗)) = λmax

λmin

.

Now that we have a clear picture on the relationship between training a model
and the condition number of the Hessian, we can attempt to improve the rate of
convergence through a manipulation of the Hessian. Since the calculation of the
Hessian matrix can be expensive and is not necessary for training, we achieve this
manipulation through the application of a preconditioning transformation on the loss
gradient. This is done through a change of variables for our trainable parameter,
giving us θ = Pz for some z. This changes the gradient descent step from Equation
2.1 to

zk+1 = zk − α∇zL(Pzk) = zk − αP T∇θL(θk) (2.12)

We can similarly rewrite equation 2.2 as

∥zk+1 − z∗∥ ≤ (r + ε)∥zk − z∗∥ (2.13)

where our Hessian with respect to z of L is given by

∇2
zL(Pz∗) = P T∇2

θL(θ∗)P.

If we can achieve a better condition number for P T∇2
θL(θ∗)P than we have for

∇2
θL(θ∗), then we have a reduced r which should guarantee faster convergence from

Equations 2.2 and 2.13. In this case, we have an updated gradient descent step
obtained from multiplying both sides of Equation 2.12 by P :

θk+1 = θk − αPP T∇θL(θk) (2.14)
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Through the use of the preconditioner, PP T , we get the benefits of the improved con-
ditioning on the Hessian through the much cheaper process of adapting the gradients
used in the gradient descent step.

While these convergence properties assume strong local convexity at the local
minimum, we are not guaranteed that this holds in our setting of training neural
networks. In this case, we have an adapted result

Theorem 1 ([Lange et al., 2021]). Consider a loss function L with continuous third
order derivatives and with a positively scale-invariant property. If θ = θ∗(t) is a
positively scale-invariant manifold at local minimizer θ∗, then the null space of the
Hessian ∇2L(θ∗(t)) contains at least the column space Col(Dtθ

∗(t)). Furthermore,
for the gradient descent iteration, θk+1 = θkk−α∇L(θk), let θ∗k be the local minimizer
closest to θk, i.e. θ∗k = θ∗(tk) where tk = argmint>0∥θk − θ∗(t)∥ and assume that the
null space of ∇2L(θ∗(t)) is equal to Col(Dtθ

∗(t)). Then, for any ε > 0m if our initial
approximation θ0 is such that ∥θ0 − θ∗0∥ is sufficiently small, then we have, for all
k ≥ 0,

∥θk+1 − θ∗k+1∥ ≤ (r + ε)∥θk − θ∗k∥,
where r = max {|1− αλ∗

min|, |1− αλmax|} and λ∗
min and λmax are the smallest nonzero

eigenvalue and largest eigenvalue of ∇2L(θ∗k), respectively.

2.2 BNP

Batch Normalized Preconditioning (BNP) is a technique that was developed for fully
connected and convolutional neural networks in [Lange et al., 2021]. BNP is a pre-
conditioning method where the Hessian is expressed in connection to the hidden state
activations of a mini-batch, and those connections are used to create a preconditioner
to improve the condition number of the Hessian. They start with a rewritten version
of the neural network forward step, h(l) = g(W (l)h(l−1) + b(l)). They change this by
considering vectors of the augmented weight and hidden state matrices,

ŵT =
[
b
(l)
i w

(l)T
i

]
and ĥ =

[
1

h(l−1)

]
and consider the the ith entry of the preactivation state, a(l), given by a

(l)
i = ŵT ĥ.

With this set up they create a parameterization of the Hessian as follows:

Proposition 1 ([Lange et al., 2021]). Consider a loss function L defined from the
output of a fully connected multi-layer neural network for a single network input x.

Consider the weight and bias parameters w
(l)
i , b

(l)
i at layer l, and write L = L

(
a
(l)
i

)
=

L(ŵT ĥ) as a function of the parameter ŵ through a
(l)
i as above. When training over a

mini-batch of N inputs, let {h(l−1)
1 , h

(l−1)
2 , . . . , h

(l−1)
N } be the associated hidden states,

h(l−1) and let ĥj =

[
1

h
(l−1)
j

]
∈ R(nl−1+1)×1. Let

L = L(ŵ) := 1

N

N∑
j=1

L(ŵT ĥj)
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be the mean loss over the mini-batch. Then, its Hessian with respect to ŵ is

∇2
ŵL(ŵ) = ĤTSĤ

where Ĥ =
[
e H

]
and

H =

h
(l−1)T
1
...

h
(l−1)T
N

 and S =
1

N

L
′′(ŵT ĥ1)

. . .

L′′(ŵT ĥN


with all off-diagonal elements of S equal to 0, and e the vector of all ones.

This gives a situation where they can relate the condition number of the Hessian
to the condition numbers of the Ĥ and S matrices, through

Proposition 2 ([Lange et al., 2021]). Let S be an m×m symmetric positive definite
matrix and Ĥ an m× n matrix. Then we have κ(ĤTSĤ) ≤ κ(Ĥ)2κ(S).

They then create a preconditioner to improve the condition number of Ĥ as fol-
lows:

ŵ = Pz, with P := UD where U :=

[
1 −µT

H

0 I

]
and D :=

[
1 0
0 diag(σH)

]−1

(2.15)

where

µH :=
1

N
HT e =

1

N

N∑
j=1

h
(l−1)
j , and σ2

H :=
1

N

N∑
j=1

(h
(l−1)
j − µH)

2 (2.16)

Here U recenters the hidden states to have zero mean and D rescales them to have
unit variance. This improves the condition number in two ways. Using

ĤU =
[
e H − eµT

H

]
and (H − eµT

H)
T e = 0

multiplication of Ĥ by U makes the first column orthogonal to the rest, and multi-
plying H− eµT

H by D scales all the columns of H− eµT
H to have the same norm. This

allows the use of the following theorem to show improved condition number:

Theorem 2 ([Lange et al., 2021]). Let Ĥ = [e,H] be the extended hidden variable
matrix, U the centering transformation matrix, and D the variance normalizing ma-
trix as in 2.15, Assume Ĥ has full column rank. We have

κ(ĤU) ≤ κ(Ĥ).

This inequality is strict if µH ̸= 0 and is not orthogonal to xmax where xmax is an
eigenvector corresponding to the largest eigenvalue of the sample covariance matrix

1
N−1

(H − eµT
H)

T (H − eµT
H). Moreover,

κ(ĤUD) ≤
√
nl−1 + 1 min

D0 is diagonal
κ(ĤUD0)

The batch normalization preconditioning step is summarized as
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Algorithm 3 One Step of BNP Training on W (l), b(l) of the lth Dense Layer

Given: ε1 = 10−2, ε2 = 10−4 and ρ = 0.99; learning rate α; µ = 0, σ = 1
Input: Mini-batch output of previous layer H = [h

(l−1)
1 , h

(l−1)
2 , . . . , h

(l−1)
N ]T ⊂ Rnl−1

and parameters gradients: Gw ← ∂L
∂W (l) , Gb ← ∂L

∂b(l)

Compute mini-batch mean/variance: µH , σ
2
H ;

Compute running average statistics: µ← ρµ+ (1− ρ)µH , σ
2 ← ρσ2 + (1− ρ)σ2

H ;
Set σ̃2 = σ2 + ε1max {σ2}+ ε2 and q2 = max {nl−1/N, 1};

Update Gw: Gw(i, j)←
1

q2
Gw(i, j)− µ(j)Gb(i)

σ̃2(j)
;

Update Gb: Gb(i)←
1

q2
Gb(i)−

∑
j

Gw(i, j)µ(j);

Output: Preconditioned gradients Gw, Gb.

2.3 BNP for LSTM

In this section, we develop a batch normalized preconditioning method for RNNs.
This method will leverage the convergence results from [Lange et al., 2021] to this
new architecture. We will also show empirical results supporting the method’s claims.

Consider a recurrent neural network (RNN) in which the tth time step is defined
by

h(t) = σ(Wh(t−1) + Ux(t) + b) (2.17)

where σ is an elementwise nonlinearity, x(t) is the tth element of a sequential input x,
W , U being weight matrices and b being bias. During training, let {x1, x2, . . . , xN}
be a minibatch consisting of N sequential examples and let the corresponding hidden
states be H = {h(0)

1 , h
(1)
1 , . . . , h

(τ)
1 , h

(0)
2 , . . . , h

(τ)
N }.

We denote h
(t)
i = σ(a

(t)
i ) as the i-th entry of h(t), where a

(t)
i = wT

i h
(t−1)+uT

i x
(t)+ bi ∈

R. Here wT
i ∈ R1×m, uT

i ∈ R1×n, and bi ∈ R are the ith row ofW , U and b respectively,
m is the dimension of h(t) and n is the dimension of x(t). Let

ŵT =
[
bi wT

i uT
i

]
∈ R1×(m+n+1), ĥ(t)T =

[
1 h(t−1)T x(t)T

]
∈ R1×(m+n+1)

then we have that a
(t)
i = ŵT ĥ(t)

Proposition 3. Consider a recurrent neural network loss function L defined for a
single sequential network input x. Write L = L(ai) = L(ŵi

T ĥ) as a function of the
corresponding a and hence of the parameter ŵ. When training over a mini-batch of
N inputs, let {h(t−1)

1 , h
(t−1)
2 , . . . , h

(t−1)
N } be the associated hidden states for each ex-

ample, {x(t)
1 , x

(t)
2 , . . . , x

(t)
N } the associated inputs, and let ĥ

(t)T
j =

[
1 h

(t−1)T
j x

(t)T
j

]
∈

R(1×(m+n+1). Let L = L(ŵ) := 1
N

∑N
j=1

∑τ
l=0 L(ŵ

T
i ĥ

(t)) be the mean loss over the
mini-batch. Then, its Hessian with respect to ŵ is

∇2
ŵL(ŵ) = ĤTSĤ, where ĤT =

[
ĥ
(0)
1 ĥ

(1)
1 . . . ĥ

(τ)
1 ĥ

(0)
2 . . . ĥ

(τ)
N

]
and S =

1

N
diag({Sk}Nk=1)where Sk =

[
∂2L

∂a
(col)
i ∂a

(row)
i

]τ
row,col=0

(2.18)
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We propose to use the following preconditioning transformation:

ŵ = Pz, where P := UD, U =

1 −µT
h −µT

x

0 I 0
0 0 I

 , D =

1 0 0
0 diag(σh) 0
0 0 diag(σx)

−1

(2.19)

where µh := 1
N(τ+1)

∑N
i=1

∑τ
j=0 h

(j−1)
i and µx := 1

N(τ+1)

∑N
i=1

∑τ
j=0 x

(j)
i are the means

of the batch’s hidden states and inputs respectively, taken across the batch and
across time, and σ2

h and σ2
x are the variances. The preconditioned Hessian matrix is

P T∇2
ŵLP = (ĤP )TS(ĤP ).

We will now confirm that P satisfies the criteria for the centering and variance
normalization transformations to be able to use Theorem 2, and thereby show that
P improves the conditioning of Ĥ and therefore of ∇2

ŵL.
We can write Ĥ as

[
e HT XT

]
where

H =
[
h
(−1)
1 h

(0)
1 . . . h

(τ−1)
1 h

(−1)
2 . . . h

(τ−1)
N

]
X =

[
x
(0)
1 x

(1)
1 . . . x

(τ)
1 x

(0)
2 . . . x

(τ)
N ,
]

and e is the vector of all ones. Then we can see that µh = 1
N ·(τ+1)

He, µx = 1
N ·(τ+1)

Xe,

ĤU =
[
e HT − eµT

h XT − eµT
x

]
and (HT − eµT

h )
T e = 0, (XT − eµx)

T e = 0. So

multiplying Ĥ by U makes the first column orthogonal to the rest of the matrix.

Corollary 1. Let Ĥ be defined as in Proposition 3, and U and D be defined as in
Equation 2.19

Then we have

κ(ĤU) ≤ κ(Ĥ) and κ(ĤUD) ≤
√
m+ 1 min

D0 is diagonal
κ(ĤUD0) (2.20)

Implementation

While the derivation of the batch normalization preconditioning method uses a generic
RNN as its basis, our experimental results will all be using LSTM as their base model.
Recall the architecture of an LSTM cell:

f (t)

i(t)

o(t)

g(t)

 = Wh(t−1) +Ux(t) + b (2.21)

c(t) = σ(f (t))⊙ c(t−1) + σ(i(t))⊙ tanh (g(t)) (2.22)

h(t) = σ(o(t))⊙ tanh (c(t)) (2.23)

Where W ∈ R4dh×dh , U ∈ R4dh×dx and b ∈ R4dh

The gating mechanism for the LSTM acts as the nonlinearity, g in our derivation,
so the adaptation from a basic RNN cell to an LSTM cell is straightforward. By

23



basing our models in LSTM, which is one of the most popular sequence task models,
we are more able to accurately compare our results with the relevant work in the
field.

The main comparisons against which we will present our model’s performance
are the vanilla LSTM cell and two normalized LSTM models: a recurrent batch nor-
malization model [Cooijmans et al., 2017] and a recurrent layer normalization model
[Ba et al., 2016].

Recall that batch normalization is a network reparameterization designed to pre-
vent internal covariate shift by using estimates of parameter’s means and standard
deviations. A batch normalization transformation is as follows:

BN(h; γ, β) = β + γ ⊙ h− µ(h)√
σ2(h) + ε

(2.24)

The statistics µ and σ are generally estimated from the minibatch statistics for train-
ing, and the training population for validation and testing. [Cooijmans et al., 2017]
proposed the following architecture for adapting batch normalization to LSTMs

f (t)

i(t)

o(t)

g(t)

 = BN(Wh(t−1) + bh) + BN(Ux(t) + bx) (2.25)

c(t) = σ(f (t))⊙ c(t−1) + σ(i(t))⊙ tanh (g(t)) (2.26)

h(t) = σ(o(t))⊙ tanh (BN(c(t))) (2.27)

Layer Normalization behaves similarly to Batch Normalization, but differs in that
the statistics are determined over the hidden units in a particular layer instead of over
a given minibatch. [Ba et al., 2016] proposed the following architecture for adapting
layer normalization to LSTMs

f (t)

i(t)

o(t)

g(t)

 = LN(Wh(t−1) + bh) + LN(Ux(t) + bx) (2.28)

c(t) = σ(f (t))⊙ c(t−1) + σ(i(t))⊙ tanh (g(t)) (2.29)

h(t) = σ(o(t))⊙ tanh (LN(c(t))) (2.30)

Our proposed architecture for a Recurrent BNP model is an adaptation of the
Layer Normalization model with a number of changes. In the forward direction, we
use layer normalization on the input and hidden terms of the preactivation state, but
omit the normalization on the memory cell from Equation 2.30. The inclusion of
the normalization in the forward pass is important because it addresses a weakness
in our BNP method, namely that it only controls model behavior in the backward
propagation step, so it is susceptible to exploding or vanishing states in the forward
pass. The inclusion of the normalization on the input and hidden terms helps to
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alleviate that problem. We found no notable benefit to the inclusion of the memory
cell normalization, so it was removed to simplify computations.

f (t)

i(t)

o(t)

g(t)

 = LN(Wh(t−1) + bh) + LN(Ux(t) + bx) (2.31)

c(t) = σ(f (t))⊙ c(t−1) + σ(i(t))⊙ tanh (g(t)) (2.32)

h(t) = σ(o(t))⊙ tanh (c(t)) (2.33)

In the backward propagation step, our model includes the derived batch normal-
ization preconditioning step between gradient calculations and optimization. Our
algorithm is slightly simplified from Algorithm 3 in that it does not use running
statistics, includes a single epsilon term to modify the variance and does not use the
q term to rescale the gradients.

Algorithm 4 One step of Recurrent BNP Training on W, U, b

Given: ε = 10−3; learning rate α
Input: Mini-batch hidden states of the recurrent layer H =
{h(0)

1 , h
(1)
1 , . . . , h

(τ)
1 , h

(0)
2 , . . . , h

(τ)
N } ⊂ Rm and mini-batch inputs for the recur-

rent layer X = {x(0)
1 , . . . , x

(τ)
1 , x

(0)
2 , . . . , x

(τ)
N } ⊂ Rn

Compute parameter gradients:
∂L

∂W
∈ Rm×m,

∂L

∂U
∈ Rm×n,

∂L

∂b
∈ Rm

µH ←
1

τ ·N

N∑
i=1

τ∑
j=1

h
(j)
i ▷ Compute Hidden State mean

µX ←
1

τ ·N

N∑
i=1

τ∑
j=1

x
(j)
i ▷ Compute Input mean

σ2
H ←

1

τ ·N

N∑
i=1

τ∑
j=1

(h
(j)
i − µH)

2 + ε ▷ Compute Hidden State variance

σ2
X ←

1

τ ·N

N∑
i=1

τ∑
j=1

(x
(j)
i − µX)

2 + ε ▷ Compute Input variance

P ←

1 −µT
H −µT

X

0 I 0
0 0 I

1 0 0
0 diag( 1

σH
) 0

0 0 diag( 1
σX

)

 ▷ Compute Preconditioner b
W
U

←
 b
W
U

− αPP T

 ∂L
∂b
∂L
∂W
∂L
∂U

 ▷ Update parameters
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Figure 2.1: Results for Adding Problem: T = 400

Experiments

In this section we will present a number of experiments which provide empirical sup-
port for our assertions that the Recurrent BNP model achieves improved acceleration
in training with no loss of performance.

Adding Problem: Our first experiment is the adding problem, which is a syn-
thetic task for RNNs originally proposed in [Hochreiter and Schmidhuber, 1997]. In
our implementation of this problem, the RNN takes a 2-dimensional input of length
T. The first dimension contains a sequence of zeros except for two ones placed ran-
domly in each half of the sequence. The second dimension is a sequence selected
uniformly from [0, 1). The goal of the task is to take the numbers from the second
dimension in positions corresponding to the ones and to output their sum.

Implementation Details: The model was trained with a batch size of 50, a single
LSTM layer with hidden size of 60 and RMSprop optimizer with learning rate of
10−3. We used a T values of 400 for Figure 2.1 and 400 for Figure 2.2. This task is
evaluated with mean-squared error.

Results: With T = 400 we see that our model shows immediate improvement over
the base model as well as both normalized models. This initial acceleration brings
the loss to below the best achieved by the other models within the first epoch, which
is then maintained throughout the rest of training. For T = 750 we see that we have
a similar acceleration boost over the LN and LSTM models, but that BN has similar
behavior. Our model then stays at comparable losses to those seen by the BN and
LSTM model, while LN is not able to converge for a sequence of this length.

Copying Problem: Our second experiment involves the copying problem, a
common synthetic task that is used to test RNNs, which was originally proposed
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Figure 2.2: Results for Adding Problem: T = 750

in [Hochreiter and Schmidhuber, 1997]. For this problem, a string of 10 digits is fed
into the RNN sampled uniformly from the integers between 1 and 8. A sequence of
T zeros follows this, and a 9, marking the start of a string of 9 zeros, for a total
length of T + 20. The objective of the task is to output the initial string of 10 digits
beginning at the marker’s location, copying the initial string from the front to the
back. Cross-entropy loss is used to evaluate this model, with a baseline expected
cross-entropy of 10 log (8)

T+20
which represents selecting digits 1-8 at random after the 9.

Implementation Details: The models were trained with a batch size of 128, a
single LSTM layer with hidden size 68, and SGD optimizer with a learning rate of
10−4. A T value of 1000 was used in Figure 2.3 and 2000 in Figure 2.4.

Results: For both of these experiments, we see that BNP achieves a quick accel-
eration boost, converging to the expected baseline value in a fraction of the number
of iterations needed by the other models. Since BNP is primarily concerned with
acceleration of training, the inability of the BNP model to pass the baseline value is
not concerning.

2.4 BNP for Graph Convolutional Networks

In this section, we will develop a BNP style preconditioner for graph convolutional
networks (GCN). Consider a GCN in which the tth layer is defined by

X(t) = ϕ
(
AX(t−1)w + b(t)

)
(2.34)

Where ϕ is some nonlinear activation function, A is an adjacency matrix, and w is a
trainable weight. For the purposes of our derivation, we will combine the weight and
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Figure 2.3: Results for Copying Problem: T = 1000

Figure 2.4: Results for Copying Problem: T = 2000
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bias into a single augmented weight matrix, like was done for fully connected and
recurrent versions. This gives us

z
(layer)
node =

∑
vi∈N1(vnode)

αnode,ix
(layer−1)
i (2.35)

ẑ
(layer)
node =

[
1

z
(layer)
node

]
(2.36)

ŵ(layer) =
[
b(layer) w(layer)

]
(2.37)

With this set up, we can reformulate Equation 1.1 to give us a gradient of the loss
function with respect to the augmented weight matrix in terms of the augmented
hidden states and then do the same for the Hessian matrix.

Proposition 4. Consider a graph convolutional network loss function L defined for
a single input x. Write L = L(zi) = L(ŵi

T ẑ) as a function of the corresponding
z and hence of the parameter ŵ. When training over a mini-batch of N inputs, let

{z(t−1)
1 , z

(t−1)
2 , . . . , z

(t−1)
N } be the associated hidden states, and let ẑ

(t)T
j =

[
1 z

(t−1)T
j

]
.

Let L = L(ŵ) := 1
N

∑N
j=1

∑
z∈Nτ−t

L(ŵT
i ẑ

(t)) be the mean loss over the mini-batch.
Then, its Hessian with respect to ŵ is

∇2
ŵ(τ−j)Ln(ŵ) =

∑
vi∈Nj(vn)

L′′(ẑ
(τ−j)
i ŵ(τ−j))ẑ

(τ−j)
i ẑ

(τ−j)T
i (2.38)

= ẐT
n SnẐn (2.39)

Where Nj(v) = All nodes with distance ≤ j from node v and

ẐT
n =

[
ẑ
(τ−j)
i1

. . . ẑ
(τ−j)
i|Nj(vn)|

]
(2.40)

Sn =


L′′(ẑ

(τ−j)
i1

ŵ(τ−j)) 0
. . .

0 L′′(ẑ
(τ−j)
i|Nj(vn)|

ŵ(τ−j))

 (2.41)

In practice, gradients are computed with respect to the aggregated loss, so there is
an additional step of the chain rule that is not reflected in the proposition. This results
in the implemented methodology computing the mean and variance across the set
M =

⋃N
n=1Nj(vn) instead of

⊔N
n=1Nj(vn). This allows us to include every pertinent

node without needing to count how many particular neighborhood subgraphs they
happen to be a included in.

2.4.1 Implementation

We propose the following preconditioner:

P := UD where U =

[
1 −µT

Z

0 I

]
and D =

[
1 0
0 diag(σZ)

]−1
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where

µZ =
1

len(Z)
ZT e =

1

len(Z)

N∑
n=1

∑
vi∈Nj(vn)

z
(τ−j)
i (2.42)

σ2
Z =

1

len(Z)

N∑
n=1

∑
vi∈Nj(vn)

(z
(τ−j)
i − µZ)

2 (2.43)

with len(Z) =
∑N

n=1 |Nj(vn)|
This choice of preconditioner satisfies the criteria of Theorem 2, therefore giving

us a better conditioned Hessian.
We will use two base models for our experiments, one uses GCNConv layers

[Kipf and Welling, 2017] and the other uses SageConv [Hamilton et al., 2018]. GC-
NConv is a simple graph convolutional operation expressed in equation form as

X ′ = D̂−1/2ÂD̂−1/2X(t)W (2.44)

where Â is the adjacency matrix augmented with self loops, and D̂ is the diagonal
degree matrix, X(t) is the hidden states of the nodes at layer t, and W is our trainable
parameter matrix. Typical implementations of GCNConv include a bias term b but
it is usually omitted in writing the general operation.

Algorithm 5 One Step of BNP for GCNConv

Given: ε = 10−1; learning rate α
Input: Mini-batch hidden states of a particular layer for the nodes in the appro-
priate neighborhood Z = {z(t)node} ⊂ Rm

Compute parameter gradients:
∂L

∂W
∈ Rm×m,

∂L

∂b
∈ Rm

µZ ←
1

len(Z)

∑
z∈Z

z ▷ Compute Hidden State mean

σ2
Z ←

1

len(Z)

∑
z∈Z

(z − µZ)
2 + ε ▷ Compute Hidden State variance

P ←
[
1 −µT

Z

0 I

][
1 0

0 diag
(

1
σZ

)]
▷ Compute Preconditioner[

b
W

]
←
[
b
W

]
− αPP T

[
∂L
∂b
∂L
∂W

]
▷ Update parameters

SAGEConv includes two weight matrices and is expressed as

x′
i = W1xi +W2 ·meanj∈N1(i)xj (2.45)

We can view the taking of the mean over the neighborhoods as being multiplication
by the adjacency matrix with rows scaled by the degree. Expressing it like that brings
the second term into the same form as for the general GCN. Likewise, we can view
the first term as having an identity matrix as its adjacency matrix. In this way, we
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Table 2.1: Results for Cora

Method Test Accuracy (Early Stopping)

ADAM (our baseline) 87.02± 0.15
SGD 88.8± 0.00

SGD+BNP 89.1± 0.00

are able to use our BNP for GCNConv process for each term independently without
significant changes. Typical implementations of SAGEConv include bias terms b1,
and b2 for each set of weights, but they are usually omitted in writing the general
operation.

Algorithm 6 One Step of BNP for SAGEConv

Given: ε = 10−1; learning rate α
Input: Mini-batch hidden states for the output nodes Z1 = {z(t)node} ⊂ Rm, mini-

batch hidden states for the nodes neighboring the output nodes Z2 = {z(t)node} ⊂ Rm

BNP(Z1,W1, b1) ▷ perform BNP from algorithm 5
BNP(Z2,W2, b2) ▷ perform BNP from algorithm 5

2.4.2 Experiments

In this section, we will present a number of experiments which display the improved
acceleration gained from the use of BNP.

Cora : Our first experiment is a node classification problem using the Cora dataset
from [Yang et al., 2016]. This dataset features 2708 scientific publications. There are
5429 edges in the information graph. The nodes contain a binary vector indicating
the presence or absence of words from a 1433 word dictionary. The goal of the task
is to sort each node into one of seven classes.

Implementation Details: Since this is a relatively small dataset, we are able to
perform full-batch training, meaning that our mini-batch is the size of the training
set (or validation/testing set if we are in the evaluation stage). The model consisted
of two GCNConv layers with hidden size of 16 separated by a ReLU function. We
compare our performance against equivalent models trained using ADAM and SGD.
Our model uses our BNP implementation with SGD as the underlying optimizer. The
models were run on 10 different seeds.

Results: A convergence curve can be seen in Figure 2.5, testing accuracies can
be seen in Table 2.1.The BNP model achieves rapid acceleration in the early epochs
which causes it to converge much sooner than the other models. The models were
evaluated using early stopping based on the best validation accuracy, so the initial
bump gives us a higher test accuracy than the other models despite the BNP model
eventually suffering from slight overfitting.

OGB Proteins: Our next experiment is a node prediction task on the Proteins
dataset from the Open Graph Benchmark collection. This is an undirected, weighted,
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Figure 2.5: Accuracy Curves for Cora
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Table 2.2: Results for OGB Proteins

Method Test Accuracy (Early Stopping)

ADAM (our baseline) 77.31± 0.47
SGD 73.25± 0.34

SGD+BNP 76.56± 0.37
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Figure 2.6: Accuracy Curves for OGB Proteins

typed graph where nodes represent different proteins and edges represent types of
biological connections. This is a multi-label binary classification problem where the
model predicts 112 different labels.

Implementation Details: Our model was trained using a mini-batch size of 1024.
It consisted of three SAGEConv layers with hidden size of 256 separated by ReLU
nonlinearities. We compare our performance against equivalent models trained us-
ing ADAM and SGD. Our model uses our BNP implementation with SGD as the
underlying optimizer. The models were run on 3 different seeds.

Results: As seen in Figure 2.6 and Table 2.2 model shows considerable improve-
ment over the model trained using the SGD optimizer in terms of both the test
accuracy and the speed of convergence. It does not surpass the performance of the
model trained using ADAM. Based on the performance with Cora, we believe that
we should be able to match the ADAM results, and there are a number of settings
that we are currently testing in order to achieve that.

OGB Products: Our third experiment is a node classification problem us-
ing the Products dataset from the Open Graph Benchmark collection. This is an
undirected, unweighted graph where nodes represent Amazon products and they are
joined by an edge if the two products were bought together. This is a multi-class
classification problem where the model seeks to sort the nodes into 47 different bins.

Implementation Details: Our model was trained using a mini-batch size of 1024,
with Neighbor sampling. It consists of three SAGEConv layers with hidden size of 256
separated by ReLU nonlinearities. We compare our performance against equivalent
models trained using ADAM and SGD. Our model uses our BNP implementation
with SGD as the underlying optimizer.

Results: As seen in Figure 2.7 and Table 2.3, our model shows considerable
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Table 2.3: Results for OGB Products

Method Test Accuracy (Early Stopping)

ADAM (our baseline) 79.11± 0.12
SGD 72.38± 0.03

SGD+BNP 78.36± 0.35

improvement over the model trained using the SGD optimizer in terms of both the
test accuracy and the speed of convergence. It does not surpass the performance of
the model trained using ADAM. Based on the performance with Cora, we believe that
we should be able to match the ADAM results, and there are a number of settings
that we are currently testing in order to achieve that.

2.4.3 Ablation Studies

In this section we will present a number of performed to test various attributes of our
method and its interactions with the base model and some standard techniques.

The first of these is a study on BNP’s performance when combined with layer
normalization and batch normalization. In the LSTM experiments, we found that
there was a performance improvement when we included normalization in the forward
pass, so it is natural to try this with the GCN version. We performed these tests
on the Cora dataset with a two layer GCN model. There are three places where
normalization can take place in this model, as can be seen in the following code for
the forward pass:� �

1 de f forward ( s e l f , data ) :
2 x , edge index = data . x , data . edge index
3
4 x = s e l f . norm 1 (x )
5

6 x , bnp in = s e l f . conv1 (x , edge index )
7 s e l f . bnp1 . c o l l e c t s t a t s ( bnp in )
8

9 x = F. r e l u (x )
10 x = F. dropout (x , t r a i n i n g=s e l f . t r a i n i n g )
11

12 x = s e l f . norm 2 (x )
13

14 x , bnp in = s e l f . conv2 (x , edge index )
15 s e l f . bnp2 . c o l l e c t s t a t s ( bnp in )
16

17 x = s e l f . norm 3 (x )
18

19 re turn F . log so f tmax (x , dim=1)� �
To see the influence of normalization throughout the model, we trained using each

combination of having the normalization layers turned on and off, with and without
BNP. In Tables 2.5 and 2.4 and Figure 2.8, we can see that the inclusion of Layer
Normalization helps accelerate the training accuracy and provides some acceleration
over the standard GCN model, but the difference it provides does not provide much
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Figure 2.7: Accuracy Curves for OGB Products
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Table 2.4: Testing Loss for Normalization Ablation Study

BN BN + BNP LN LN + BNP

000 0.524 0.511 0.524 0.508
001 0.675 0.594 0.512 0.556
010 0.584 0.571 0.627 0.602
011 0.657 0.645 0.636 0.619
100 0.522 0.639 0.524 0.597
101 0.797 0.758 0.538 0.748
110 0.569 0.694 0.633 0.736
111 0.689 0.748 0.622 0.748

Table 2.5: Testing Accuracy for Normalization Ablation Study

BN BN + BNP LN LN + BNP

000 88.8 87.2 88.8 87.1
001 87.6 87.4 88.8 87.6
010 86.2 86.2 87.1 85.6
011 87.1 86.6 86.3 87.4
100 86.7 85.2 87.7 85.5
101 84.7 84.6 86.8 85.7
110 86.1 84.8 85.8 83.5
111 84.7 84.2 86.7 83.8

difference in testing accuracies and loss. Adding BNP with LN keeps in check the
fluctuations seen with the plain LN model, but it still does not outperform the inclu-
sion of just LN. We further see that the inclusion of Batch Normalization accelerates
the model over the standard GCN model, but provides little benefit beyond that,
also there seems to be a harmful effect to having normalization in the last position.
When adding BNP, we only see worsened performance.

In our second ablation study, we look at the influence that using BNP has on the
different layers. This was trained using the Cora dataset with a two layer GCN model.
In Figure 2.9 and Table 2.6 we can see the performance with 0 denoting that BNP
was turned off for that layer, and 1 denoting that it was on. We can see that applying
BNP anywhere in the model provides acceleration over the base model and gives us
improved accuracy and loss. Determining which position is best is less obvious. Of
the BNP models, having BNP on every level provides the most acceleration, but the
model achieves the worst testing accuracy. Having BNP only on the first or second
layer provides similar performance in the loss and accuracy metrics, but the first layer
model has faster acceleration.
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Figure 2.8: Normalization Ablation Study
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Table 2.6: Testing Loss and Accuracy for BNP ablation study

Testing Loss Testing Accuracy

00 0.572 87.1
01 0.513 87.6
10 0.515 87.5
11 0.511 87.2

2.5 Conclusion

In this chapter, we derived batch normalized preconditioning methods for recurrent
neural networks and for graph convolutional networks. This is an expansion of the
work done in [Lange et al., 2021] into classes of neural network architecture that are
of particular interest in the field. We formulated our methods to use the theoretical
results from [Lange et al., 2021] as justification for their use and presented a variety
of experiments to support our claims empirically.

Copyright© Cole M. Pospisil, 2023.
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Chapter 3 Assorted Temporal Normalization

Methods such as Layer Normalization (LN) and Batch Normalization (BN) have
proven to be effective in improving the training of Recurrent Neural Networks (RNN).
These existing methods normalize using only the information at one particular time
step, and the end result of the normalization process is a preactivation state with
a time-independent distribution. This implementation fails to account for the tem-
poral differences inherent in the problem type and the architecture of RNNs. Since
these networks share weights across time steps, it may also be desirable to account
for these connections between time steps in the normalization methodology. In this
chapter, we develop a normalization method called Assorted-Time Normalization
(ATN), which preserves information from multiple consecutive time steps and nor-
malizes using them. This setup allows us to introduce longer time dependencies
into the traditional normalization methods without introducing any new trainable
parameters.

3.1 Introduction

The Recurrent Neural Network (RNN) [Rumelhart et al., 1986, Hopfield, 1982], and
RNN’s commonly used variant models, such as the Long Short-Term Memory cell
(LSTM) [Hochreiter and Schmidhuber, 1997] or the more recent Gated Recurrent
Unit cell (GRU) [Cho et al., 2014, Jing et al., 2019], are some of the core architec-
tures used for modeling time-series data in Deep Learning today. While LSTMs and
GRUs are effective in avoiding problems with vanishing gradients, all of these recur-
rent models are still subject to issues with exploding gradients, as well as over-fitting.
One of the most successful ideas that have been introduced over the years is the nor-
malization of RNNs using methods such as Layer Normalization (LN) [Ba et al., 2016]
and Batch Normalization (BN) [Cooijmans et al., 2017]. These methods recenter and
rescale the preactivation information using the statistics of that time step. This al-
lows for the norm of the model’s states and gradients to be controlled, which speeds
up training and prevents exploding gradients.

While these normalization methods have been successful, their applications to
RNNs do not involve adaptations to the variation across time and therefore loses
the usable information which it imparts. For example, the LN or BN models are
invariant to the scaling in the input at any time step and are, therefore, independent
of the norm of the input vector at each time step. Depending on the applications,
this may have devastating consequences. Additionally, LN and BN produce a preac-
tivation state with a distribution that is invariant across time. Such time invariance
properties may impede the architectural structure of RNN’s ability to exploit the
temporal dependencies fully. Since RNNs share weights across time steps, it would
be natural to introduce this dependency into the normalization method as well. An
attempted version of this involving averaging statistics across time was mentioned in
[Cooijmans et al., 2017] but was unsuccessful and was presented without much de-
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tail. It appears that simply averaging over every time step is an overcorrection that
makes the statistics susceptible to diluted averages and loses effectiveness further
into the sequence. Instead, we argue that by collecting the mean and variance across
a smaller subsequence, one can gain benefit from these time dependencies without
overly weakening the impact of a single time step.

Assorted-Time Normalization (ATN) is a normalization technique which preserves
information from multiple consecutive time steps and normalizes using them. Our
ATNmethod can be combined with other normalization methods, such as LN and BN,
that normalize input information along some dimensions but not time. It maintains
a short-term memory of the previous k time steps, which allows it to account for the
temporal dependencies in a way in which previous methods were incapable. We use
that memory to calculate the statistics used in normalization, giving us an output
that has a controlled mean and variance while still being capable of changing between
time steps. By using just a limited subsequence at each point in time, we can avoid
the problems that come from using all or none of the sequences and find the length
best suited to the dataset. Since this process works by changing which set statistics
are collected from and not adding any weights, it can be used without the introduction
of any new learnable parameters.

We present theoretical derivations for the gradient propagation and prove the
weight scaling invariance property. Our experiments demonstrate that the inclusion
of our method provides consistent improvement on variou’s tasks, such as Adding,
Copying, and Denoise Problems as well as Language Modeling Problems.

3.2 Related Work

One of the earliest attempts to use some normalization technique throughout model
layers was Batch Normalization (BN) [Ioffe and Szegedy, 2015a]. It was proposed
for Fully Connected (FC) and Convolutional (CNN) Neural Networks to normalize
network activations across the batch dimension. BN is known often to provide a
more stable and accelerated training process while improving generalizations. The
Instance Normalization (IN) [Ulyanov et al., 2017] method, contrary to BN, acts like
contrast normalization and has primarily been used for image-containing datasets.
The paper points out that the output stylized images should not rely on the contrast
of the input image content, and hence normalizing the instances helps. The Group
Normalization (GN) [Wu and He, 2018] method, which is primarily used for CNNs,
normalizes a 3D feature in a convolutional layer by dividing its channels into groups
and then normalizing the features in the group in all three dimensions.

Consider the typical structure of an RNN, also known as an RNN cell:

h(t) = f
(
Whh

(t−1) +Wxx
(t) + βh

)
(3.1)

y(t) = Wyh
(t) + βy (3.2)

where f is a nonlinear activation function.
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Recurrent Batch Normalization [Cooijmans et al., 2017] applies BN to the hidden-
to-hidden and memory cell parts of the LSTM model, which aims to reduce the
internal covariate shift between consecutive time steps. [Salimans and Kingma, 2016]
proposed Weight Normalization (WN) which seeks to decouple the magnitude from
the direction of the weight vector to change the parameters of the network and help
speeding up learning. Unfortunately, WN appears not widely used in practice due to
its limited stability compared to BN [Gitman and Ginsburg, 2017].

Layer Normalization (LN) was proposed in [Ba et al., 2016] to normalize activa-
tions along the hidden dimension for both FC networks and RNNs and has since
become very popular in RNNs. LN normalizes the preactivation state as follows:

h(t) = f
(
LN

(
Whh

(t−1)
)
+ LN

(
Wxx

(t)
)
+ βh

)
(3.3)

y(t) = LN
(
Wyh

(t)
)
+ βy (3.4)

where the LN operator is defined by

µt =
1

n

n∑
i=1

a
(t)
i σ2

t =
1

n

n∑
i=1

(
a
(t)
i − µt

)2
(3.5)

y(t) = LN(a(t); γ, β) = γ ⊙ a(t) − µt√
σ2
t + ε

+ β (3.6)

Such a setup helps eliminate the BN dependency on batch size and selection and
simplifies the application to RNNs.

More recently, Adaptive Normalization (AdaNorm) [Xu et al., 2019] made a thor-
ough analysis of LN and concluded that the rescaling and recentering factors, γ and
β in (3.6), are not as essential as the backward gradients of the mean and variance
inside of the LN method. In addition, they proposed a new method, AdaNorm, which
replaces weight and bias with some new transformation function.

3.3 Assorted Time Normalization

One undesirable property of the adaptation of LN to RNNs is that the statistics for
the normalization are calculated at each time step, resulting in a post-normalization
state which has mean and variance that are invariant across time. This prevents the
model from effectively representing the shifting distributions across time that might
be critical in modeling sequential data. For example, the normalization LN

(
Wxx

(t)
)

in (3.3) is invariant to scaling in x(t), which restricts the model from learning the
changing norm of x(t). This may be mitigated by including a bias in the linear term,
which is often used in implementations; see section 3.5.1 for more discussion. Most
of the above discussions also apply to BN.

We propose a new normalization method to break this time invariance. Consider
a sequence a =

{
a(t)
}
⊂ Rn produced in an RNN, such as the preactivation state

that we wish to normalize. At time step t of the RNN, we maintain a memory of
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Figure 3.1: Illustration of the ATN method combined with LN using k = 3 time steps:
Consider the preactivation state tensor in R5×3×3. At t = 1, we use a standard LN;
at t = 2, we normalize using information from time steps 1, 2; at t = 3 ATN method
uses information from time step t = 1, 2, 3; at t = 4, we normalize with respect to
time steps t = 2, 3, 4; and so on after that.

the previous k entries, a
(t)
k =

{
a(t−k+1), . . . , a(t−1), a(t)

}
⊂ a, in the normalization

layer, using this extended set to compute the mean and variance to be used for
normalization. This can be combined with other normalization methods. Combining
with Layer Normalization, for example, these statistics are calculated at time-step t
as follows:

µt,k =
1

nk

k−1∑
j=0

n∑
s=1

a(t−j)
s (3.7)

σ2
t,k =

1

nk

k−1∑
j=0

n∑
s=1

(
a(t−j)
s − µt,k

)2
(3.8)

See Figure 3.1 for a visual depiction of our method.
Once these statistics are calculated, we then normalize only the current term a(t)

and optionally recenter and rescale using γ and β, two trainable parameters shared
across time while adding a small epsilon to the variance to prevent division by zero,
similar to the LN method in (3.6).

y(t) = ATN(a
(t)
k ; γ, β) := γ ⊙ a(t) − µt,k√

σ2
t,k + ε

+ β (3.9)

This differs from the process in (3.6) in that we include multiple time steps in
our statistic calculations, giving us a double sum instead of the single one for LN.
This definition of the statistics is more stable in time, at least for large k, changing
modestly at each time step with only one term in the set being replaced. This results
in a normalized output that is not expected to have a uniform mean and variance
across time steps. We argue that this is desirable for sequential problems. Having
this potential for variation allows for the model to account for changing norms of the
inputs across the sequence, providing additional information about the distribution
that is lost with previous methods.

We may consider using all previous terms in the sequence to compute the statistics,
but they will have more variation in early time steps than in later ones. By keeping
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only k time steps and not the entire sequence, the statistics will vary gradually across
time, and we are able to limit the memory and computational costs, which could be
significant for long sequences.

Using information from multiple time steps also effectively provides a larger set
on which to calculate statistics. This allows a more accurate approximation to gain
a clearer glimpse at the underlying distribution of the dataset. In other words, ATN
uses statistics over a larger set that is more stable across time so that the normalized
state can retain more variations in time. In contrast, the traditional normalization
methods use high-frequency statistics at each time step to produce a normalized state
that becomes time-invariant. In particular, the ATN network depends on the scaling
of the input vector at a time step, while LN and BN do not. However, ATN preserves
the desirable weight scaling invariant property, which we show as follows:

Let H and H̃ be weight matrices for two sets of model parameters, θ and θ̃
respectively, which differ by a scaling factor of δ, i.e. H̃ = δH. Then the outputs of
ATN are the same:

ỹ(t) =
γ

σ̃t,k

⊙
(
H̃a(t) − µ̃t,k

)
+ β =

γ

σt,k

⊙
(
Ha(t) − µt,k

)
+ β = y(t) (3.10)

where σ̃t,k = δσt,k and µ̃t,k = δµt,k. This invariance property makes the ATN network
independent of the norm of H, mitigating the exploding/vanishing gradient problems.

It is also easy to see that ATN is also invariant to the rescaling of the whole
input sequence but not invariant under the rescaling of an individual element in the
sequence.

During training, we backpropagate the gradients with respect to the model param-
eters. With ATN, a key step is to propagate the gradient through the normalization

layer, i.e.,
∂y

(t)
i

∂a
(t−m)
i

. The following proposition gives the formulas for computing these

derivatives.

Proposition 5. Consider ATN for a sequence a = {a(t)} ⊂ Rn produced in a RNN

and let y(t) = ATN(a
(t)
k ; γ, β). Then, for 0 ≤ m ≤ k − 1, we have:

∂y
(t)
i

∂a
(t−m)
i

= γ ⊙

∂a
(t)
i

∂y
(t−m)
i

∂y
(t−m)
i

∂a
(t−m)
i

− ∂µt,k

∂a
(t−m)
i√

σ2
t,k + ε

− γ ⊙ a
(t)
i − µt,k

2
(
σ2
t,k + ε

)3/2 ∂σ2
t,k

∂a
(t−m)
i

(3.11)

where

∂µt,k

∂a
(t−m)
i

=
1

nk

m∑
j=0

∂a
(t−j)
i

∂a
(t−m)
i

(3.12)
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−
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(
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(3.13)

Proof. Suppose 0 ≤ m ≤ k − 1 then

µt,k =
1

nk
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j=0

n∑
s=1

a(t−j)
s (3.14)

and
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(3.15)
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+ · · ·+ ∂a
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; (3.17)

σ2
t,k =

1

nk

k−1∑
j=0

n∑
s=1

(
a(t−j)
s − µt,k

)2
(3.18)
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y(t) = γ ⊙ a(t) − µt,k√
σ2
t,k + ε

+ β (3.21)

and
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(3.22)

where
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Note that the computations of
∂y

(t)
i

∂β
and

∂y
(t)
i

∂γ
are straightforward and are omitted.

In our experiments, we will use ATN on LSTM networks. Following the method-
ology of [Ba et al., 2016] and [Cooijmans et al., 2017], our ATN method for LSTM
is as follows :


f (t)

i(t)

o(t)

g(t)

 = ATN(Whh
(t−1)) + ATN(Wxx

(t)) + b (3.24)

c(t) = σ(f (t))⊙ c(t−1) + σ(i(t))⊙ tanh(g(t)) (3.25)

h(t) = σ(o(t))⊙ tanh(ATN(c(t))) (3.26)

where ⊙ is the Hadamard product and σ(·) is the sigmoid function.

3.4 Experiments

We have performed a series of sequential data experiments which include the Copying
Problem and Adding Problems [Hochreiter and Schmidhuber, 1997], and the Denoise
Problem [Jing et al., 2019, Foerster et al., 2016] as well as Language Modeling on
character level Penn Treebank dataset [Marcus et al., 1993].

All experiments were run using Python 3.7.0, PyTorch 1.1.0, and CUDA 9.0 on a
single NVIDIA Tesla V100 GPU.

3.4.1 Synthetic Tasks

Copying

The copying problem is a common synthetic task that is used to test RNNs, which
was originally proposed in [Hochreiter and Schmidhuber, 1997]. For this problem, a
string of 10 digits is fed into the RNN sampled uniformly from the integers between
1 and 8. A sequence of T zeros follows this, and a 9, marking the start of a string
of 9 zeros, for a total length of T + 20. The objective of the task is to output the
initial string of 10 digits beginning at the marker’s location, copying the initial string
from the front to the back. Cross-entropy loss is used to evaluate this model, with
a baseline expected cross-entropy of 10 log (8)

T+20
which represents selecting digits 1-8 at

random after the 9.
Implementation Details: The models were trained with a batch size of 128, a

single LSTM layer with a hidden size of 68, an RMSProp [Tieleman and Hinton, 2012]
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Figure 3.2: Copying problem with T = 100
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Figure 3.3: Copying problem with T = 200

optimizer with a learning rate of 10−4, and T values of 100 and 200. The ATN model
is implemented with k = 45 for both T values.

Results: For each of the sequence lengths tested, the plain LSTM is incapable of
achieving losses below the baseline. While the LN-LSTM is able to do so to some
extent on the T = 100 version, see Figure 3.2, it also gets stuck at the baseline loss
on the T = 200 task, Figure 3.3. For both of these tasks, our ATN-LSTM model
demonstrates eventual losses below those reached by the LN-LSTM model, Figures
3.2 and 3.3. We also note that the initial rate of convergence is at least as steep if
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Table 3.1: Copying Results: Attained minimum values. ↓ - denotes the smaller, the
better result.

Loss × 10−1 ↓ Loss × 10−2 ↓

Sequence Length T = 100 T = 200

train validation train validation

LSTM 1.739 1.731 9.445 9.445

LN 1.542 1.529 9.445 9.445

ATN 1.354 1.354 8.020 8.020

not steeper than that of the LN-LSTM model, demonstrating that the ATN-LSTM
positively contributes to training in both the short and long term.

Adding

The adding problem is another synthetic task for RNNs which was originally proposed
in [Hochreiter and Schmidhuber, 1997]. Our implementation of this problem is a
variation of the original problem. The RNN takes a 2-dimensional input of length
T. The first dimension consists of a sequence of zeros except for two ones placed
randomly in the first and second half of the sequence. The second dimension is a
sequence of numbers selected uniformly from [0, 1). The goal of the task is to take
the numbers from the second dimension in positions corresponding to the ones and
to output their sum.

Implementation Details: The models were trained with a batch size of 50, a single
LSTM layer with a hidden size of 60, and an RMSprop [Tieleman and Hinton, 2012]
optimizer with a learning rate of 10−3. We use T values of 100 and 200. This task is
evaluated with a mean-squared error. The ATN model is implemented with k values
of 25 for T = 100 and 5 for T = 200.

Results: Our model shows consistent improvement over the LSTM and LN-LSTM
models. For each example, the ATN shows a rapid initial convergence before settling
into a slower rate which is roughly parallel to that of the LN-LSTM. In Figure 3.4, this
initial conversion almost manages to take the model to the same loss as is achieved by
the LN-LSTM after the entirety of the training. In Figure 3.5, the LN-LSTM is able
to separate itself further from the LSTM than in Figure 3.4 but is still at a higher
loss than the ATN for all but the very beginning of training.

Denoise Task

The Denoise Task [Jing et al., 2019, Foerster et al., 2016] is another synthetic prob-
lem that requires filtering out the noise out of a noisy sequence. This problem requires
the forgetting ability of the network as well as learning long-term dependencies com-
ing from the data [Jing et al., 2019]. The input sequence of length T contains 10
randomly located data points, and the other T − 10 points are considered noise data.
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Figure 3.4: Adding problem with T = 100
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Figure 3.5: Adding problem with T = 200
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Table 3.2: Adding Results: Attained minimum values. ↓ - denotes the smaller, the
better result.

Loss ×10−3 ↓ Loss ×10−3 ↓

Sequence Length T = 100 T = 200

train validation train validation

LSTM 1.034 1.212 2.390 3.161

LN 1.319 0.866 1.174 1.121

ATN 0.687 0.385 0.869 0.750
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Figure 3.6: Denoise task with T = 100

These 10 points are selected from a dictionary {ai}n+1
i=0 , where the first n elements are

data points, and the other two are the “noise” and the “marker” respectively. The
output data consists of the list of the data points from the input, and it should be
outputted as soon as it receives the “marker”. The goal is to filter out the noise and
output the random 10 data points chosen from the input.

Implementation Details: The models were trained using a batch size of 128, a
single LSTM layer with a hidden size of 100, and Adam [Kingma and Ba, 2014] opti-
mizer with a learning rate of 10−2. We use T values of 100 and 200. The ATN model
is implemented with k values of 20 and 60 for T = 100 and T = 200, respectively.

Results: For both sequence lengths, our models outperform the LSTM and the
LN-LSTM throughout training. While the LN-LSTM model can surpass the baseline
set by the LSTM, it does so later than the ATN model, and its convergence curve
flattens out at a higher loss than the ATN model.

49



0 20 40 60 80 100
Iterations (x100)

10 2

10 1

Lo
ss

LSTM-train
LN-valid
ATN-valid

LSTM-valid
LN-valid
ATN-valid

Figure 3.7: Denoise task with T = 200

Table 3.3: Denoise Results: Attained minimum values. ↓ - denotes the smaller, the
better result.

Loss ×10−2 ↓ Loss ×10−3 ↓

Sequence Length T = 100 T = 200

train validation train validation

LSTM 14.22 14.64 88.30 89.88

LN 2.489 3.169 6.108 9.057

ATN 1.733 2.073 4.70 5.433

3.4.2 Language Models

Language modeling is one of many natural language processing tasks. It is the
development of probabilistic models that are capable of predicting the next word
or character in a sequence using information that has preceded it. For both of
the Language Modeling problems, we based our experiments on the AWD-LSTM
model [Merity et al., 2018].

Character Level Penn Treebank

The models were tested on their suitability for language modeling tasks using the
character level Penn Treebank dataset [Marcus et al., 1993] also known as character-
PTB or simply cPTB dataset. This dataset is a collection of English-language Wall
Street Journal articles. The dataset consists of a vocabulary of 10,000 words with
other words replaced as <unk>, resulting in approximately 6 million characters that
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are divided into 5.1 million, 400 thousand, and 450 thousand character sets for train-
ing, validation, and testing, respectively with a character alphabet size of 50. The
goal of the character-level Language Modeling task is to predict the next character
given the preceding sequence of characters.

Implementation Details: For this task, we partitioned the training sequence into
220 character length subsequences. The models were trained using a batch size of 32,
a single LSTM layer with a hidden size of 1,000, an Adam [Kingma and Ba, 2014]
optimizer with a learning rate of 10−2, gradient clipping by norm at 3, and learning
rate decay by a factor of 10 at epoch 80 and 90. The ATN model is implemented
with a k value of 10.

Results: Our model shows improvement over the LSTM and the LN-LSTM mod-
els, the comparison results are presented in Table 3.4.

Table 3.4: Character Level Penn Treebank Results: Attained minimum values. ↓ -
denotes the smaller, the better result

bpc ↓
train validation

LSTM 1.692 1.743

LN 1.390 1.520

ATN 1.381 1.511

3.5 Ablation Studies

3.5.1 Input Statistic Invariance Across Time
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Figure 3.8: Pixel-by-pixel MNIST

In most implementations of LN-LSTM, including the one used in the experi-
ments above, the inputs to the normalization method are the results of a linear layer,
including both weight and bias. This differs slightly from the model proposed in
[Ba et al., 2016] in that their version placed the LSTM bias outside of the normal-
ization. Using that original architecture, we can clearly demonstrate the underlying
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problem with Layer Normalization that we aim to solve, the loss of input information,
by setting the statistics to constant values across time.

To show this, we use the MNIST dataset [Lecun et al., 1998] after applying Gaus-
sian noise with variance 0.1 for the pixel-by-pixel task [Le et al., 2015]. This task
takes the pixel values of a handwritten digit and inputs them as an unpermuted se-
quence of length 784 in order to predict the digit class. Due to the high probability
of pixels having near zero values, we needed to use ε values of 1 in both normal-
ization schemes. With this task, we can see in Figure 3.8 that the use of Layer
Normalization renders the model completely incapable of training. Because LN takes
the information from each pixel and normalizes it to the exact same distribution, it
erases everything the model could use to learn, making it no better than guessing.
The ATN method with k = 10 solves this problem by using multiple time steps in
calculating the mean and variance, meaning that the normalized outputs will not all
have identical statistics. This change allows ATN to perform quite well, even when
Layer Normalization cannot.

3.5.2 Post Normalization Statistics

In Figures 3.9, 3.10, and 3.11, we present the statistics of the post-normalization
components, Whh

(t−1), Wxx
(t), and c(t), from a single iteration of training for the

Adding Problem [Hochreiter and Schmidhuber, 1997] described in Section 3.4.1 with
T = 75. We present the statistics from four different models, an LN-LSTM, and three
ATN(k) models with k values of 5, 25, and 55. All of the models did not include the
use of trainable bias and gain parameters inside the normalization methods.

In Figure 3.9, we show the mean and variance after normalization of the product of
the hidden-to-hidden weight and the hidden state, Whh

(t−1). While Layer Normaliza-
tion produces constant mean and variance, the ATN method allows for the statistics
to vary at each time step, resulting in curves that do not differ too much from those
for LN in terms of scale but do demonstrate the natural fluctuations in the hidden
states. From this, we can see that we are achieving the combination of a controlled
output that is still capable of reflecting the temporal changes of the network.

In Figure 3.10, we show the statistics from the product of the input-to-hidden
weight and the input, Wxx

(t). The ATN model provides highly variable means and
variances, showcasing the amount of information about the dataset which is lost when
LN resets the statistics to these constant values.

In Figure 3.11, we show the post-normalization statistics of the memory cell, c(t).
These statistics clearly demonstrate the effect of a shorter k value as opposed to a
longer one in the mean. In the early iterations for the k = 5 model, the mean has
a larger spike which flattens to a bit above zero by the end of the iteration. For
the larger k values, this initially increased mean gets maintained throughout a larger
portion of the iteration, causing the lower values further along to have less influence
on the statistics.
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Figure 3.9: Hidden-to-Hidden
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Figure 3.10: Input-to-Hidden
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Figure 3.11: Memory Cell

3.5.3 Optimal k Value for ATN method

To highlight the importance of normalizing with respect to k time steps instead of
just one or all of them, we present a study on various k values. In Figure 3.12,
we present results on the Copying Problem [Hochreiter and Schmidhuber, 1997] de-
scribed in Section 3.4.1 with T = 100. For this experiment, we have trained LSTM,
LN, and three ATN(k) models with values of k being 25, 45, and 65 under the same
conditions.

All ATN models perform better than both LSTM and LN. The ATN(k = 45)
model performs better than ATN(k = 25), which should not be a surprise since the
larger k value would mean we are normalizing with respect to a larger set and getting
better statistics for the mean and variance; however, ATN(k = 65) performs poorer
than ATN(k = 45) and even poorer than ATN(k = 25) which suggests that too large
a k value may actually degrade the result. This may be due to numerical difficulties
in propagating derivative through k steps in ATN for a large k.
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Figure 3.12: k value study in ATN method
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3.6 Invariance Properties

Table 3.5: Invariance properties under different normalization methods

BN WN LN ATN-BN ATN-LN

Weight matrix re-scaling Yes Yes Yes Yes Yes

Weight matrix re-centering No No Yes No No

Weight vector re-scaling Yes Yes No Yes No

Dataset re-scaling Yes No Yes Yes Yes

Dataset re-centering Yes No No Yes No

Single training case re-scaling No No Yes No Yes

Input at a single time re-scaling No No Yes No No

In Table 3.5 we provide a summary of invariance properties for several normaliza-
tion methods. The methods we compare are all commonly used throughout the field
and include BN - Batch Normalization [Ioffe and Szegedy, 2015a], WN - Weight Nor-
malization [Salimans and Kingma, 2016], LN - Layer Normalization [Ba et al., 2016].
We also include two versions of our proposed method: ATN-BN - Assorted-Time Nor-
malization built on BN method, and ATN-LN - Assorted-Time Normalization built
on LN method.

This is an expansion of Table 1 in [Ba et al., 2016]. Weight matrix re-scaling
and re-centering are the adjustments of the weight matrix by multiplying a constant
scaling factor or adding a constant re-scaling factor. Weight vector re-scaling is
similar to weight matrix re-scaling, but only adjusts a single vector instead of the
entire matrix. Dataset re-centering and re-scaling consist of changing every input
example by multiplying or adding a constant. Single training case re-scaling is when
the dataset adjustments are applied to just one example. Of particular interest is the
invariance with respect to the scaling of an input at a single time point, which was
referenced in Section 3.3. This is one of the invariance properties which LN has that
its ATN adaptation does not, and we argue that this is one of the reasons that our
method improves on LN.

3.7 Conclusion

In this chapter, we have introduced a method for adapting statistics-based normal-
ization methods to recurrent neural networks to break the time invariance of the
traditional normalization methods. We have presented theoretical results on the im-
pact this method has on the model’s gradients, as well as showing the preservation of
invariance to the rescaling of the weight matrix. Our experiments demonstrate that
our ATN-LSTM improves over LN for LSTM in both training and testing results. In
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light of the popularity of LN in practical applications, our method offers an important
alternative for further improving RNN performance.

Copyright© Cole M. Pospisil, 2023.
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Chapter 4 NC-GRU

In this chapter, we present a method of reparameterizing the recurrent weights of the
Gated Recurrent Unit sequential model to produce orthogonal weights.

4.1 Introduction

As discussed elsewhere in this work, one of the most common neural network models
for sequential data is the Recurrent Neural Network (RNN) [Rumelhart et al., 1986,
Hopfield, 1982]. RNNs can efficiently model sequential data through their use of re-
peated weights and sequences of hidden states. Training vanilla RNNs does have
several obstacles [Rumelhart et al., 1986, Hopfield, 1982], one of the most studied of
these is their susceptibility to vanishing and exploding gradients [Bengio et al., 1993].
In the case of vanishing gradients, the optimization algorithm is prevented from learn-
ing due to there being only extremely small changes in the model parameters. In the
case of exploding gradients, the training suffers from instabilities such as divergence
or oscillations.

There has been significant work done to find remedies for these issues. One popular
method is the introduction of gates into the architecture of RNNs: Long Short-Term
Memory (LSTM) [Hochreiter and Schmidhuber, 1997] and Gated Recurrent Units
(GRU) [Cho et al., 2014]. This allows these models to pass along long-term informa-
tion which makes them more resistant to the vanishing gradient problem. Despite
this, GRU and LSTM models are still vulnerable to having exploding gradients.

In a similar line of research, there have been several RNN based models recently
proposed which enforce the use of unitary or orthogonal matrices for the shared recur-
rent weights [Helfrich et al., 2018, Dorado-Rojas et al., 2020, Vorontsov et al., 2017a,
Mhammedi et al., 2017, Jing et al., 2017, Arjovsky et al., 2016, Wisdom et al., 2016,
Jing et al., 2019, Maduranga et al., 2018]. One of the main benefits behind these de-
velopments is the existence of a theoretical explanation for the improved perfor-
mance of these models [Arjovsky et al., 2016]. A key component in these meth-
ods is the preservation of the weight matrices’ orthogonal or unitary properties
at every training step. There have been several different techniques for updat-
ing the recurrent weights to preserve either orthogonal or unitary properties: Cay-
ley transforms [Helfrich et al., 2018, Maduranga et al., 2018, Helfrich and Ye, 2019,
Lezcano-Casado and Mart́ınez-Rubio, 2019], Givens rotations [Jing et al., 2017], Ho-
useholder reflections [Mhammedi et al., 2017], multiplicative gradient update steps
[Wisdom et al., 2016], and other similar works that have shown the efficacy of orthog-
onal and unitary matrices [Saxe et al., 2014, Arjovsky et al., 2016, Henaff et al., 2017,
Tagare, 2011, Hyland and Gunnar, 2017, Vorontsov et al., 2017b].

In this chapter, we study the application of orthogonal matrices to one of the most
widely used RNN models, the Gated Recurrent Unit (GRU) [Cho et al., 2014], and
its theoretical and empirical benefits. We propose the usage of orthogonal matrices
in several hidden state weights of the GRU model based on gradient analysis. We
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also introduce a Neumann series-based Scaled Cayley transform for training the or-
thogonal weights. Our method utilizes a method of Scaled Cayley transforms, which
was studied in [Helfrich et al., 2018, Maduranga et al., 2018] for training orthogonal
weights for RNNs. In addition, we propose the use of a Neumann series approxima-
tion for the matrix inverse inside the Cayley transform. Such substitution performs
similarly or improves on the traditional inverse (see Section 4.4) while decreasing
computation time which is very desirable when working with larger networks. We
call our method Neumann-Cayley Orthogonal Gated Recurrent Unit or NC-GRU for
simplicity.

4.2 Related Work

In the past few decades, there has been considerable research done to improve upon
the vanilla RNN model [Rumelhart et al., 1986, Hopfield, 1982]. This includes the es-
tablishment of gates [Hochreiter and Schmidhuber, 1997, Cho et al., 2014], normal-
ization methods [Ioffe and Szegedy, 2015b, Cooijmans et al., 2017, Wu and He, 2018,
Ulyanov et al., 2017, Salimans and Kingma, 2016, Ba et al., 2016, Xu et al., 2019], as
well as the introduction of unitary and orthogonal matrices into the weights of the
RNN architecture [Arjovsky et al., 2016, Jing et al., 2017, Mhammedi et al., 2017,
Jing et al., 2019, Vorontsov et al., 2017b, Dorado-Rojas et al., 2020]. In this section,
we will discuss some of the most relevant developments to our proposed method.

Unitary RNNs (uRNNs) [Arjovsky et al., 2016] presented an architecture that
learns a unitary weight matrix. The construction of the recurrent weight matrix
is composed of diagonal matrices, reflection matrices in the complex domain, and
Fourier transforms. The uRNN model presented in [Wisdom et al., 2016] optimizes
over the space of all unitary matrices rather than operating as a product of sev-
eral parameterized matrices. EUNN [Jing et al., 2017] utilizes the product of unitary
matrices by parameterizing its recurrent matrix with products of Givens Rotations.
Also, the representation capacity of the unitary space is fully tunable and ranges from
a subspace of unitary matrices to the entire unitary space.

Work by [Mhammedi et al., 2017] proposed orthogonal RNNs (oRNNs), using
Householder reflections. This parameterization of the transition matrix allows for effi-
cient training while maintaining the orthogonality of the recurrent weights throughout
training. [Vorontsov et al., 2017b] proposes a weight matrix factorization by bound-
ing the matrix norms to encourage orthogonality. This method also controls the
degree of gradient expansion during backpropagation.

GORU [Jing et al., 2019] presented an RNN, which extends unitary RNNs with
a gating mechanism. Orthogonality is preserved via a similar methodology to EU-
RNN [Jing et al., 2017]. The results compared to GRU [Cho et al., 2014] are mixed
and task-dependent. More recently, [Dorado-Rojas et al., 2020] presented an embed-
ding of a linear time-invariant system containing Laguerre polynomials.
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4.2.1 Gated Recurrent Unit (GRU)

In this section, we present an in-depth study of the architecture of the Gated Recur-
rent Unit (GRU) which was proposed in [Cho et al., 2014] as an alternative to the
LSTM cell [Hochreiter and Schmidhuber, 1997].

The basic structure of a GRU cell is

r(t) = σ
(
Wrx

(t) + Urh
(t−1) + br

)
u(t) = σ

(
Wux

(t) + Uuh
(t−1) + bu

)
c(t) = tanh

(
Wcx

(t) + Uc

(
r(t) ⊙ h(t−1)

)
+ bc

)
h(t) =

(
1− u(t)

)
⊙ h(t−1) + u(t) ⊙ c(t)

(4.1)

where Wr, Wu, and Wc are input weights in Rn×m, Ur, Uu, and Uc are recurrent
weights in Rn×n, and br, bu and bc are the bias parameters in Rn.m is the dimension
of the input data and n is the dimension of the hidden state. In (4.1), the activation
functions σ and tanh are the sigmoid and hyperbolic tangent functions respectively,
and ⊙ is the Hadamard product. The initial hidden state h0 is typically initialized
to zero.

The primary difference between GRU and LSTM is in their treatment of long-
term memory. LSTM implements its memory term as a separate channel while GRU
includes it inside the hidden state, h(t), itself. Where LSTM has both a forget and an
input gate, GRU puts this functionality in a single gate, u(t). If the output of u(t) is 1,
then the forget gate is open, and the input gate must therefore be closed. Similarly,
if u(t) is 0. This structure allows GRUs to discard random noise or insignificant
information while grasping the important details.

4.2.2 Cayley Transform Orthogonal RNN

In this section, we present analysis of the effects of orthogonal matrices inside the
GRU cell based on Cayley transforms [Tagare, 2011]. Some initial work on the
use of Cayley transforms to preserve orthogonal weights in RNNs was presented
in [Helfrich et al., 2018] as part of the scoRNN model. This model includes a skew-
symmetric matrix A, which determines an orthogonal matrixW via the Scaled Cayley
transform

W = (I + A)−1 (I − A)D, (4.2)

where matrix D is a diagonal matrix of ones and negative ones which scales the
traditional Cayley transform [Tagare, 2011]. It is proved in [Kahan, 2006] that a
suitable tuning of the number of negative ones in the matrix D can prevent the
problem of eigenvalues of A being negative ones, making I + A singular. It further
guarantees that the skew-symmetric matrix A is bounded.

[Helfrich et al., 2018] presents the following training process for the scoRNNmodel
using Scaled Cayley transforms:
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A(t+1) = A(t) − λ∇AL
(
Usco

(
A(t)

))
(4.3)

U (t+1)
sco =

(
I + A(t+1)

)−1 (
I − A(t+1)

)
D (4.4)

where ∇AL (Usco (A)) is computed using

∇AL (Usco (A)) = V T − V, (4.5)

with
V = (I + A)−T ∇UscoL (Usco (A))

(
D + UT

sco

)
(4.6)

in which ∇UscoL (Usco (A)) is computed via standard backpropogation methods.
Despite rounding errors that may accumulate due to repeated matrix multiplica-

tions, scoRNN [Helfrich et al., 2018] maintains orthogonality up to machine precision.
This property helps provide significant improvements over other orthogonal/unitary
RNNs for long sequences on several benchmark tasks; see [Helfrich et al., 2018] for
more details.

4.3 Efficient Orthogonal Gated Recurrent Unit

We now present an efficient orthogonal GRU model. The proofs of all theoretical
results can be found in [Mucllari et al., 2022].

4.3.1 Gradient Analysis of Hidden States in GRU

Since Neural Network training is based on stochastic gradient descent, gradient be-
havior plays a very important role in convergence, stability, and most importantly
performance. When it comes to backpropagation through time for the GRU model
from (4.1), the gradients of the loss function L with respect to intermediate hidden
states, weights, and biases can be found from the respective gradients of the final
hidden state hτ , which is simplified to finding the gradient of h(t) with respect to
h(t−1) for t between 1 and τ . Namely,

∂L
∂h(i)

=
∂L
∂h(τ)

τ∏
t=i+1

∂h(t)

∂h(t−1)
. (4.7)

Thus, to analyze the gradients, we need to consider the gradient of h(t) with
respect to h(t−1) as well as its upper bound in the following theorem.

Theorem 3. Let h(t−1) and h(t) be two consecutive hidden states from the GRU model
stated in (4.1). Then ∥∥∥∥ ∂h(t)

∂h(t−1)

∥∥∥∥
2

≤ α + β∥Uc∥2 (4.8)

where
α = δu

(
max

i

{
[h(t−1)]i

}
+max

i

{
[c(t)]i

})
∥Uu∥2

+max
i

{
(1− [u(t)]i)

} (4.9)
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and
β = max

i

{
[u(t)]i

}(
δr∥Ur∥2max

i

{
[h(t−1)]i

}
+max

i

{
[r(t)]i

})
,

(4.10)

with constants δu and δr defined as follows:

δu = max
i

{[
u(t)
]
i

(
1−

[
u(t)
]
i

)}
(4.11)

and
δr = max

i

{[
r(t)
]
i

(
1−

[
r(t)
]
i

)}
. (4.12)

We can provide simple upper bounds for α, β in the following corollary of the
above theorem.

Corollary 2. For the hyperbolic tangent activation function in (4.1), we have δu, δr ≤
1
4
, [h(t)]i ≤ 1 for any i and t as well as

α ≤ 1

2
∥Uu∥2 + 1 and β ≤ 1

4
∥Ur∥2 + 1. (4.13)

These bounds may be slightly pessimistic since it is reasonable to expect the
gate elements to be near 0 or 1. In that case, the following corollary presents the
relationship between the constants α and β presented in Theorem 3. Below we use
the notation x ≲ y to denote that x is bounded by a quantity that is approximately
equal to y.

Corollary 3. When elements of GRU gates u(t) and r(t) are nearly either 0 or 1,
then constants α and β from Theorem 3 satisfy the following inequality:

α + β ≲ 2. (4.14)

Moreover, if u(t) and r(t) are nearly either the zero vector or the vector of all ones,
then

α + β ≲ 1. (4.15)

4.3.2 Neumann-Cayley Orthogonal Transformation

Based on the theoretical support of Theorem 3 and Corollary 3, we propose using
orthogonal weights in the hidden weights of GRU to better condition its gradients.
As discussed in section 4.2, there have been several different techniques proposed to
initialize and preserve orthogonal weights during training. In this work, we implement
a version of the Scaled-Cayley transformation method from 4.2.2 with a key difference.
The Scaled Cayley transform method requires the calculation of the inverse of I+A(k)

in order to update the orthogonal matrix U (k) in (4.4). The inversion of matrices
using classical numerical techniques such as LU-decomposition or the Least Squares
method can be implemented and work well when the dimension of the matrix is
small. However, when the dimension of the matrix is large, then these methods are
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prohibitively expensive in terms of both memory and computational time. Moreover,
classical methods pose a risk of overflowing, entirely preventing convergence. We
propose to solve this complication through the use of Neumann Series to approximate
the inverse of I + A(k).

To derive the Neumann series approximation for the inverse of I + A(k) in (4.4),
we consider the following:(

I + A(t)
)−1

=
(
I + A(t−1) − δA(t)

)−1
(4.16)

=
(
I −

(
I + A(t−1)

)−1
δA(t)

)−1 (
I + A(t−1)

)−1
(4.17)

=

(
∞∑
i=0

((
I + A(t−1)

)−1
δA(t)

)i)(
I + A(t−1)

)−1
(4.18)

where δA(t) := optA

(
∇AL = V (t)T − V (t)

)
, here optA includes a learning rate λ inside

of it. Note that the equality in Equations (4.17) and (4.18) relies on the assumption

that ∥
(
I + A(t−1)

)−1
δA(t)∥ < 1 for some operator norm ∥ · ∥; see [Demmel, 1997] for

more details.
In our experiments, we have considered the first and the second-order Neumann

series approximations for (4.18) with two (i = 0, 1) and three (i = 0, 1, 2) terms
respectively. The model’s performance is slightly improved with the use of the second-
order approximation, at a marginally increased cost in computational time. For the

second-order approximation, the error is of the order O
(((

I + A(k−1)
)−1

δA(k)
)3)

.

Even though this error is quite small, there is a chance that the approximation errors
will accumulate over time and the weight matrix will lose orthogonality. To avoid this,
we reset orthogonality occasionally through an explicit computation of the matrix
inverse using a factorization method at the beginning of each epoch. It might be
necessary to do it more often in the earlier stages of training due to more fluctuations
in the gradients.

Algorithm 8 Update Rule for Orthogonal Weight U

Given: D, A(0), U (0), ∇UL
(
U (0)

(
A(0)

))
, optA

Define: Ã(0) :=
(
I + A(0)

)−1

for t = 1, 2, . . . do

V (t) := Ã(t−1)T∇UL
(
U (t−1)

(
A(t−1)

)) (
D + U (t−1)T

)
δA(t) := optA

(
∇AL = V (t)T − V (t)

)
A(t) := A(t−1) − δA(t)

Ã(t) :=

(
I + Ã(t−1)δA(t) +

(
Ã(t−1)δA(t)

)2)
Ã(t−1)

U (t) := Ã(t)
(
I − A(t)

)
D

end for
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Algorithm 7 outlines the Neumann-Cayley Orthogonal Transformation method
for training the weight A and updating the corresponding orthogonal weight U . The
weight A(0) is initialized to be skew-symmetric as in [Helfrich et al., 2018] which is
based on the idea from [Henaff et al., 2017]. We apply the Cayley transform to A(0)

in order to initialize U (0). Algorithm 7 includes optA, which is a standard optimizer
such as stochastic gradient descent (SGD), RMSProp [Tieleman and Hinton, 2012],

or Adam [Kingma and Ba, 2014], that recieves ∇AL = V (k)T − V (k) as an input. An
important feature to observe here is that the skew-symmetric property of the weight
A and its gradient are preserved under such an optimizer.

4.3.3 Neumann-Cayley Orthogonal GRU (NC-GRU)

In this section, we introduce our Neumann-Cayley Orthogonal GRU (NC-GRU)
model that utilizes the proposed Neumann-Cayley Orthogonal Transform.

The structure of the NC-GRU cell is

r(t) = σ
(
Wrx

(t) + Ur(Ar)h
(t−1) + br

)
u(t) = σ

(
Wux

(t) + Uuh
(t−1) + bu

)
c(t) = Φ

(
Wcx

(t) + Uc(Ac)
(
r(t) ⊙ h(t−1)

))
h(t) =

(
1− u(t)

)
⊙ h(t−1) + u(t) ⊙ c(t)

(4.19)

here σ - sigmoid function, ⊙ - Hadamard product, and Φ - modReLU function defined
in [Arjovsky et al., 2016] as

Φ(x) := modReLU(x) := sgn(x) · ReLU (|x|+ b) (4.20)

with trainable bias b.
From empirical studies, we have determined that the best performance is generally

achieved using orthogonality in the Uc and Ur hidden weights. Similarly to the original
GRU cell, Wr, Wu, Wc, Uu, br, bu, b, are trainable parameters which are updated using
standard backpropagation algorithms such as Stochastic Gradient Descent (SGD),
RMSProp [Tieleman and Hinton, 2012], or Adam [Kingma and Ba, 2014] while Ur,
Ar, Uc, and Ac are trained using Algorithm 7.

The use of orthogonal weights leads to a better-conditioned gradient as shown in
the following Corollary.

Corollary 4. Let ht−1 and ht be two consecutive hidden states from the NC-GRU
model defined in (4.19). Then ∥Ur∥2 = ∥Uc∥2 = 1 and if elements of the gates u(t)

and r(t) are nearly 0 or 1, then the following inequality is satisfied:∥∥∥∥ ∂ht

∂ht−1

∥∥∥∥
2

≲ 2. (4.21)

Furthermore, if u(t) and r(t) are nearly either zero vector or vector of all ones,∥∥∥∥ ∂h(t)

∂h(t−1)

∥∥∥∥
2

≲ 1. (4.22)
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4.4 Experiments

We have performed various experiments to demonstrate the robustness and effi-
ciency of our NC-GRU method. In this work, we present a Language Modeling
task for the word-level Penn TreeBank dataset. For additional experiments, see
[Mucllari et al., 2022].

All the experiments were trained with equal numbers of trainable parameters, a
setting referred to as parameter-matching architecture.

4.5 Word Level Penn TreeBank

We also tested our proposed Neumann-Cayley method on the word level Penn Tree-
Bank dataset [Marcus et al., 1993]. The dataset takes the same underlying corpus
as the character-level task, but with tokens representing words instead of characters.
This results in a smaller dataset with a larger vocabulary size, with 888 thousand,
70 thousand, and 79 thousand words as training, validation, and testing sets, and a
vocabulary of 10 thousand words.

Implementation Details: We trained NC-GRU with three layers with dimensions
(400, 1150, 400). We have a learning rate set to 5× 10−4 for both the A matrix and
the rest of the model, optimized using Adam [Kingma and Ba, 2014]. The dropout
after the NC-GRU cell has a coefficient of 0.4, the embedding layer dropout has a
coefficient of 0.4, and the output dropout has a coefficient of 0.25. The number of
negative ones for matrix D for each layer was 50.

Results: Results were evaluated using the perplexity (PPL) metric and are shown
in table 4.1. We show improved performance over both baseline GRU and LSTM
models.

Table 4.1: Word Level PTB Results: Evaluated perplexity (PPL) for every model. ∗

- result obtained from our experiments; † - result quoted from [Bai et al., 2018]

PPL ↓

LSTM 78.93†

GRU 92.48† (80.73∗)
scoRNN 123.90∗

NC-GRU(Uc) (ours) 77.00

4.6 Ablation Studies

We performed a number of ablation studies to help provide empirical justification for
the use of the Neumann series, orthogonal matrices, and scaled-Cayley transforms.
These include a study on the sharpness and computational costs of the Neumann
approximation of the inverse compared to standard methods, a study on the effect of
orthogonalizing different sets of weights in the GRU, and verifying that the necessary
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condition for the use of the Neumann approximation is satisfied in our experimental
settings. These studies can be found in [Mucllari et al., 2022]

4.7 Conclusion

In this chapter, we have presented an analysis of the Gated Recurrent Unit (GRU)
model’s gradient behavior. Based on this, we proposed the Neumann-Cayley Gated
Recurrent Unit model. Our model incorporates orthogonal weights in the hidden
states of the GRU model, which are trained using a noval method of Neumann-Cayley
transformation which maintains orthogonality in those weights. We have conducted
a series of experiments showing the benefits of our proposed method, outperforming
GRU, LSTM, and scoRNN models.
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