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ABSTRACT 
The disposal of Coal Combustion Residuals (CCR) is typically managed in landfills or 
ponds. Closure of these units involves construction of an engineered barrier system 
aimed at protecting the CCR from exposure to the environment. Engineered barriers 
commonly consist of multiple layers of different materials, including soil and synthetics. 
Over time a protective cover might be compromised by a plurality of external factors, 
increasing the risk of exposure of CCR to the environment. These factors include animal 
activity, climate effects, and ground movement, which may wear, erode, create voids, or 
unlevel the terrain ultimately affecting the integrity of the cover. In this paper, the results 
of using a Ground Penetrating Radar (GPR) to inspect the protective cover of a CCR 
landfill for detecting and classifying the presence of certain anomalies are presented1. 
The anomalies are intentionally buried in the protective layer and are representative of 
typical issues encountered in the field, such as animal burrows, voids, and water 
accumulation1. GPR data are further processed using customized machine learning 
algorithms developed to improve the classification accuracy of anomalies1. The goal is 
to detect the presence of anomalies, identify their location in the field, and classify the 
type of anomaly detected to provide the appropriate information for warning and taking 
the corresponding actions to deal with the potentially compromised region of the 
protective layer, significantly reducing the risk of CCR exposure. Eventually, the GPR-
based system might be implemented in a motorized ground vehicle or an unmanned 
aerial vehicle for more effectively monitoring extensive land areas.  
 
 
 
 
 
 
 
 
 



INTRODUCTION 
Fly ash is a common CCR consisting of the fine, non-combustible minerals contained 
coal. Fly ash contains a range of trace elements, including constituents like arsenic, that 
originated in the coal. Improper disposal of CCR can result mobilization of trace 
elements and contamination of the environment. Environmental regulations dictate 
closed fly ash landfills be properly capped and inspected to limit the potential for 
environmental contimination2. In particular, the protective multilayer cap systems used 
in landfill closure require routine inspection and maintenance to maintain performance 
and avoid degradation by factors like animal activity, climate effects, and ground 
movement. Different actions need to be taken to address these factors. The use of Non-
Destructive Techniques (NDT) is preferred for the inspection of the protective layer of a 
CCR landfill site. Among the NDTs, Ground Penetrating Radar (GPR) has shown to 
have advantages over other techniques3. 
 
GPR systems use radiofrequency (RF) pulses to see through the subsurface. The 
magnitude of the pulses is colored in a grayscale to form a radargram or B-Scan image. 
This technique is particularly useful in detecting discontinuities in the cap system of 
closed CCR disposal sites. Figure 1 shows the working principle of GPR4. 
 

 
Figure 1. Working Principle of GPR4

 

 
For maintaining the integrity of the cap system, different actions are required according 
to the type of compromise in the cover layer. This usually requires a skilled operator to 
evaluate the situation and determine the compromises found. Machine learning 
algorithms along with GPR can be used for detecting and predicting or classifying 
inspection data without the need of a human operator. This streamlines the process and 
reduce human labor and errors. 
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EXPERIMENTAL SETUP 
The collection of GPR B-Scans is done by manually setting up artificial anomalies 
underground, and then moving the GPR stepwise across the ground surface over the 
anomalies while taking measurements 
 
Voids, animal burrows, and water accumulation are three key anomalies of concern in a 
cap system. To model voids and animal burrows, Styrofoam material is used since it 
has a similar dielectric permittivity to that of air5. Water-on-plastic-film and water bottles 
are used to model surface water accumulation and underground accumulation, 
respectively. Figures 2 to 4 show the Styrofoam models used for simulating voids and 
animal burrows, and a water bottle used for modeling water accumulation. 
 
 

       
Figure 2 (Left). Styrofoam used to model a cylindrical void 

Figure 3 (Middle). Styrofoam used to model animal burrow 

Figure 4 (Right). Water bottle used to model water accumulation 

 
 
Figure 5 shows sample B-Scans of different anomalies in the experimental setup. 

 
Figure 5. Sample B-Scans 

(Left) Sample Void B-Scan. (Middle) Sample animal burrow B-Scan. (Right) Sample water accumulation B-Scan. 

 
Voids show a very clean hyperbolic shape, while animal burrows have a connection 
from the ground surface to the hyperbola. Water anomalies are the most obvious. Water 
traps the RF pulse and causes it to reflect several times before fading out. This 
generates a ringing effect of the hyperbolic shapes after the first reflection. 
 
 
 



FIELD TEST 
A total of nine anomalies were prepared and buried at different depths in the cap 
system of an existing fly ash landfill site located in Athens, OH. Figure 6 shows the 
Cobra GPR module used in the field test. Figure 7 shows group members taking 
measurements on the landfill site in Athens, OH. 
 
 

      
Figure 6 (Left). Cobra GPR module 

Figure 7 (Right). Measurement in the field 

 
The dimensions, depth, and corresponding class of each anomaly are recorded in Table 
1. 
 
Table 1. Field test anomaly and class 

Anomaly Anomaly class Depth (m) Dimensions (m) 

aug16_flatvoid3 Void Z = 0.0762 L = 0.2286; D = 0.1016 

aug16_flatvoid9 Void Z = 0.2286 L = 0.2286; D = 0.1016 

aug16_shpere3 Void Z = 0.0762 D = 0.1524 

aug16_void6 Void Z = 0.1524 L = 0.2032; D = 0.2286 

aug16_void12 Void Z = 0.3048 L = 0.2032; D = 0.2286 

aug16_burrow3 Burrow Z = 0.0762 L = 0.2032; D = 0.2286 

aug16_burrow6_surface Burrow Z = 0.1524 L = 0.2032; D = 0.2286 

aug16_puddle_surface Water 
Accumulation 

Z = 0 L = 0.0762; D = 0.0762 

aug16_puddle3 Water 
Accumulation 

Z = 0.0762 L = 0.21; D = 0.0686 

 
 
 
 
 



Figure 8 shows a schematic setup for the different anomalies dimension and depth. 
 

 
Figure 8. Schematic for void, animal burrow and water puddle 

 
CONVOLUTIONAL NEURAL NETWORK 
Convolutional Neural Networks (CNNs) have demonstrated good capabilities to extract 
spatial features for classification purposes6. Given that GPR B-Scans provide depth and 
distance information, a CNN is proposed as a suitable model for classification of 
anomalies detected in the cap system. CNN convolves different kernels with each 
image to extract different spatial information. In particular, CNNs have been 
successfully applied to detect rebars in wall7. 
 
As shown in Figure 5, different classes of anomaly show different structures in B Scan 
images, which is suitable for image classification using a CNN model. 
 
The CNN model used for the test is implemented using PyTorch framework. The model 
follows the structure listed in Table 2. 
 
Table 2. CNN model structure 

Layer (type) Output shape 

Conv2D 480,640,16 

ReLU (Rectified Linear Unit) 480,640,16 

MaxPooling2D 240,320,16 

Conv2D 240,320,16 

ReLU 240,320,16 

MaxPooling2D 120,160,16 

Linear 512 

ReLU 512 

Linear 4 

 
Conv2D are layers that convolve the input image with kernels to extract features. ReLU 
is an activation function used to model the firing of neurons. MaxPooling2D layer helps 
with reducing the dimensionality of data. Linear layer turns the tensor structure of the 
data into an array-like manner8. 
 
 
 
 



TEST RESULTS 
Including several field tests and measurements in a laboratory setup, a total of 112 data 
samples were collected to implement the CNN model. A set of 70 samples were used 
for training and 42 samples were used for validation of the model. Then, the CNN model 
was applied to the results of the field test at the existing fly ash landfill site. Table 3 
contains the validation accuracies of the CNN model and other prior Neural Network 
(NN) models used for anomaly classification, which include NN model with Discrete 
Wavelet Transform (DWT) and Fractional Fourier Transform (FRFT)9 and NN model 
with Hilbert Transform10. 
 
Table 3. Classification models and accuracies 

Model Name Validation Accuracy (%) 

CNN model with 40x40 input size 88.1 (37 out of 42) 

Neural Network with DWT-FRFT 
Transform 

93.75 9 

Neural Network with Hilbert Transform 85.71 10 

 
In addition, threshold detection and edge detection methods have been used with GPR 
to detect anomalies in the protective layer10,11. Figures 9 to 17 show the raw B-Scan 
images (Left), B-Scan images after threshold detection (Middle), and B-Scan images 
after edge detection (Right). In each B-Scan, potential anomalies are circled in red, and 
if one actual anomaly is not detected, its location is circled in green. 
 

 
Figure 9. Void anomaly: Aug16_flatvoid3 

 
Figure 10. Void anomaly: Aug16_flatvoid9 



 
Figure 11. Void anomaly: Aug16_sphere3 

 
Figure 12. Void anomaly: Aug16_void6 

 
Figure 13. Void anomaly: Aug16_void12 

 
Figure 14. Animal burrow anomaly: Aug16_burrow3 

 
Figure 15. Animal burrow anomaly: Aug16_burrow6_surface 



 
Figure 16. Water accumulation anomaly: Aug16_puddle_surface 

 
Figure 17. Water accumulation anomaly: Aug16_puddle3 

 

Both threshold detection and edge detection can remove some noise from the original 
B-Scan images, thus giving better visualization. However, more potential anomalies 
were circled out when using these detection methods. That is because we can 
reasonably assume that some of the reflections are part of the air-soil-interface. Thus, 
we can exclude them empirically. However, in threshold and edge detection, we want to 
remove the air-soil-interface, but due to the limitation of the current threshold detection 
and edge detection algorithms, the interface is not removed completely. So, since some 
reflections neither got removed nor can be related to the interface empirically, they must 
be counted as potential anomalies. 
 
Table 4 shows some metrics for the threshold detection performance. It shows the 
detectability, i.e., how many of the actual anomalies are detected, the false positive rate 
and false negative rates. 
 
Table 4. Detectability and the false alarm rates for detection 

Detection Method Detectability False Positive False Negative 

Threshold Detection 
80% 

88.89 (8 out of 9) 47.06 (8 out of 17) 11.11 (1 out of 9) 

Threshold Detection 
90% 

77.78 (7 out of 9) 0 (0 out of 17) 22.22 (2 out of 9) 

 
As shown in Table 4, an 80% threshold level resulted in a significant percentage (8 out 
of 17) false positives. On the other hand, a 90% threshold level results in two missed 
anomalies. Thus, it might be inferred that an optimal threshold should be between 80% 
and 90% in this case. However, more data and tests might be required to ascertain this 
optimal value. A better approach might be to implement an adaptive threshold that could 
change for different B-Scans, according to a given criteria, which could best eliminate 
noise, while preserving necessary information. 
 



DISCUSSION 
From the results in Table 4, the CNN models do not have the best classification 
accuracy as compared to other prior NN models. That might be because some data was 
collected having different GPR step sizes. B-Scan images taken in the laboratory setup 
had the step size of 0.0069 meters, but new B-Scan taken in the field had step sized of 
0.00323 meters. This generated a resolution difference in the B-Scan images. As more 
data is taken with the same resolution, the classification accuracy of the CNN model 
may increase. Other prior models (NN) display satisfactory results. However, one 
disadvantage of NN models is that they require manual extraction and preparation of 
the features. This process is non-trivial and time consuming and requires a skilled 
operator. On the contrary, CNN models, which take a whole B-Scan image as input, can 
be automated for simple and easy processing. 
 
CONCLUSION 
Machine learning algorithms are a useful tool that may be used to classify anomalies in 
closed CCR disposal sites. GPR and machine learning algorithms can be integrated for 
enhancing the integrity of a fly ash landfill site cap system by streamlining the inspection 
data processing. Further research is required for determining the best options for 
detecting and classifying GPR inspection data. 
 
FUTURE STEPS 
Collect negative data samples (B-Scan images without anomalies). The current model 
will always predict one anomaly type, no matter whether anomaly exist. To address the 
issue, negative samples need to be collected and fed into the model so that the model 
can give out “No anomaly” result. 
 
Collect more data points. Data at different resolution, locations, times, and soil 
conditions are beneficial. The inclusion of images from various locations and conditions 
can make the model more robust. Real world anomalies can be very different from the 
experimental anomalies set up. Actual anomalies will help the algorithm in field testing.  
 
Develop adaptive threshold level to best detect anomalies and reduce false alarm rates. 
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