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ABSTRACT OF DISSERTATION 

 
 
 

DO TRANSPORTATION NETWORK COMPANIES AFFECT ROAD SAFETY 
OUTCOMES: A SPATIALLY DETAILED ANALYSIS IN SAN FRANCISCO 

 

US traffic fatal deaths have steadily risen since 2010, with the past few years 
witnessing an unusual trend increase. To reverse such a dangerous trend, one must 
understand how and why road crashes occur and which factors are causing them. Emerging 
transportation technologies have shown the potential to improve mobility and safety. 
However, such technologies are not inherently beneficial and could worsen road safety if 
not effectively implemented. One such transportation technology that warrants 
investigation is the rise of ridesharing services, also called Transportation Network 
Companies (TNCs). 

The primary goal of the dissertation is to explore the statistical relationship between 
road safety outcomes and TNC service components like curbside pick-ups and drop-offs 
(PUDO) or through the TNC-involved vehicles miles traveled (VMT). It evaluates the 
relationship between TNC service components like PUDO and Tot TNC VMT with five 
main types of road crash frequency: the total number of road crashes, fatal and severe injury 
crashes, crashes involving pedestrians and bicyclists, and crashes involving drink-driving 
(DUI) and property-damage-only (PDO) crashes using San Francisco (SF) county data.  

A fixed-effect Poisson Regression Model with a robust covariance matrix compares 
San Francisco (SF) county's 2010 safety outcomes when TNCs were negligible to safety 
outcomes for the exact locations in 2016 for which spatially detailed TNC data is available. 
Dependent variables like Total Crashes, Fatal and Injury Crashes, Pedestrian and Bicyclist 
Crashes, DUI Crashes, and PDO Crashes are evaluated using the model, controlling for 
vehicle speed, Total VMT, and TNC service components, namely TNC VMT and PUDO. 
We apply that model to 2010 and 2016 scenarios and counterfactual scenarios that estimate 
what would have occurred in 2016 without specific aspects of TNC operations.   

The results show that TNCs indirectly increased total crashes by 4% due to higher 
exposure and 7% due to changes in vehicle speeds. The direct effect of TNCs on crashes 
offsets these increases, reducing crashes by 14%, but this effect depends upon the model 
specification and is insignificant in other specifications tested. The results for other types 
of crashes are similar in direction but lower in significance.  Overall, the results suggest 
that TNCs are a minor factor in road safety outcomes, at least within the limits of what we 
can measure with the available data. This finding is broadly consistent with past research 
on the topic.   



 

These results interest engineers, planners, and policymakers seeking to improve 
road safety.  Those aiming to reduce traffic crashes would be well-advised to avoid getting 
distracted by TNCs in one direction or another and instead focus on known solutions, 
including road design, vehicle technology, and reducing exposure through reducing vehicle 
miles traveled.  
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CHAPTER 1 INTRODUCTION 

1.1 Overview of Road Safety Scenario 

According to the World Health Organization (WHO) "Global Status Report on 

Road Safety 2018", around 1.30 million people die, while approximately 20-50 million are 

injured yearly on the world's roads. Road-related traffic crashes are now the eighth leading 

cause of death among other non-communicable diseases (WHO, 2020).  

The situation in the US is not as problematic as in low- and middle-income 

countries. However, the Organization for Economic Co-operation and Development 

(OECD) data reveals that among all its member countries, the US led the traffic fatality 

rate per million inhabitants (117.4) in 2020 (OECD, 2020). The number is three times 

higher than other OECD member countries, most of which are high-income economies 

with a high Human-Development Index, see Figure 1-1 

The National Highway Traffic Safety Administration (NHTSA), an agency in 

charge of reducing vehicle-related crashes and associated deaths and injuries in the US, 

reports a 10.5% year-over-year (YoY) increase in traffic fatalities from 2019 to 2020 

compared to an average rise of 1.70% (YoY) observed between 2010-2019 (NHTSA, 

2022d), see Figure 1-2. It contrasts the general expected trend during COVID19-pandemic 

which forced a large part of the county and its business to shut down, resulting in a decline 

of annual vehicle miles traveled (VMT) of 11% (Stewart, 2022). Given that VMT can be 

considered a measure of exposure to crashes, it is surprising to see crashes increase while 

VMT decreases.   



 

2 
 

 
Figure 1-1: Fatal Road Crashes per million inhabitants (1994 - 2020) 

These trends are not uniform across all areas or populations within the United 

States. The annual number of deadly deaths in urban settings jumped y 8.5% compared to 

2.5% in rural areas in 2020 (Stewart, 2022). In addition, the number of fatal crash types 

since 2011 has sharply risen for pedestrians (61%), bicyclists (54%), and motorcyclists 

(42%) (Stewart, 2022).  
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Figure 1-2: Road fatalities and percentage change in crashes from the previous year 

Furthermore, these crashes have become deadlier and more frequent (Stewart, 

2022). For example, pedestrian fatalities made up the increasing proportion of fatal road 

crashes between 2010 – 2018 (Macek, 2022). These crashes occur away from intersections, 

on busy main roads, or/and in the dark (IIHS, 2018). 

To reverse such a dangerous trend, we need to understand how and why road 

crashes occur and which factors cause them. While Speed, impaired driving, helmet, 

seatbelt usage, unsafe vehicles, and not obeying road traffic safety rules remain the critical 

risk factors related to crash causation, other transportation systems and their elements need 

to be studied to understand the challenges and opportunities they present in achieving the 

road safety goals.  

Recently, the concept and technology of the transportation sector have been rapidly 

evolving. From automated vehicles to self-driving trucks, from the fleet of electric scooters 

to rideshare services, emerging technologies have transformed how we move around. 

These technologies have changed how people and goods move, and their importance may 

continue to grow. While emerging transportation technologies offer the potential to 

improve mobility and safety, such technologies are not inherently beneficial and could 

worsen specific outcomes if not deployed effectively.  One such transportation technology 
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that warrants investigation is the rise of ridesharing services, also called Transportation 

Network Companies (TNCs). 

1.2 Transportation Network Companies (TNCs) 

Transportation Network Companies (TNCs) 1 have disrupted urban transportation 

across the USA and globally. Unlike traditional vehicle-for-hire services like taxis and 

limousines, TNCs do not own or operate a fleet of vehicles. Instead, TNC companies like 

Uber and Lyft leverage the geolocation capability of smartphones to connect potential 

passengers with private drivers. The estimated cost of travel is pre-calculated by the TNC 

app's algorithm, with both the driver and passenger agreeing to the arrangement before the 

trip is confirmed.   

Initially, Uber and Lyft started their services to target young, affluent customers; 

however, triggered by the digital revolution, which reduced the transaction cost, and the 

rise of smartphone ownership, TNCs quickly succeeded in attracting other sections of the 

population. TNCs offer a direct, affordable, and comfortable door-to-door trip, so TNCs 

quickly became a viable alternative to public transportation.  

By 2015, TNCs were present in about 75% of all US urban areas with a population 

of 100,000 and more (Andrew J Hawkins, 2015). Uber's service is available in over 70 

countries, covering 900+ cities, with ~1.6 – 1.9 billion trips per quarter completed 

worldwide. Uber expects its market to grow by 19% Compound Annual Growth Rate 

(CAGR), reaching around USD 180 billion from $61.3 billion in 2018 (Arevalo, 2020). 

However, a pandemic in the form of COVID-19 may have delayed the company's growth 

plans (Ewoldsen, 2020). 

Given their large footprint, it is essential to understand the impacts of TNC services 

on the transportation system. 

 
1 The app-based alternative urban transportation options are referred to by many names: ride-hailing, ride-
sourcing, e-hailing, or transportation network companies (TNC). However, in this document, we would 
refer to such modes as TNCs as it is the legally preferred name among the service providers and city 
agencies. 
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1.3 Relevance of study 

Research on TNCs' impact on travel behavior, general usage patterns of TNCs, and 

the economics of their operations are widely available (Alemi et al., 2018; Clewlow & 

Mishra, 2017; Tirachini, 2019). Similarly, the negative effect of TNCs on public 

transportation usage, car ownership, and traffic congestion are well documented (G. 

Erhardt et al., 2019; G. D. Erhardt et al., 2020; Henao & Marshall, 2019). The debate about 

the safety risk of accepting a ride from a stranger vs. access to means of transportation is 

being regularly framed and reframed, e.g., the regulatory decisions in London (Browne, 

2019, 2020; Feikert-Ahalt, 2020). In addition to driving, research has shown that TNCs are 

attracting trips from non-motorized transport modes like walking and biking, thereby 

inducing vehicle trips that would not have taken place at all in the first place (Clewlow & 

Mishra, 2017; Feigon & Murphy, 2018; Gehrke et al., 2018; Rayle et al., 2016). The 

ongoing COVID-19 pandemic has forced companies like Uber to focus on food deliveries 

to compensate for their loss in passenger ridership. New York's Department of 

Transportation annual mobility report estimates that 50% of all TNC app users switched 

from using transit services (NYC Department of Transportation, 2018). Such induced trips 

have the potential to generate unwanted pressure on urban road networks and increase 

congestion and emissions from the urban transport sectors.  

TNC providers claim their service has reduced motor vehicle fatalities and alcohol-

involved crashes (Uber, 2017, 2019; Uber & MADD, 2015). However, critics argue their 

conclusion given the limitation in verifying the data accuracy, the absence of a transparent 

and scientific methodological approach, and preliminary or partial analysis (Jones, 2015). 

Independent studies on the potential linkages of TNC operations and their impact on road 

traffic safety outcomes also do not present precise, established trends (Barrios et al., 2019; 

Brazil & Kirk, 2016; Dills & Mulholland, 2018b; Greenwood & Wattal, 2017; Kirk et al., 

2020; Morrison et al., 2018, 2022; Ward et al., 2021).   

One of the primary reasons TNC-related research produced mixed results may be 

the non-availability of quality TNC trip-level data. The above studies measure either crash 

outcomes at the scale of a metropolitan area (Barrios et al., 2019; Brazil & Kirk, 2020, 

2016; Dills & Mulholland, 2017; Greenwood & Wattal, 2017) or through the causal 
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relationship between an increase in admissions rate at the health care facilities and presence 

of TNC services (Barreto et al., 2021; Huang et al., 2019). However, TNC trips are not 

evenly distributed throughout metropolitan areas and are highly concentrated at the center 

of large cities (Fehr & Peers, 2019; SFCTA, 2017). TNCs rarely share data related to their 

operations, limiting the opportunity to measure their impact on road traffic crashes at more 

spatially detailed levels (Seth, 2020a, 2020b, 2020c, 2020d). Researchers also failed to find 

a mechanism to understand the factors that can potentially influence TNC motor vehicle 

crashes or alcohol-involving (DUI) crash instances, which is the primary motivator for the 

current research. 

1.4 Research Objectives and Approach 

This study aims to measure the effect of TNC operations on road safety outcomes.  

We consider that TNC services could change crash outcomes in either direction.  TNCs 

could improve road safety by reducing alcohol-involving (DUI) crashes or by replacing 

trips made by regular drivers with trips by more experienced professional drivers.  

Conversely, they could worsen road safety by increasing the exposure to crashes through 

more vehicular travel or by disrupting traffic flow with curbside pick-ups and drop-offs, 

mainly if those pick-ups and drop-offs conflict with bicycles or pedestrians, which are also 

negotiating the traffic on busy arterials. To test either of these is the case, we measure 

whether the emergence of TNCs is associated with a decrease or increase in:  

• Total crashes, 

• Fatal and severe injury crashes, 

• Crashes involving pedestrians and bicyclists, and 

• alcohol-involving (DUI) crashes  

• property-damage-only (PDO) crashes 

while controlling for other changes, including exposure and changes to vehicular speeds.   

We evaluate these outcomes using San Francisco (SF) as a case study. TNC 

services had operated continuously in San Francisco since May 2010, when Uber first 

started offering such trips to the world, and it is home to the headquarters of the two 

dominant TNCs in the US, Uber and Lyft. More importantly, the San Francisco County 
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Transportation Authority (SFCTA) successfully collected data on TNC activity across the 

road network, thereby allowing to study of TNC's impact using spatially detailed data. 

Furthermore, the city maintains a high-quality geocoded crash database and estimates the 

changes in vehicle miles traveled and vehicle speeds.   

We compare 2010 safety outcomes when TNCs were negligible to safety outcomes 

for the exact locations in 2016 when we have TNC data.  We control for changes to vehicle 

miles traveled, vehicle speed, and road network over this period, allowing us to generate a 

counterfactual scenario estimating what would have occurred in 2016 if TNCs had not 

entered.   

If our results show that TNCs improve road safety, it will enable planners to 

develop strategies that will leverage them to improve safety.  Conversely, if our results 

show that TNCs worsen road safety, it will enable planners to develop strategies to mitigate 

those effects.  If our results show that TNCs are not an essential factor in road safety 

outcomes in either direction, it will allow planners to focus on other safety strategies that 

are known to be effective.  

1.5 Paper Organization 

The study is organized into six chapters to answer the main research questions in 

section 1.4. An overview of each of the subsequent chapters is presented below. 

CHAPTER 2 starts with defining the Transportation Network Companies (TNC) 

and how they differ from traditional vehicle-for-hire services like taxis and limousines. It 

briefly overviews the advantage of TNCs and how it provides an alternative to traditional 

car-based urban transportation. The study attempts to present a theoretical framework to 

explain how TNC services may, directly and indirectly, influence road safety outcomes. 

The chapter ends with a comprehensive review of the scientific literature focusing on TNCs 

and road safety crashes. The literature review is a synthesis of published and unpublished 

papers/literature on the impacts of TNC service trips on road traffic crashes and injuries  

CHAPTER 3 explains why San Francisco County is chosen as the focus study area. 

It later provides a comprehensive overview of the primary data used for the current study, 
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including the detailed traffic flows, TNC-related information on the road segment, the road 

network itself, and road crashes for 2010 and 2016, respectively. It also presents a detailed 

procedure to transform and merge all three mentioned data sources into one dataset. The 

produced singleton dataset is the base for all future statistical analyses and feeds into the 

statistical model. The later part of the chapter presents the statistical model's structure used 

to estimate the relationship between road crash frequency and TNC service components 

like TNC Pick-ups and Drop-offs (PUDO) and Vehicle Miles Travelled (VMT) and 

controlling for Total VMT and vehicular speeds on the broadly defined facility types.  

 CHAPTER 4 presents results from the explorative analysis of traffic crashes, 

traffic estimates, and TNC data to understand the spatial distribution of these activities. It 

provides countywide fatal and injury trends for the primary dependent variables: total 

crashes, fatal and injury crashes, pedestrian and bicyclist crashes, alcohol-involving (DUI) 

crashes, and property damage only (PDO) crashes. It provides an overview of the spatial 

diversity in the occurrence of road crashes and how it might impact our road crash 

predictions. It further decomposes the road crashes by road facility types and explains 

where the Total TNC activities are happening and areas witnessing variations in congested 

speed.  

CHAPTER 5 provides an after-implementation summary of the statistical model 

presented in CHAPTER 3. The summary tables are provided for all dependent variables 

like Total Crashes, Fatal, and Injury Crashes, Pedestrian and Bicyclist involving crashes, 

alcohol-involving (DUI) crashes, and Property Damage Only (PDO) crashes.  Further, it 

presents the model application results of the additive effect of introducing an independent 

variable and predicting its impact on overall predicted crash values. Such scenario 

generation and evaluation approach allowed the study to understand the potential impacts 

of the selected independent variable on road crashes. Further, it presents the results of 

several alternative model specifications estimated if including both TNC PUDO and TNC 

VMT makes the predictions better than the final model results. 

Finally, CHAPTER 6 revisits the study's objectives and summarizes its findings. It 

outlines the findings related to TNC's direct and indirect effects on road crashes. 
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Limitations are identified while recommendations are provided for undertaking potential 

future research opportunities.  

1.6 Chapter Summary 

With 1.35 million people dying each year on the world's roads and another 20 

million to 50 million seriously injured, road deaths and injuries are a silent epidemic on 

wheels that needs an immediate resolution. Back home, NHTSA predicts a 10.5% jump in 

fatal road deaths from 2019 – 2020 despite the COVID-19 pandemic forcing the annual 

VMT to decline by 11%. To reverse such a devastating trend, there is a need to enhance 

the understanding of how and why road crash occurs and which factors cause them. The 

relationship between traditional factors and road safety outcomes is exhaustively studied, 

and other emerging modes that rely on technology should be subject to scrutiny. One such 

modern transportation mode which has risen exponentially is ride-hailing services, also 

known as Transportation Network Companies (TNC). Few researchers' attempts to 

establish a relationship have produced mixed results, necessitating reinvestigation. Using 

data from San Francisco (SF), one of the few cities where TNC services had continued to 

operate uninterrupted since May 2010, when Uber first started offering such trips to the 

world, the study aims to explore the relationship between TNC services and road safety 

outcomes. Precisely, it measures whether TNC services increase or decrease total crashes, 

fatal and severe injury crashes, crashes involving pedestrians and bicyclists, alcohol-

involving (DUI), and property-damage-only crashes.  It compares 2010 and 2016 

conditions in San Francisco before and after the introduction of TNCs.   

 



 

10 
 

CHAPTER 2 LITERATURE REVIEW 

2.1 Background 

The chapter starts with defining the Transportation Network Companies (TNC) and 

how they differ from traditional vehicle-for-hire services like taxis and limousines services. 

It briefly overviews the advantage of TNCs and how it provides an alternate mobility 

option to traditional car-based urban transportation. The study attempts to present a 

theoretical framework to explain how TNC services may, directly and indirectly, influence 

road safety outcomes. The chapter ends with a comprehensive review of the scientific 

literature focusing on TNCs and road safety crashes. The literature review is a synthesis of 

published and unpublished papers/literature on the impacts of TNC service trips on road 

traffic crashes and injuries  

2.2 What are Transportation Network Companies (TNC)? 

Transportation Network Companies (TNC), also known as rideshare, e-hail, or 

ride-hailing companies, provide on-demand transportation services. Unlike traditional 

vehicle-for-hire services like taxis and limousines, TNCs do not maintain their vehicle 

fleets and rely on an army of individual private drivers contracted by them to transport 

potential passengers from one place to another. Potential passengers request a ride through 

TNC online platform application, typically installed in a smartphone, and get matched to a 

private vehicle at the predetermined rate (trip cost). The TNC application uses an algorithm 

to take into account various real-time variables that could influence trip time and cost like 

driver availability near passenger's location, rider demand, road congestion, and many 

other factors to arrive at (estimated) dynamic prices which both the passenger and the driver 

agree before the start of the trip. 

Relative to traditional taxis, TNC services offer customers several potential advantages:  

1. Convenient booking and payment – booking a ride through an app may be more 

convenient than hailing a taxi on the street or calling dispatch.  Many customers 

may prefer paying with a credit card through an app to paying a cash fare.    
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2. Greater supply – while reliable numbers on TNC supply are not widely available, 

the supply of TNCs appears to be higher than that of taxis in most US cities.  It 

includes smaller markets where part-time drivers operating their personal vehicles 

increase the supply and large markets like San Francisco, where there are 12 times 

as many ride-hailing trips on a typical weekday as taxi trips.  With a higher supply, 

waiting times can be shorter.   

3. Cheaper travel cost – TNC trips have historically been less expensive than taxis, 

but recent reporting suggests this may no longer be true in 2021 and 2022.  

Comprehensive data on TNC fares is not widely available, but reporting suggests a 

post-pandemic price spike (Evans, 2021).  It is reasonable to expect that TNCs can 

operate more efficiently than a taxi company because they do not own any vehicles 

or dispatch centers, the drivers are not employees, and they do not comply with the 

traditional regulatory framework that applies to taxis.  However, some reporting 

suggests that TNCs may have higher overhead costs than taxi companies (Lee, 

2022), and pricing may be more a function of business interests than operating 

expenses (i.e., offering low-cost trips to build a market versus generating 

profit/revenue for investors).  

4. Transparency in trip cost and time - before the trip is confirmed, the driver and the 

passenger are provided with the estimated trip price and duration. 

5. Location and traceability - when the trip is confirmed, the passenger's geolocation 

gets shared with the driver, which is also suggested with the most economical route 

(path) to reach the customer's start location, thereby reducing the delays. At the 

same time, passengers can track the driver's position, its route and communicate 

with the driver if required. 

It is important to note that TNCs remain evolving businesses, so their operations may 

change further.   

2.3 Framework by which TNC service might influence road safety outcomes 

As mentioned in the previous chapter, road safety is not only an engineering 

problem but is a multi-faceted issue requiring political, public health, and economic 
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support. Therefore, to identify appropriate solutions to the problem, we must understand 

the causes of road crashes and identify the factors that may lead to crash severity outcomes. 

Bayam et al. were the first to present a meta-analysis framework to approach road 

crash systems (Bayam et al., 2005). According to Bayam et al., the model consists of 

different independent variables: drivers, vehicles, road environment, geographical 

conditions, road network, vehicle occupants, and other road users groups (pedestrians, 

bicyclists, motorcyclists, and other vehicle users from both the light and heavy commercial 

vehicle drivers and passengers) (Bayam et al., 2005). These independent variables interact 

with each other creating different road traffic scenarios. One of the traffic scenarios then 

becomes a crash scenario, leading to a motor vehicle road crash. The dependent variable is 

the outcome of the motor vehicle road crash, with the independent variable being the 

attributes of the participant factors at the moment of the crash. 

Extending the framework explained in the previous paragraph, Figure 2-1 below 

presents the mechanisms by which TNC services could get involved in a road crash. 

Broadly, the interaction between TNC vehicle and road crash system variables can 

be divided into five categories, namely 

1. Road infrastructure consists of road attributes such as road conditions, surface type, 

traffic conditions, and traffic management systems installed on the roadways. 

2. The road environment comprises information about the weather condition, 

lightning conditions, time of the day, and the area type (urban, suburban, rural). We 

also include enforcement-related traffic safety management laws and policies 

(seatbelt use, helmet usage, blood alcohol concentration (BAC) levels), including 

specifically to the TNC (driver verification, license requirements, pick-up and drop-

offs pre-conditions, lane usage restrictions) 

3. Vehicle characteristics comprise attributes like vehicle make, type, age, and road 

crash safety features available or pre-installed and include the information related 

to the condition of the vehicle, whether it is in good shape to operate 

4. Personal characteristics revolve around the behavioral aspect of TNC driver 
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5. Other road users consist of information demographics of the road section or the 

subject area and represent their characteristics, including the total number of users, 

age, and gender. 

 

 

Figure 2-1: Potential ways by which TNC services could get involved in a motor vehicle road crash 

The list is not exhaustive; numerous permutations and combinations between the 

factors can create a random crash scenario.  

These factors may interact independently or in combination, often directly or 

indirectly influencing the road crash scenario, which later becomes the dependent variable. 

The associated information like road crash type, severity, number of fatalities and injuries, 

point of impact (contact) between two or more road user groups, and the causes leading up 

to the road crash becomes secondary information. 

Depending upon the nature of the study, the road crash analysis could be 

categorized as a pre-crash (scenarios/variables leading to the crash), post-crash (impact of 

such a road crash on a particular road user group or causes of a road crash or crash itself).  
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Given the available data, the current study limits its investigation to post-crash 

scenarios to explore the statistical relationship between road infrastructure variables and 

TNC services. 

2.4 The mechanism by which TNC trips can lead to more or fewer crashes 

2.4.1 Unregulated markets 

Unlike taxi and limousine services, TNCs drivers and vehicles are not part of the 

vehicle-for-hire industry and, as a result, are entirely exempted from the regulatory practice 

put in place by the local administration. It prevents them from undertaking numerous 

checks like mandatory vehicle inspection, criminal background checks, medical 

certification, and obtaining or renewing a driving license annually (Dills & Mulholland, 

2018a). Though such an administratively long process is cumbersome, it helps filter out 

drivers more likely to create errors and get involved in road crash incidents (Dills & 

Mulholland, 2018a). Therefore, we can say that unregulated or the absence of standard-

defined policies for TNC may lead to the penetration of (unskilled) drivers into the road 

crash system. 

2.4.2 Quality of Vehicles 

As mentioned in the previous bullet point, there is a difference in regulatory 

requirements desired for commercial vs. private vehicles. Inspection of commercial 

vehicles is much more intense. It involves frequent vehicle safety inspection standards 

involving batteries, seat belts, brake systems, doors and trunks, engine/transmission, fuel, 

heating, ventilation, and air conditioning system (HVAC), headlights, and many more 

compared to their private vehicles counterparts (Flor et al., 2022; Schaller, 2017, 2018). 

Fewer inspection instances mean more opportunity to wear and tear on the vehicles, 

primarily tires and brakes, increasing the likelihood of a system failure. 

2.4.3 Increased exposure 

One of the most significant and valuable perceptions of being a TNC driver is that 

the work hours are inherently flexible. It means drivers ostensibly have greater 
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independence and flexibility in choosing when to log on and off from the TNC apps. While 

such perception is correct, a driver's flexibility in choosing when to log on and off is limited 

by an individual's desire to maximize profits w.r.t time spent on driving searching for 

passengers (Barrios et al., 2019). Given that the market demand and the chances of getting 

a ride as soon as they log in or finish a trip is out of their control, TNC drivers often drive 

for long hours and multiple TNC-app platforms. As a result, the number of vehicles on the 

roads, even after assuming that TNC trips are directly replacing private-vehicle trips, 

increases on the road. The increased number of vehicles on the road increased the 

probability of getting involved in road crash collisions. 

2.4.4 Road congestion and speed 

Theoretically, road congestion increases when VMT rises. Fehr and Peers, whom 

Uber and Lyft engaged to determine the VMTs in six metropolitan cities of the US, 

including San Francisco, found that the two TNCs contributed 13% of VMT (Fehr & Peers, 

2019). It is twice that of what is estimated by the San Francisco County Transportation 

Authority (SFCTA) (SFCTA, 2017). Sneha et al. revisited such estimates by carrying out 

a series of (hypothetical) travel demand model run supplemented with observed TNC data. 

The study found that TNCs are associated with about half the increase in VMT between 

2010 and 2016 (Roy et al., 2020). It also identified TNC volumes as the single biggest 

contributor to increased congestion over the same period (Roy et al., 2020). In addition, 

the pick-up and drop-off (PUDO) activity at the start and end of TNC trips disrupts traffic 

flow and deteriorates traffic congestion (Roy et al., 2020). The relationship between road 

congestion and traffic crashes is complex and has been under research for more than a 

century (Retallack & Ostendorf, 2019; Vey, 1939).  A U-shaped function is generally 

accepted; however, a positive relationship between these variables is not uncommon 

(Retallack & Ostendorf, 2019).  

Contrary to the congestion, the relationship between speed and road crashes is also 

complicated and non-linearly in nature. According to WHO Speed Manual, an increase in 

vehicular speed increase the likelihood of crashes due to a) less time to react to the 

incoming hazard and b) an increase in the probability of the other road users misjudging 
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the real intentions of the speeding driver (WHO, 2018). The implication is that as the speed 

increases, the severity and the consequence of the road crash increase. On the contrary, 

lower average speeds result in fewer crashes relative to the number of vehicles on the road. 

According to WHO, a “5% increase in average speed leads to approximately a 20% 

increase in fatal crashes. (WHO, 2018)”  

2.4.5 Driver’s driving skills 

Like taxi drivers, TNC drivers may be subject to fatigue and tiredness due to 

prolonged and non-traditional driving hours, making them more prone to errors and 

triggering their involvement in road crash incidents. Using 42 Sydney metropolitan taxi 

drivers across two years, Dalziel et al. explored the relationship between fatigue-related 

variables and road crash incidents (Dalziel & Job, 1997b). The study concluded that even 

professional drivers suffer from optimism bias. Most of the selected drivers of the study 

self-reported that they considered themselves more competent than their peers; however, 

with one caveat - the optimism is less pronounced when explicitly asked about their “ability 

to drive safely when very tired.” According to Dalziel and Job, one possible explanation is 

that taxi “drivers are frequently reminded of the effects of fatigue on their driving abilities 

due to the tiredness induced by the long hours they work, which leads to a somewhat more 

realistic assessment.” (Dalziel & Job, 1997b). On the other hand, the study also found that 

given those taxi drivers spent substantially significant time (59 hours or more per week) 

compared to the average driver significantly) on the road, the driving experience of a 

professional taxi driver far exceeds that of the average motorist.  

According to Dalziel et al., the taxi driver's job improves the driver's driving 

capability. It explains that the job as a taxi driver involves “negotiating traffic, seeking out 

the next fare, responding to passenger conversation, keeping attention on the 

radio/computer job dispatching service, remembering how to get to the destination, and 

maintaining personal safety. So while the job may be tiring, in the context of attentional 

and cognitive resources, it is not fatiguing in the way that the minimal stimulation (and 

subsequent boredom) of a long straight country road at night can be” (Dalziel & Job 

1997b).  
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Maag et al. found that the driver's age strongly influences the number and severity 

of crashes. Taxi drivers younger than 30 were much more prone to be involved and injured 

in crashes than the older group (Maag et al., 1997). 

Theoretically, one can expect the role of the TNC driver to be somewhat parallel to 

the taxi driver’s role. Therefore, one can conclude that as TNC drivers spend more time on 

the roads, their driving skills get superior to ordinary drivers.  

2.4.6 Change in alcohol-involving crash instances 

Jackson and Owens investigate the relationship between new transportation options 

(public transit) and alcohol consumption and found the relationship ambiguous at the 

aggregate level (Jackson & Owens, 2011). Using Washington D.C as the case study, the 

authors found that when the metro services are expanded by three hours from midnight to 

3 am,  the neighborhoods with at least one bar within 100 m of the metro station see DUI 

arrests dropping by 14%. In contrast, DUI rates remained unchanged for the neighborhood, 

which had no bar within a 100m distance. Uber tried to answer a similar question using 

data from Chicago, Illinois, in their in-house study. According to their report, late-night 

Uber requests within 50 meters of a bar, restaurant, or hotel that serves alcohol went up by 

45.8% during peak drinking hours of 10 pm and 3 am, compared to 28.5% off-peak hours 

(Uber & MADD, 2015). Greenwood et al. argue that the probability of inebriated drivers 

opting for alternate transport services, including TNCs, is not limited to the ease and 

availability of the services but also depends upon the individual's ability to comprehend 

the actual opportunity cost. It includes the cost of getting caught, court costs, the cost of 

the trip, social stigma, and jail sentences (if any) (Greenwood & Wattal, 2017).  

To conclude, the relationship between TNC services and alcohol-involving (DUI) 

crash instances is complex. TNC services may lower the DUI-related instances in the 

leisure areas or areas subject to more targeted enforcement, but at the aggregate level, they 

may not bring any substantial change. Therefore, the net effect of DUI-related trip 

generations is somewhat ambiguous. 



 

18 
 

2.4.7 Increased road crash risk at pick-up and drop-off locations (PUDO) 

Morrison et al. explored the TNC service issue and its association with road traffic 

crashes using 372 million trips recorded between 2017-2018 in New York. Using a case-

crossover design to overcome the absence of traffic volume data, the authors compared the 

activities (-1 week prior and +1 week after) in areas where a crash has occurred (Morrison 

et al., 2020). They compared the number of TNC trips, taxi pick-ups, and drop-offs during 

the duration. The team discovered that more crashes involved motorist and pedestrian 

injuries when a location or block saw an uptick in TNC services (Morrison et al., 2020). A 

similar trend did not exists between taxi rides and pedestrian/cyclist injuries (Morrison et 

al., 2020).  

The key takeaway from this study is that TNC trips increase the number of crashes 

for motorists and pedestrians at pick-up and drop-off locations (PUDO).  

2.4.8 An increased instance of distracted driving 

National Highway Transport Safety Authority (NHTSA) defines distracted driving 

as "any activity that diverts attention from driving, including talking or texting on your 

phone, eating and drinking, talking to people in your vehicle, fiddling with the stereo, 

entertainment or navigation system" (NHTSA, 2022a). According to NHTSA's latest 

report, around 8% of the fatal crashes, 14% of total injury crashes, and 13% of all police-

reported motor crashes were reported as distracted driving crashes, leading to 3142 people 

dead and 324,652 people injured (Stewart, 2022). 

TNC trips are inherently distracting given that the drivers constantly carry out 

various activities like searching for passenger pick-up and drop-off locations and routes 

assigned to the ongoing trip by the TNC algorithm. Furthermore, when potential passengers 

place a ride request on the TNC app, the passenger's location is locally broadcasted to the 

nearest available drivers in the form of an alert sound. The driver has a particular time 

window to determine whether they will accept or decline the ride based on the distance and 

time to reach the passenger's location (NHTSA, 2022a; Richtel, 2014).  
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Executing multiple tasks in addition to providing quality services every time is 

challenging and therefore increases the probability of getting involved in a road crash. 

2.4.9 Insurance and liability coverage for TNC 

Before 2016, in order to enroll as a TNC driver, the individual needed to fulfill three 

basic requirements: 

a. be of minimum age limit 

b. hold a valid driver's license 

c. maintain valid personal auto insurance policies (PAPs) to cover their driving 

activities 

However, transporting personnel by undertaking commercial activities, often 

termed "livery exclusion," is strictly prohibited under most of the PAPs insurance schemes. 

Insurance corporations include "livery exclusions" in the PAPs scheme to protect 

themselves from unwanted risks arising due to increased exposure resulting from a) 

additional miles of driving as a result of transporting a passenger from point A to point B., 

b) driving in unfamiliar areas, and in highly dense urban and traffic locations c) distracted 

driving instances. 

After much deliberation with the public, on September 2013, the California Public Utilities 

Commission (CPUC) determined that TNCs are transportation charter-party (TCP) and 

required 

• TNC drivers are to provide proof of their personal and commercial insurance in 

case of an accident 

• TNCs are to hold a commercial liability insurance policy that is more stringent than 

the CPUC’s current requirement for limousines2, which shall include a minimum 

of one million dollars ($1,000,000) per-incident coverage for incidents involving 

 
2 CPUC General Order 115-G requires a carrier operating a vehicle that seats seven passengers or fewer to 
carry $750,000 of insurance coverage 
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TNC vehicles and drivers in transit to or during a TNC trip, regardless of whether 

personal insurance allows for coverage; 

• Submit annual operational data to the CPUC, which includes reports regarding 

incidents/accidents and zero-tolerance complaints 

However, the insurance requirements did not cover items related to 

comprehensive/collision, medical payments, uninsured/underinsured motorist (UM/UIM) 

for drivers, or any other optional coverages. According to the California Department of 

Insurance (CDI), this led to a coverage gap as it allowed “TNC's operators and their 

liability policy not to provide coverage for 1) bodily injury to the TNC driver, 2) damages 

to the TNC driver's car or 3) bodily injury or physical damage caused by an uninsured or 

underinsured motorist.” 

The insurance coverage gap was further exposed in a judicial hearing for a road crash 

in January 2014 in San Francisco where a TNC driver hit a family of three, resulting in the 

death of a 6-year-old child and severe injuries. The victim's family sued Uber for her death 

because the driver was on the TNC operator app at the time of the crash.  The TNC operator 

argued that there were no passengers when the car hit the family, so the company is not 

responsible for providing insurance protection to the victim and its driver.  

It triggered the California Public Utilities Commission (CPUC), which regulates TNCs 

in the state and the state Department of Insurance, to develop models and recommendations 

to overcome insurance and coverage gaps (CPUC, 2016). Three significant changes were 

brought about as a result of the tragedy. The changes were passed into law in September 

2014 and enacted on July 1, 2015, as Assembly Bill 2293 (Bonilla). 

1. Explicitly define the TNC trip - CPUC splits the whole TNC operation into three 

periods and requires all three periods to be covered by commercial insurance.  

• Period 1 - When the driver opens the app and waits for a ride to match 

• Period 2 - When a ride gets matched, and the driver accepts the ride and 

traverses to the passenger's location 
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• Period 3 - The passengers board the TNC driver's car, travel to its destination, 

and safely exit it. 

2. TNCs were mandated to provide a $1 million commercial liability policy when a 

TNC driver has a smartphone app turned on to accept rides. 

3. It directed the insurance industry to develop new schemes tailored explicitly for 

TNC drivers. 

In response to point 3, the National Association of Insurance Commissioners (NAIC), 

led by the then-California Insurance Commissioner, also adopted a white paper on 

insurance coverage for TNC services (NAIC, 2015, 2016). The white paper provides 

models and standards that state regulators can use to draft their policies related to insurance 

schemes for TNC services.  

Overall, given the complications over the coverage gap, TNC drivers have little 

incentive to engage in rash driving, making them extra cautious of their choices to complete 

the TNC service rides.  

2.4.10 Driver and passenger ratings 

All the big TNC service operators provide both the driver and the passengers an 

option to rate each other and provide feedback at the end of the trip. The rating and 

feedback are anonymous, thereby ensuring the privacy of each other views. Uber and Lyft 

allow drivers and passengers to rate each other by providing 1 to 5 stars. If the rating is 

below 5, the customer and the driver can provide feedback as a comment (Lyft, 2023a; 

Uber, 2023b).  

When the passenger gives five stars to the driver, it means that the ride conformed to 

TNC operators' expected level of service, which includes (but is not explicitly mentioned) 

• Punctuality - arrives at the customer’s pick-up point address within the expected 

travel time 

• Good navigation - follows the GPS-suggested route but does not follow blindly. 

The driver is aware of the routes, understands the traffic situation, and accepts the 
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passenger's route guidance if it believes they are safe and helps reach the destination 

on time. 

• Safe driving - maintain speed within the posted speed limits or appropriate to the 

urban landscape and traffic conditions. The driver abides by traffic laws like 

obeying stop signs, wrongfully overtaking vehicles or bicycles, engaging in gradual 

lane changes, and negotiating speed-reducing measures that do not cause customers 

discomfort.  

• Sociability - is always courteous and can adapt to the client's mood, thus making 

the rider feel safe and comfortable and making the ride fun. Accommodate 

passenger requests which are not illegal, unsafe, or unreasonable, like switching or 

completely shutting off the radio stations, requesting to drive further than the drop-

off location, or taking a different route than what GPS indicates. 

• Comfort - ensure the car is clean (exterior and interior), pleasant, and clutter-free. 

It means keeping the seats and trunk clean and free from crumbs, dust, hair, dirt, 

and other debris. 

Companies understand that the ratings are perceptions and may differ with each 

customer. Uber averages these ratings once every 500 rides, while Lyft averages them once 

in 100. The companies take passenger ratings for their drivers far more seriously than the 

other way around. The ratings may have positive and negative consequences. The ratings 

get used to identifying patterns that may compromise the safety of the passengers (Brett 

Helling, 2018). 

If the driver's rating is too low, it may affect its ability to match rides. If the driver 

has less than five stars, Uber allows the passenger to cancel the ride within 5 minutes after 

the initial request. If the driver's feedback is consistently below average, it may result in 

the deactivation of the driver from its platform. On the other hand, both Uber and Lyft 

incentivize good rating drivers by allotting them higher trip matches and premium service 

trips. In addition, Uber enrolls its higher-rating drivers in its driver's reward program, 

which rewards the drivers with cashback on gas and free tuition coverage (Brett Helling, 

2018; Lenzo, 2016; Lyft, 2023b; Uber, 2023b, 2023a). Lyft provides additional perks like 

free tax services, public charging facilities, and roadside assistance (Lyft, 2023b). 
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2.5 TNC-focused studies 

Given the general understanding of the framework and the mechanism by which 

TNC trips can potentially lead to a road crash, let us review the aspects covered by 

scientific literature. The following section synthesizes published and unpublished 

papers/literature on the impacts of TNC service trips on road traffic crashes and injuries. 

Greenwood & Wattal were the first to investigate the impact of Uber's services, 

specifically UberX and Uber Black, on alcohol-related motor vehicle homicides in 

California counties (Greenwood & Wattal, 2017). Using DUI data available for these 

counties between 2009 - 2015, the paper suggested that the introduction of UberX 

contributed to reducing DUI rates by 3.6%. However, the paper found no association 

between Uber Black service DUI crashes. Their paper argued that one of the primary 

reasons Uber Black operations did not lead to reduced DUI instances and fatal crashes is 

the difference in trip costs. UberX offers trips at significant (~20-30%) price reductions 

compared to taxi rates, while Uber Black trips are typically ~20-30% more expensive than 

the taxi rates. The study's key takeaway is that the cost and availability of TNC services 

are crucial to attracting passenger demand (Greenwood & Wattal, 2017). Unless and until 

the cost of a TNC trip falls below the total perceived cost incurred using alternative modes 

of urban transportation (private vehicles or other public transportation model options), 

people are unwilling to make such a shift and continue to engage in illegal activity leading 

to DUI instances. 

Dills & Mulholland’s paper investigated the impact of Uber's entry in reducing road 

fatalities by each month and year for all US Counties from 2007 through 2015. The study 

found that road fatalities reduce by 1.6% (unweighted regression) and by 0.7%(weighted 

regression) for each passing quarter of the year Uber is available (Dills & Mulholland, 

2018b). The proposed estimates are much smaller in percentage than those proposed by 

(Greenwood & Wattal, 2017). The paper also experiments with various forms of statistical 

model specification and finds such reduction rates robust. It also finds that once Uber has 

operated in a given county for more than a year, the fatal crashes declined by 17 - 30% 
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(Dills & Mulholland, 2018b). Contrary to the positive association with road fatalities, the 

paper finds no association between TNC services and DUI rates. 

 (Brazil & Kirk, 2016) also attempted to test Uber's claim that its presence within 

the city is positively helping the cities curb alcohol-involving (DUI) crashes and associated 

fatalities. The paper examines the relationship between Uber service (staggered) 

deployment and subsequent monthly traffic fatalities per year within the 100 largest 

metropolitan areas across the United States from 2005 to 2014. However, it fails to find 

any association between ridehailing services, total crashes, alcohol-involving (DUI) 

crashes, and weekend and holiday-specific traffic fatalities. Because Uber's service role 

out, market penetration, and service maturity at the city level may not be uniform across 

cities, the authors felt the need to revisit the concept. Their new study extended the period 

from 2009 - 2014 to 2009 – 2017. The revised research also evaluated the results for local 

variables (contexts to accommodate heterogeneity effects) like population size, density, 

urban centrality (the percent of the county’s population that lives inside a census-

designated urban area), counties demographic and socioeconomic characteristics, vehicle 

ownership, public transportation access and usage and alcohol access and consumption 

(Brazil & Kirk, 2020). The revised experiment also failed to find any association between 

Uber's availability and traffic fatalities at the county (aggregate) level. 

One argument the supporters of TNC services present is that the combined annual 

vehicle miles traveled (VMTs) of all TNC companies operating in the United States is 

small and may not exceed 1-3% of the total 3.23 trillion miles clocked in 2019 (Federal 

Highway Administration, 2019). A study commissioned by Uber estimates the TNC trips 

to be in the range of 1-2.9% of the total VMTs for the six most significant metropolitan 

areas, namely Boston, MA; Chicago, IL; Los Angeles, CA; San Francisco, CA; Seattle, 

WA; and Washington, DC (Jackson & Owens, 2011). However, that same report shows 

that TNCs contribute a much larger share of VMT (2% to 13% of Total VMT) in the central 

counties of each of those metropolitan areas.  Therefore, TNCs may have a significant 

effect where they are a substantial portion of VMT, but metropolitan areas are too large of 

an analysis area to detect an effect.  
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There is a legitimate concern about why TNC's share needs to be evaluated and is 

related to increased vehicle miles traveled (VMT). For example, conducting a quasi-natural 

experiment, Hennao and Marshall found that for 311 trips the study surveyed, the TNC 

services will increase trip VMT estimates by 83.5% compared to the system with TNC 

services not existing. (Henao & Marshall, 2019). For instance, a distance of 1 mile between 

two points A to B covered by a private car when replaced by a TNC service trip will end 

up becoming 1.83 miles long trip (VMT). Since the number of road crashes is directly 

proportional to the amount of travel, a rapid increase in the usage of TNC has the potential 

to amplify the risk of road crash exposure and reverse the road safety achievements of the 

last two decades. Furthermore, research carried out by the Institute of Transportation 

Studies (ITS), University of California, Davis, does not find any decrease in vehicle 

ownership among those who used TNCs and those who did not (Clewlow & Mishra, 2017), 

further reaffirming the concerns that such services are not single-handedly capable of 

reversing or pausing the increasing car ownership trends. 

The study by (Barrios et al., 2019) critiques the premise of TNCs replacing private 

vehicle trips on two fronts. First, it argues that there is no rationale for the claim that TNC 

trips only replaces self-driven trips with the same mileage. On the contrary, the fact that a 

TNC driver needs to drive from their present location to the customer's location before 

transporting the customer to their desired location indicates that TNC trips are not just 

replacements for individual private vehicle trips. Second, it transforms the car (TNC 

service provider) into a productive asset to maximize its profits, i.e., offering the maximum 

number of trips at the shortest possible duration of time at the service. The desire to 

maximize individual profits leads TNC drivers to be nonstationary and drive more between 

places in the city in search of better fare prospects. Furthermore, TNC apps further 

incentivize its driver to stay on the road, even when the utilization is low. Covering the 

period between 2001 – 2016, for all areas with a population greater than or equal to 10,000 

within the continental USA, (Barrios et al., 2019) study indicates that TNC services have 

increased VMT and led to a 3% rise in crash rates. 

Given the wide diversity in the geography in the form of topology, public 

transportation, people's lifestyle, and socioeconomic trends, the impact of TNC usage at 
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the regional scale may not be entirely forthcoming. Uber's in-house study to understand its 

service impact on metropolitan's total VMTs indicates a vast variation in their percentage 

contributions (Fehr & Peers, 2019). TNCs' contribution to total VMT rises from a marginal 

1-2.9% at the metropolitan level to nearly 12.2 – 13.4% in denser (core counties) areas of 

San Francisco but remains stagnated at 1.7- 2.0% in Seattle (Fehr & Peers, 2019). 

Therefore, can one understand TNC's true impact by limiting the study to a given urban 

area? 

Motivated by this question (Morrison et al., 2018) focused on studying the impact 

of Uber on road injury crashes and alcohol-involving (DUI) crash instances in 4 US cities 

- Las Vegas, Nevada; Reno, Nevada; Portland, Oregon; and San Antonio, Texas. Their 

selection of cities was simple: a) in all these cities, Uber must have launched itself between 

January 1, 2013 - December 31, 2015; b) abruptly ceased its operation either voluntarily or 

due to a regulatory ban after running its operation for at least three months or more, c) 

resumed its operations continuously between January 1, 2016, and June 30, 2016. 

According to the researchers, adopting such a methodology allowed them to measure the 

immediate impact of services on motor crashes. Except for Reno, the data analysis partially 

supported their hypothesis, meaning the resumption of TNC operations was associated with 

a decreased incidence of alcohol-involving crashes. It found a ~60% reduction in the 

relative accident rate related to alcohol and the implementation of ride-hailing platforms in 

Portland, Oregon. In San Antonio, Texas, such relationships stood at 58% (Morrison et al., 

2018). However, the said model was a poorer fit than the null model. Further, no correlation 

between Uber's resumption and fewer overall road crashes in any of the cities. On the 

contrary, Uber's service resumption in San Antonio resulted in increased injury-related 

road crashes (Morrison et al., 2018). 

 (Peck, 2017) also studied the short-term impact of the Uber service launch on 

alcohol-related collisions in New York City at the borough level using data between 

January 2007 and July 2013. Overall, the New York City boroughs witnessed an average 

17-35% (~40 collisions per month) reduction in alcohol-related collision rates. However, 

at the individual borough level, Uber services had the most significant (reducing) impact 

in Manhattan, middling effects for Brooklyn and the Bronx, and the most negligible impact 
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in Queens borough. According to the author, one of the primary reasons these results are 

not equally spread over the New York borough and also not congruent to the results 

observed in other parts of the country has to do with the fact that other forms of public 

transit readily available in New York for over a century (Peck, 2017). The availability of 

alternative public transport modes has led many New York residents not to own a car and 

are therefore open to adopting a newer service mode as and when offered. 

On the contrary, (Kontou & McDonald, 2020a) investigated the influence of Ride 

Austin, a local TNC service in Travis County, Texas, on vehicular crashes, injuries, 

fatalities, and c (DWI). By leveraging the real-world data available from RideAustin's open 

records, road crash data from Travis County in Texas along with monthly travel demand 

for the period between 2012 to Apr 2017, their analysis concludes that every 10% increase 

in TNC trips leads to ~0.12% decrease in road crashes, ~0.25% decrease in road injuries, 

and ~0.36% decrease in DWI incidence (Kontou & McDonald, 2020a). However, Austin 

is a predominantly car-oriented society, with less than 10% of the trips originating from 

other modes like walking, bicycling, and transit (Multimodal Community Advisory 

Committee, 2018). Therefore, there are not enough conflict points generated between 

different road user groups, and drivers are less likely to engage in aggressive driving. 

Furthermore, the origin-destination trips index is a weaker proxy for travel demand than 

VMT, so the results may not capture actual impacts. 

 (Anderson & Davis, 2021) reasons that using proxy variables to map the impact of 

TNC services in the urban area is inefficient and can only explain about 3% of variation in 

Census Tract (CT) levels. Therefore, utilizing proxy variables to explain the relationship 

between TNC and road crashes is a highly inefficient way to capture TNCs contribution. 

The paper utilizes Uber's propriety data (trip counts aggregated at the CT level) to explore 

its relationship with total crashes and alcohol-involving (DUI) crashes for all CT per month 

in the USA between July 1, 2017 - January 1, 2017 (excluding where either 

origin/destination = Airport or CTs (Census Tract) of Seattle, New York). The paper 

demonstrates that the statistical model is insignificant when a binary variable gets used to 

confirm the presence of TNC service in CTs. However, when proprietary data replaces the 



 

28 
 

binary variable, the regression model is statistically robust, significant, and negative for 

alcohol-related traffic fatalities. 

 (Morrison et al., 2021) explored the issue of TNC service and its association with 

road traffic crashes using 372 million trips recorded between 2017-2018 in New York. 

Using a case-crossover design to overcome the absence of traffic volume data, the authors 

compared the activities (-1 week prior and +1 week after) in areas where a crash has 

occurred. They compared the number of TNC trips, taxi pick-ups, and drop-offs during the 

duration. The team discovered that more crashes involved motorist and pedestrian injuries 

when a location or block saw an uptick in TNC services. A similar trend did not exist 

between taxi rides and pedestrian/cyclist injuries, indicating that taxi and TNC services 

impact are entirely different.  

In order to study the impact of the National Academy of Science, Engineering and 

Medicine's (NAS) recommendation to make alternate transportation (including ridehailing 

services) available at low cost, (Humphreys et al., 2021) examined the impact of 

philanthropic ridesharing service program ran by Evesham and Voorhees township under 

Evesham Saving Lives Program (between Sep 2015 - 2018). Using the difference-in-

difference method and Bayesian Poisson Model (CAR), the paper attributes around 11% 

(morning), 20% (afternoon), and 38% (night) reduction in road crash due to the subsidized 

scheme (Humphreys et al., 2021). However, the magnitude of the contribution attributable 

to the scheme is dramatically higher than other studies mentioned above that struggled to 

find consistent results. 

2.5.1 Is there something to learn from the taxi and limousine market sector? 

Given no definite trend arising from the research, it is natural to broaden the scope 

and ask a generic question – do other transportation services similar to TNCs have the same 

effect on road crashes? Notably, the taxicab and limousine services and whether there is 

any overwhelming evidence to either support or argument against such ambiguous trends. 

Dalziel and Job examined various aspects of taxi drivers and their relationship with 

road safety outcomes and submitted a detailed report to the Federal Office of Road Safety, 
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the Government of Australia (Dalziel & Job, 1997a, 1997b). The study indicated that 

behavioral aspects such as the average length of shifts, vehicle types, increased anger 

expression, and economic pressure (need for more income) were much more important 

predictors than commonly assumed factors like age, time, kilometers traveled, 

employment, and shift types. The report also found that a) among all crash types, collisions 

with pedestrians were over-represented b) taxi crash rates were highest at the end of the 

weekend night shift. It also found that negative perception of taxi drivers, their safety, 

earnings, and respect by passengers often leads to increased anger expressions in the form 

of risk-taking behaviors and maneuvers, which increases taxicab's exposure to a road crash. 

In a separate study, after observing a control group of 42 taxi drivers across two 

years, Dalziel and Job found that drivers with less break time in a day due to busy 

workloads were more likely to be involved in a road crash than others (Dalziel and Job 

1997a). The paper also found older drivers to be safer than their younger counterparts. The 

study attributes the superiority of older drivers driving skills acquired over the years, 

refined to such an extent that it now far exceeds the average motorist and is better at 

handling fatigue and long hours of shift/workloads (Dalziel & Job, 1997a, 1997b). 

Similarly, back home, after observing 130,000 taxies and livery crashes between 

1990 and 1999, (Schaller, 2001) found that taxi and livery-cab drivers have lower crash 

rates than other drivers. The author suggests that strict licensing requirements and the 

driver's knowledge of streets and urban areas are a few possible reasons for lower crash 

rates among taxi drivers. 

On the contrary, the (Schaller, 2001) study indicates that despite overall declines, 

injury rates remain high for taxi passengers. The authors find unrestrained taxi passengers 

as the prime reason for such high injury rates and estimate that such passengers are three 

times as likely to be injured compared to seatbelt-using passengers. Furthermore, the study 

concludes that bicycles are twice likely to collide with taxicabs than other vehicles because 

of "dooring," in which the passenger in a taxicab suddenly opens their doors without any 

inspection of oncoming bikes. Such incidents are also very prevalent in the TNCs service 

industry. Chicago City and Illinois have laws to prevent such crashes. The Chicago 
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ordinance requires motorists to look before opening their car door and imposes fines of up 

to $500.00 on the motorist for obstructing a cyclist's path if such an event occurs.  

Using the economic principle of "moral hazard" (Tay & Choi, 2016) presented an 

interesting perspective on the risk-taking capabilities of non-taxi owners vs. taxi owners. 

The study found that non-taxi owners with no incentives to drive carefully attempt to 

maximize their economic profitability by engaging in hazardous driving behaviors, thereby 

increasing their exposure to road crashes. 

2.5.2 Mobile phone usage and distracted driving 

Mobile phones, especially smartphones, are an inherent part of the success of TNC 

and its services. It is mainly because the TNC app is an intermediary platform that connects 

its contracted drivers and potential passengers. Furthermore, the smartphone is the primary 

medium for passengers to get trip quotes and assist in real-time vehicle tracking. From the 

driver's perspective, it helps identify the customer's pick-up and drop-off location and trace 

the optimal route based on real-time traffic conditions. However, there is an unwanted cost 

to it. 

As explained by (Richtel 2014) - a driver receives a service call alert from Uber, 

Lyft, or any other TNC platform, in the form of a loud beeping alarm on the phone (through 

the TNC app). The driver typically has 15 seconds to respond to such a request. In these 

15 seconds, the driver has to mentally visualize the area, calculate the distance between its 

present location and the customer address, and anticipate the time required to cover the 

distance before making a decision. Failure to respond within the stipulated time may mean 

the trip gets assigned to a different driver. If such instances get repeated several times in a 

row, it may also lead to the temporary suspension of the driver from the TNC app. It is like 

participating in a quiz contest show - to win, the participant is expected to hit the buzzer as 

soon as the question is displayed. Add the complexity of the urban landscape and the urban 

transport system, where many actors interact at varying spaces and times. The driver must 

circumnavigate such complexities while remaining vigilant on the road surface. Could this 

extensive engagement with the mobile device lead to distracted driving among TNC 

drivers? 
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Many past studies have shown that mobile phone usage harms driving performance 

(Barkana et al., 2004; Lesch & Hancock, 2004; McCartt et al., 2006; Mccartt et al., 2006; 

Foss et al., 2009). By reduction in driving performance, the studies meant vehicle control 

(Treffner & Barrett, 2004), attention (Beede & Kass, 2006; McCarley et al., 2016), 

workload (Patten et al., 2004), impaired eye scanning (Harbluk et al., 2007; Maples et al., 

2008), and reaction time (Caird et al., 2008; Horrey & Wickens, 2006; Strayer & Drews, 

2004; Troglauer et al., 2006). Past experimental studies indicate that one hour per month 

of cell phone usage while driving is directly associated with a 400-900% jump in the 

likelihood of the driver getting involved in a road crash (McEvoy et al., 2005; Violanti, 

1998; Violanti & Marshall, 1996) and thus represents a serious traffic safety problem. 

Furthermore, studies have shown that switching from hand-held to hands-free devices does 

not help negate such risks (Caird et al., 2008; McCartt et al., 2006; Mccartt et al., 2006; 

McEvoy et al., 2005). However, it is worth noting that it is equally challenging to quantify 

the number or percentage of road crashes or deaths attributable to mobile phone usage, as 

drivers may not admit to using mobile phones when other physical causes are evident.   

The National Association of Insurance Commissioners (NAIC), in their 2015 white 

paper titled "Transportation Network Company Insurance Principles for Legislators and 

Regulators," also acknowledges the risks of distracted driving (NAIC, 2015). Though the 

main objective of the white paper is to identify means to minimize the underwriting losses, 

the paper acknowledges the insurance coverage gaps that arise due to the activities 

undertaken by the TNC driver and its vehicles. Because most TNC drivers use personal 

cars to offer commercial services, the personal auto insurance lenders get exposed to 

additional risk than contemplated, thereby increasing their exposure to losses. The white 

paper identifies the following reasons for such heightened risks: 

a) the driver drives additional miles against when the vehicle gets used for personal 

travel 

b) because most of the TNC trips start and end in the urban area, which presents a 

geographic hazard which is high-traffic locations 

c) TNC drivers often take routes that are non-familiar to them 

d) TNC apps cause distractions while driving 
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e) risk generated due to mental stress from accepting a ride request and picking up 

and dropping off the passengers on time ("Transportation Network Company 

Insurance Principles for Legislators and Regulators," 2015). 

2.5.3 Any lessons from abroad and those from developing countries? 

Much of the discussion in the previous section of this chapter concentrated on the 

urban areas of the USA, where the traffic death rate per million inhabitants far exceeds 

those observed in countries like the UK, Germany, and Spain. So the question arises if 

TNCs impact other cities worldwide similarly to those found in US cities. 

 (Kirk et al., 2020) explored the question by exploiting the difference in the 

deployment of Uber across Britain to understand the implications of TNCs services on road 

traffic injuries. Their analysis found a marginal reduction in severe road crash injury cases 

but no change in serious crashes. Interestingly, they found contrasting results for London 

and the rest of Britain. Whereas severe injury cases declined outside of London, the number 

of cases increased within it. One of the explanations for such an observed trend is that TNC 

services are used as a substitute for rash or alcohol-involving (DUI) crash instances outside 

of London boroughs. At the same time, within London, it is a substitute for public transit 

(like subways and buses), which are already much safer than cars. 

Using an annual number of victims (injured/death) between YR 2013 - 2019 (T= 

7) in the 21 (N) districts of Madrid (NxT =147), (Flor et al., 2022) aimed to investigate 

whether the severity of traffic crashes in the city of Madrid has increased after the 

introduction of TNC services like Uber and Cabify. The paper results indicate that TNC 

services decrease severe injuries and deaths by 25% (Flor et al., 2022). However, the same 

is not valid for other road crash types who witnessed increased road crash instances, i.e., 

total victims (+3%) and minor injuries (+5.6%). These results are comparable to (Kirk et 

al., 2020), who found a 9% reduction in severe injuries in London after the arrival of Uber. 

The results are in-sync with those found by (Greenwood & Wattal, 2017), which showed 

that the introduction of TNC results in a 3.6%-5.6% decrease in the rate of motor vehicle 

homicides per quarter in California. However, the authors caution that such a trend may 

reverse in the coming years as TNC continues to attract users from other modes of transport 
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(Flor et al., 2022). If TNCs attract public transportation or nonmotorized users in a much 

larger capacity than their replaced car trips (riskier drivers), then the number of riskier 

drivers on the roads would not decline. As a result, the number of road crashes and 

associated injuries/deaths may subsequently increase. 

Using road crash data corresponding between 2014 - 2018 for Madrid, (Flor et al., 

2021) found that TNC services like Uber and Cabify have a positive (reducing) effect on 

seriously injured or fatal crashes during weekends and policy holidays. However, it has no 

significance on crashes related to alcohol and drugs. The paper's findings indicate that TNC 

service usage is prevalent in areas that are either denser or have an increased presence of 

leisure establishments. By definition, leisure establishments are dedicated areas or places 

offering catering, leisure, and entertainment activities. This finding contrasts with the 

(Brazil & Kirk, 2020) findings in which the author found an increased association between 

Uber service and total, weekend- and holiday-specific, and alcohol-involved fatalities in 

counties with high population density and urban centrality. 

Blazquez et al. attempted to evaluate Uber's impact on alcohol-involving crash in 

the city of Santiago, Chile - one of the biggest markets for Uber in South America 

(Blazquez et al., 2021). The study takes a unique approach to the effect of TNC on road 

safety. According to the paper, most early Uber adopters were either highly educated or 

from well-off (higher household income) families, with easy access to or high penetration 

of Credit cards and smartphones. Since Uber transaction settlement primarily required a 

credit card and smartphone, its adoption during the initial period was concentrated mainly 

in the high socioeconomic community. Therefore, any analysis undertaken during earlier 

times of the Uber service launch must consider such disparity in use. The study further 

goes to classify 34 municipalities of Santiago into five economic groups High, High-

middle, Middle, Middle-low, and Low and finds a mild positive (reducing) effect between 

Uber and high socioeconomic municipalities. A similar impact between Uber and 

vulnerable (low- socioeconomic) municipalities was not found. 
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2.6 Methodological traits used in understanding TNC impact on road safety 

Due to the absence of available TNC-related trips, the primary independent variable 

of interest in most of the previous literature was limited to a dichotomous treatment 

indicator. i.e., 1: to indicate if the TNC service ran its operation; 0: to indicate if the TNC 

service did not run its operation.  

Depending upon the geographical spread of the research and the type of road 

crashes examined, such binary variables get populated for areas (𝑎𝑎𝑖𝑖), and measured over 

time 𝑡𝑡, usually a week, month, or quarter. Since the launch of TNC services in these areas 

is not always simultaneous, such a scenario turns into a classic post vs. pre-policy level 

experimental study. Difference-in-difference (DiD) estimation can then be used to exploit 

post and pre-intervention scenarios and thereby estimate the causal relationship between 

TNC and road crash variable. Indeed, it is the case for most studies (Barrios et al., 2019; 

Brazil & Kirk, 2020, 2016; Dills & Mulholland, 2018b; Peck, 2017) published in the 

intervening years since (Greenwood & Wattal, 2017) adopted such a technique to establish 

the effect of Uber's entry on alcohol-related motor vehicles.  

Using a binary variable to represent TNC services presence, both (Morrison et al., 

2018; Nazif-Munoz et al., 2022) exploited the limitation imposed by the interrupted time-

series analysis method to explore the relationships between Uber operations and different 

motor vehicle road crashes. The interrupted time-series study is a time-series analysis 

conducted by viewing an observational unit repeatedly over time at equal intervals. The 

said time-series data is interrupted by an intervention at a known time. Hypothetically, had 

the interruption not taken place, the underlying trend of the time series (expected trend) 

may have continued unchanged. This counterfactual scenario provides a comparison for 

the evaluation of the impact of the intervention by examining any change occurring in the 

post-intervention period. 

(Brazil & Kirk, 2020) adopted a more straightforward form of analysis in traditional 

count regression to model road fatality data. At the same time, Uber availability in the 

counties is still represented in binary form; the structure design allowed a test of the 

influence of other heterogeneity variables. Instead of presenting the coefficients of the list 
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of parameters in the model, the authors categorize the association as high/mid/low. 

Categorization transforms the association between Uber service and road crashes from a 

change in percent increase/decrease to a marginal association, i.e., whether the association 

is a non-existent, weak, or strong category. Using a simplified regression model, (Anderson 

& Davis, 2021) demonstrated that replacing a binary variable acting as a proxy for TNC 

service with a continuous proprietary dataset may lead to a complete reversal of the results. 

Such that,  having TNC services in cities may positively reduce alcohol involving fatalities.   

Kontou et al. used Spatial panel fixed-effects lag and Spatial Autoregressive with 

additional Autoregressive error structure (SARAR) models to overcome the absence of a 

control group in their study to investigate the use of rideshare services influences the rate 

of vehicular crashes, injuries, fatalities, and DWI Offenses (Kontou & McDonald, 2020a). 

Unlike DiD, which allows no inter-temporal dependence of the events, the spatial panel 

data model assumes that the observations units are geographic and that there is some degree 

of dependence between these units (spatial) due to their location and distance between each 

other. By including the spatial and time fixed-effects, their paper reduced the bias from 

unobserved factors generated from the continuous interaction between human behavior, 

vehicle, road infrastructure, and environmental conditions over space and time.  

2.7 Factors influencing the impact of TNC on road safety outcome 

Brazil et al. hypothesize that local, i.e., county demographic and socioeconomic 

characteristics, have a more significant influence on the consumption of TNC services and, 

therefore, should be part of the statistical model structure (Brazil & Kirk, 2020). They 

evaluate their hypothesis at various levels. Initially, only county-level characteristics 

participate in the model as covariates. The parameters include total population, density, 

and urban centrality, where Urban centrality gets defined as the percentage of the county 

population living inside a census-designated urban area.  

Later on, the paper goes on to explore the influence of transport accessibility and 

usage in influencing the TNC and road crash relationship by including variables like the 

number of available vehicles per housing unit, the percentage of total vehicle miles traveled 

(VMT) attributed to public transit vehicles, the percentage of total VMT attributed to rail 
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specific public transit, and measures of public transit coverage and service frequency, 

where 

• Public transit coverage is measured as the share of working-age residents living in 

block groups with access to at least one transit stop within ¾ mile of their 

population-weighted centroid.  

• Public Transit Service frequency is measured as the average time in minutes the 

commuters must wait between bus or train stops.  

In order to test the strength of the relationship between Uber availability and traffic 

fatalities, they include socioeconomic characteristics like log median household income, 

the percent of residents 25 years and over with a college degree, and the percent of residents 

between 20 to 39 years old. The assumption is that higher-income people, single-earning 

young professionals (aged between 20 -39 years), have more profanity in adopting new 

technology-based services than other community sections. At the same time, they also have 

more elasticity to absorb the price difference TNC service offers.  

Lastly, to test Uber's claim that their service helps the city reduce drink-driving-

related road instances, they include parameters like the number of drinking establishments 

per county area, the percentage of adults reporting drinking any alcohol in the past 30 days 

before being surveyed, and the percent of adults reporting binge or heavy drinking in the 

past 30 days before being surveyed. The assumption is that TNC service encourages people 

to spend more time socializing with their colleagues and friends, leading to increased binge 

drinking and exposing them to newer risks during transportation, where: 

• drinking establishments are that property which has licenses to sell and consume 

alcohol on its premise;  

• binge drinking is those instances involving where male indulges in 5 or more drinks 

or four or more drinks on occasion for women;  

• heavy drinking is defined as drinking 15 or more drinks for men or eight or more 

drinks for women per week 
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2.8 Summary 

Transportation Network Companies (TNC), also known as rideshare, e-hail, or 

ride-hailing companies, provide on-demand transportation services. Unlike traditional 

vehicle-for-hire services like taxis and limousines, TNCs do not maintain their vehicle 

fleets and rely on individually contracted private drivers to transport potential passengers 

from one place to another. Potential passengers request a ride through TNC online platform 

application, typically installed in a smartphone, and get matched to the nearest driver who 

transports the customer to the desired destination at a predetermined rate (trip cost). While 

such an arrangement presents numerous advantages in terms of cheaper travel costs, travel 

time, ease of booking and payment, and greater supply of transportation choices, their 

service is not short of disadvantages.  

Road crash is one of the many traffic externalities of TNC Service operations. What 

separates road crashes from other externalities like vehicle miles traveled, road congestion, 

and increased energy consumption is that it is not apparent at first glance. Therefore it 

explains the framework and, later on, the mechanism by which TNC trips can lead to more 

or fewer crashes. Various means, namely the impact of the increased vehicle on roads 

(exposure), increased vehicle miles traveled (VMT), deteriorating road congestion and 

travel speed, increased interaction with other road users at pick-up and drop-off locations 

(PUDO), and distracted driving, are discussed.  

A review of key published and unpublished papers/literature on the impacts of TNC 

service trips on road traffic crashes and injuries follows it. A few of the key messages 

emerging from the existing literature are: 

• In the absence of trip level, most studies resorted to using a dichotomous variable 

to measure the presence or absence of TNC services in the urban area, with the 

majority of the studies opting for using difference-in-difference methods for 

evaluating TNC service relationship with road crash outcomes; 

• Most of the peer-reviewed studies were set in the US, with a few set outside in the 

UK, Spain, Brazil, Chile, and South Africa. 
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• A few of the primary dependent variables whose association with TNC services are 

explored include total crashes, fatal crashes, alcohol-involving (DUI) crashes, and 

property-damage-only (PDO);  

• Most of the studies opted for a 2-dimensional panel data structure with either 

county, metropolitan areas, or city representing the spatial unit, while week or 

month is the time dimension. Few smartly utilized disruptions which occurred in 

TNC service operations like citywide strikes or bans followed by resumption of 

services as natural breaks over time to analyze the relationship on a single spatial 

location.  

• Overall, even after utilizing the same method and data setup, the results are found 

to be surprisingly mixed 

o (Greenwood & Wattal, 2017) found DUI rates to reduce by 3 – 4%; 

(Morrison et al., 2018) showed that only one out of the four selected city 

DUI crashes reduced due to TNC operations; (Peck, 2017) demonstrates a 

17-35% drop in DUI rates in New York;  using proprietary data obtained 

from Uber, (Anderson & Davis, 2021) found Uber’s relationship with 

alcohol-related traffic fatalities negative;  (Humphreys et al., 2021) paper 

attributes around 11% (morning), 20% (afternoon), and 38% (night) 

reduction in road crash due to the subsidized TNC scheme; (Kontou & 

McDonald, 2020a) concludes that every 10% increase in TNC trips leads to 

~0.12% decrease in road crashes ~0.25% decrease in road injuries, and 

~0.36% decrease in DWI incidence,  

o (Dills & Mulholland, 2018a) found a marginal negative association between 

total crashes and TNC operations but found no association between TNC 

services and DUI rates 

o (Brazil & Kirk, 2020, 2016) fails to find any association between ridehailing 

services, total crashes, drink-driving, and weekend and holiday-specific 

traffic fatalities,  

o (Flor et al., 2022) TNC services decreased severe injuries and deaths by 

25% but contributed to increased total victims (+3%) and minor injuries 

(+5.6%) in Madrid, Spain. 
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o (Barrios et al., 2019) study indicates that TNC services have increased VMT 

and led to a 3% rise in crash rates. 

o (Morrison et al., 2021) found both TNC trips, pick-ups, and drop-offs to be 

positively associated with the motorist and pedestrian injuries.  

o (Kirk et al., 2020) found severe injury cases declined outside of London, 

while the number of cases increased within it. 

• TNC operation resembles a traditional taxi and limousine service quite a lot. The 

section reviews the taxi literature to understand road safety trends related to taxi 

crashes.  

o The research indicates that behavioral aspects are much more impactful than 

traffic characteristics 

o Older taxi drivers are safer than their younger counterparts. 

o The strict bureaucratic process acts like a natural barrier and allows taxi 

drivers to have far lower crash rates than other drivers 

• To measure the association between TNC travel and road safety  

o most studies used dichotomous dummy variables to represent TNC's 

presence in the urban area, mainly because granular local-scale TNC trip 

data is hard to obtain. 

o Difference-in-difference (DiD) estimation is the preferred statistical method 

to exploit the naturally occurring post and pre-intervention scenarios 

(Barrios et al., 2019; Brazil & Kirk, 2020, 2016; Dills & Mulholland, 2018b; 

Greenwood & Wattal, 2017; Peck, 2017). 

o The interrupted time-series analysis method gets utilized to explore the 

relationship between Uber operations and motor vehicle crashes (Morrison 

et al., 2018; Nazif-Munoz et al., 2022). 

o A more traditional road safety model in the form of count regression models 

and spatial data models is also used to tap spatiotemporal units of analysis, 

yet findings remain inconsistent (Brazil & Kirk, 2016; Kontou & 

McDonald, 2020b). 

• The relationship between TNC services and various road traffic crash types is 

closely related to the following: 
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o Vehicular traffic flow (volume, speed, pattern),  

o Local spatial characteristics of the urban area play a vital role in evaluating 

the impact of TNC services on road crashes and, therefore, should be 

studied. That is to say that the relationship between TNCs and road safety 

outcomes is a function of residents' travel habits and travel patterns and how 

they use TNCs for local commutes. 

o The local (urban) impact may differ widely from the overall (on average) 

impact at the metropolitan level. Therefore, it implies a need to undertake a 

spatially complex network-level analysis between TNC services and road 

safety outcomes.  
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CHAPTER 3 DATA AND METHODS 

3.1 Background 

Chapter 2 provided a detailed overview of the objective of the past scientific 

literature, the methods adopted, and their findings related to TNC service and road safety 

crashes. Although the literature demonstrates the varied adoption of methodological 

(statistical models) traits, it fails to provide a definitive trend in the outcomes. Findings are 

also not consistent across studies that follow similar methods. The findings suggest that 

heterogeneous effects at the geographical and road network levels significantly influence 

the actual impacts between TNC services and road crashes.  

This chapter is divided into two major parts. The data section provides details of 

the data used to perform the analysis. The method section presents the framework adopted 

to analyze the relationship between road crashes (crash frequencies) and TNC-related 

parameters on a road network level. 

3.2 Research methodology overview 

Like past research, the study presents the association between TNC services and 

road safety outcomes in a before-and-after layout, where 2010 represents a scenario when 

TNC activities were negligible in numbers (assumed to be zero), while 2016 represents a 

condition when they were not. Figure 3-1 provides a graphical representation of the whole 

process. For each year, an estimation data file is compiled with one observation for each 

road facility type (FT). There are four FTs – Freeways, Arterials, Collectors, and Locals, 

with each length aggregated at the census tract (CT) level.  

There are three parts to the data a) traffic flow estimates like vehicular speed, VMT, 

which represents average weekday conditions in the fall of each year b) TNC-related 

estimates in the form of TNC VMT, PUDO and also represents average weekday 

conditions in the fall of 2016, while zero for 2010 c) estimates of road crash frequency 

counts that occurred at each of the four facility types clustered again at the CT level. The 

main categories of road traffic crashes analyzed are total crashes, fatal and injury crashes, 
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pedestrian and bicyclist crashes, alcohol-involving (DUI) crashes, and property damage 

only (PDO) crashes.  

Fixed-effects count (panel) outcome models are estimated where the dependent 

variable is road crash frequency counts. The descriptive variables include the background 

traffic levels, vehicular speeds, TNC volumes, and TNC PUDO. Variables that do not 

change between the two years, such as roadway geometry (unless there is a construction 

project), are absorbed into the fixed effects. The result is that coefficients are estimated 

based on the change between 2010 and 2016 conditions, mitigating the risk that an 

excluded variable that does not change biases the coefficient estimates.  

 

Figure 3-1: Research methodology used to evaluate the relationship between TNC operations and road crash outcomes 

3.3 Data 

This section provides details of the data used to perform the analysis. It includes 

the source of traffic attributes, namely TNC trip data, traffic flow characteristics, and road 

crashes. It also provides the detailed procedural steps followed to convert and merge 

different sources of these data into a singleton dataset used to conduct the statistical 

analysis. 

3.3.1 Data Sources 

3.3.1.1 Focus Study Area  

The research uses data from San Francisco (SF) County, California. The county 

covers 47 square miles of land area at the end of the San Francisco Peninsula. It represents 

the densest residential and commercial location in the Bay Area, with an estimated 
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population of 815,201 as of 2021 (US Census Bureau, 2022). It is also the first city where 

Uber rendered the inaugural TNC service trip in May 2010. Subsequently, Lyft hits San 

Francisco Streets in the year 2012. Together they expanded and now control the dominant 

share of TNC trips in the San Francisco Area. Fehr & Peers estimates that 12 to 14 percent 

of the total VMT generated in the San Francisco county limit is caused by TNC services 

like Lyft and Uber (Fehr & Peers, 2019). Studies by Roy et al., and Erhardt et al., 

demonstrate that between 2010 and 2016, almost half of the SF VMT increase is 

attributable to TNCs (G. Erhardt et al., 2019; Roy et al., 2020). 

3.3.1.2 Traffic flow estimates 

The study leverages local-scale granular traffic data made available by San 

Francisco’s travel demand model, the SF-CHAMP model, for both the 2010 and 2016 

periods. The traffic estimates produced for all road segments for both 2010 and 2016 are 

sensitive to San Francisco's observed travel patterns, the average vehicle ownership 

characteristics, population, employment, usage of the public transport system, non-

motorized facilities, and temporal variation by time of day (SF-CHAMP Modeling, 2002). 

The SF-CHAMP model has been continuously tweaked to reflect changes and used for 

almost two decades to ensure that the local trade-off factors like demographic influence, 

availability, and quality of alternative mode choices are sufficiently captured (SF-CHAMP 

Modeling, 2002). It is successfully applied to analyze policy and infrastructure changes 

(Brisson et al., 2012; Castiglione et al., 2006).  

The dataset is generated using SF-CHAMP 5.2.0. The data represent average 

weekday conditions and is available for each road segment for five different time-of-days 

(ToD) of each year. It is worth noting that the SF CHAMP model uses actual inputs, not 

forecasts, thereby avoiding discrepancies and errors (SF-CHAMP Modeling, 2002).  

It also means that the sensitive travel demand like SF-CHAMP that includes link 

level attributes for every street and city like length, number of lanes, capacity, turn 

restrictions, and facility type and which takes into account the 2016 population, 

employment, and network inputs to produce a robust counterfactual case where TNCs do 
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not exist. This dataset is termed Counterfactual (CF) 2016 and will be used to test and 

validate the impact of TNC services on road safety outcomes. 

3.3.1.3 TNC data estimates 

TNC data compliments the traffic flow estimates described in section 3.3.1.2. 

Between mid-November to mid-December of 2016, excluding dates around the 

Thanksgiving 2016 holiday period, the San Francisco County Transportation Authority 

(SFCTA), in collaboration with Northeastern University, generated a profile of local TNC 

usage in the SF county area by scrapping Uber and Lyft servers every five seconds via their 

application programming interface (APIs). Cooper et al. describe the procedure adopted to 

collect and process the data in considerable detail (Cooper et al., 2018). The data were 

further processed and cleaned to identify pick-up and drop-off (PUDO) locations, with 

vehicle trajectories tracked back between these locations to define a TNC trip. Erhardt et 

al. 2019 further processed the data to identify the total number of TNC volumes and pick-

ups and drop-offs (PUDO) occurring on each road segment in San Francisco county by the 

time of day (TOD) (G. Erhardt et al., 2019). 

The calibrated SF-CHAMP model for 2010 does not account for TNCs and is 

assumed not to exist during this period.  We have two scenarios from SF-CHAMP for 

2016: with and without TNCs.  Both were developed by (Roy et al., 2020).  The 2016 

scenario with TNCs incorporates TNC volumes in three ways:  

1. It pre-loads TNC deadheading travel (travel without a passenger), directly 

observed through data collection.  

2. It includes a trip table of TNC vehicle trips serving passengers as a separate 

class in a multi-class traffic assignment.  For these trips, we observe the origin 

and destination of the trips, with the route inferred through the assignment.  

3. It assigns the pick-ups and drop-offs to specific network links and estimates 

their effect on traffic congestion with previously estimated coefficients that can 

indicate how long each pick-up or drop-off blocks the right-most traffic lane 

(G. Erhardt et al., 2019). 
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These travel estimates are for typical weekday conditions, segmented by the time of day.  

The 2016 scenario without TNCs excludes these three factors and estimates how 

population growth, employment growth, and network changes changed traffic volumes and 

speeds between 2010 and 2016.  

3.3.1.4 Road Crash Data 

Crash data representative of San Francisco County, California, were obtained from 

Statewide Integrated Traffic Records System (SWITRS) (CHP-SWITRS, 2019). By 

California law, all enforcement agencies must report fatal or injury collisions (classified 

under the KABCO injury scale) to the California Highway Patrol (CHP), which updates 

and pushes the data into the SWITRS database (CHP-SWITRS, 2019). The study extracts 

all road crashes in SF County between January 1, 2010 - December 31, 2010, and January 

1, 2016 - December 31, 2016, to represent total crashes for YR 2010 and YR 2016, 

respectively. The crash data is re-examined to identify missing information, especially 

latitudes, and longitudes. For records missing such information, we retrieve their 

geographic coordinates using geocoding (Overview | Geocoding API, 2022) process, in 

which land-based information (e.g., street address, primary road, secondary road, the 

direction of the road segment) fetches geographic coordinates. Section 3.3.1.5 explains the 

process in detail. 

There are five main crash types captured in the SWITRS database, namely: 

1. Fatal Injury (K):  Death due to injuries sustained in a collision or an injury 

resulting in death within 30 days of the collision. 

2. Severe Injury (A): An injury other than a fatal injury that includes the following  

a. Broken or fractured bones,  

b. Dislocated or distorted limbs,  

c. Severe lacerations, Skull, spinal, chest, or abdominal injuries that go 

beyond “Other Visible Injuries,”  

d. Unconsciousness at or when taken from the collision scene 

3. Other Visible Injuries (B): An injury other than a fatal or severe injury is evident 

to observers at the collision scene. Other visible injuries include  
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a. Bruises, discoloration, or swelling,  

b. Minor lacerations or abrasions and  

c. Minor Burns 

4. Complaint of Pain Injuries (C) - This classification could contain authentic 

internal, other non-visible injuries and fraudulent injury claims. “Complaint of 

Pain” includes  

a. persons who seem dazed, confused, or incoherent (unless such behavior 

is attributed to intoxication, extreme age, illness, or mental infirmities) 

b. persons who are limping or complaining of pain or nausea but do not 

have visible injuries 

c. any person who may have been unconscious as a result of the collision, 

although it appears he/she has recovered 

d. persons who say they want to be listed as injured but do not appear to 

be so 

5. Property Damage Only [PDO] (O) – Any road crash that neither results in fatal 

nor personal injury is classified as a property damage only (PDO) crash. Here 

the primary damage is to the real property instead of a person or persons. The 

primary type of property damage that may occur in a road crash is damage to 

the vehicles involved or the personal property inside the car. Any PDO crash 

amounting to 1000$ or more is required to be reported to the state agency by 

California law. 

Classification of road crashes by crash types, as mentioned above, is also 

sometimes referred to as KABCO Injury Classification Scale.  

The series of figures below presents the univariate distribution of road crashes (by 

types) for each year, i.e., 2010 and 2016, by counting the number of observations that fall 

within discrete bins having a width equal to 1. 
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Figure 3-2: frequency distribution for total crashes by individual year 

 
Figure 3-3: frequency distribution for all fatal and injury crashes by individual year 

 



 

48 
 

 
Figure 3-4: frequency distribution for crashes involving pedestrians and bicyclists by individual year 

 

 
Figure 3-5: frequency distribution  for alcohol-involving crashes 
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Figure 3-6: frequency distribution  for property-damage-only crashes 

3.3.1.5 Fetching missing geo-coordinates of a road crash 

Road crashes for 2010 and 2016 are fetched from the SWITRS database using 

Query & Map functionality available online. A step-by-step method to access crash data is 

found here. The SWITRS database contains information about all types of crashes, 

including fatal, injury (severe), injury (other visible), injury (complaint of pain), and PDO 

(property damage only).  

Approximately 90% of all the fatal and severe injury crashes maintained in the 

SWITRS database are geocoded through the process developed at SafeTREC University 

of California, Berkeley. However, crashes involving injury (complaint of pain) and PDOs 

do not have spatial locations because most data is not entered immediately. When a road 

crash gets reported to the police, the officer's first response is to clear the original crash site 

and ensure that traffic flow gets restored to normalcy. Later, a crash form is filled out if the 

officer identifies that the crash damages are >1,000$ or the vehicle needs to be towed. 

Suppose the crash form is filled out after the vehicle is moved. There is a high probability 

that geolocation information of the road crash is left blank or highly inaccurate. If the road 

crash is self-reported, the crash parties may not provide the crash location or do not fully 

recollect the crash scene resulting in the missing information. 

https://tims.berkeley.edu/help/Query_and_Map.php
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Given that the research objective is to understand the impact of TNC service 

operation on road safety outcomes, there is a considerable expectation of a) mapping out 

all the road crashes, including PDOs b) geolocation of each road crash with reasonable 

accuracy. Therefore, a custom geocoding process is created to parse the text information 

in "primary road," "secondary road," "distance," "direction," and "intersection" attributes 

into geographic coordinates. 

The process is like the method adopted by SafeTREC but instead utilizes open-source 

data and tools. The process can be divided into three parts. 

A. Step I - Identify coordinates of the road intersections - For this step, we utilize 

Overpass Turbo API, a freely available web-based data mining tool for 

OpenStreetMap (OSM). We use the API query functionality to manipulate OSM 

data elements to extract coordinates of all road intersections within the SF county. 

The outcome is checked for various conditions to ensure that false positive road 

intersections are kept to a minimum. The resultant output contains the list of all 

road intersections with SF county, its coordinates, and the street names of all 

participating road segments. 

B. Step II - Address locator – Road crash data records are passed over a custom address 

locator script, which reads the information in "primary road," "secondary road," 

and "intersection" and searches the information in the output from Step A. If the 

script finds a match, a (point geometry) marker object is created. The marker is 

assigned the coordinates of the matched road intersection. 

C. Step III - Offsetting the coordinate to identify the actual position – The "direction" 

attribute is used to update the orientation of the marker position. In contrast, 

"distance" is used to move the marker from the road intersection by the distance 

along the primary road. 

The position of the marker after undertaking steps A, B, and C is the projected 

coordinate values of the road crash. The script returns no such information if either of the 

"primary road," "secondary road," or "intersection" values are missing in a crash record. 
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3.3.2 Data Processing 

3.3.2.1 Unit of analysis 

Various styles of observational units have been used in the crash-count modeling 

literature. It includes counties, regions, districts, census tracts, road intersections, and 

roadway segments. Each has its merits and demerits, with each level of data aggregation 

leading to somewhat different results.  

For instance, area-based crash prediction models allow area-level demographic and 

socioeconomic characteristics to be accounted for in the statistical models. These datasets 

are more readily available, enabling the analysis to infer explanatory variables' effects more 

accurately. They are used without or in combination with engineering-related variables like 

average speed, traffic volume, roadway geometry, and pavement characteristics. In this 

regard, spatial econometric models are gaining traction but are relatively complex to 

implement. Kontou et al. used spatial distributions of TNC usage, road safety outcomes, 

and other socio-economic characteristics at the Census Tract (CT) level to test associations 

of the launch of TNCs with road injuries (Kontou & McDonald, 2020b), while Wang and 

Kockelman and Li et al. demonstrated such methods as a viable alternative to the 

discrete/integer counts, at smaller geographical levels (Li et al., 2007; Wang & Kockelman, 

2013). 

On the contrary, road segment-based analyses are more focused and used to study 

the effect of traffic characteristics (like VMT, AADT, and speed limits), road features (like 

horizontal, vertical alignment, shoulders, curbs, road surface), and other variables like 

weather conditions on the temporal patterns of motor vehicle crashes (rate, frequency, 

fatality, injury, duration, severity) measured either at hourly, daily, monthly, and yearly 

scale (Balkin & Ord, 2001; Fridstrom et al., 1995; Johansson, 1996; J. Ma & Kockelman, 

2006; Miaou, 1994, 1996, 2001; Miaou et al., 1993; Miaou & Lum, 1993; Pernia et al., 

2004; Vogt, 1999; Vogt & J.G, Bared, 1998; Zegeer, C.V., et al., 2002) 

So how do we choose which unit of analysis is appropriate for our analysis?  
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Miranda-Moreno et al. did an interesting study on the influence of build 

environment (BE) characteristics like land use types, road network, transit supply, and 

demographic factors on pedestrian activity or pedestrian-vehicle collision occurrence. 

Two-equation modeling framework was used to simultaneously model pedestrian activity 

(in log-linear form, as an exposure variable) and crash counts (using a standard negative 

binomial model structure) at signalized intersections in Montreal, Canada. Their analysis 

concludes that while BE is a strong predictor of pedestrian activity, after controlling for 

exposure, it has a minor effect on collision frequency (Miranda-Moreno et al., 2011).  

Furthermore, there will always be some unobserved explanatory variables that 

influence crash frequency but could not be made part of the model. Such a situation is 

overcome by arranging them in a panel data structure form and introducing fixed effects 

which can eventually help deal with heterogeneity among missing variables.  

Given that the objective of the dissertation is to study the impact of TNC services 

on road safety outcomes in the form of crash frequencies, it was decided to choose the road 

segment as the unit of analysis.  

However, we quickly faced another hurdle in developing a sensible crash count 

model because of the sheer number of short-length (unequal) road segments within the road 

network. In addition, urban road segments vary in design and use levels. It also meant that 

crashes on short-length road segments were few and hard to model, which increased the 

preponderance of zero crash observations, i.e., the results at this scale appeared to be noisy. 

Shifting the overall sample mean to near zero makes the count data model extremely 

inefficient. 

Therefore, to overcome these issues, we adopted another approach. We first 

classified roadway segment observations into relatively homogeneous facility types (FT), 

as in Table 3-1. The FT is so organized that it brought minimum variance to speed 

variables, one of the main drivers of road crashes. Later, the FT attributes - length and the 

number of crash counts are aggregated into a spatial unit. A variety of spatial units have 

been employed in the literature, such as regions (Washington et al., 1999), counties (Miaou 
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et al., 2003), zip codes (Girasek & Taylor, 2010), census tracts (Wang & Kockelman, 

2013), block groups (Levine et al., 1995), and traffic analysis zones (Xu et al., 2014).  

We use Census Tract (CT) because: 

a) it is the most common spatial unit to undertake macro-level model development  

b) it allowed the cluster to be less dominated by local roads, which had the largest 

share of observations but a minority of crashes.  

Table 3-1: Reclassified Facility Types (FT) 

(reclassified) 
Facility Type (FT) 

FT 
code Description 

Freeways 1,2,3,5 Roads classified as Fwy-Fwy Connector or Freeway or Expressway or 
Ramps 

Arterials 7,12,15 Major Arterial, Minor Arterial, and Super Arterial roads 
Collectors 4 Collector roads 
Locals 11 All local roads 

 

3.3.2.2 Road Network 

The road network and its corresponding attributes are stored in a tabulated format 

called shapefiles. ESRI developed and regulated the shapefile format, the most widely used 

data format in geospatial sciences. Shapefile is part of open format data (interoperable) 

specifications, and most GIS suites, including ESRI, QGIS, or any third-party proprietary 

geographic information system (GIS), could easily read the information. Typically, a 

shapefile maintains the topological and nontopological attributes in a fixed tabular format. 

The shapefile can store simple (vector features) like points, lines, polylines, or a polygon 

to non-simple, complex geometry structures. 

As mentioned earlier, SF-CHAMP divides the whole day into five times of day, 

i.e., 3 to 6 am (EA), 6 to 9 am (AM), 9 am to 3.30 pm (MD), 3.30 – 6.30 pm (PM), and 6-

30 pm – 3.00 am (EV) and therefore the study had five different road network files 

available for each year, i.e., YR 2010 and YR 2016.  

https://www.esri.com/en-us/arcgis/about-arcgis/overview
https://www.qgis.org/en/site/
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Therefore, the initial step is to merge all these road network files into a singular 

data. The study uses Python programming language and the QGIS platform to undertake 

desired manipulation and visualization. 

3.3.2.3 Selecting the reference coordinate system 

Explicitly defining the map projections before conducting any spatial exercise is 

usually a good practice. Having all spatial features (road network and road crashes) in the 

same coordinate system avoids any topographic errors while undertaking further complex 

geometry analyses. There are two types of a projection system  

• Geographic Coordinate system (GCS) - Geographic coordinate system uses a three-

dimensional spherical surface to define the location of an object (point, line, and 

polygon) on Earth. The object's location is measured from the center of the Earth 

using two relative planes: a plane parallel to the equator and an imaginary line 

connecting the North and South Pole and Greenwich, England. The distance is 

traditionally measured either in decimal degrees or in degrees, minutes, and seconds 

(DMS). The angular distance parallel to the equator is termed as latitude (+90 deg 

towards the North Pole, -90 deg towards the South Pole), while longitude range 

from -180 deg (traveling to the west) to +180deg (traveling to the east) with 

endpoint constantly merging with North & South poles. They are optimal when 

someone needs to locate places on the Earth or analysis is to be undertaken globally. 

GCS is not suitable for tasks involving "distance." Therefore the study adopts a 

projected coordinate system (PCS). (Desktop Help 10.0 - Map Projections, 2013; 

Gimond, 2022; Holdgraf & Wasser, 2020) 

• Projected Coordinate system (PCS) - In a projected coordinated system (PCS), the 

3-dimensional representation of an object on the Earth's surface gets transformed 

into a 2-dimensional object. It transforms an object from a spherical or curved 

surface (like our Earth's body) to a flat planar coordinate. The coordinate system 

consists of an x-axis and a y-axis. The X-axis and Y-axis intersect at right angles, 

and the point of intersection is also called the origin with coordinates (0,0). 

Transforming from GCS to PCS is termed reprojection. Reprojection is always 
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associated with a mathematical algorithm (and the reference point called datum) 

that controls the distortion that may arise from transforming a 3-D object into a 2-

D object. Therefore, the measurement units become consistent and equally spaced 

across both axes. As a result, calculating the distance or an area is relatively easy 

to work with, provided the covered area is not too large (Desktop Help 10.0 - Map 

Projections, 2013; Gimond, 2022; Holdgraf & Wasser, 2020; Mieno, 2022).  

Given that the study area is roughly 47 square miles, the study uses ESPG:3857 as its 

spatial projection system. ESPG:3857 is a popular projected coordinate system used by 

online mapping engines like Google Maps and OpenStreetMap.   

3.3.2.4 Keeping only the relevant records by filtering 

After the reprojection, the shapefile is filtered to keep only those features belonging 

to facility types as described in SF-Champ documentation (see the Table below). The 

shapefile is also checked for assigned free-flow speed and capacity values to remove any 

inconsistencies in the data records. If there is a discrepancy in the observed free-flow speed 

values, then the values in shapefiles are updated to the desired values.   

Table 3-2: referenced free-flow speed as per SF-CHAMP guidelines 

FREEFLOW SPEED 
      

FT \ AT   Description 
0 1 2 3 4 5 

Regional Core CBD Urban Biz Urban Suburban Rural 

1 Fwy-Fwy Connector 30mph 35mph 40mph 40mph 50mph 50mph 

2 Freeway 45mph 50mph 55mph 60mph 65mph 65mph 

3 Expressway 45mph 45mph 55mph 60mph 60mph 60mph 

4 Collector 20mph 25mph 30mph 30mph 30mph 30mph 

5 Ramp 25mph 25mph 30mph 30mph 35mph 35mph 

7 Major Arterial 25mph 30mph 35mph 35mph 35mph 35mph 

11 Local 20mph 25mph 30mph 30mph 30mph 30mph 

12 Minor Arterial 25mph 25mph 35mph 35mph 35mph 35mph 

15 Super Arterial 30mph 35mph 40mph 45mph 45mph 45mph 
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3.3.2.5 Clip the road network  

The output feature class layer still contains road segments extending to other parts 

of the Bay Area (green lines in the figure) that are not within the SF County limits. 

Therefore, a spatial intersection between the polygon area (thick black polygon) and the 

road network is performed. The cropped road network (in brown) contains only those road 

segments within the SF County boundary limits. The road segments are updated to reflect 

the revised GIS length. At the end of this step, there remain 26,276 road segments inside 

the SF County Area. 

 

Figure 3-7: Clipping the SF County road network from the Bay Area road network 

3.3.2.6 Merge the road network available by Tod into one dataset 

Each TOD's clipped road network gets merged into a singular data source at this 

stage, and the dataset looks like something below 



 

57 
 

Table 3-3: merging the ToD records into one record for each road network segment 

 

3.3.2.7 Creation of unique segment id's and aggregation of the road network attributes 

A unique field is created by concatenating two existing columns, "A" and "B." A 

& B represent the start and end nodes of the road link. The newly created column A_B acts 

as a unique identifier of the road segments and permits to carry out of mathematical 

aggregation functions like mean, median, summation, maximum, and minimum on each 

(desired) attribute. For each attribute desired, the aggregation function is carefully 

assigned. For example, the Total Volume flowing on a given road segment per day is the 

sum of all traffic volume observed across each TOD. At the same time, given that variables 

like facility type, number of lanes, and GIS length are constant, only the first value of the 

record is kept. Variables like the congested Speed, congested travel time, and free flow 

travel time depend upon the traffic flowing through the road segment. Therefore, the 

weighted average method is adopted for their calculations, with the total volume being the 

predetermined weight parameter.  

At the end of the process, two unique road network datasets for 2010 and 2016 

emerge. The road network contains precisely one entry (a record) for each road segment 

within SF County, with attribute values corresponding to the expected average daily 

conditions.  

3.3.2.8 The spatial intersection of the road network with the SF Census Tract 

The spatial intersection is performed between the aggregated road network and the 

SF Census Tract (polygon shapefile) layer. During the intersection process and depending 

upon the number of census tracts through which a road segment traverses, the road 

segments get exploded into sub-segments. Each subsegment would always be within the 

given census tract.  
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For example, before the spatial intersection is performed, the (red) line 

24870_24872 is partly inside Census Tract (CT) 010100, while a tiny fragment is in CT 

010500. The spatial intersection splits the road segment into two sub-segments, each 

independent of the other (see other figures). It allows the research to have better control 

over the length of road segments in a given census tract. Variables like free flow time, 

congested time, and GIS length are recalculated for each of these subsegments 

 
Figure 3-8: Road segment before spatial intersection between road network and census tract polygon shapefile 
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Figure 3-9: Road segment after spatial intersection between road networks 

3.4 Methods 

This section is divided into two major parts.  

Section 3.4.1 details explanatory variables that will be used to conduct a thorough 

statistical analysis.  

Section 3.4.2 provides a detailed procedure adopted to develop the Poisson fixed-

effects model, which will be used to test out different explanatory variables identified in 

Section 3.4.1. The model is developed to derive additional crashes generated due to 

explanatory variables' involvement.  

3.4.1 Selection of explanatory variables 

The literature section briefly mentions many factors that can potentially contribute 

to the likelihood of road crashes. The contributing factors can be broadly classified into 

road environment, vehicle factors, driver characteristics and behavior, and road design. 

Ideally, all categories of factors should participate in road crash frequency analysis. 

However, not all variables can have equal attention, possibly due to the limitation of 

capturing the data. Therefore, the selection of a variable is very critical. 
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3.4.1.1 Quantity of Travel 

The most intuitive and perhaps critical factor affecting road crash frequency and 

severity is the quantity of travel. The amount of travel can be hourly volume, annual 

average daily traffic (AADT), or vehicle miles traveled (VMT). VMT is widely used as a 

primary indicator of travel by policymakers and transport professionals due to how 

consistently and comprehensively it is monitored and documented over time by local or 

federal agencies.  

Moreover, studies by (Fridstrom et al., 1995; Jovanis & Chang, 1986; Song et al., 

2006) have demonstrated that vehicle miles traveled are an acceptable variable to measure 

road crash frequency. Similarly, while analyzing the urban transportation system in 

Honolulu, Hawaii, (Levine et al., 1995) found that more road mileage is associated with 

more road crashes. While examining the effects of VMT, Tarko found that higher VMT, 

especially on the urban road, is directly related to the number of crashes (Tarko et al., 

1996). The results are consistent with the studies by (Karlaftis & Tarko, 1998; Hadayeghi 

et al., 2003; Ladrón de Guevara et al., 2004; Hadayeghi et al., 2006; Aguero-Valverde & 

Jovanis, 2006; M. A. Quddus, 2008) who found VMT to be positively associated with road 

crashes.  

One can use urban sprawl phenomena to explain the relationship between VMT 

and road crashes (Ewing et al., 2002, 2003). As urban sprawl increases (city limits increase 

in size), people are forced to travel more frequently and for longer distances resulting in 

increased time spent on roads, thereby exposing them to more traffic-related crashes. Other 

factors like population density, job-housing locations, unemployment rate, the natural 

topology of the city, and availability and efficiency of public transportation also shape 

VMT. In other words, VMT mainly reflects the exposure measure for traffic volume; 

therefore, with increased VMT, the probability of getting involved in a crash is likely 

higher.  

Therefore, this study selects VMT as one of the explanatory variables to test the 

statistical model. To differentiate the exposure of TNC vehicles from the rest of the 

vehicles on the road network, the study splits the total VMT into two parts a) non-TNC 
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VMT and b) TNC VMT. As the names indicate, non-TNC VMT corresponds to the VMT 

generated by all other vehicles except TNC vehicles. TNC VMT is the summation of the 

vehicle miles traveled by the TNC service-rendering vehicles.  

3.4.1.2 Speed 

Like VMT, abundant scientific literature links crash occurrence with traffic speed 

(Solomon, 1964; Elvik, 2001; Hauer, 2009). In simplistic terms, one can assume that the 

relationship between speed and road crash occurrence is strictly linearly positive. It is 

because drivers traveling at higher speeds have less time to react to potentially hazardous 

scenarios, given that the reaction time and braking distance are proportional to increased 

speed. At very high speeds, the driver may lose control of the vehicle or misjudge the road 

scene leading to a dangerous situation.  

However, past studies have suggested otherwise (Solomon, 1964; Elvik, 2001; 

Hauer, 2009). Solomon found a U-shaped relationship between the number of crashes per 

distance and travel speed, i.e., road crashes decrease as the speed increases. After a certain 

speed, the road crashes started to rise again. Furthermore (Elvik et al., 2006) did an 

extensive study to explore the statistical association between speed and road safety and 

found such a relationship casual. According to (Elvik et al., 2006), a 10% reduction in 

average speed results in a 37.8% reduction in fatalities. Similarly, (M. Quddus, 2013) found 

that speed variations can positively influence road crash rates.  

Alternatively, the widespread use of Intelligent Transportation System (ITS) 

techniques and location-based technology (LBS) services has made it feasible to measure 

speeds and travel time more dynamically and thereby use these variables as a proxy to 

explain traffic congestion (Albalate & Fageda, 2021; Shefer & Rietveld, 1997; Ivan et al., 

2000; Lord et al., 2005). Given that the SF CHAMP network models include average speed 

(congested speed) as one of three congestion-centric measures besides vehicle hours of 

delay and VMT, this study utilizes congested speed to represent congestion in the statistical 

model. 
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 (Shefer, 1994) established an inverse U-relationship between road congestion and 

safety mainly due to reduced speed. The author uses a simple graph, as shown below, to 

explain the relationship.  

Stage I – initially, with few vehicles on the road, the possibility of an individual 

getting involved in a crash is rare. Therefore, the possibility of a vehicle leading to a fatal 

crash is rare. However, as the number of vehicles keeps increasing, the number of fatal 

crashes keeps rising. At the same time, as the number of vehicles keeps increasing, the 

link's (average) speed starts to decrease but is still more than the operational speed.    

 

 

Figure 3-10: Hypothetical relationship between road fatalities and road density proposed (Shefer, 1994) 

Stage II - At the beginning of this stage, the vehicular speed tends to decrease, but 

it is still possible to maintain the speed well above the design limit. The short steep slope 

line represents the stage. It indicates that the fatalities increase faster than the initial Stage 

I. However, as more and more vehicles get added, the speed starts to decrease non-linearly, 

resulting in congestion. The rise in congestion further flattens the slope of the curve and 

thus reducing the overall rate of fatality. 
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Stage III – Further, a point arises where the slope of the curve is parallel to the X-

axis, starting in which the number of fatalities goes down and first traverses the graph like 

in Stage II and then Stage I, even when the V/C ratio increases. 

Shefer and Reitvield further explored the relationship between congestion and road 

crashed using average speed, speed variance, and vehicle mix and concluded that 

congestion has an unwanted gain potentially in the form of lower road fatalities (Shefer & 

Rietveld, 1997). They found that the fatality rate is lower during peak hours than at non-

peak hours. 

Therefore, the study also includes congested speed in the list of explanatory 

variables. Furthermore, to represent a non-linear relationship between road crashes and 

congestion, the study adds the square of congested speed variable to the list of explanatory 

variables. Further, the study maintains two variables to acknowledge that congested speed 

on freeways differs from other city roads in terms of duration and variation. 

3.4.1.3 TNC Pick-up and Drop-off (PUDO) 

The primary source of the research crash data is the SWITRS database. Like 

NHTSA, it provides information about crashes that local and governmental agencies 

reported. However, both databases are restricted to those crash records in which motor 

vehicles are involved, i.e., where motor vehicles are in transport. Moreover, it does not 

have an attribute to capture crashes resulting from passengers' loading/unloading (PUDO) 

behavior.  

The taxi industry has long acknowledged the issue somewhat limitedly in the form 

of dooring and its implication on two-wheeler motorcycles and bicycles but has no 

comprehensive solution. The Australian road safety community discusses its impact on 

vulnerable road user groups, especially bicyclists w.r.t parked vehicles but fails to 

acknowledge problems arising from the emerging transportation sector (Bolitho, 2013; 

Cumming, 2012) like TNC operations.  
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Compared to personal (vehicle) transportation which starts or ends at a parking 

place in either a home, office or on-street or off-street parking area, most TNC trips end at 

the nearest road curb leading to the entry/exit of the premise. This come-and-find curbside 

parking approach may have unintended road safety consequences, mainly when another 

road user tries to use the same area simultaneously.  

Past research to understand the impact of PUDOs on road safety is rare. (Schimek, 

2018) indicates that almost 12-27% of bicycle crashes involve parked vehicles on the 

curbside. Researchers from the University of Washington studied the behavior of TNC 

driver's PUDO in the South Lake Union (SLU), Seattle neighborhood, to develop a strategy 

to improve traffic flow. The SLU neighborhood is the site of the main Amazon campus 

and generates many TNC trips. The study found that during peak hours, the PUDO activity 

amounts to 29 - 39% of the total traffic volume, with many vehicles performing PUDO 

activities in the travel lane (Goodchild et al., 2019). The physical survey finds that more 

than half of the TNC trips in the neighborhood either start or end outside the dedicated curb 

space. Such a pattern is prevalent even when the curb space in the passenger loadings zone 

(PLZ) is empty and even when both Uber/Lyft enforces the geofencing technique, which 

directs drivers and passengers to designated PUDO locations on the street. The research 

observed high-volume pedestrian (30-40%) crossings at street locations where no 

crosswalks exist. While these erratic loading/unloading patterns and high pedestrian 

crossing volumes did not create traffic safety issues in the survey neighborhood, they may 

lead to hazardous scenarios in other areas, primarily where multi-modal transport activity 

occurs or in high-density areas.  

More recently, (Kwayu et al., 2022) tried to summarize bicycling safety issues in 

nine Canadian cities by analyzing self-reported near-miss and collisions event obtained 

from the crowdsourcing platform BikeMaps.org. Her research found that the probability of 

cyclists getting involved in crashes increases as motor vehicles encroach a bike lane or on-

street parking close to or into the bike lane resulting in dooring and driver violations at the 

crosswalk. 
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In a nutshell, no prior research predicts the impact of TNC-related PUDO on road 

safety outcomes. The current study is the first to attempt to model such behavior. 

3.4.1.4 Exposure variable 

The notion of exposure has widespread use in road safety crash analysis. Chapman 

and Carroll (Carroll 1973; Chapman 1973) have extensively studied and reviewed the 

concept of exposure. However, there is no definitive agreement on what it means. Many 

researchers attempted to use exposure for their statistical crash analysis without trying to 

define the concept. However, this study will use the definition proposed by Carroll, which 

states that "exposure is the frequency of traffic events which create a risk of road crashes." 

In other words, exposure helps study the potential crash risk and estimate the probability 

of crash occurrence at a particular site. Knowing such parameters allows for comparing a 

given location at different periods or two or more sites in the same period reliably or 

meaningfully. Without the exposure measure, the analysis results may mask the proper 

relationship between the factors and their relationship with road safety crash frequency.  

There is a general disagreement in the scientific literature regarding which exposure 

is more desirable than the others. Many argue that given that different exposure variables 

produce different results, the proxy for exposure must be carefully identified and 

complement the analysis's overall objective (Kam, 2003).  

Exposure variables can be classified in two ways a) aggregate or b) disaggregate. 

The latter is more complicated to obtain and measure. For example, examining individual 

choices based on individuals characteristics and preferences is much more complex than 

getting (aggregated) attributes like traffic volume (Miaou, 1994; Mountain et al., 1996; Qin 

et al., 2004, 2006; Wong et al., 2007; Van den Bossche et al., 2005), conflicts (Bie et al., 

2005; Wong et al., 2006), travel distance (Li et al., 2003), travel time (Chipman et al., 

1993), and population or fuel consumption (Fridstrøm et al., 1995) are much easier to 

obtain and widely used.  

For road crash analysis like the current study or regional, national, and international 

comparison, it is adequate to compare the number of road safety crashes against some gross 
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estimate of the amount of travel. Therefore Total VMT is chosen as an exposure variable 

for future analysis. 

3.4.2 The model 

3.4.2.1 Expectations from the linear regression model 

The model must adhere to certain assumptions no matter the form of multiple linear 

regression. These assumptions are often termed as Gauss Markov Theorem or Conditions, 

and these are (Jeffrey Wooldridge, 2019):  

• Linearity: the parameters the regression model estimates using the OLS 

method must be linear. 

• Random: the data must have been randomly sampled from the population. 

• No Perfect Collinearity: none of the independent variables is constant, and 

there is no exact linear relationship between them.  

• Exogeneity: independent variables are not correlated with the error term ս. 

• Homoscedasticity: no matter the independent variables' values, the variance 

error is constant. 

It is with this principle that we approach the following section.  

3.4.2.2 Regression Structure 

Road crashes are discrete or count data variables since they can only take values 

between 0 →  𝑛𝑛 where n = 0,1,2,3,4, 5, … ∞ 

While using count data as a dependent variable in the linear regression model 

(Ordinary Least Square (OLS) regression) setup is not prohibited, it cannot handle the 

truncated data at zero and therefore predicts non-integers or negative values. It makes the 

expected value from OLS regression inconsistent and non-sensical. Thus, a linear 

regression model is unsuitable for predicting count data variables.  

An excellent alternative to OLS regression is to take the natural logarithm (log) of 

both the predicted and independent variables. The log-linear relationship for predicting 



 

67 
 

crash frequency using explanatory variables presented in section 3.4.1 can be represented 

as: 

log(𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐ℎ) =  𝛽𝛽0 + 𝛽𝛽1 ∗ ln(𝑇𝑇𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑇𝑇) + 𝛽𝛽2 ∗ (𝐶𝐶𝑡𝑡𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐹𝐹𝑐𝑐𝐶𝐶𝐶𝐶𝐹𝐹𝑎𝑎𝐹𝐹𝑐𝑐) + 𝛽𝛽3
∗ (𝐶𝐶𝑡𝑡𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐹𝐹𝑐𝑐𝐶𝐶𝐶𝐶𝐹𝐹𝑎𝑎𝐹𝐹𝑐𝑐)2 + 𝛽𝛽4 ∗ (𝐶𝐶𝑡𝑡𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑡𝑡ℎ𝐶𝐶𝑐𝑐𝑐𝑐𝑡𝑡𝑎𝑎𝐶𝐶𝑐𝑐) + 𝛽𝛽5
∗ (𝐶𝐶𝑡𝑡𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑡𝑡ℎ𝐶𝐶𝑐𝑐𝑐𝑐𝑡𝑡𝑎𝑎𝐶𝐶𝑐𝑐)2 + 𝛽𝛽6 ∗ ln(𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂) + 𝛽𝛽7 ∗ ln(𝑇𝑇𝑡𝑡𝑡𝑡 𝑇𝑇𝑇𝑇𝐶𝐶 𝑉𝑉𝑉𝑉𝑇𝑇) +  𝜀𝜀 

Equation 3-1 

In the equation above, variables on the equation's left-hand side (LHS) and right-

hand side (RHS) get logged. As a result, the coefficients of the RHS variable, i.e., 

𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽7.  The proportional change in total crash frequency resulting from proportional 

change due to Tot VMT, Congested Speed – Freeways, Congested Speed – Other Roads, 

PUDO, and Tot TNC VMT in a given area. Taking the exponent on both sides of the 

equation yields the following equation 

𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐ℎ =  𝐶𝐶𝛽𝛽0 ∗  𝐶𝐶𝛽𝛽1∗ln(𝑇𝑇𝑇𝑇𝑇𝑇 𝑉𝑉𝑀𝑀𝑇𝑇) ∗ 𝐶𝐶𝛽𝛽2∗(𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) ∗  𝐶𝐶𝛽𝛽3∗(𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)2

∗ 𝐶𝐶𝛽𝛽4∗(𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑇𝑇ℎ𝐶𝐶𝐹𝐹𝐹𝐹𝑇𝑇𝐹𝐹𝐶𝐶𝐹𝐹) ∗  𝐶𝐶𝛽𝛽5∗(𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑇𝑇ℎ𝐶𝐶𝐹𝐹𝐹𝐹𝑇𝑇𝐹𝐹𝐶𝐶𝐹𝐹)2 ∗ 𝐶𝐶𝛽𝛽6∗ln(𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂)

∗ 𝐶𝐶𝛽𝛽7∗ln(𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝐶𝐶 𝑉𝑉𝑀𝑀𝑇𝑇) ∗  𝐶𝐶𝜀𝜀 

Equation 3-2 

Compared to Equation 3-1, Equation 3-2 indicates that the impact of variables on 

total crash frequency is not linear but rather multiplicative. The interpretation is as follows: 

1 unit change in TNC VMT increases the road crash frequency by 𝐶𝐶𝛽𝛽7, ceteris paribus.  

If  β7 is negative, the multiplicative impact is less than one, and therefore the road 

crashes increased by a factor of less than one;  

If  β7 is positive, then  Tot TNC VMT will contribute towards increasing road 

crashes in a given road category per census tract by a factor more significant than one.  

The log-linear OLS regression, as in Equation 3-1, gives us an estimate of 

𝐸𝐸(log(𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐ℎ)) and whereas the primary question of interest is 

log�𝐸𝐸(𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐ℎ)�. An alternative to OLS regression is to use count regression models, 

which can predict log�𝐸𝐸(𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐ℎ)�.  
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For example, the simplest is the Poisson Regression model, which can handle such 

skewed data. Unlike OLS, the Poisson model can easily handle heteroscedasticity and 

preserve the count nature observed in the datasets as observed in road crashes.  

Alternatively, past literature suggests that in scenarios where the predicted values 

have a more significant frequency of zeros, zero-inflated models like Zero-inflated Poisson 

(ZIP) or negative binomial model (ZINB), or Hurdle model can be utilized. 

However, both ZIP and ZINB assume that the dependent variable is a mixture of 

two individual groups (Hu et al., 2011).  

• One group whose counts could be explained by Poisson or Negative 

Binomial regression Model and  

• another group with zero probability of a count greater than zero. Typically 

logistic regression model is used to predict which group an individual 

belongs  

The literature does not indicate when to use or not use such zero-inflated models. 

Even if utilized and the model fits much better than traditionally counted data models, the 

outputs are difficult to estimate and interpret (Allison, 2012). 

Similarly, Hurdle Model divides the data into a two-part decision-making process 

(Hu et al., 2011): 

• explaining whether the count is zero or positive  

• determining whether the count is positive.  

To model condition one, we can use Bernoulli probability to govern the binary 

outcome, i.e., whether the count variate has a zero or positive realization. Condition two 

triggers only when the count data is positive, i.e., when the hurdle is crossed (hence the 

name), and is governed by conditional distribution for a truncated-at-zero count data 

model. However, such an assumption is too strong given that there would always be some 
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road segments that would always have zero crashes, no matter what happens to other 

covariates, and therefore its usage can be avoided.  

Additionally, and much more importantly, no packages exist to incorporate fixed 

effect extension to zero-inflated models or hurdle models for panel data (Rauli Susmel, 

2022).  

Therefore the study adopts the Poisson Regression model to predict that the primary 

question of interest is log�𝐸𝐸(𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐ℎ)�. 

In the Poisson Regression model, the relationship between total crash and 

explanatory variables is represented as: 

𝐸𝐸(𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐ℎ|𝑥𝑥) = 𝐶𝐶𝛽𝛽0+ 𝛽𝛽𝛽𝛽  

Equation 3-3 

where  

x = vector of the explanatory variables 

β = co-efficient of the respective explanatory variable 

and total crash (Yi) ~ Poisson (λ) 

where λ  = lambda, which is the parameter that controls the Poisson distribution for value 

λ=1,2,3,...  

It is also the parameter that imposes that the mean value of the data equals the 

variance value (often termed equidispersion). However, in real-life datasets, variance is 

always more significant than the mean value (overdispersion). Overdispersion could occur 

due to various factors, including unobserved heterogeneity and the influence of other 

variables, which leads to dependence of the probability of an event on previous events, the 

presence of outliers, and the existence of excess zeros on the response variable. However, 

Simon et al. demonstrated that when computed with a robust covariance matrix (also 
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termed quasi-Poisson regression), Poisson regression could overcome the overdispersion 

issue (Berrebi et al., 2021).  The author suggests that such a process returns the same 

coefficients for the explanatory variables as the regular Poisson regression, but standard 

errors are much better calibrated for over-dispersion (Berrebi et al., 2021; Wooldridge, 

2002).  

Taking the derivative of 𝐸𝐸(𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐ℎ|𝑥𝑥) w.r.t 𝑇𝑇𝑡𝑡𝑡𝑡 𝑇𝑇𝑇𝑇𝐶𝐶 𝑉𝑉𝑉𝑉𝑇𝑇 results in the 

partial effects, also termed as marginal impact. The derivative is the expected number of 

road crashes due to adding one additional mile of TNC VMT to the base year, i.e., Y.R. 

2010. 

𝛿𝛿𝐸𝐸(𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐ℎ |𝑥𝑥)
𝛿𝛿𝑇𝑇𝑡𝑡𝑡𝑡 𝑇𝑇𝑇𝑇𝐶𝐶 𝑉𝑉𝑉𝑉𝑇𝑇

=  

𝐶𝐶𝛽𝛽0 ∗  𝐶𝐶𝛽𝛽1∗ln(𝑇𝑇𝑇𝑇𝑇𝑇 𝑉𝑉𝑀𝑀𝑇𝑇) ∗ 𝐶𝐶𝛽𝛽2∗(𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) ∗  𝐶𝐶𝛽𝛽3∗(𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)2 ∗
𝐶𝐶𝛽𝛽4∗(𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑇𝑇ℎ𝐶𝐶𝐹𝐹𝐹𝐹𝑇𝑇𝐹𝐹𝐶𝐶𝐹𝐹) ∗  𝐶𝐶𝛽𝛽5∗(𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑇𝑇ℎ𝐶𝐶𝐹𝐹𝐹𝐹𝑇𝑇𝐹𝐹𝐶𝐶𝐹𝐹)2 ∗ 𝐶𝐶𝛽𝛽6∗ln(𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂) ∗ 𝐶𝐶𝛽𝛽7∗ln(𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝐶𝐶 𝑉𝑉𝑀𝑀𝑇𝑇)

𝛿𝛿𝑇𝑇𝑡𝑡𝑡𝑡 𝑇𝑇𝑇𝑇𝐶𝐶 𝑉𝑉𝑉𝑉𝑇𝑇
 

Equation 3-4 

 

𝛿𝛿𝐸𝐸(𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐ℎ |𝑥𝑥)
𝛿𝛿𝑇𝑇𝑡𝑡𝑡𝑡 𝑇𝑇𝑇𝑇𝐶𝐶 𝑉𝑉𝑉𝑉𝑇𝑇

=  

𝐶𝐶𝛽𝛽0 ∗  𝐶𝐶ln(𝑇𝑇𝑇𝑇𝑇𝑇 𝑉𝑉𝑀𝑀𝑇𝑇)𝛽𝛽1 ∗ 𝐶𝐶𝛽𝛽2∗(𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) ∗  𝐶𝐶𝛽𝛽3∗(𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)2 ∗
𝐶𝐶𝛽𝛽4∗(𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑇𝑇ℎ𝐶𝐶𝐹𝐹𝐹𝐹𝑇𝑇𝐹𝐹𝐶𝐶𝐹𝐹) ∗  𝐶𝐶𝛽𝛽5∗(𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑇𝑇ℎ𝐶𝐶𝐹𝐹𝐹𝐹𝑇𝑇𝐹𝐹𝐶𝐶𝐹𝐹)2 ∗ 𝐶𝐶ln(𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂)𝛽𝛽6 ∗ 𝐶𝐶ln(𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝐶𝐶 𝑉𝑉𝑀𝑀𝑇𝑇)𝛽𝛽7

𝛿𝛿𝑇𝑇𝑡𝑡𝑡𝑡 𝑇𝑇𝑇𝑇𝐶𝐶 𝑉𝑉𝑉𝑉𝑇𝑇
 

Equation 3-5 

3.4.2.3 Introducing fixed effects and time effects 

The study introduces a dummy variable “year_2016_dummy” (0 for the year 2010 

or 1 for the year 2016) to capture linear time trends during the term, while αi represents 

the individual-specific effects (fixed effects).  

Equation 3-3 can be re-written as 
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𝐸𝐸�𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐ℎ𝐶𝐶𝑐𝑐𝑖𝑖,𝑇𝑇�𝑥𝑥𝑖𝑖,𝑇𝑇� = 𝐶𝐶
𝛽𝛽𝛽𝛽+ 𝛼𝛼𝑖𝑖+ 𝐹𝐹𝐶𝐶𝐹𝐹𝐹𝐹2016𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡

 
 

Equation 3-6 

And more specifically,  

𝐸𝐸�𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐ℎ𝐶𝐶𝑐𝑐𝑖𝑖,𝑇𝑇�𝑥𝑥𝑖𝑖,𝑇𝑇�

= 𝛽𝛽0 ln(𝑇𝑇𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑇𝑇)(𝑖𝑖,𝑇𝑇) + 𝛽𝛽1𝐶𝐶𝑡𝑡𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐹𝐹𝑐𝑐𝐶𝐶𝐶𝐶𝐹𝐹𝑎𝑎𝐹𝐹(𝑖𝑖,𝑇𝑇) + 𝛽𝛽2𝐶𝐶𝑡𝑡𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐹𝐹𝑐𝑐𝐶𝐶𝐶𝐶𝐹𝐹𝑎𝑎𝐹𝐹2(𝑖𝑖,𝑇𝑇)

+ 𝛽𝛽3𝐶𝐶𝑡𝑡𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑡𝑡ℎ𝐶𝐶𝑐𝑐𝑐𝑐𝑡𝑡𝑎𝑎𝐶𝐶𝑐𝑐(𝑖𝑖,𝑇𝑇) + 𝛽𝛽4𝐶𝐶𝑡𝑡𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑡𝑡ℎ𝐶𝐶𝑐𝑐𝑐𝑐𝑡𝑡𝑎𝑎𝐶𝐶𝑐𝑐2(𝑖𝑖,𝑇𝑇)

+ 𝛽𝛽5 ln(𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂)(𝑖𝑖,𝑇𝑇) + 𝛽𝛽6 ln(𝑇𝑇𝑡𝑡𝑡𝑡 𝑇𝑇𝑇𝑇𝐶𝐶 𝑉𝑉𝑉𝑉𝑇𝑇)(𝑖𝑖,𝑇𝑇) + 𝛽𝛽7𝑌𝑌𝐶𝐶𝑎𝑎𝑐𝑐2016𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖,𝑇𝑇)
+ 𝛼𝛼𝑖𝑖 + 𝜀𝜀(𝑖𝑖,𝑇𝑇)   

Equation 3-7 

where 

 𝑖𝑖 = identity (i.e., road category per census tract) 

𝑡𝑡 = observation year (i.e., either YR 2010 or YR 2016) 

β1 to β7 = co-efficient of explanatory variables 𝑥𝑥 participating in the regression 

𝛼𝛼𝑖𝑖 = individual-specific effects (i.e., fixed effects) 

𝜀𝜀(𝑖𝑖,𝑇𝑇) = individual identities error term 

The β parameters use maximum likelihood estimations (MLE) and represent the 

outcomes at the individual road category for a given census tract per year  (Hausman et 

al., 1984).  

The resulting conditional likelihood is proportional to the right-hand side of Eq. 

(9.3), as mentioned by Cameron and Trivedi in their book (Cameron & Trivedi, 1998) 

and is restated here 

�̂�𝛽 =  ����𝑋𝑋(𝑖𝑖,𝑇𝑇) − 𝑋𝑋𝑖𝑖��𝑋𝑋(𝑖𝑖,𝑇𝑇) − 𝑋𝑋𝑖𝑖�
′

𝑇𝑇

𝑇𝑇=1

𝐶𝐶

𝑖𝑖=1

�

−1

���𝑋𝑋(𝑖𝑖,𝑇𝑇) − 𝑋𝑋𝑖𝑖��𝐹𝐹(𝑖𝑖,𝑇𝑇) − 𝐹𝐹𝑖𝑖�
𝑇𝑇

𝑇𝑇=1

𝐶𝐶

𝑖𝑖=1

 

where  
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𝑋𝑋𝑖𝑖 =  1
𝑇𝑇
∑ 𝑋𝑋(𝑖𝑖,𝑇𝑇)
𝑇𝑇
𝑇𝑇=1  and 𝐹𝐹𝑖𝑖 =  1

𝑇𝑇
∑ 𝐹𝐹(𝑖𝑖,𝑇𝑇)
𝑇𝑇
𝑇𝑇=1   

are individual-specific averages over time.  

The individual-specific fixed effects can be estimated by 𝛼𝛼�𝑖𝑖 = 𝐹𝐹𝑖𝑖 − 𝑋𝑋𝑖𝑖
′
�̂�𝛽.  

For a short panel,  

n →∞ and T is fixed, 

 �̂�𝛽𝐹𝐹𝐹𝐹 is consistent for β, while 𝛼𝛼�𝑖𝑖 is not consistent for 𝛼𝛼𝑖𝑖 as only T observations are used 

in estimating each 𝛼𝛼𝑖𝑖. 

Estimates are obtained by setting the partial derivative of the log-likelihood with respect 

to beta to zero, as in Eq. (8). 

� � 𝑥𝑥(𝑖𝑖,𝑇𝑇) �𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐ℎ𝐶𝐶𝑐𝑐(𝑖𝑖,𝑇𝑇) −  �(𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐ℎ𝐶𝐶𝑐𝑐(𝑖𝑖,𝐹𝐹)
𝐶𝐶𝛽𝛽𝛽𝛽(𝑖𝑖,𝑡𝑡)

∑ 𝐶𝐶𝛽𝛽𝛽𝛽(𝑖𝑖,𝑡𝑡)𝑇𝑇
𝐹𝐹=1

𝑇𝑇

𝐹𝐹=1

�
𝑌𝑌𝑌𝑌 2016

𝑇𝑇=𝑌𝑌𝑌𝑌 2010

𝐶𝐶

𝑖𝑖=1

 

At this point, the constant added to the observed explanatory variable 𝑥𝑥(𝑖𝑖,𝑇𝑇) gets 

canceled out in both equations. It allows the study to capture the variation within the 

variable in time for each road category per census tract. The equation is free from 

heterogeneity and endogeneity effects and can be ignored over a five-to-six-year panel.  

3.4.2.4 Isolating the effects of each explanatory variable on total crashes 

Taking exponential on both sides,  

𝐸𝐸�𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐ℎ𝐶𝐶𝑐𝑐𝑖𝑖,𝑇𝑇�𝑥𝑥𝑖𝑖,𝑇𝑇�

= 𝐶𝐶𝛽𝛽1 ln(𝑇𝑇𝑇𝑇𝑇𝑇 𝑉𝑉𝑀𝑀𝑇𝑇)(𝑖𝑖,𝑡𝑡) +  𝐶𝐶𝛽𝛽2𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹(𝑖𝑖,𝑡𝑡) +  𝐶𝐶𝛽𝛽3𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹2(𝑖𝑖,𝑡𝑡)

+  𝐶𝐶𝛽𝛽4𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑇𝑇ℎ𝐶𝐶𝐹𝐹𝐹𝐹𝑇𝑇𝐹𝐹𝐶𝐶𝐹𝐹(𝑖𝑖,𝑡𝑡) +  𝐶𝐶𝛽𝛽5𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑇𝑇ℎ𝐶𝐶𝐹𝐹𝐹𝐹𝑇𝑇𝐹𝐹𝐶𝐶𝐹𝐹2(𝑖𝑖,𝑡𝑡) +  𝐶𝐶𝛽𝛽6 ln(𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂)(𝑖𝑖,𝑡𝑡)

+  𝐶𝐶𝛽𝛽7 ln(𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝐶𝐶 𝑉𝑉𝑀𝑀𝑇𝑇)(𝑖𝑖,𝑡𝑡) +  𝐶𝐶
𝛽𝛽8𝑌𝑌𝐶𝐶𝐹𝐹𝐹𝐹2016𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖,𝑡𝑡) +  𝐶𝐶𝛼𝛼𝑖𝑖 

Equation 3-8 

 



 

73 
 

𝐸𝐸�𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐ℎ𝐶𝐶𝑐𝑐𝑖𝑖,𝑇𝑇�𝑥𝑥𝑖𝑖,𝑇𝑇�

= 𝐶𝐶𝛽𝛽1 ln(𝑇𝑇𝑇𝑇𝑇𝑇 𝑉𝑉𝑀𝑀𝑇𝑇)(𝑖𝑖,𝑡𝑡) ∗  𝐶𝐶𝛽𝛽2𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹(𝑖𝑖,𝑡𝑡) ∗  𝐶𝐶𝛽𝛽3𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹2(𝑖𝑖,𝑡𝑡)

∗ 𝐶𝐶𝛽𝛽4𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑇𝑇ℎ𝐶𝐶𝐹𝐹𝐹𝐹𝑇𝑇𝐹𝐹𝐶𝐶𝐹𝐹(𝑖𝑖,𝑡𝑡) ∗ 𝐶𝐶𝛽𝛽5𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑇𝑇ℎ𝐶𝐶𝐹𝐹𝐹𝐹𝑇𝑇𝐹𝐹𝐶𝐶𝐹𝐹2(𝑖𝑖,𝑡𝑡) ∗  𝐶𝐶𝛽𝛽6 ln(𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂)(𝑖𝑖,𝑡𝑡)

∗ 𝐶𝐶𝛽𝛽7 ln(𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝐶𝐶 𝑉𝑉𝑀𝑀𝑇𝑇)(𝑖𝑖,𝑡𝑡) ∗  𝐶𝐶
𝛽𝛽8𝑌𝑌𝐶𝐶𝐹𝐹𝐹𝐹2016𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖,𝑡𝑡) ∗  𝐶𝐶𝛼𝛼𝑖𝑖 

Equation 3-9 

As per the laws of exponential 

𝐶𝐶ln(𝛽𝛽) = x, and therefore we can translate the above equation to 

𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐ℎ𝐶𝐶𝑐𝑐(𝑖𝑖,𝑇𝑇)

= 𝑇𝑇𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑇𝑇(𝑖𝑖,𝑇𝑇)
𝛽𝛽1 ∗ 𝐶𝐶𝛽𝛽2𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹(𝑖𝑖,𝑡𝑡)+𝛽𝛽3𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹2(𝑖𝑖,𝑡𝑡) 

∗ 𝐶𝐶𝛽𝛽4𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑇𝑇ℎ𝐶𝐶𝐹𝐹𝐹𝐹𝑇𝑇𝐹𝐹𝐶𝐶𝐹𝐹(𝑖𝑖,𝑡𝑡)+𝛽𝛽5𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑇𝑇ℎ𝐶𝐶𝐹𝐹𝐹𝐹𝑇𝑇𝐹𝐹𝐶𝐶𝐹𝐹2(𝑖𝑖,𝑡𝑡) ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂(𝑖𝑖,𝑇𝑇)
𝛽𝛽6

∗  𝑇𝑇𝑡𝑡𝑡𝑡 𝑇𝑇𝑇𝑇𝐶𝐶 𝑉𝑉𝑉𝑉𝑇𝑇(𝑖𝑖,𝑇𝑇)
𝛽𝛽7 ∗ 𝐶𝐶

𝛽𝛽8𝑌𝑌𝐶𝐶𝐹𝐹𝐹𝐹2016𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖,𝑡𝑡) ∗ 𝐶𝐶𝛼𝛼𝑖𝑖 

Equation 3-10 

We can re-write LHS in Equation 3-10 as 𝐸𝐸 �𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐ℎ(𝑖𝑖,𝑇𝑇)�𝑥𝑥(𝑖𝑖,𝑇𝑇)� =

 𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐ℎ(𝑖𝑖,𝑇𝑇) 

Therefore, 𝐸𝐸[𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐ℎ𝐶𝐶𝑐𝑐] for each of the years, i.e., YR 2010 and YR 2016, 

could be expressed as 

𝐸𝐸 �𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐ℎ𝐶𝐶𝑐𝑐(𝑖𝑖,2010)�𝑥𝑥(𝑖𝑖,2010)�

= 𝑇𝑇𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑇𝑇(𝑖𝑖,2010)
𝛽𝛽1 ∗ 𝐶𝐶𝛽𝛽2𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹(𝑖𝑖,2010)+𝛽𝛽3𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹2(𝑖𝑖,2010) 

∗ 𝐶𝐶𝛽𝛽4𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑇𝑇ℎ𝐶𝐶𝐹𝐹𝐹𝐹𝑇𝑇𝐹𝐹𝐶𝐶𝐹𝐹(𝑖𝑖,2010)+𝛽𝛽5𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑇𝑇ℎ𝐶𝐶𝐹𝐹𝐹𝐹𝑇𝑇𝐹𝐹𝐶𝐶𝐹𝐹2(𝑖𝑖,2010) ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂(𝑖𝑖,2010)
𝛽𝛽6

∗  𝑇𝑇𝑡𝑡𝑡𝑡 𝑇𝑇𝑇𝑇𝐶𝐶 𝑉𝑉𝑉𝑉𝑇𝑇(𝑖𝑖,2010)
𝛽𝛽7 ∗ 𝐶𝐶

𝛽𝛽8𝑌𝑌𝐶𝐶𝐹𝐹𝐹𝐹2016𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖,2010) ∗ 𝐶𝐶𝛼𝛼𝑖𝑖 

Equation 3-11 



 

74 
 

𝐸𝐸 �𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐ℎ𝐶𝐶𝑐𝑐(𝑖𝑖,2016)�𝑥𝑥(𝑖𝑖,2016)�

= 𝑇𝑇𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑇𝑇(𝑖𝑖,2016)
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∗ 𝐶𝐶𝛽𝛽4𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑇𝑇ℎ𝐶𝐶𝐹𝐹𝐹𝐹𝑇𝑇𝐹𝐹𝐶𝐶𝐹𝐹(𝑖𝑖,2016)+𝛽𝛽5𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑇𝑇ℎ𝐶𝐶𝐹𝐹𝐹𝐹𝑇𝑇𝐹𝐹𝐶𝐶𝐹𝐹2(𝑖𝑖,2016) ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂(𝑖𝑖,2016)
𝛽𝛽6

∗  𝑇𝑇𝑡𝑡𝑡𝑡 𝑇𝑇𝑇𝑇𝐶𝐶 𝑉𝑉𝑉𝑉𝑇𝑇(𝑖𝑖,2016)
𝛽𝛽7 ∗ 𝐶𝐶

𝛽𝛽8𝑌𝑌𝐶𝐶𝐹𝐹𝐹𝐹2016𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖,2016) ∗ 𝐶𝐶𝛼𝛼𝑖𝑖 

Equation 3-12 

Taking the ratio year 2016 and year 2010 

𝐸𝐸 �𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐ℎ𝐶𝐶𝑐𝑐(𝑖𝑖,2016)�𝑥𝑥(𝑖𝑖,2016)�
𝐸𝐸 �𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐ℎ𝐶𝐶𝑐𝑐(𝑖𝑖,2010)�𝑥𝑥(𝑖𝑖,2010)�

 

=
𝑇𝑇𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑇𝑇(𝑖𝑖,2016)

𝛽𝛽1

𝑇𝑇𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑇𝑇(𝑖𝑖,2010)
𝛽𝛽1
∗
𝐶𝐶𝛽𝛽2𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹(𝑖𝑖,2016)+𝛽𝛽3𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹2(𝑖𝑖,2016) 

𝐶𝐶𝛽𝛽2𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹(𝑖𝑖,2010)+𝛽𝛽3𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹2(𝑖𝑖,2010) 

∗
𝐶𝐶𝛽𝛽4𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑇𝑇ℎ𝐶𝐶𝐹𝐹𝐹𝐹𝑇𝑇𝐹𝐹𝐶𝐶𝐹𝐹(𝑖𝑖,2016)+𝛽𝛽5𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑇𝑇ℎ𝐶𝐶𝐹𝐹𝐹𝐹𝑇𝑇𝐹𝐹𝐶𝐶𝐹𝐹2(𝑖𝑖,2016)

𝐶𝐶𝛽𝛽4𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑇𝑇ℎ𝐶𝐶𝐹𝐹𝐹𝐹𝑇𝑇𝐹𝐹𝐶𝐶𝐹𝐹(𝑖𝑖,2010)+𝛽𝛽5𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑇𝑇ℎ𝐶𝐶𝐹𝐹𝐹𝐹𝑇𝑇𝐹𝐹𝐶𝐶𝐹𝐹2(𝑖𝑖,2010)
∗
𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂(𝑖𝑖,2016)

𝛽𝛽6

𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂(𝑖𝑖,2010)
𝛽𝛽6

∗  
𝑇𝑇𝑡𝑡𝑡𝑡 𝑇𝑇𝑇𝑇𝐶𝐶 𝑉𝑉𝑉𝑉𝑇𝑇(𝑖𝑖,2016)

𝛽𝛽7

𝑇𝑇𝑡𝑡𝑡𝑡 𝑇𝑇𝑇𝑇𝐶𝐶 𝑉𝑉𝑉𝑉𝑇𝑇(𝑖𝑖,2010)
𝛽𝛽7
∗
𝐶𝐶
𝛽𝛽8𝑌𝑌𝐶𝐶𝐹𝐹𝐹𝐹2016𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖,2016)

𝐶𝐶
𝛽𝛽8𝑌𝑌𝐶𝐶𝐹𝐹𝐹𝐹2016𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖,2010)

∗
𝐶𝐶𝛼𝛼𝑖𝑖
𝐶𝐶𝛼𝛼𝑖𝑖

 

Equation 3-13 

𝐸𝐸 �𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐ℎ𝐶𝐶𝑐𝑐(𝑖𝑖,2016)�𝑥𝑥(𝑖𝑖,2016)�
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Equation 3-14 

Change in total crashes going from 2010  2016 can also be written as 

∆ 𝐶𝐶ℎ𝑎𝑎𝑛𝑛𝐶𝐶𝐶𝐶 𝑖𝑖𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐ℎ𝐶𝐶𝑐𝑐 =  
𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐ℎ𝐶𝐶𝑐𝑐2016 −  𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐ℎ𝐶𝐶𝑐𝑐2010

𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐ℎ𝐶𝐶𝑐𝑐2010
 

Equation 3-15 



 

75 
 

Therefore, the introduction of one additional mile of 𝑇𝑇𝑡𝑡𝑡𝑡 𝑇𝑇𝑇𝑇𝐶𝐶 𝑉𝑉𝑉𝑉𝑇𝑇 equals 

∆ 𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐ℎ𝐶𝐶𝑐𝑐 w.r.t YR 2010  
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Equation 3-16 

3.4.2.5 Advantages of the model 

According to Cameron and Trivedi, “Poisson regression is a particular type of 

nonlinear regression that respects the discreteness of the count variable. (Cameron & 

Trivedi, 1998)” Therefore, the assumptions mentioned in section 3.4.2.1 still hold.  

According to Woolridge, the fixed effects Poisson (FEP) estimator has strong 

robustness for estimating the parameters in the conditional mean. The FEP estimator is 

consistent for β0 under the conditional mean assumption only and is entirely unrestricted 

of whether the variables are over-dispersed or under-dispersed, which is one of the main 

assumptions for the Poisson model (Wooldridge, 2002). 

Uniqueness holds under general identification assumptions. Even when the 

conditional mean is exponential, the model structure allows dropping coefficients on time-

constant explanatory variables, just as in the linear case. Interpreting in our case, including 

fixed effect transformation for the Poisson model, will help eliminate all variations 

happening at the SF County level, which at the geographic level do not change much in a 

five to six years timeframe. As a result, we are left with only traffic attributes that change 

every year, potentially reducing any biases emerging from the belief that TNCs services 

may correlate with something important omitted from the model.  
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According to Wooldridge, FEP allows any serial correlation, which may be the case 

for the TNC VMT and TNC PUDO variables which are components of TNC as a service.  

Guimarães shows that the conditional fixed effects Negative Binomial model do 

not necessarily remove the individual fixed effects in count panel data; and therefore is not 

an accurate fixed-effects model (Guimarães, 2008).  

3.4.2.6 Interpretation of the results 

All the variables Tot VMT, CongSpeed Freeway, CongSpeed Otherroads, PUDO, 

and Tot TNC VMT on RHS of the equation are time-varying. Given that Tot VMT, PUDO, 

and Tot TNC VMT are a natural log, their β coefficients can be interpreted as elasticity to 

the change observed from 2010 to 2016. 

On the other hand, because CongSpeed Freeway and CongSpeed Other roads are 

not logged transformations, their co-efficient can be interpreted as one unit change in the 

variable value leading to eβ times change in road crashes while holding other variables 

constant.  

3.5 Summary 

Like past research, the study explores the association between TNC service 

operations and road safety outcomes in a before-and-after layout; the “before” condition 

represents a scenario when TNC activities were non-existent, while the “after” represents 

a condition when they were not.  

We do this using the case of San Francisco (SF) County, a county covering 47 

square miles of land area at the end of the San Francisco Peninsula and represents the 

densest residential and commercial location in the Bay Area, with an estimated population 

of 815,201 as of 2021 (US Census Bureau, 2022). The study chose the SF area for one 

main reason 

a) because the county is the first city where Uber rendered the inaugural TNC 

service trip in May 2010; subsequently, Lyft rolled out its service in 2012. Together they 

expanded and now control the dominant share of TNC trips in the SF Area. According to 
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Erhardt et al., which has studied the SF TNC profile in detail using the real-world dataset, 

between 2010 and 2016, almost half of the SF VMT increase is attributable to TNCs (G. 

Erhardt et al., 2019; Roy et al., 2020). 

Therefore, 2010 represents the SF scenario when TNC activities were negligible in 

numbers (assumed to be zero), while 2016 represents a condition when they were not.  

There are two main sections in the Chapter. The data section provides details of the 

data sources used to construct the required dataset, while the Methods present the statistical 

analytical framework intended to complete the analysis.  

The Data sections provide details of the sources used to compile an annual 

estimation file. The study utilizes three data sources:  

• Traffic flow estimates, which produce traffic volumes on all roads and vehicular 

speed, are made available by San Francisco’s travel demand model, the SF-

CHAMP model, for both the 2010 and 2016 periods. The estimates reflect land 

use and land base changes observed in the SF area during the respective years. 

These are valid estimates because San Francisco County Transportation 

Authority (SFCTA) continues to use them to analyze policy and infrastructure 

changes (Brisson et al., 2012; Castiglione et al., 2006). 

• TNC trip data compliments the traffic flow estimates and showcases the local 

TNC usage profile estimated for SF county. It is generated after scrapping Uber 

and Lyft servers every five seconds via their application programming interface 

(APIs) between mid-November to mid-December of 2016, excluding dates 

around the Thanksgiving 2016 holiday period. The scrapped data is further 

processed to identify pick-up and drop-off (PUDO) locations and to define a 

TNC trip (Cooper et al., 2018). Erhardt et al. 2019 further enhanced the data 

and identified the total number of TNC volumes and pick-ups and drop-offs 

(PUDO) occurring on each road segment in San Francisco county by the time 

of day (TOD) (G. Erhardt et al., 2019). 



 

78 
 

• The same SF-CHAMP methodology also provided a Counterfactual (CF) 2016 

scenario in which TNC services do not exist. The counterfactual scenario is 

used to test and validate the impact of TNC services on road safety outcomes 

• Road crash data for 2010 and 2016 is obtained from Statewide Integrated 

Traffic Records System (SWITRS) website. The crash data are re-examined to 

identify missing information, especially latitudes and longitudes. For records 

missing such information, geographic coordinates are retrieved using the 

address geocoding process.  

• The KABCO injury style classification nomenclature is conditionally modified 

and transformed to total crashes, fatal and injury crashes, pedestrian and 

bicyclist crashes, alcohol-involving (DUI) crashes, and property damage only 

(PDO) crashes, which act as our primary dependent variables.  

The method section lists potential explanatory variables used to perform 

statistical analysis. It also provides a detailed overview of the developed model to 

be used for road crash prediction 

A few of the variables identified are: 

• Vehicle miles traveled (VMT) – a tested and acceptable variable to measure 

road crash frequency (Fridstrom et al., 1995; Jovanis & Chang, 1986; Song 

et al., 2006). Past studies find VMT to be positively associated with more 

road crashes (Levine et al., 1995), with the rate higher for urban roads 

(Karlaftis & Tarko, 1998; Hadayeghi et al., 2003; Ladrón de Guevara et al., 

2004; Hadayeghi et al., 2006; Aguero-Valverde & Jovanis, 2006; M. A. 

Quddus, 2008; Tarko et al., 1996). It is because VMT is directly related to 

urban sprawl. The larger the city, the farther the citizens travel (VMT), 

increasing road crash exposure. The study uses Tot VMT as an exposure 

variable instead of an independent variable that participates in the statistical 

model. It ensures that Tot VMT and dependent variables are linked.  

• Another independent variable is Congested Speed, which is positively 

associated with road crashes (Solomon, 1964; Elvik, 2001; Hauer, 2009). 
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However, the relationship is an inverse U-relationship (non-linear) (Shefer, 

1994). To complicate further, Shefer and Reitvield's separate study also 

concluded that congestion has an unwanted gain, potentially in lower road 

fatalities (Shefer & Rietveld, 1997). According to their study, the fatality 

rate is lower during peak hours than at non-peak hours for freeways and 

urban roads.  

• TNC PUDO is also included in the list of explanatory variables because the 

activity, by its nature, is hazardous.  Past research to understand the impact 

of PUDOs on road safety is rare. (Schimek, 2018) indicates that almost 12-

27% of bicycle crashes involve parked vehicles on the curbside, along with 

the detailed procedure adopted to develop the statistical model. Researchers 

from the University of Washington who studied the TNC driver's PUDO 

activity in the South Lake Union (SLU), Seattle neighborhood, found that 

during peak hours, the PUDO activity amounts to 29 - 39% of the total 

traffic volume, with many vehicles performing PUDO activities in the travel 

lane (Goodchild et al., 2019) 

• Tot TNC VMT, derived by subtracting non-TNC VMT from Tot VMT, is 

also included in the list of explanatory variables. It allows the study to 

measure the possible heterogeneous effects of TNC services on explanatory 

variables 

Later, the model sub-section starts with why the linear regression model and its 

natural logarithm (log) of both the predicted and independent variables are unsuitable for 

predicting explanatory variables (count data). As an alternative, it presents a Poisson 

Regression with a fixed effect model framework with robust standard errors to overcome 

issues of overdispersion, any concerned heterogeneity, and endogeneity effects such that it 

can be used to conduct the “before-and-after” assessment proposed.  
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CHAPTER 4 SPATIAL ANALYSIS AND VISUALIZATION 

4.1 Background 

The following chapter conducts the spatial analysis of the data used in the research. 

The first section will focus on road crashes and the road network individually, while the 

second part will explore combined trends. Wherever possible, data is presented both in 

tabular and geographical map format.  

4.2 Road Crashes 

Motor vehicle crash incidents get recorded in a 2D space and expressed in 

geographical terms (longitude, latitude) or cartographic coordinates (East, North) or the 

local plan (x,y). Geographic Information System (GIS) software suites like ArcGIS and 

QGIS facilitate storing and processing georeferenced data. GIS aids in representing and 

managing many attribute information in the road crash database. The study uses GIS to 

conduct preliminary spatial analysis to identify areas with a significant concentration of 

road crashes.  

4.2.1 Countywide fatal and injury trends 

Table 4-1 below presents the statistics for the primary dependent variables: total 

crashes, fatal and injury crashes, pedestrian and bicyclist crashes, alcohol-involving (DUI) 

crashes, and property damage only (PDO) crashes maintained by the California Highway 

Patrol (CHP) through the Statewide Integrated Traffic Records Systems (SWITRS) for 

both 2010 and 2016. The absolute difference and percentage difference between these years 

is also presented.  

Table 4-1: Countywide road crashes by severity type 
  Total 

crashes 
Fatal and 
injury crashes 

Pedestrian and 
bicyclist crashes 

Alcohol-involving 
(DUI) crashes 

Property-damage 
only (PDO) 

Year 
2010 

5870 3609 1431 696 2234 

Year 
2016 

6831 3888 1474 672 2909 

Absolu
te diff 

961 279 43 -24 675 

% Diff 16.4% 7.7% 3.0% -3.4% 30.2% 
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The key takeaway from the stats shown in Table 4-1 is that the jump in total crashes 

is due to a sharp rise in two crash types: fatal and injury crashes (approx. 8%) and property 

damage-only crashes, which have gone up by 30%.  

These statistics may not match the annual report released by San Francisco 

Municipal Transportation Agency (SFMTA), which does not report crashes on freeways 

(excluding Van Ness Avenue, Presidio) and PDO crash reports crash. The overall collision 

rate for the city, however, may have changed due to increasing population and economic 

activities. 

As indicated in Chapter 3, not every crash gets geocoded in SWITRS. The study 

matched the data with those maintained by the University of California Berkeley 

(Transportation Injury Mapping System (TIMS), 2022), which applies SafeTREC 

geocoding methodology to SWITRS data statewide. Almost all other crashes (99%) have 

spatial coordinates specified except for the PDO crashes.  

In order to get the locations of the crashes involving PDOs, the study undertakes its 

geocoding process as described in the data processing section 3.3.1.5. 

Figure 4-2 below summarizes the crashes after undertaking all the procedural steps 

mentioned in the data processing section 3.3.2. It includes the geocoding process where the 

resultant crashes were tagged to the road segments using the nearest neighborhood 

principle. To maintain the road crashes attached to the most immediate road segment, any 

road crash with a distance to the nearest line (D2NL) attribute greater or equal to 10 meters 

is dropped from the dataset. 

Table 4-2: Countywide road crashes by type after undertaking data processing  
Total 

crashes 
Fatal and 

injury crashes 
Pedestrian and 
bicyclist crashes 

Alcohol-involving 
(DUI) crashes 

Property-damage 
only (PDO) 

Year 
2010 

4430 2961 1296 502 1469 

Year 
2016 

5316 3288 1352 537 2028 

Absolut
e diff 

886 327 56 35 559 

% Diff 20.00% 11.04% 4.32% 6.97% 38.05% 
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While these numbers are substantially less than the observed crashes, adopting such 

filtration steps ensures that collisions are not falsely tagged to a road segment and, 

therefore, does not bias the likely relationship between road crash frequency and TNC 

variables.  

The study further splits the road crashes by facility types shown in Table 4-3. 75% 

of the crashes occur on Arterials and Locals roads except for pedestrian and bicyclist crash 

types, in which collector roads take the dubious second position.  

The crash percentages are consistent with overall road crashes, which suggest that 

crash deaths in urban areas are more likely to occur on arterial (58%), local (12%), collector 

(10%), and freeways (20%) (IIHS, 2020).  

Table 4-3: road crashes by facility types 

Y
e
a
r 

Faci
lity 
type 

Tot
al 
cras
h 

% 
of 
tot
al 

Fatal 
and 
injury 
crash 

% 
of 
tot
al 

Pedestrian 
and 
bicyclist 
crash 

% 
of 
tot
al 

Alcohol-
involving 
(DUI) 
crash 

% 
of 
tot
al 

Property-
damage 
only 
(PDO) 

% 
of 
tot
al 

2
0
1
0 

Free
way

s 

448 10.
2% 

245 8.3
% 

7 0.5
% 

68 13.
5% 

243 16.
5% 

Arte
rials 

215
3 

49.
0% 

1593 53.
8% 

713 55.
0% 

219 43.
6% 

560 38.
1% 

Coll
ecto
rs 

807 18.
4% 

559 18.
9% 

325 25.
1% 

90 17.
9% 

248 16.
9% 

Loc
als 

982 22.
4% 

564 19.
0% 

251 19.
4% 

125 24.
9% 

418 28.
5% 

2
0
1
6 

Free
way

s 

925 17.
4% 

370 11.
3% 

20 1.5
% 

90 16.
8% 

555 27.
4% 

Arte
rials 

235
5 

44.
3% 

1684 51.
2% 

757 56.
0% 

250 46.
6% 

671 33.
1% 

Coll
ecto
rs 

865 16.
3% 

558 17.
0% 

300 22.
2% 

83 15.
5% 

307 15.
1% 

Loc
als 

117
1 

22.
0% 

676 20.
6% 

275 20.
3% 

114 21.
2% 

495 24.
4% 

 

Table 4-4 below shows the crash split by facility type. Arterials witness the highest 

impacts in absolute numbers, but the percentage rise is somewhat nominal, with the 

sharpest increase found in PDO crash types (+20%). In comparison, collectors and local 
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facility types witness less than half of such numbers, with locals seeing a 20% jump in total 

crash occurrences and PDO crashes.  

Table 4-4: Crashes by facility types (2010 vs. actual 2016) 

    Total 
Crashe
s 

Fatal And 
Injury 
Crashes 

Pedestrian And 
Bicyclist Crashes 

Alcohol-
Involving (DUI) 
Crashes 

Property-
Damage Only 
(PDO) 

FREE
WAYS 

2010 448 245 7 68 243 
2016 925 370 20 90 555 
abs 
diff 477 125 13 22 312 

% 
chan
ge 

106.5
% 51.0% 185.7% 32.4% 128.4% 

        
ARTER

IALS 
2010 2153 1593 713 219 560 
2016 2355 1684 757 250 671 
abs 
diff 202 91 44 31 111 

% 
chan
ge 

9.38% 5.71% 6.17% 14.16% 19.82% 

        
COLLE
CTORS 

2010 807 559 325 90 248 
2016 865 558 300 83 307 
abs 
diff 58 -1 -25 -7 59 

% 
chan
ge 

7.2% -0.2% -7.7% -7.8% 23.8% 

        
LOCAL

S 
2010 982 564 251 125 418 
2016 1171 676 275 114 495 
abs 
diff 189 112 24 -11 77 

% 
chan
ge 

19.25
% 19.86% 9.56% -8.80% 18.42% 

 

4.2.2 Fatal and non-Fatal Injury Collision trends 

In San Francisco, vulnerable road users - pedestrians, cyclists, and motorcyclists 

constituted 75% of all the fatal victims. As shown in Figure 4-1, in 2010, out of 29 people 

fatally killed, 16 were walking, two were bicycling, and five were motorcyclists. For 2016 
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these numbers were 18,4 and 3, respectively, of the total 34 fatal crashes mapped. The trend 

indicates a rising trend in the involvement of non-motorized road users in road crashes.  

 
Figure 4-1: road users involved in fatal crashes (2010 vs. 2016) 

Likewise,  Figure 4-2 provides collision trends for non-fatal injuries (excluding 

PDOs). Such trends are a much more reliable indicator of long-term city road crash trends. 

In the, suggest a ~9% increase in such instances. However, these percentage jumps and 

drops are well within the observed fluctuations when compared to the trend of the past five-

year non-fatal injury collision totals. It suggests that non-fatal injuries long-term average 

remain unchanged between 2010 and 2016. 

 
Figure 4-2: non-fatal injury trends since the year 2010 
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The Vision Zero Annual Report of 2017 claims that 70% of San Francisco’s severe and 

fatal traffic injuries occur on 12% of its streets (SFMTA, 2017). The snapshot of the 

high-injury network map is presented in Figure 4-3.  

 
Figure 4-3: SF Vision Zero 2017 - High Injury Network (SFMTA, 2017) 

4.2.3 Collision Types and causes 

Figure 4-4 and Figure 4-5 below shows injury collision totals by primary collision 

type for 2010 and 2016. Three of the most common collisions are rear end, broadsides, and 

sideswipe. Sideswipe appears to increase from 20% to 25% between 2010 to 2016, while 

others remain stagnant. 
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Figure 4-4: Collisions by Collision types in the year 2010 

More frequent occurrences of read-end crashes indicate that the area is heavily 

congested. The crashes may not be fatal, but they tend to occur because of motor vehicles 

driving too close to each other or due to distracted driving.  

Broadside crash is the name given to road crashes that happen when the front of 

one vehicle hits the side of the other. While they may lead to severe injuries and deaths, 

they are often preventable and are likely to be caused due to inattention or negligence. 

These crashes are usually found near road intersection areas because maneuvering is 

required to negotiate the area. Add to that the complexity of other road users who are also 

trying to utilize the road space simultaneously as motor vehicles. It creates an ideal 

situation, especially when drivers are not paying attention.  

Like any urban area, sideswipe crashes are also abundantly found in the SF area, 

indicating that crash occurrence is likely not only due to drivers' unsafe conditions but also 

related to traffic conditions, speed, and roadway geometric features.  

Not Stated, 76, 1%
Head-On, 307, 5%

Sideswipe, 1289, 20%

Rear End, 1787, 28%

Broadside, 1153, 18%

Hit Object, 623, 10%

Overturned, 89, 2%

Vehicle/Pedestrian, 
720, 11%

Other, 286, 5%

Collisions by Collision Type (Year 2010)
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Figure 4-5: Collisions by Collision types in the year 2016 

4.2.4 Primary Collision Factors (PCF) 

Figure 4-6 below shows the top violations which resulted in injury collisions. The 

top PCF violation category is 03-Unsafe Speed.  

Unsafe Speed is not always over the speed limit, and it indicates the vehicle was 

traveling at a pace that was not appropriate as per traffic/weather conditions. Other factors 

include improper turning, unsafe lane changing, and traffic signal violation which may 

result in the rear end, broadsides, and sideswipe, as mentioned in the previous section. 

Not Stated, 152, 2% Head-On, 314, 4%

Sideswipe, 1775, 
25%

Rear End, 1942, 27%

Broadside, 1249, 
17%

Hit Object, 591, 8%

Overturned, 106, 2%

Vehicle/Pedestrian, 
756, 11%

Other, 276, 4%

Collisions by Collision Type (Year 2016)
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Figure 4-6: Primary collision factors 

4.2.5 Census Tract 

4.2.5.1 Mapping road crashes  

Figure 4-7 through Figure 4-11 maps the percentage difference between various 

road crash frequency types between 2010 and 2016 in each census tract. There are four 

color variants used to prepare such figures.  

a) Shades of red indicate that road crash incidents increased in 2016 w.r.t 2010. 

The darker the red color, the bigger is percentage increase. 

b) Shades of green are the opposite of red and signify a decrease in road crash 

instances in 2016 w.r.t. 2010. The darker the shade of green, the more 

significant the percentage decrease. 
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c) Color white to denote that there is neither a decrease nor increase in crash 

instances 

d) The color grey signifies that the percentage difference cannot be 

determined. The scenario may arise if no crashes occurred in 2010 but 

existed in 2016. 

Figure 4-7 shows the total number of crashes occurring per census tract. In general, 

all census tracts have witnessed an increase in crash incidents. Census Tract containing the 

Golden Gate Bridge and San Francisco - Oakland Bay Bridge seems to witness a more 

significant number of crashes and is primarily driven by the PDO crash instances. It is 

intuitive, given that the locations are entry or exit points to reach San Francisco.  

The downtown area in North-East also has witnessed a reasonable percentage 

increase in road crashes. However, it is to be noted that these areas do not witness the 

highest jump in road crashes.  

 
Figure 4-7: percent difference between Total Crashes between 2010 and 2016 

Like the Total Crashes, the fatal and injury crashes (see Figure 4-8) also follow a 

similar trend, with most crashes happening in the northeast and southeast. It is also the 

area that has a higher concentration of freeway network.  
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Figure 4-8: percent difference between Total Fatal and Injury Crashes between 2010 and 2016 

There is no set pattern in Pedestrian and Bicyclist crashes, as shown in Figure 4-9, 

with many incidents occurring in isolated pockets. The most prominent areas include 

SOMA, Chinatown, South Park/ Oracle Park, the area surrounding Lake Merced, Balboa 

Park, and areas near Lombard Street downtown. These are also areas that are visited by 

tourists and have a strong presence of non-motorized transport infrastructure facilities.  

 
Figure 4-9: percent difference between Pedestrian and Bicyclist  Crashes between 2010 and 2016 
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Figure 4-10: percent difference between Alcohol-involved (DUI) crashes between 2010 and 2016 

Both DUI-related crashes are rare and majorly witnessing a decreasing trend. Their 

occurrences are prominent around downtown areas with the maximum number of leisure 

and tourist spaces.  

Similar to Total Crashes and Fatal and Injury crashes, PDOs are also spread 

everywhere. The study finds a general pattern: higher-density areas and traffic flows have 

the largest concentration of fatal crashes and crashes that cause injury and property 

damage.  

 
Figure 4-11: percent difference between PDO Crashes between 2010 and 2016 
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Table 4-5 and Table 4-6 presents the five-point summary for each road crash type 

in absolute and percentage terms. The min and max values for percentage changes observed 

between 2010 and 2016 cannot be accurately calculated because the base values in 2010 

were zero in many instances.   

Table 4-5: descriptive statistics for the difference between 2010 and 2016 for each road crash type 

  Total 
Crashes 

Fatal And 
Injury Crashes 

Pedestrian And 
Bicyclist Crashes 

Alcohol-Involving 
(DUI) Crashes 

Property-Damage 
Only (PDO) 

mi
n 

-16 -14 -14 -8 -12 

25
% 

-2 -2 -2 -1 -1 

50
% 

1 1 0 0 0 

75
% 

8 4.5 2 1 4 

m
ax 

104 39 17 14 80 

 
 

Table 4-6: descriptive statistics of the percent changes (in %) observed between 2010 and 2016 for each road crashes 
type 

  Total 
Crashes 

Fatal And 
Injury Crashes 

Pedestrian And 
Bicyclist Crashes 

Alcohol-Involving 
(DUI) Crashes 

Property-Damage 
Only (PDO) 

mi
n 

-100.0 -100.0 -100.0 -100.0 -100.0 

25
% 

-14.7 -20.0 -40.0 -50.0 -26.8 

50
% 

11.1 12.5 0.0 0.0 0.0 

75
% 

50.0 50.0 40.8 0.0 89.9 

m
ax 

333.3 500.0 500.0 400.0 727.3 

 

4.3 Road Network 

Previously. Section 3.5.1 presented an overview of the process followed in the 

study to merge and aggregate the SF-CHAMP data into one road network for each year, 

i.e., 2010 and 2016. Further, the aggregate network is re-categorized into four facility types, 

as in Table 3-1. The total length of the road network (in miles) in each category for the 

years is presented below: 
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Table 4-7: Road network (in miles) per road category ( 2010 vs. 2016 ) 

Year Freeways Arterials Collectors Locals 
2010 87.07 419.82 349.48 1607.51 
2016 87.07 420 350.27 1608.08 

Absolute diff 0 0.18 0.79 0.57 
% Diff 0.00% 0.04% 0.23% 0.04% 

Table 4-7 shows that SF has a well-developed road network with little to no change 

in lane miles going from 2010 and 2016. The stableness of the road network is 

advantageous for the current study as most of the marginal changes can be absorbed by the 

fixed-effect variable.  

However, SFCTA continues to invest in non-motorized transport (NMT) 

infrastructure like pedestrian walkways and bike lanes in their pledge towards 

sustainability and to make the network safer and more comfortable to access. In addition, 

in 2014, San Francisco adopted Vision Zero to eliminate all traffic deaths and severe 

injuries by 2024, and they have been working aggressively towards it.  

While these are necessary projects, we do not believe they influence motorable road 

networks because many of the improvements enhance pedestrian and bicycling 

infrastructure. A report by SFCTA indicates that as of December 2015, 30 high-priority 

projects were undertaken for improvement, resulting in 1599 safety treatments installed 

along with more targeted enforcement and public awareness schemes (SFCTA, 2015). 

These safety treatments ranged from building bulb-outs and refuge islands to daylighting 

and pedestrian countdown signals.  

4.3.1 Vehicle miles traveled (VMT) 

Table 4-8 below presents the VMT on each road category. The steepest increase in 

VMT between 2010 to 2016 is found on Collectors roads. It is followed by Local and 

Arterials roads. Overall, the traffic has risen by 14%, with most of the contribution coming 

from Arterials, Collectors, and Local roads.  
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Table 4-8: VMTs per road facility type (2010 vs. 2016 ) 

Year Freeways Arterials Collectors Locals Total 
2010 4,227,881 4,106,867 743,368 955,544 10,033,660 
2016 4,633,180 4,756,220 923,290 1,132,927 11,445,617 

absolute difference 405,299 649,353 179,922 177,383 1,411,957 

% increase 9.6% 15.8% 24.2% 18.6% 14.1% 

Compared to the stats above, Table 4-9 below presents the VMT comparison per 

road facility type for 2010 and CF 2016. In the counterfactual scenario, the VMT has 

increased modestly across all the facility types. The percentage increase does not follow 

the big jumps observed in the 2016 scenario.  

Table 4-9: VMTs per road facility type (2010 vs. CF 2016) 

Year Freeways Arterials Collectors Locals Total 
2010 4,227,881 4,106,867 743,368 955,544 10,033,660 
2016 4,497,834 4,443,617 809,983 1,016,541 10,767,976 

absolute difference 269,953 336,750 66,615 60,997 734,316 

% increase 6.4% 8.2% 9.0% 6.4% 7.3% 

The study focuses on the TNC-related VMTs and finds the rise to spread across all 

facility types with more prominence on Arterial, Local, and Collector roads. The 

information is consistent with the conclusion of (G. Erhardt et al., 2019; Roy et al., 2020), 

which are the primary source of the data but also with (Gehrke et al., 2018; Henao & 

Marshall, 2019; Schaller, 2017) study indicates that the net effect of TNCs on VMT is 

additive.  

Table 4-10: TNC VMTs per road facility type (2016) 

Year Freeways Arterials Collectors Locals 
2016 184,142 473,208 94,606 107,531 

% contribution w.r.t Tot VMT difference between 
2010 and 2016 45.4% 72.9% 52.6% 60.6% 

 

4.3.2 Congested speed 

Table 4-11 below presents the (weighted average) congested speed across road 

segments for facility types for 2010 and 2016. The last column refers to the overall 
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(weighted average) congested speed at the county level. The most significant percentage 

drop is on freeways, followed by collectors, while the rest categories have undergone 

marginal differences.  

While the drop in congested speed does not seem much, it follows the positive 

correlation trend with Total VMT. The more miles people drive, the more vehicles are on 

the roadways. Higher numbers of vehicles eventually result in congestion. 

Table 4-11: weighted average congested speed in miles per hour ( 2010 vs. actual 2016 ) 

Year Freeways Arterials Collectors Locals SF County 
2010 42.12 15.25 17.28 15.70 27.44 
2016 40.20 15.06 16.64 15.60 25.95 

absolute 
difference -1.92 -0.18 -0.64 -0.10 -2.84 

% increase -4.5% -1.2% -3.7% -0.6% -10.4% 

Table 4-12 below presents the (weighted average) congested speed across road 

segments for facility types for 2010 and the CF scenario of 2016. The last column refers to 

the overall (weighted average) congested speed at the county level. The most significant 

percentage drop is on freeways, while the remaining categories have undergone marginal 

differences. 

Table 4-12: weighted average congested speed in miles per hour (2010 vs. CF 2016 ) 

Year Freeways Arterials Collectors Locals SF County 
2010 42.12 15.25 17.28 15.70 27.44 
2016 40.70 15.20 17.03 15.71 26.65 

absolute 
difference -1.42 -0.04 -0.25 0.01 -1.70 

% increase -3.4% -0.3% -1.5% 0.0% -6.2% 

Comparing Table 4-11 and Table 4-12, it can be stated that the road network of 

actual 2016 is more congested than the counterfactual scenario. It follows up from the VMT 

stats, showing that the rise is much more considerable for 2016 than its counterfactual 

scenario.  

Roy et al. explain the rise and decrease in congestion speed between 2010 and 2016. 

A few of the prominent ones are mentioned here:  
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• The population of SF county increased from 805,000 to 876,000 (31);  

• employment grew from 545,000 to 703,000 

• Looked for any significant network changes during this period, especially the 

rebuilding of the Presidio Parkway, the introduction of turn restrictions on 

Market Street, several “road diets,” and bus improvements. However, these 

projects' likely impacts have been directly accounted for in SF-CHAMP traffic 

data 

• Their study also investigated active construction projects during 2016 that may 

be responsible for the speed decrease. However, they did not find any such 

projects  

4.3.3 Road Network with highest road crashes 

 

Figure 4-12: Road segments with frequent road crash occurrences (YR  2010 vs. 2016 ) 

Figure 4-12 provides a comparative picture of the road segments where the 

maximum number of (total crash) crashes occurred for both years. Again the northeast and 

southeast part are much flared up in both 2010 and 2016; however, visible increases 

(difference) are observed in the 2016 tally, particularly on the I-80 stretch, both inbound 
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and outbound from the San Francisco – Oakland bridge connecting I-101 in the South, and 

I-280 running South West. Another prominent location that witnessed an uptick in crash 

occurrences is the Mission District area, which has a dense road network and the entry 

point to the downtown area from the South, West, and Eastern part of the county. It is 

indicative that crashes occur where there is a complex interaction between various road 

user groups, vehicles, and road infrastructure connection spots.  

4.4 Where are the TNCs rendering their services? 

Knowing the TNC trip's origin and destination geolocation can provide a robust 

understanding of how likely it is to exacerbate its negative consequence on other road users. 

As covered in the literature review section, the negative externalities include traffic 

congestion and conflicts, which may lead to traffic crash incidents.  

SFCTA, in their public report, has reviewed the question extensively and in detail 

(SFCTA, 2017). They identified that most TNC activity occurs in the northeast quadrant, 

which is also the most congested part of the city. The area is well served by all modes of 

transportation, public transit, bicycling, and walking facilities. Particular areas include the 

South of Market, the Mission Street corridor, the Van Ness Avenue corridor, Pacific 

Heights and the Marina, Geary Street corridor, Panhandle, Inner Sunset, and the 

Stonestown/San Francisco State University area.  

Erhardt et al., and Roy et al., found that of the 13% growth in Total VMT between 

2010 and 2016, TNCs contributed to almost half of it (G. Erhardt et al., 2019; Roy et al., 

2020). Figure 4-13 presents the spatial overview of the most impacted streets due to TNC 

activities (San Francisco County Transportation Authority, 2018). When the pattern from 

Figure 4-13 is compared with Figure 4-12, it can be concluded that these are the same 

streets witnessing an uptick in total road crashes.  
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Figure 4-13: Percentage contribution of TNC activities on the VMT traveled (source: 
https://tncsandcongestion.sfcta.org/) 

4.5 Summary 

The chapter presents results from the explorative analysis of traffic crashes, traffic 

estimates, and TNC data to understand the spatial distribution of these activities.  

Table 4-1 presents the countywide fatal and injury trends for the primary dependent 

variables: total crashes, fatal and injury crashes, pedestrian and bicyclist crashes, alcohol-

involving (DUI) crashes, and property damage only (PDO) crashes. The key takeaway 

from the comparative trends is that the jump in total crashes (+20%) is primarily driven by 

the sharp rise in property damage-only crashes, which went up by 30%, and a moderate 

increase in fatal and injury crashes (approx. 8%). Pedestrian and bicyclist crashes (+3%) 

and Alcohol-involving (DUI) crashes (-3.4%) remained stagnant between 2010 and 2016. 

The composition (Table 4-2) is maintained even after the study undertook the geocoding 

process to populate spatial coordinates in the crash records without such information.  

The research further decomposes road crashes by road facility types (Table 4-3 and 

Table 4-4). Arterials witness the highest impacts in absolute numbers, but the percentage 

rise is somewhat nominal, with the sharpest increase found in PDO crash types (+20%). In 

comparison, collectors and local facility types witness less than half of such numbers. Local 

roads see a 20% jump in total crash occurrences and PDO crashes. Overall, 75% of the 
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crashes occur on Arterials and Locals roads except for pedestrian and bicyclist crash types, 

which are Arterials and Collector roads. 

Non-motorized transport users (pedestrians and bicyclists), followed by 

motorcyclists, are the most vulnerable road user group and constitute 75% of all fatal 

victims (see Figure 4-1). The nonfatal injuries (excluding PDOs), a much more reliable 

indicator of long-term city road crash trends, are also assessed. However, the percentage 

jumps and drops are well within the observed fluctuations compared to the past five-year 

non-fatal injury collision totals (see Figure 4-2), indicating that non-fatal injuries long-term 

average remained unchanged between 2010 and 2016. 

The rear end, broadsides, and sideswipes remain the most frequently occurring road 

crashes between motor vehicles, increasing from 20% to 25% between 2010 and 2016. At 

the same time, it is indicative that urban area is heavily congested, mainly because motor 

vehicles are driving too close to each other or due to distracted driving. 

Aggregation of the crashes at the census tract level does not present any emergence 

of spatial pattern limiting the identification of dangerous locations within the road network. 

It further reaffirms that crashes result from randomness and are tightly bound to local 

factors when the road crash incident occurs.  

San Francisco county has a very mature road network with very little or almost 

negligible additional lane miles added in 2016. The constantness in the road network is 

advantageous for the study and re-affirms our decision to use a fixed-effect estimator over 

random effects. The model would absorb any marginal changes in road network lane 

length.  

Most road network changes undertaken between 2010 and 2016 have focused on 

improving accessibility for pedestrians and bicyclists through non-motorized transport 

(NMT) infrastructure. In addition, in 2014, San Francisco adopted Vision Zero to eliminate 

all traffic deaths and severe injuries by 2024. A report by SFCTA indicates that as of 

December 2015, 30 high-priority projects were undertaken for improvement, resulting in 

1599 safety treatments installed along with more targeted enforcement and public 
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awareness schemes (SFCTA, 2015). These safety treatments ranged from building bulb-

outs and refuge islands to daylighting and pedestrian countdown signals. Hence, their 

influence on vehicular traffic estimates is likely minimal.  

However, the study observed the following changes to Vehicle Miles Traveled 

(VMT), Congested Speed 

• Overall, Total VMT rose by 14%, between 2010 and 2016, with an almost one-

fourth-fold increase on Collector road, followed by Locals (+18%) and Arterials 

(+15%). VMT on Freeways rises by 10%. It suggests the rapid increase in vehicular 

movement is happening away from the freeways and within the city's core network.  

• The study focuses on the TNC-related VMTs and finds the rise to spread across all 

facility types with more prominence on Arterial, Local, and Collector roads. The 

information is consistent with the conclusion of (G. Erhardt et al., 2019; Roy et al., 

2020), which are the primary source of the data but also with (Gehrke et al., 2018; 

Henao & Marshall, 2019; Schaller, 2017) study indicates that the net effect of TNCs 

on VMT is additive.  

• The most significant reduction in Congested Speeds happens at Freeways, which 

dropped by 2 miles per hour between 2010 and 2016, followed by Collector roads. 

While the drop in congested speed is not proportional to the rise in VMTs, it follows 

the positive correlation trend with Total VMT. The more miles people drive, the 

more vehicles are on the roadways. Higher numbers of vehicles eventually result in 

congestion. 

Spatial comparison (see Figure 4-12) of the road segments where the maximum 

number of (total crash) crashes occurred for both years indicate that many road crashes 

occur in the northeast and southeast part. However, the visible difference is observed on 

the I-80 stretch, both inbound and outbound from the San Francisco – Oakland bridge 

connecting I-101 in the South and I-280 running South West. Another prominent location 

that witnessed an uptick in crash occurrences is the Mission District area, which has a dense 

road network and the entry point to the downtown area from the South, West, and Eastern 

part of the county. The spatial diversity is indicative that crashes occur where there is a 
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complex interaction between various road user groups, vehicles, and road infrastructure 

connection spots.  

Bay Bridge appears to be an outlier and is worth conducting statistical analysis with 

and without this census tract. 

Most TNC activity occurs in the northeast quadrant of SF County, which is also the 

most congested part of the city. The identified area is well served by all modes of 

transportation, public transit, bicycling, and walking facilities. Particular areas include the 

South of Market, the Mission Street corridor, the Van Ness Avenue corridor, Pacific 

Heights and the Marina, Geary Street corridor, Panhandle, Inner Sunset, and the 

Stonestown/San Francisco State University area. 
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CHAPTER 5 MODEL RESULTS 

5.1 Background 

CHAPTER 3, section 3.4.2.4 presented the statistical model's structure to estimate 

the relationship between road crash frequency occurrences and independent variables. The 

available independent variables are congested speed – freeways, congested speed – other 

roads, TNC PUDO, TNC VMT, and the time-fixed effects introduced as a binary variable, 

i.e., year_2016_dummy.  

This chapter presents the most desirable regression model these variables could 

provide to predict crashes. The models are compared to estimate their accuracy in 

predicting the dependent variable, i.e., crash frequencies. Section 5.2 presents the most 

suitable model and its model output. Section 5.3 further describes the measures adopted to 

test the robustness of the model shown in section 5.2. Other variants of the regression 

model with different parametric specifications are also presented along with the predicted 

crash estimates in section 5.4. 

5.2  Main Results 

Table 5-1 below shows statistical model results for all variants of dependent 

variables like Total Crashes, Fatal and Injury Crashes, Pedestrian and Bicyclist involving 

crashes, and alcohol-involving (DUI) crashes. 

The study also includes PDO as the dependent variable to understand if there exists 

a strong relationship between TNC service and non-fatal injuries. Exploring the 

relationship is essential, given that PDO crashes are typically not part of the FARS report 

and account for more than 50% of crashes in the general population. Other traditional 

independent variables include Congested Speed on Freeways and other road network and 

their square term, the natural log of TNC-related PUDO, and the dummy variable termed 

year_2016_dummy to capture time-effect changes. The primary model includes Total 

VMT as a regressor, not an exposure variable.  
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Table 5-1: Main results of the statistical modeling for identified dependent variables 

Model (→) 1 2 3 4 5 

Y (→) 
Total Crashes 

Fatal and 
Injury 
Crashes 

Pedestrian and 
Bicycle crashes 

Alcohol-
involving (DUI) 
crashes 

Property-
damage-only 
(PDO) 

X (↓) 

Coef
ficie
nt 

robust 
std. 
err 

Coef
ficie
nt 

robust 
std. 
err 

Coeff
icient 

robust 
std. err 

Coeff
icient 

robust 
std. err 

Coef
ficie
nt 

robust 
std. 
err 

Total VMT 0.37 
* 0.159 0.36

1 * 0.177 0.15 0.272 0.863 0.529 0.34
9 0.25 

Cong Spd 
[Freeways] 

-
0.63
6 ** 

0.204 
-
0.18
8 

0.241 -1.23 2.079 -0.53 0.672 
-
0.93
6 * 

0.422 

Cong Spd  
[Freeways]2 

0.00
1 0.002 

-
0.00
3 

0.002 0.003 0.023 0 0.007 0.00
2 0.005 

(Cong Spd 
[Other road 
network]) 

0.6 0.326 0.76
8 * 0.361 0.433 0.516 0.389 0.737 0.15

5 0.561 

(Cong Spd 
[Other road 
network])2 

-
0.02
2 

0.012 
-
0.02
9 * 

0.013 -
0.021 0.02 -

0.028 0.026 
-
0.00
5 

0.022 

Ln (TNC Pick-up 
and drop-offs) 

0.06
5 ** 0.021 0.05

5 0.029 0.092 0.08 0.056 0.065 0.09
3 * 0.037 

Ln (Tot TNC 
VMT) 

-
0.06
5 ** 

0.022 
-
0.05
7 

0.032 -
0.095 0.081 -

0.074 0.075 
-
0.08
1 

0.05 

Year 2016 
Dummy 

0.05
4 0.147 0.02

2 0.178 0.009 0.265 -
0.122 0.455 0.08 0.263 

           

Log Likelihood -1012 -875.34 -577.836 -370.314 -687.317 

Wald Chi2 (7) 379.9 51.9
5 

 6.39 11.92 79.45 

*p < 0.05, **p < 0.01 
Estimates are from the panel Fixed Effects Poisson regression model with Robust Standard errors. All 
models include entity and time-fixed effects. 
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5.2.1 Interpretation of the model coefficients 

For the total crash as the dependent variable, the coefficient of total VMT is positive 

and equal to 0.37. The value is significant at a 95% confidence interval. The coefficient of 

Total VMT for other road crash types is also positive. Given that its coefficient is not equal 

to one suggests that road crashes do not have a linear (direct) relationship with VMT. It 

also explains why road crashes and their occurrence are considered complex and dependent 

upon a diverse set of behavioral and engineering factors which vary according to the area, 

local topographical conditions, and traffic habits of the residents. As Total VMT 

participates in the model in the natural logarithmic form, its impacts change from a unit to 

a percent change. Therefore the percentage increase can be easily interpreted as a 10% 

increase in the Total VMT variable (not its log), resulting in an increase of crashes by 3.7%, 

3.61%, 1.5%, 8.6%, and 3.49% for Total Crashes, Only Fatal and Injury involving Crashes, 

Only Pedestrian and Bicyclist involving crashes, alcohol-involving (DUI) crashes, and 

property damage only (PDO) crashes, respectively. 

For the total crash as the dependent variable, the coefficient of congested speed 

freeway has a negative value of -0.636. Its square term has a negative coefficient value of 

+0.001. The relationship validates our assumption that the relationship between road 

crashes and speed is non-linear. A big negative coefficient term and almost negligible 

positive value for the square terms indicate that rate of decrease of road crashes has a 

negative linear slope. In other words, the rate of road crash occurrence increases non-

linearly as the difference in congested speeds increases. Except for total crashes and PDO, 

the linear term of congested speed freeway is insignificant for other road crash types at a 

95% confidence interval.  

On the contrary, the congested speed on the rest of the road network has a positive 

coefficient value of 0.6, while its square term has a negative coefficient of -0.02. The 

congested speed on the rest of the road network and its square term is significant at a 95% 

confidence interval for only fatal, and injury crashes. Their coefficients can be interpreted 

similarly to those for congested speed for freeways. Contrary to congested speed freeways, 

the coefficient for other road networks indicates that as the congestion on these road 
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networks increases, the congested speed decreases (i.e., average speed further goes down), 

thereby increasing the probability of witnessing an increase in road crash occurrence.   

Opposite signs both for the linear and non-linear term of the congested speed also 

indicate that the rate of decline in congested speed is more gradual for freeways compared 

to other road networks. The rate of change is presented graphically in Figure 5-1. 

 
Figure 5-1: rate of change of congested speed (freeway vs. other road networks) 

Intuitively, these crash factors make sense. For example, consider the multiplicative 

factors of the congested speed–freeways (0.53 & 0.83) and other road networks (1.78 & 

2.09) for the total crash and fatal & injury crashes, respectively. The multiplicative factor 

for fatal and injury crashes caused (0.83*2.09) by these parameters is more significant than 

those estimated for total crash (0.53 * 1.78) frequency. It is because the operating speed of 

motor vehicles is directly proportional to the crash outcome. Higher operating speeds 

generate more incredible kinetic energy3 (K.E). It means a large amount of K.E. gets 

dissipated from the high-speed motor vehicle to the other crash-participating object at the 

time of a road crash. If the energy dissipated far exceeds the level, the human body can 

tolerate it, resulting in a severe or fatal injury. For example, suppose a pedestrian gets hit 

 
3 By definition kinetic energy is the energy that a body possesses by being in motion 
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by a vehicle traveling at 15 mph (typical of the local road environment). The risk of bodily 

injury is less than 10% but rises to about 50% if the vehicle travels at 45 mph (typical on 

the highway) (WHO, 2008). Suppose one assumes the odds of getting into a road crash in 

all road category types to be equal. In that case, the resultant motor crash severity depends 

entirely on kinetic energy. Therefore, the crash severity resulting from crash occurrence is 

relatively high when the operating speed is high and is precisely what these coefficients 

convey (Kockelman, 2006). 

On the contrary, the multiplicative factor for pedestrian, bicycle, and alcohol-

involving crashes is smaller than their fatal, injury, and total crashes counterparts. It is 

because the odds of involving in a motor vehicle crash depend not only on the operating 

speed but also on the characteristics of the involved parties, i.e., one of the participants 

shall either be a pedestrian or bicyclist or consumed alcohol which decreases the odds of 

likelihood.  

Similarly, the partial effects (or the probability) of getting involved in a PDO is 

higher on local or arterial roads than on the freeway. It goes back to the relationship 

between speed and crash severity. At a higher speed, the chance of a road crash that is 

purely a PDO crash is somewhat limited, if not rare. Instead, there is a more substantial 

chance that such a crash incident results in a) a road traffic injury or a fatality and b) a 

secondary PDO incident. However, since crash incidents get tagged as the most serious, 

the chances of having such a type are rare.  

The chances of getting into a PDO crash are high at other road networks for various 

reasons, including lower speeds, stop-and-go driving, vehicles failing to yield, differential 

speeds among the participating vehicles, more significant instances of speed limit 

violations, or instances of driving too closely. Lower speeds at high population density 

areas increase the probability of getting involved in fender-bender road crashes (Ewing & 

Hamidi, 2015). 
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The partial effects of congested speed–freeways between alcohol-involving crashes 

aligned with expected trends. According to NHTSA, around 88% of all alcohol-involving 

crashes occur away from interstate roads (NHTSA, 2022b).  

The relationship between congested speed – on other road networks and alcohol-

involving crashes (DUI) is somewhat surprising and opposite to the generally accepted 

trend that drinking likely occurs more on weekends and at night. These opposite trends 

suggest that these results are unstable and should not be relied upon for further analysis.  

There are a few possible reasons for such contrasting trends:  

• Alcohol-involving (DUI) crashes increased over the years by minimal numbers 

even after more vigorous enforcement under SF Vision Zero Scheme. It may 

also be the result of underreporting or the result of the data aggregation process 

adopted in conducting the current study (crash incident drops out if the nearest 

road segment it connects is greater than 10m).  The variability in the data tends 

to make the analysis much more unstable, making it more challenging to 

establish a meaningful trend. 

• Low-traffic volume conditions and high free flow speeds drive alcohol-

impaired drivers to overestimate their driving skills, creating more 

opportunities for crash incidents (Elvik et al., 2012). These components 

partially explain the positive coefficient on alcohol crashes. However, in 

addition to the driving conditions, drivers also consider urban settings, distance 

to travel, and regulatory policies. It may be related to enforcement (increased 

during holidays, nights, or weekends), penalties, and availability of alternative 

modes of transport, general awareness among the public, or simply the 

transportation choices in the city, explaining the negative coefficient on alcohol 

crashes involving only nights, weekends, and holidays. 

• It may indeed be that TNC services may have indeed reduced DUI incidents 

and bookings. A report published by the National District Attorney Association 

(NDAA), which studied the relationship between Lyft service trips (volume) 

and DUI incidents in three cities of California, including San Francisco, 
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indicates a downward trend in DUI total incidents and bookings.  Our study 

results are also partially supported by Greenwood & Wattal's study, which 

examined California's DUI data records between 2009-2015 and found UberX 

to reduce DUI rates by 3.6% (Greenwood & Wattal, 2017). However, it 

contradicts the conclusion of (Brazil & Kirk, 2020, 2016; Dills & Mulholland, 

2017; Kontou & McDonald, 2020b), which found no significant relationship 

between DUI incidents and TNCs.  

Moving on to the TNC PUDO, the coefficients are positive, weak in absolute 

values, and significant at 95% confidence for only total crashes. Using the natural 

logarithmic of PUDO in the model form transforms its coefficient into elasticity. Therefore, 

the percentage increase can be easily interpreted as a 10% increase in the PUDO variable 

(not its log), increasing the crash occurrences by 0.65%, 0.55%, 0.92%, 0.56%, and 0.93% 

for Total Crashes, Only Fatal and Injury Crashes, Only Pedestrian and Bicyclist involving 

crashes, alcohol-involving crashes, and property damage only crashes respectively. The 

weak relationship might be related to the limitation of the NHTSA crash database, which 

restricts crash entry records to those involving motor vehicles, i.e., where motor vehicles 

are in transport (in motion). It may also suggest that pick-up and drop-off activity has little 

effect on crash outcomes.   

In contrast, the coefficients for Tot TNC VMT are negative and somewhat opposite 

to the coefficient of PUDO. The coefficients are statistically significant at 95% confidence 

only for total crashes. Like the PUDO, the natural logarithmic of Tot TNC VMT allows us 

to interpret the coefficient as elasticity. Therefore, a 10% increase in the Tot TNC VMT 

variable (not its log) decreases the crash occurrences by 0.65%, 0.57%, 0.95%, 0.74%, and 

0.81% for Total Crashes, Only Fatal and Injury Crashes, Only Pedestrian and Bicyclist 

involving crashes, alcohol-involving crashes, and PDO, respectively. The negative 

association could be a combination of two or more aspects, namely a) the selection of TNC 

drivers, which bares entry of unskilled drivers, b) the driving skills of TNC drivers getting 

superior with every additional mile driven, c) the feedback system placed by the TNC 

service providers to rate the drivers after the end of a TNC trip, with minimum drive score 

to be maintained. The feedback covers all aspects of driver personality – including driver 
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hygiene, driving habits, speeding, rash driving, and much more. Also, making it mandatory 

for the drivers to maintain a specific threshold score pushes the TNC drivers to be obliged 

with the requirements. d)  driving more vehicle miles makes the TNC drivers superior and 

more efficient in handling fatigue than ordinary drivers. e)  since TNC drivers are the 

vehicle owners and therefore have a reasonable incentive to drive and maintain the vehicle 

gently.   

We include both TNC PUDO and TNC VMT in the model specification because 

they have different effects.  PUDO is specifically about vehicle interactions at the curbside. 

In contrast, TNC VMT may be a replacement for private VMT with another kind of driver 

or a replacement for miles driven while impaired by alcohol with miles driven by a TNC 

driver.  However, the two factors are also correlated, so we include both variables with 

some risk of biasing the magnitude of these coefficient estimates through collinearity. In 

robustness checks presented later, we examine how these coefficients would change if we 

included only one or the other.   

The 2016-year dummy variable tests for spatially uniform changes across the two 

time periods.  For example, if the mix of vehicles in the fleet changes between two years 

in a way that affects crash outcomes, we might expect those changes to be relatively 

uniform across all parts of the city.  It can be due to various reasons like travel behavior 

changes, vehicle standards (& technology adoption), law-enforcement of traffic laws, and 

(positive) changes in post-crash care treatments. The 2016 dummy coefficients vary in sign 

and magnitude for the different types of crashes, but all are insignificant at a 95% 

confidence interval.  

5.2.2 Comparing the estimated vs. observed crashes 

The final model is presented in Equation 5-1, where the β’s represent the 

corresponding coefficients for the respective variable for the crash types, as summarized 

in Table 5-9. These coefficients and the (actual) observed values for each independent 

variable participating in the model can be used to estimate the crash frequency for each 

road category per census tract.  
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Suppose we want to calculate the predicted crashes for road category “2” in Census 

Tract “010100". The process is as follows: 

The first step is to get all relevant information related to the model parameters 

(independent variables). Given that the road category is “2”, the congested speed–freeways 

would be zero. Other observable values for independent parameters for the corresponding 

census tract road category are shown in Table 5-2 
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𝐶𝐶
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Equation 5-1 - Final model representation form 

 

Table 5-2: Observable values of the Total Crash model parameters for the years 2010 and 2016 for CT=”010100” 

Cens
us 
Tract 

road 
catego
ry 

Accide
nt 
Year 

Tota
l 
Cras
h 

Tot  
VMT 

Cong 
Speed 
Freew
ay 

Cong  
Speed  
Freew
ay  
SQR 

Con
g  
Spee
d  
Othe
r  
road
s 

Cong  
Spee
d  
Othe
r 
road
s  
SQR 

PUD
O 

Tot 
TNC 
VMT 

Year 
2016 
Dum
my 

01010
0 2 2010 17 

10746.
87 0 0 

13.3
3 

177.6
8 0 

0 
0 

01010
0 2 2016 25 

12175.
44 0 0 

13.1
2 

172.0
4 

1682.
50 

1566.5
95 1 

Plugging respective values in Equation 5-1 yields  
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∆ 𝑇𝑇𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝐶𝐶𝑐𝑐𝑎𝑎𝑐𝑐ℎ = 17

∗ ��
12175.44 −  10746.87

10746.87
�
1

∗ �
𝐶𝐶−0.636∗0+0.001∗(0)2 

𝐶𝐶−0.636∗0+0.001∗(0)2  �

∗ �
𝐶𝐶0.6∗(13.12−13.33) + (−0.022∗(13.12−13.33)2)

𝐶𝐶0.6∗(13.33) + (−0.022∗(13.33)2) � ∗ �
1682.50

1
�
0.065

∗ �
17042.97

1
�
−0.065

∗  �
𝐶𝐶0.006∗(1−0)

𝐶𝐶−0.006∗0 �� − 17 

∆ 𝑇𝑇𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝐶𝐶𝑐𝑐𝑎𝑎𝑐𝑐ℎ = 18.87 −  17 =  1.87 

5.3 Modeled Scenarios 

The scenarios divide the process into five unique iterative steps, each built 

incrementally upon the previous scenario. An (additional) variable is introduced at each 

iterative step, and its impact on the overall road crash prediction is measured. The estimated 

coefficients in Table 5-9 are used to predict the variable's contribution to road crashes. 

Introducing one new variable at each iterative step helps isolate the variable's contribution 

to the prediction model. For each scenario, there are three possible solutions.  

1. Firstly, if the predicted road crash is larger than the previous iteration's 

predictions, it can be said that introducing the variable leads to increased 

road crashes.  

2. Second, if the predicted road crash is smaller than the previous iteration's 

predictions, the variable is said to reduce the crash occurrences. 

3. Lastly, suppose there is no change in the predicted road crashes compared 

to the previous scenario. In that case, it can be safely said that the variable 

has no contribution to the crash incident occurrence.  

Table 5-3 briefly overviews these five scenarios and the inputs used for each 

scenario. A detailed description of the construction of these five scenarios can be found in 

Roy's Ph.D. dissertation and the subsequent papers related to the same research dataset (G. 

Erhardt et al., 2019; G. D. Erhardt et al., 2022; Gregory D. Erhardt, Sneha Roy, Drew 

Cooper, Bhargava Sana, Mei Chen, and Joe Castiglione, 2019; Roy, 2019; Roy et al., 

2020).  
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Table 5-3: Summary of Scenarios Tested to isolate the impact of each variable in the primary statistical model 

Scenario Scenario description 
Traffic 
Volumes 

Time 
Effects Speeds TNC VMT PUDO 

A 2010 2010 None None None None 

B1 
CounterFactual (CF) 2016 - 
traffic volumes 

CF 2016 
(No TNC) None None None None 

B2 

CounterFactual (CF) 2016 - 
traffic volumes + Time 
Effects (TE) 

CF 2016 
(No TNC) Yes None None None 

B3 

CounterFactual (CF) 2016 - 
traffic volumes + Time 
Effects (TE) + CF CSPD 

CF 2016 
(No TNC) Yes CF 2016 None None 

C 
2016 - traffic volumes + TE + 
CF CSPD 

2016 with 
TNC Yes CF 2016 None None 

D 
2016 - traffic volumes + TE + 
CSPD 

2016 with 
TNC Yes 

2016 with 
TNC None None 

E1 
2016 - traffic volumes + TE + 
CSPD + TNC VMT 

2016 with 
TNC Yes 

2016 with 
TNC 

2016 TNC 
VMT None 

E2 
2016 - traffic volumes + TE + 
CSPD + TNC VMT + PUDO 

2016 with 
TNC Yes 

2016 with 
TNC 

2016 TNC 
VMT 

2016 
PUDO 

Scenario A is the first scenario and the base condition for 2010. It assumes no TNC 

service is in operation. It is the same dataset used to represent the 2010 condition in the 

primary model. The dataset is a base condition against which all subsequent scenarios (B 

through E) will be measured and compared.  The SF-CHAMP travel demand model 

estimates the scenario and reflects 2010 socioeconomic conditions. The scenario excludes 

all attributes for 2016. 

Scenario B is a counterfactual (CF) scenario to actual conditions (Scenario E). It 

incorporates the network changes (including road and transit network), population growth, 

demographics, and employment changes between 2010 to 2016. As a result, the congested 

speeds on the freeways and the remaining road network are different from the actual 

observed. We split the scene into three sub scenarios B1, B2, and B3. It allowed us to 

understand the impact of each additional component on the road crash changes. In Scenario 

B1, we introduced only the counterfactual 2016 Tot VMT into the equation and measured 

its impact. Next, Scenario B2 includes the time-variant variables as a dummy variable 

year_2016_dummy. The study introduces the Counterfactual Congested Speed variable 

segregated by freeways and other road networks in Scenario B3. All sub-scenarios assume 

no TNC operations and no TNC-related PUDO activity on the road segments in 2016.  

Scenario C builds upon the previous scenario (Scenario B3). It replaces Scenario B 

traffic volumes for 2016 from counterfactual volumes, which did not account for TNC 
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volumes, with actual (observed) trips that include out-of-service (OOS) TNC volumes with 

directional links in the SF-CHAMP road network. The scenario assumes no TNC-related 

PUDO activity on the road segments. There are three components to the scenario setup. 

Deadhead or OOS TNC vehicles purely add traffic to the network. Additional traffic to the 

network will increase VMT, which increases the chances of road crash exposure. At the 

same time, increased VMT will likely introduce congestion reducing the travel speed, and 

as a result, it may minimize road crash occurrence. Lastly, the in-service TNC trips (those 

transporting passengers), which are the net result of the trips generated due to replacing the 

taxi or car trips, or trips attracted from sustainable modes like walking, cycling, transit, and 

induced demand may or may not result in an increase VMT and hence road crash exposure.  

Scenario D builds upon the previous scenario and replaces the counterfactual 

congested speeds with observed speeds for 2016. The scenario maintains TNC-related 

PUDO activity on the road segments to be zero. 

Like Scenario B, Scenario E consists of two sub-scenarios, E1 and E2. Scenario E1 

introduces Tot TNC VMT as one of the additional predictor variables w.r.t Scenario D. 

Given that Tot TNC VMT is already part of Tot VMT change, crashes are considered 

indirect of TNC VMTs. Similarly, Scenario E2 builds upon E1 and is the final scene of the 

modeling simulation.  Here, the disruptive effect of curbside TNC PUDO on traffic flow 

gets introduced. The scenario resembles the actual (dataset) ground condition for 2016. 

5.3.1 Modeled Scenarios Results 

Table 5-4, Table 5-5, and Table 5-6 present the Total VMT and Congested Speed 

for 2010, 2016 CF, and 2016. These metrics get reported at the San Francisco County level 

by taking weighted averages of the variables reported for all road category segments w.r.t 

Tot VMT.  
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Table 5-4: Comparison in Total VMT in the year 2010, 2016 CF and 2016 

Total VMT (in miles) 
 Freeways Other roads Total 

2010 4,227,880.55 5,805,779.34 10,033,659.89 
2016 CF 4,497,834.44 6,270,141.41 10,767,975.85 

2016 Observed 4,633,179.87 6,812,437.30 11,445,617.17 

 

Table 5-5: Percentage of Total VMT by road category types 

Total VMT (% distribution) 
 Freeways Other roads 

2010 42.14% 57.86% 
2016 CF 41.77% 58.23% 

2016 Observed 40.48% 59.52% 

Table 5-6: (Weighted Average) Congested Speed in different road categories in the year 2010, 2016 CF and 2016 

Congested Speed (in miles per hour) 
 Freeways Other roads 

2010 42.11 16.75 
2016 CF 40.70 16.57 

2016 Observed 40.20 16.25 
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Table 5-7 shows the modeled results for the tested scenarios for Total Crashes 

Table 5-7: Iterative Scenarios for y = total crashes 

Total Crashes 

Scen
ario 

sub-
scenari

os 
Description 

Observed Additional 
Crashes 

Variabl
e 

Contrib
ution 

Year 
2010 

Year 
2016 

Year 
2010 

Year 
2016 

A   2010 4430         

B 

B1 CounterFactual (CF) 2016 - traffic volumes       152 152 

B2 CounterFactual (CF) 2016 - traffic volumes + 
Time Effects (TE)       409 257 

B3 CounterFactual (CF) 2016 - traffic volumes + 
Time Effects (TE) + CF CSPD       1115 706 

C   2016 - traffic volumes + TE + CF CSPD       1325 210 
D   2016 - traffic volumes + TE + CSPD       1747 422 

E 
E1 2016 - traffic volumes + TE + CSPD + TNC 

VMT       -666 -2413 

E2 2016 - traffic volumes + TE + CSPD + TNC 
VMT + PUDO Effect   5316   889 1555 

Figure 5-7 describes how the predicted crashes move with each additional variable 

added to the model structure for total crashes. 

Starting from the base, Scenario A represents the 2010 crash situation. The blue 

column represents the observed crashes for the year.  

Scenario B, i.e., Scenario B1, introduces only the counterfactual Tot VMT into the 

previous model equation. As a result, we see a net increase in total crashes by 152 (+3% 

w.r.t Scenario A). In Scenario B2, total crash counts increase to 409 due to the time-effect 

component. Direct attribution of the time-effect component is 409 – 152 = 257 (+6%) 

additional crashes compared to Scenario B1. Finally, when the counterfactual speed gets 

added to sub-scenario B2, the model equation predicts 1115 total crashes. It is a 15% rise 

(1115 – 409 = 706) in crashes w.r.t Scenario B2. The net estimated total crashes equal 4430 

+ 1115 = 5545 crashes. Scenario B (B1+B2+B3) predicts a 25% increase in crash count 

compared to base Scenario A. It is an acceptable trend, given that the only significant 

change from the base condition is an increase in Tot VMT and road congestion (reduction 

in vehicle speeds), positively correlating with road crash occurrence.  
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In Scenario C, the counterfactual traffic flow for 2016 gets replaced with observed 

traffic flows. Because Total VMT rises dramatically, it further increases the road crash 

numbers. The predicted total crashes for 2016 equals 4430 +1325 = 5755. The net 

difference between Scenario C and Scenario B is 5755 - 5545 = 210 (+4%), much higher 

than those predicted for the counterfactual scenario by SF-CHAMP. The further increase 

does not come as a surprise, given that an increase in Tot VMT will likely increase the total 

crashes, just as observed in Scenario B. So, we can infer that the direct impact of Tot VMT 

is to increase the occurrence of road crashes.  

In Scenario D, we replace the counterfactual speed for 2016 with observed speed 

rates. The predicted crashes jump to 1747, and the total crashes for 2016 are estimated to 

be 4430 + 1747 = 6177. The net difference between Scenario D and Scenario C is 6177– 

5755 = +422 (+7%). We can conclude that the contribution of observed 2016 congested 

speed results in 422 additional crashes compared to Scenario C crash estimates.  

Like Scenario B, we split Scenario E into sub-scenarios, E1 and E2. Scenario E1 

introduces the Tot TNC VMT as an additional parameter. As explained earlier, introducing 

Tot TNC VMT as an independent variable in addition to the Tot VMT component allows 

us to capture the impact of TNC fleets on road crashes. Interestingly, the total predicted 

crashes dropped to 666, and the total crashes for 2016 are estimated to be 4430 – 666 = 

3764. The net difference between Scenario E1 and Scenario D is 3764 – 6177  = -2413 (-

39%). We can conclude that the indirect contribution of TNC VMT is negative and helps 

reduce overall road crashes. 

Lastly, Scenario E2 represents the actual ground conditions for 2016, where all 

relevant variables participating in the statistical model act in tandem. It is arrived at by 

adding the TNC service components like PUDO to the Scenario E dataset. Interestingly, 

the total change in crashes flips from negative to positive. It now equals 4430 + 889 = 5319 

crashes. The net difference between Scenario E2 and Scenario E1 is 5319 – (3764) = 1555 

(+41%) crashes. Since TNC PUDO is the only additional variable to the previous scenario, 

we can safely conclude that TNC service operations, especially its PUDO activities, 

increase crashes w.r.t Scenario E1. Overall, Scenario E decreases crash by (889 - 1747) 
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858 compared to Scenario D, indicating that TNC service operations dampen the overall 

road crash scenario.  

Compared to observed road crashes for 2016 (5316), the model predicts 4430 + 889 

= 5319, which is near perfect prediction. The model scenarios can be visualized as a 

waterfall chart, as shown in Figure 5-7. The figure's first and last (blue) bars represent the 

observed crash values for 2010 and 2016, respectively, while the remaining bar represents 

the model scenario from A to E, including sub-scenarios. The red color of the bar indicates 

that the crashes have fallen compared to the previous scenario, while the green bar indicates 

an increase w.r.t earlier scene.  

 
Figure 5-2: Scenario results for the dependent variable is equal to Total Crash 
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Labels in the chart correspond to the description presented in Table 5-8.. 

Table 5-8: Labels corresponding to modeled scenarios (and sub-scenarios) 

Scena
rio 

sub-
scenarios Description Label 

 
A   2010 base year: 2010  

B 

B1 CounterFactual (CF) 2016 - traffic volumes 
only the counterfactual 

VMT effect 
 

B2 CounterFactual (CF) 2016 - traffic volumes + Time 
Effects (TE) 

counterfactual VMT and 
time-effect 

 

B3 CounterFactual (CF) 2016 - traffic volumes + Time 
Effects (TE) + CF CSPD 

full counterfactual 
scenario: 2016 

 

C   2016 - traffic volumes + TE + CF CSPD direct VMT effect  

D   2016 - traffic volumes + TE + CSPD direct congestion effect  

E 
E1 2016 - traffic volumes + TE + CSPD + TNC VMT indirect TNC-VMT effect  

E2 2016 - traffic volumes + TE + CSPD + TNC VMT + 
PUDO Effect 

indirect TNC-PUDO 
effect 

 

Obser
ved 
Crashe
s 2016 

 Actual 2016 crashes Observed 2016  

The study tried to change the order of introducing sub-scenarios within B (B1, B2, 

B3) and E (E1 and E2) and found no particular change in the magnitude of road crashes. 

Introducing TNC PUDO always results in a net increase in crashes, while TNC VMT 

results in a net decrease.   

Waterfall charts for other road crash types are presented in Figure 5-8, Figure 5-9, 

and Figure 5-10. 
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Figure 5-3: Scenario results for the dependent variable is equal to the count of all Fatal and Injury Involving Crash 

 

 
Figure 5-4: Scenario results for the dependent variable is equal to the count of all Pedestrian and Bicyclist involving 
crashes 
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Figure 5-5: Scenario results for the dependent variable is equal to the count of all alcohol-involved crashes (DUI-
Alcohol) 

 

 
Figure 5-6: Scenario results for the dependent variable is equal to the count of all Pedestrian and Bicyclist involving 
crashes 

Broadly, we can make several observations from these scenarios:  
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1. Between 2010 and 2016, VMT increases by about 7% due to population growth, 

employment growth, and network changes, leading to greater exposure to crashes.  

This increased exposure leads to more crashes through the exposure variable. Due 

to background (non-TNC) traffic changes, traffic speeds also change over this 

period, with a non-linear effect on crashes that varies by facility type. In addition, 

our models include some systemwide changes between 2010 and 2016 accounted 

for in the 2016 dummy variable (effectively a time effect). These systemwide 

changes vary in magnitude for the different crash types but are all statistically 

insignificant. Scenario B accounts for these three effects together, resulting in 

between 0.1% to 15% more crashes, depending on the crash type. This scenario 

shows what we would expect to happen in the absence of TNCs.  

2. TNCs added about 7% to the total VMT in 2016. This VMT adds to the exposure, 

increasing crashes, as shown in Scenario C.  

3. By adding traffic to the road, TNCs slow vehicle speeds. The effect of this is not 

necessarily straightforward.  It can lead to more vehicle interactions and, therefore, 

more crashes, but they may be less severe due to the lower travel speeds.  Our 

results show that the net effect of these TNC-related speed changes leads to 

increased crashes for all four crash types.  Scenario D shows these effects.  

However, the speed coefficients are only statistically significant for total, fatal, and 

injury crashes.  

4. TNCs have a direct effect on crashes through both the TNC PUDO variable that 

accounts for vehicle interactions during pick-up and drop-off operations, and the 

TNC VMT variable that accounts for differences in driving that may occur along 

the route, such as replacing an alcohol-impaired driver with a TNC driver. These 

coefficients have opposite signs and partially offset each other, but Scenario E 

shows that their combined effect is to reduce crashes for all crash types.  However, 

except for total crashes, the coefficients are not statistically significant.   

Overall, the results point to TNCs increasing crashes through higher exposure and 

speed changes, with those differences offset by the TNC direct effect.  While we have 

sound reasons to believe that the exposure effect is accurate, we have less confidence in 
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the estimated speed effect and TNC direct effect.  For the speed effects, the estimated 

coefficients are significant for total crashes and fatal and injury crashes but not for bicycle 

and pedestrian crashes or alcohol-involved crashes.  For the TNC direct effect, the 

estimated coefficients are only significant for one out of the eight estimated coefficients.   

5.4 Additional tested statistical model and results 

5.4.1 Treating Total VMT as the exposure variable 

Table 5-9 displays the model results for various crash frequency models when Total 

VMT is considered an exposure variable. Past literature indicates that having Total VMT 

as an exposure variable is meaningful and practical as it measures the extent of road users’ 

exposure to the overall level of travel risk given the road conditions each year (Qin et al., 

2004; Stewart, DE, 1998). It essentially means that the coefficient of Total VMT is fixed 

to value 1. 

The coefficients for most of the variables between the primary model results in 

Table 5-1 and Table 5-9 are almost identical, further reinforcing the validity of the primary 

model. The log-likelihood scores of all these model specifications are close to each other, 

with few models increasing or decreasing around the main result. It indicates that all these 

models are robust and simply a matter of choice based on individual preferences.   
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Table 5-9: Main results of the statistical modeling for identified dependent variables 

Model (→) 6 7 8 9 10 

Y (→) Total Crashes Fatal and 
Injury Crashes 

Pedestrian and 
Bicycle crashes 

Alcohol-
involving (DUI) 

crashes 

Property-
damage-only 

(PDO) 

X (↓) Coeffici
ent 

robu
st 
std. 
err 

Coeffici
ent 

robu
st 
std. 
err 

Coeffici
ent 

robu
st 
std. 
err 

Coeffici
ent 

robu
st 
std. 
err 

Coeffici
ent 

robu
st 
std. 
err 

Total VMT 1 (EXPOSURE) 1 (EXPOSURE) 1 (EXPOSURE) 1 (EXPOSURE) 1 (EXPOSURE) 

Cong Spd [Freeways] -0.636 
** 

0.20
5 -0.183  0.23

1 -0.76  1.99 -0.533  0.67
3 -0.952 * 0.42

8 

Cong Spd  [Freeways]2 0.001  0.00
2 -0.002  0.00

2 0.002  0.02
2 0  0.00

7 0.003  0.00
5 

(Cong Spd [Other road 
networks]) 0.748 * 0.33

5 0.904 * 0.37
3 0.468  0.58

5 0.416  0.75
9 0.329  0.56

1 
(Cong Spd [Other road 

networks])2 -0.028 * 0.01
2 -0.034 * 0.01

4 -0.023  0.02
1 -0.029  0.02

6 -0.012  0.02
2 

Ln (TNC Pick-up and 
drop-offs) 0.04  0.15 0.026  0.02

6 0.009  0.07
5 0.051  0.06

1 0.069  0.03
6 

Ln (Tot TNC VMT) -0.055 * 0.02 -0.044  0.03 -0.025  0.07
5 -0.073  0.07

4 -0.074  0.05
1 

Year 2016 Dummy 0.006  0.02
2 -0.031  0.18

1 -0.137  0.26
7 -0.13  0.45

3 0.035  0.26
5 

                      
Log Likelihood -1020.8975 -881.4961 -583.04199 -370.35815 -690.66452 
Wald Chi2 (7) 217.41 56.58 26.16 14.42 39.19 

*p < 0.05, **p < 0.01 
Estimates are from the panel Fixed Effects Poisson regression model with Robust Standard errors. All models include entity 

and time-fixed effects. 
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Corresponding waterfall charts for Total Crashes, Fatal and Injury Crashes, 

Pedestrian and Bicycle Crashes, Alcohol-involved Crashes, and Property Damage Only 

Crashes with Total VMT as exposure variable is presented in Figure 5-7, Figure 5-8, Figure 

5-9, and Figure 5-10 respectively. 

 
Figure 5-7: Scenario results for the dependent variable is equal to Total Crash (when Tot VMT is utilized as the 

exposure variable) 

 
Figure 5-8: Scenario results for the dependent variable is equal to the count of all Fatal and Injury Involving Crash 

(when Tot VMT is utilized as the exposure variable) 
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Figure 5-9: Scenario results for the dependent variable is equal to the count of all Pedestrian and Bicyclist involving 

crashes (when Tot VMT is utilized as the exposure variable) 

 
Figure 5-10: Scenario results for the dependent variable is equal to the count of all alcohol-involved crashes (DUI-

Alcohol) (when Tot VMT is utilized as the exposure variable) 
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Figure 5-11: Scenario results for the dependent variable is equal to the count of all Property-Damage Only (PDO) 

Crashes (when Tot VMT is utilized as the exposure variable) 

5.4.2 Keeping either TNC VMT or TNC PUDO to represent TNC activity in the 

model 

One may argue that the influence of TNC VMT is already part of Total VMT and 

hence likely be colinear. Although collinearity does not bias the estimates, it significantly 

increases the standard errors and makes individual variables insignificant. 

Table 5-10 provides the model's results containing the log transformation of TNC 

PUDO, while Table 5-11 only contains the log transformation of TNC VMT.  

Table 5-10 controls the TNC PUDO and presents the model output results when Y 

equals Total crashes, Fatal and Injury crashes, Pedestrian and Bicyclist crashes, alcohol-

involving (DUI) crashes, and property damage only (PDO) crashes. The TNC PUDO 

coefficients are generally positive but weak in absolute values and insignificant at 95% 

confidence, except for PDO crashes. Using the natural logarithmic of PUDO in the model 

form transforms its coefficient into elasticity. Therefore, the percentage increase can be 

easily interpreted as a 10% increase in the PUDO variable (not its log), increasing the crash 

occurrences by 0.4%, 0.2%, 0.1%, 0.3%, and 0.7% for the target-dependent variables. The 

weak relationship might be related to the limitation of the NHTSA crash database, which 
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restricts crash entry records to those involving motor vehicles, i.e., when motor vehicles 

are in transport (in motion). The negative coefficient on PUDO for pedestrian and bicyclist 

crash occurrence might be related to the database's inability to capture crashes resulting 

from passengers' loading/unloading (PUDO) behavior.  

On the contrary, Table 5-11 presents the results with TNC VMT only. The TNC 

VMT coefficients are generally negative, weak in absolute values, and insignificant at 95% 

confidence. The coefficients of TNC VMT are almost identical to TNC PUDO found in 

Table 5-10 but opposite in signs indicating very strong collinearity between them. It is 

evident, given that no TNC miles exist without any TNC vehicle picking up or dropping 

off passengers and vice-versa. Using the natural logarithmic of TNC VMT in the model 

form transforms its coefficient into elasticity. Therefore, the percentage increase can be 

easily interpreted as a 10% increase in the PUDO variable (not its log), increasing the crash 

occurrences by -0.3%, -0.2%, -0.1%, -0.5%, and -0.5% for the target-dependent variables. 

The log-likelihood is also greater in values, indicating that they are not the best models to 

explain the relationship. Hence, modeled scenarios are not performed. 
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Table 5-10: Other Model Structure I: Only PUDO included to represent TNC activity 

Model (→) 6 7 8 9 10 

Y (→) Total Crashes Fatal and Injury 
Crashes 

Pedestrian and 
Bicycle crashes Alcohol crashes PDO 

X (↓) Coeffi
cient 

robust 
std. err 

Coeffi
cient 

robust 
std. err 

Coeffi
cient 

robust 
std. err 

Coeffi
cient 

robust 
std. err 

Coeffi
cient 

robust 
std. err 

Total VMT 0.42 
** 0.159 0.41 * 0.176 0.24 0.265 0.91 0.522 0.39 0.25 

Cong Spd 
[Freeways] 

-0.41 
* 0.201 -0.02 0.178 -0.56 1.888 -0.28 0.663 -0.64 0.401 

Cong Spd  
[Freeways]2 0 0.002 0 0.002 0 0.022 0 0.008 0 0.005 

(Cong Spd [Other 
road network]) 0.53 0.308 0.7 * 0.345 0.22 0.466 0.32 0.722 0.07 0.539 

(Cong Spd [Other 
road network])2 -0.02 0.011 -0.02 0.013 -0.01 0.017 -0.02 0.025 0 0.02 

Ln (TNC Pick-up 
and drop-offs) 0.04 0.019 0.02 0.022 0.01 0.037 0.03 0.057 0.07 * 0.032 

Year 2016 Dummy -0.21 0.113 -0.19 0.133 -0.14 0.239 -0.46 0.336 -0.3 0.182 
                      

Log likelihood -1016.19 -877.235 -578.6131 -371.023 -690.162 

Wald Chi2 (6) 154.75 67.95 6 13.09 65.93 

 *p < 0.05, **p < 0.01 
Estimates from panel Fixed Effects Poisson regression model with Robust Standard errors. All models include entity and 

time-fixed effects. 
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Table 5-11: Other Model Structure II: Only TNC VMT included to represent TNC activity 

Model (→) 11 12 13 14 15 

Y (→) Total Crashes Fatal and 
Injury Crashes 

Pedestrian and 
Bicycle crashes 

Alcohol-
involving (DUI) 

crashes 

Property-
damage-only 

(PDO) 

X (↓) Coeffici
ent 

robu
st 
std. 
err 

Coeffici
ent 

robu
st 
std. 
err 

Coeffici
ent 

robu
st 
std. 
err 

Coeffici
ent 

robu
st 
std. 
err 

Coeffici
ent 

robu
st 
std. 
err 

Total VMT 0.51 ** 0.15
5 

0.47 ** 0.16
9 

0.26  0.26
4 

1.01 * 0.50
7 

0.57 * 0.23
5 

Cong Spd [Freeways] -0.35  0.20
2 

0.01  0.17
2 

-0.51  1.84
5 

-0.3  0.65
9 

-0.51  0.39
9 

Cong Spd  [Freeways]2 0  0.00
2 

0  0.00
2 

0  0.02
1 

0  0.00
8 

0  0.00
5 

(Cong Spd [Other road 
network]) 

0.43  0.34
9 

0.62  0.37
2 

0.19  0.47
6 

0.26  0.76
4 

-0.02  0.6 

(Cong Spd [Other road 
network])2 

-0.02  0.01
3 

-0.02  0.01
4 

-0.01  0.01
8 

-0.03  0.02
6 

0  0.02
3 

Ln (Tot TNC VMT) -0.03  0.02
2 

-0.02  0.02
5 

-0.01  0.03
8 

-0.05  0.06
4 

-0.05  0.04
8 

Year 2016 Dummy 0.18  0.14
7 

0.1  0.17
2 

0.02  0.26
6 

0.01  0.43
8 

0.33  0.31
1 

                      

Log Likelihood -1016.98 -877.37 -578.59 -370.80 -691.78 
Wald Chi2 (7) 169.21 60.57 5.94 11.79 74.69 

 *p < 0.05, **p < 0.01 
Estimates are from the panel Fixed Effects Poisson regression model with Robust Standard errors. All models include entity 

and time-fixed effects. 
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5.4.3 Segregating road segments into five main road facility types 

Alternatively, it may be the case that TNC operations may be more sensitive to one 

facility type than others, such that its road safety contribution (positive or negative) may 

be more severe than others. In order to test this claim, the study reclassifies the road 

network into five classes: Freeways, Major Arterial, Minor Arterial, Collectors, and Locals, 

as summarized in Table 5-12. The purpose of reclassification is to understand and identify 

if the impact of TNC service on road safety varies by facility type. 

Table 5-12: reclassified facility types 

(reclassified) 
Facility Type (FT) 

FT 
code Description 

Freeways 1,2,3,5 Roads classified as Fwy-Fwy Connector or Freeway or Expressway or 
Ramps 

Major Arterials 7, 15 Major Arterial and Super Arterial roads 
Minor Arterials 12 Minor Arterial 
Collectors 4 Collector roads 
Locals 11 All local roads 

We ran these specifications in three ways  

a) split each participating variable, i.e., Tot VMT, Congested Speed, TNC-

VMT, and TNC-PUDO, into facility type as specified in Table 5-12.  

For all other crash types, the TNC PUDO is positive, while TNC VMT is negative. 

Except for freeways where no TNC PUDO is reported (and therefore has a coefficient value 

of zero), the coefficients of TNC PUDO and TNC VMT are almost identical in absolute 

values. The significance also follows a similar trend, with Collector road variables being 

extraordinarily significant and having the biggest coefficient, followed by Major Arterial 

for all road crash types. TNC PUDO and TNC VMT are significant in fatal and injury 

crashes on minor arterial roads. Except for congested freeway speed, all other category 

speed values and square terms are significant at 95% confidence. When these variable 

coefficients are used to predict the crashes, as explained in section 5.3, the predicted values 

are close to observed values, indicating robustness.  
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Table 5-13: Estimated model results when the road network is segregated into five major road facility types 

Models (→) Total Crashes Count Fatal and 
Injury 

Count 
Pedestrian and 

Bicyclists 

Alcohol involved 
crashes 

Independent Variables (↓) 

Total VMT (Freeways) -0.443  1.18
7 -0.88  1.51

3 27.977  14.42
2 1.439  6.624 

Total VMT (Major Arterial) 0.615  0.39
3 0.896  0.47 0.937  0.661 1.732  1.038 

Total VMT (Minor Arterial) 0.285  0.33
8 0.119  0.34

5 0.854  0.689 0.908  1.481 

Total VMT (Collectors) 0.08  0.31 -0.065  0.35
6 -0.112  0.508 -0.644  1.097 

Total VMT (Locals) 0.35  0.28
6 0.074  0.33

7 -0.028  0.455 2.146 
* 0.914 

Cong Spd [Freeways] -0.447  0.25
1 0.149  0.25

4 2.583  1.722 -0.613  0.84 

Cong Spd  [Freeways]2 -0.001  0.00
3 -0.005  0.00

3 0.002  0.018 0.001  0.011 

Cong Spd [Major Arterial] 1.079 * 0.41
6 1.436 ** 0.44

8 
1.612 
** 0.556 1.639  1.025 

Cong Spd  [Major Arterial]2 -0.034 * 0.01
4 -0.046 ** 0.01

6 -0.051 * 0.02 -0.063  0.038 

Cong Spd [Minor Arterial] 1.591 * 0.76
1 2.095 * 0.83

1 1.63  0.842 -0.87  2.312 

Cong Spd  [Minor Arterial]2 -0.063 * 0.02
7 -0.083 ** 0.03

1 -0.066 * 0.029 0.033  0.086 

Cong Spd [Collectors] 4.312 * 1.68
5 

7.445 
*** 1.78 5.044 * 2.53 -7.028  6.464 

Cong Spd  [Collectors]2 -0.175 * 0.06
8 

-0.299 
*** 

0.07
3 -0.201 * 0.1 0.225  0.227 

Cong Spd [Locals] -0.043  1.34
7 1.224  1.92

9 3.966  2.915 -6.778  4.538 

Cong Spd  [Locals]2 0.012  0.06 -0.046  0.08
6 -0.175  0.131 0.319  0.203 

Ln (TNC Pick-up and drop-offs) [Freeways] 0 0 0 0 0 0 0 0 
Ln (TNC Pick-up and drop-offs) [Major 
Arterial] 0.276 ** 0.09

4 0.306 ** 0.09
9 

0.486 
** 0.145 0.267  0.246 

Ln (TNC Pick-up and drop-offs) [Minor 
Arterial] 0.147  0.10

9 0.274 * 0.12
4 0.16  0.149 0.23  0.295 

Ln (TNC Pick-up and drop-offs) 
[Collectors] 

0.511 
*** 0.12 0.653 

*** 0.16 0.597 
** 0.203 0.414  0.437 

Ln (TNC Pick-up and drop-offs) [Locals] 0  0.09
7 0.216  0.14

3 0.195  0.188 -0.365  0.413 

Ln (Tot TNC VMT) [Freeways] -0.047  0.02
6 -0.007  0.03

3 0.273  0.16 -0.11  0.09 

Ln (Tot TNC VMT) [Major Arterial] -0.251 
** 

0.07
9 -0.283 ** 0.08

7 
-0.441 
** 0.138 -0.289  0.228 

Ln (Tot TNC VMT) [Minor Arterial] -0.146  0.10
7 -0.263 * 0.12

3 -0.172  0.155 -0.236  0.281 

Ln (Tot TNC VMT) [Collectors] -0.5 *** 0.11
2 

-0.638 
*** 

0.15
1 

-0.591 
** 0.199 -0.409  0.432 

Ln (Tot TNC VMT) [Locals] -0.001  0.08
5 -0.2  0.12

8 -0.196  0.164 0.264  0.374 

Year 2016 Dummy 0.117  0.16
2 0.088  0.19

9 0.074  0.323 0.15  0.546 

Log Likelihood -1134.2432 -968.3234 -625.731 -395.984 

Wald Chi2 (7) 385.83 144.98 62.65 25.59 
 *p < 0.05, **p < 0.01, ***p<0.001 

Estimates from panel Fixed Effects Poisson regression model with Robust Standard errors. All models include entity and time-
fixed effects. 
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Figure 5-12: Modeled Scenario results for Total Crash using coefficients as presented in Table 5-13 

 

 

Figure 5-13: Modeled Scenario results for Fatal and Injury Crashes using coefficients as presented in Table 5-13 
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Figure 5-14: Modeled Scenario results for Pedestrian and Bicyclist Crashes using coefficients as presented in Table 5-13 

 

 

Figure 5-15: Modeled Scenario results for Alcohol involving crashes using coefficients as presented in Table 5-13 
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b) drop all attributes belonging to freeway facility type as they contributed the least 

number of road network miles and crashes. 

Models (→) 
Total Crashes Count Fatal and 

Injury 
Count Pedestrian 

and Bicyclists 

Alcohol 
involved 
crashes Independent Variables (↓) 

Total VMT (Major Arterial) 0.615  0.394 0.898  0.47 0.938  0.661 1.741  1.039 
Total VMT (Minor Arterial) 0.291  0.337 0.111  0.347 0.847  0.69 0.895  1.48 
Total VMT (Collectors) 0.076  0.309 -0.059  0.358 -0.109  0.509 -0.634  1.1 

Total VMT (Locals) 0.345  0.286 0.081  0.337 -0.023  0.455 
2.158 
* 0.915 

Cong Spd [Major Arterial] 1.068 * 0.415 1.449 ** 0.449 1.627 ** 0.557 1.665  1.027 

Cong Spd  [Major Arterial]2 -0.033 * 0.014 
-0.047 
** 0.016 

-0.051 
** 0.02 -0.064  0.038 

Cong Spd [Minor Arterial] 1.62 * 0.757 2.056 * 0.836 1.602  0.845 -0.937  2.304 

Cong Spd  [Minor Arterial]2 -0.064 * 0.027 
-0.082 
** 0.031 -0.065 * 0.029 0.035  0.086 

Cong Spd [Collectors] 4.306 * 1.684 
7.461 
*** 1.782 5.046 * 2.53 -7.117  6.489 

Cong Spd  [Collectors]2 -0.175 * 0.068 
-0.299 
*** 0.074 -0.2 * 0.1 0.229  0.227 

Cong Spd [Locals] -0.047  1.354 1.233  1.926 3.98  2.916 -6.776  4.529 
Cong Spd  [Locals]2 0.012  0.06 -0.047  0.086 -0.175  0.131 0.319  0.203 
Ln (TNC Pick-up and drop-offs) 
[Major Arterial] 0.272 ** 0.094 0.312 ** 0.099 0.491 ** 0.145 0.275  0.245 
Ln (TNC Pick-up and drop-offs) 
[Minor Arterial] 0.146  0.109 0.274 * 0.125 0.16  0.149 0.23  0.295 
Ln (TNC Pick-up and drop-offs) 
[Collectors] 

0.509 
*** 0.119 

0.656 
*** 0.16 0.597 ** 0.203 0.416  0.437 

Ln (TNC Pick-up and drop-offs) 
[Locals] 0.007  0.098 0.206  0.143 0.187  0.188 -0.38  0.413 
Ln (Tot TNC VMT) [Major 
Arterial] 

-0.242 
** 0.08 

-0.295 
** 0.088 

-0.451 
** 0.138 -0.306  0.227 

Ln (Tot TNC VMT) [Minor 
Arterial] -0.14  0.107 -0.27 * 0.125 -0.177  0.155 -0.248  0.281 

Ln (Tot TNC VMT) [Collectors] -0.492 
*** 0.113 

-0.648 
*** 0.151 

-0.597 
** 0.199 -0.424  0.433 

Ln (Tot TNC VMT) [Locals] -0.002  0.085 -0.198  0.128 -0.194  0.164 0.265  0.374 
Year 2016 Dummy 0.08  0.174 0.14  0.213 0.111  0.323 0.229  0.544 
                  
Log Likelihood -1061.2704 -909.18877 -617.0016 -360.361 
Wald Chi2 (7) 103.08 99.35 52.38 21.74 

 *p < 0.05, **p < 0.01, ***p<0.001 
Estimates from panel Fixed Effects Poisson regression model with Robust Standard errors. All models include entity and 

time-fixed effects. 

 Even after dropping the freeway road category from the analysis, the 

coefficients value of TNC PUDO, TNC VMT, and their significance largely follow the 

trends observed in Table 5-13. 
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c) For each facility type, we tested four model structures, namely i) non-linear speed 

(in addition to TNC VMT and TNC PUDO), ii) non-linear speed and only TNC 

PUDO, and iii) non-linear speed and only TNC VMT.  

Unfortunately, few co-efficient values of the participating regressing variables were 

absurdly large in each model setup, prompting us not to utilize the results for model 

scenarios and predictions. The details of each model, including coefficients and standard 

errors of the regressing variables, log-likelihoods, and Chi-Square scores, are presented in 

Appendix A6.  

For each model specification, we provide log-likelihood values, which measure 

how well a particular model fits the data. Akaike’s Information Criterion can utilize the 

log-likelihood values to choose the best model from the set. The basic AIC formula 𝐴𝐴𝐴𝐴𝐶𝐶 =

 −2(𝑡𝑡𝑡𝑡𝐶𝐶 − 𝑡𝑡𝑖𝑖𝑙𝑙𝐶𝐶𝑡𝑡𝑖𝑖ℎ𝑡𝑡𝑡𝑡𝐶𝐶)  +  2𝐾𝐾. 

5.5 SUMMARY 

The chapter provides an after-implementation summary of the statistical model 

presented in CHAPTER 3. It does this for all dependent variables like Total Crashes, Fatal 

and Injury Crashes, Pedestrian and Bicyclist involving crashes, alcohol-involving (DUI) 

crashes, and property damage only (PDO) crashes.   

For the total crash as the dependent variable, all the identified independent 

variables' coefficients are presented in the tabular format in Table 5-1. Following are the 

observations for each independent variable. 

For the dependent variable, Total Crashes, the Total VMT holds a positive 

coefficient of 0.37. Given that its coefficient is not equal to one suggests that road crashes 

do not have a linear (direct) relationship with VMT and hence cannot be used as an 

exposure variable. The congested speed freeway holds a negative value of -.636, while its 

square term has a negative coefficient value of +0.001. On the contrary, the congested 

speed on the rest of the road network has a positive coefficient value of 0.748, while its 
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square term has a negative coefficient of -0.028. The congested speed on the rest of the 

road network and its square term are significant at a 95% confidence interval. It indicates 

that as the congestion on the other road segments increases, the congested speed decreases 

(i.e., average speed further goes down), which leads to a greater probability of witnessing 

an increase in road crash occurrence. A big negative coefficient term and almost negligible 

positive value for the square terms indicate that rate of decrease of road crashes has a 

negative linear slope. In other words, the rate of road crash occurrence increases non-

linearly as the difference in congested speeds increases. Except for total crashes and PDO, 

the linear term of congested speed freeway is insignificant for other road crash types at a 

95% confidence interval. The congested speed on the rest of the road network and its square 

term are significant at a 95% confidence interval only for fatal and injury crashes. 

The models also indicate that the coefficient of TNC PUDO is positive, weak in 

absolute values, and significant at 95% confidence for total crashes and PDO crashes. The 

natural logarithmic of PUDO in the model transforms its coefficient into elasticity and, 

therefore, can be easily interpreted as a percentage increase or decrease. The study finds 

that a 10% increase in the PUDO variable (not its log) increases the crash occurrences by 

0.65%, 0.55%, 0.92%, 0.56%, and 0.93% for Total Crashes, Only Fatal and Injury Crashes, 

Only Pedestrian and Bicyclist involving crashes, alcohol-involving crashes, and property 

damage only crashes respectively. One primary reason for observing such a weak 

relationship might be how crashes are registered inside the NHTSA crash database. 

NHTSA restricts crash entry records to only those involving moving motor vehicles, i.e., 

where motor vehicles are in transport (in motion). It may also suggest that pick-up and 

drop-off activity has little effect on crash outcomes. 

In contrast, coefficients for Tot TNC VMT are negative and only significant for 

total crashes. To a more considerable extent, the coefficients of TNC VMT offset the 

coefficient of PUDO, such that the net effect of TNC operations cannot be accurately 

estimated. Similar to the PUDO, the natural logarithmic of Tot TNC VMT allows us to 

interpret the coefficient as elasticity. Therefore, a 10% increase in the Tot TNC VMT 

variable (not its log) decreases the crash occurrences by 0.65%, 0.57%, 0.95%, 0.74%, and 
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0.81% for Total Crashes, Only Fatal and Injury Crashes, Only Pedestrian and Bicyclist 

involving crashes, alcohol-involving crashes, and PDO, respectively. 

The time-variant effect through 2016 dummy coefficients varies in signs and 

magnitude but is insignificant for all explained variables at a 95% confidence interval, 

indicating that its impact is marginal.   

To understand and estimate the contribution of each independent variable in road 

crashes, the study divides the process into five unique iterative steps, each built 

incrementally upon the previous scenario (shown in Table 5-3).  

Scenario A is the first scenario and the base condition for 2010. It assumes no TNC 

service is operating and reflects the 2010 condition in the primary model.   

Scenario B is a counterfactual scenario to actual conditions (Scenario E) and shows 

what we expect to happen without TNCs. This counterfactual scenario differs from the 

actual condition as it considers the network changes (including road and transit networks), 

population growth, demographics, and employment changes between 2010 and 2016.  We 

split the scene into three sub scenarios B1, B2, and B3. It allowed us to understand the 

impact of each additional component on the road crash changes. In Scenario B1, we 

introduced only the counterfactual 2016 Tot VMT into the equation and measured its 

impact. Next, Scenario B2 includes the time-variant variables as a dummy variable 

year_2016_dummy. The study introduces the Counterfactual Congested Speed variable 

segregated by freeways and other road networks in Scenario B3. All sub-scenarios assume 

no TNC operations and no TNC-related PUDO activity on the road segments in 2016..  

Scenario C builds upon the previous scenario. It replaces Scenario B traffic volumes 

for 2016 from counterfactual volumes, which did not account for TNC volumes, with actual 

(observed) trips. Because VMT increased by 14% between 2010 and 2016, the crashes also 

rose sharply. 
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For Scenarios B and C, the rise is along the expected lines, i.e., more exposure 

(VMT) results in increased road risks, thereby increasing the possibility of getting involved 

in a road crash incident. 

Scenario D builds upon the previous scenario and replaces the counterfactual 

congested speeds with observed speeds for 2016. The scenario assumes the impact of TNC-

related PUDO activity and TNC-related VMT variable to zero. Our results show that the 

net effect of these TNC-related speed changes leads to increased crashes for all four crash 

types.  Scenario D shows these effects.  However, the speed coefficients are only 

statistically significant for total, fatal, and injury crashes. 

Like Scenario B, Scenario E consists of two sub-scenarios, E1 and E2. Scenario E1 

introduces Tot TNC VMT as one of the additional predictor variables w.r.t Scenario D. Tot 

TNC VMT gets introduced as one of the explained variables instead of being part of Tot 

VMT, in addition to the already accounted factors like TNC Volumes and congestion 

observed due to TNC service operation on the SF road network. At the same time, E2 builds 

upon E1 and is the final scene of the modeling simulation.  In E2, the disruptive effect of 

curbside TNC PUDO on traffic flow gets introduced. The coefficients of these variables 

have opposite signs and partially offset each other. Overall, Scenario E shows that TNC-

specific variables jointly reduce crashes for all crash types; however, except for total 

crashes, the coefficients are not statistically significant. 

The study also tested the different model structures a) by varying the regressing 

variables, especially keeping either TNC PUDO or TNC VMT to represent TNC activity, 

b) by re-categorizing road network into five major road facility types, namely Freeways, 

Major Arterial, and Minor Arterial, Collectors, and Locals roads. While the predicted 

crashes for the latter were no better when compared to the primary model, the prior model 

specification could not better the results. 

Overall, the trends across all these models is found to be similar. TNC activities 

increase crashes through higher exposure and speed changes, with those differences 

directly offsetting the TNC’s direct effect.
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CHAPTER 6 DISCUSSION AND CONCLUSIONS 

6.1 Summary 

In little more than a decade of operations, Transportation Network Companies 

(TNC) have changed the urban mobility landscape in the USA. As TNCs emerged in the 

USA, there is an interest in understanding their effects on urban transportation. One such 

area where TNCs could potentially change the expected outcomes if not deployed 

effectively is the area related to road safety risk and road crashes in general. 

The dissertation aims to measure the effect of TNC operations on road safety 

outcomes using San Francisco (SF) county as a case study. The area was selected because 

TNC services had continuously operated on SF streets since May 2010, when Uber first 

started offering such trips to the world. It is also the headquarters of Uber and Lyft, two 

leading TNC service providers, covering a market share greater than 95%.  

The study compares 2010 safety outcomes when TNCs were negligible in the SF 

area to safety outcomes for the exact locations in 2016 for which San Francisco County 

Transportation Authority (SFCTA) has successfully collected data, including TNC 

activity. We evaluate these outcomes for four types of crashes: total crashes, fatal and 

severe injury crashes, crashes involving pedestrians and bicyclists, and crashes involving 

alcohol.    

We control for the changes occurring at the network level in vehicle miles traveled, 

vehicle speed, and road network changes. TNC service-related activities like pick-up and 

drop-offs (PUDO) and TNC Vehicle Miles Travelled (Tot TNC VMT) are also considered.  

Fixed-effects Poisson Regression model is used to model the relationship between 

identified crash types and explanatory variables mentioned before. Previous studies have 

shown that the Fixed-effects Poisson Regression model estimates are robust to 

overdispersion. The dissertation reveals that a 10% increase in PUDO activity increases 

the crash occurrences by 0.65%, 0.55%, 0.92%, 0.56%, and 0.93% for Total Crashes, Fatal 

and Injury Only Crashes, Pedestrian and Bicyclist only involving crashes, alcohol-

involving (DUI) crashes and property damage only (PDO) crashes. However, the 

association between PUDO and respective crash types is not statistically significant at a 
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95% confidence interval except for Total Crashes and Property-damage only (PDO) 

Crashes. Similarly, a 10% increase in the Tot TNC VMT activity decreases the crash 

occurrences by 0.65%, 0.57%, 0.95%, 0.74%, and 0.81% for Total Crashes, Fatal and 

Injury Only Crashes, Pedestrian and Bicyclist only involving crashes, alcohol-involving 

(DUI) crashes, and property damage only (PDO) crashes. Except for Total Crashes 

incidents, the Tot TNC VMT shows a statistically significant association with Total 

Crashes type only at a 95% confidence interval.  

To further decompose the extent to which the explanatory variables contribute to 

change in road crashes observed in San Francisco between 2010 and 2016, we split the 

analytical framework into five unique iterative steps termed “Scenarios.” Each scenario is 

built incrementally on the prior with a series of control brought to the changes in vehicle 

miles traveled, vehicle speed, and road network that occur over time.  This hypothetical 

scenario generation and estimate of the road crash exercise allowed us to pin the expected 

variable contribution. An overview of the counterfactual scenarios is shown in Table 6-1 

below.  

Table 6-1 - Counterfactual scenarios used to decompose explanatory variable's contribution to road crashes 

Scen
ario 

Sub 
scen
ario 

Scenario description Traffic 
Volumes 

Time 
Effects Speeds TNC 

VMT 
PUD
O 

A  2010 2010 None None None None 

B 

B1 CounterFactual (CF) 2016 - traffic 
volumes 

CF 2016 
(No TNC) None None None None 

B2 CounterFactual (CF) 2016 - traffic 
volumes + Time Effects (TE) 

CF 2016 
(No TNC) Yes None None None 

B3 CounterFactual (CF) 2016 - traffic 
volumes + Time Effects (TE) + CF CSPD 

CF 2016 
(No TNC) Yes CF 

2016 None None 

C  2016 - traffic volumes + TE + CF CSPD 2016 with 
TNC Yes CF 

2016 None None 

D  2016 - traffic volumes + TE + CSPD 2016 with 
TNC Yes 

2016 
with 
TNC 

None None 

E 

E1 2016 - traffic volumes + TE + CSPD + 
TNC VMT 

2016 with 
TNC Yes 

2016 
with 
TNC 

2016 
TNC 
VMT 

None 

E2 2016 - traffic volumes + TE + CSPD + 
TNC VMT + PUDO 

2016 with 
TNC Yes 

2016 
with 
TNC 

2016 
TNC 
VMT 

2016 
PUDO 
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6.2 Findings 

Our analysis shows that TNCs may have both a direct and an indirect effect on 

crashes.   

The TNC direct effect is measured in two ways.  First, curbside pick-ups and drop-

offs may increase vehicle-vehicle, vehicle-pedestrian, and vehicle-bicyclist conflicts, 

especially on busy arterials, leading to more crashes.  Our estimated coefficients on TNC 

pick-ups and drop-offs are positive, consistent with this hypothesis but not statistically 

significant.  Conversely, TNCs may reduce crashes along the route traveled by replacing 

higher-risk VMT with lower-risk VMT, either because the drivers are more experienced or 

because they replace trips that someone under the influence of alcohol would otherwise 

drive. Our estimate coefficients on TNC VMT are negative, consistent with the lower-risk 

replacement hypothesis but only statistically significant for total crashes.  The scenarios 

show that the combined effect of both is to reduce crashes across all crash types, but due 

to their insignificance, we have little confidence in this result.   

TNCs may also affect crashes indirectly, either through a change in exposure or 

through their effect on vehicle speeds.   

In this analysis, we use VMT as the measure of exposure and assume that crashes 

are proportional to exposure, all else being equal.  Between 2010 and 2016, VMT in San 

Francisco increased by 14%.  Previous research showed that about half of this increase is 

due to population growth, employment growth, and network changes, while the other half 

is due to the introduction of TNCs (G. Erhardt et al., 2019; Roy et al., 2020).  Therefore, it 

is reasonable to expect that TNCs increased crashes by about 7% over this period due to 

higher exposure.   

Our analysis shows that the effect of vehicle speeds on crashes is non-linear and 

different by facility type. We measured congested speeds using the volume-delay functions 

in the SF-CHAMP travel demand model five times a day.  For each type of crash, we 

estimated coefficients on the speed and the square of speed separately for freeways versus 

other facility types. On freeways, the estimated speed coefficients are negative, and the 
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coefficients on speed squared are positive with a value close to zero, suggesting that higher 

speeds lead to fewer crashes. The only significant estimate is for total crashes. This result 

may be because when speeds are high on freeways, there are fewer vehicle interactions 

and, therefore, fewer crashes. 

Conversely, on arterials, collectors, and locals, the estimated speed coefficients are 

positive, and the squared speed coefficients are negative and higher in magnitude, 

indicating a non-linear relationship.  The coefficients are significant for fatal and injury 

crashes, which also is the highest magnitude among others crashes.  The result suggests 

that more congestion may reduce the severity of crashes by limiting vehicle speeds or that 

more congestion can lead to more crashes through increased conflicts.  The effect varies 

depending on the operating conditions.  By adding traffic to the road, TNCs slow vehicle 

speeds through more congestion.  When we apply the models in our scenario testing, our 

analysis suggests that this leads to more crashes for all types.  We have some confidence 

in this result for total crashes and fatal and injury crashes but not for pedestrian and bicyclist 

crashes, alcohol-involved crashes, or property damage-only crashes 

Revisiting the objectives of this research as presented in CHAPTER 1, we sought 

to measure whether the emergence of TNCs is associated with a decrease or increase in 

four types of crashes.  We find that between 2010 and 2016 in San Francisco:   

• TNCs indirectly increased total crashes by 4% due to higher exposure and 7% 

due to changes in vehicle speeds.  The direct effect of TNCs on crashes offsets 

these increases, reducing crashes by 14%, but this effect depends upon the 

model specification and is insignificant in other specifications tested.  

• TNCs indirectly increased fatal and severe injury crashes by 3% due to higher 

exposure and 3% due to changes in vehicle speeds.  We do not detect a 

statistically significant direct effect of TNCs.  

• For Pedestrians and Bicyclists involving crashes, we do not detect a significant 

indirect effect due to higher exposure or any changes in vehicle speeds. Neither 

the direct effect of TNCs was significant.  
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• Similarly, we do not detect a significant indirect effect for alcohol-involving 

crashes due to higher exposure or any changes in vehicle speeds. Neither the 

direct effect of TNCs was significant.  

• TNCs indirectly increase property damage-only crashes by 1% due to higher 

exposure and 2% due to changes in vehicle speeds. The direct effect of TNCs 

on crashes offsets these increases, reducing crashes by 9%.  

The differences across crash types are likely due in part to the smaller sample sizes 

for the latter categories.  Because we have fewer observed crashes that involve pedestrians 

and bicyclists and alcohol, it is harder to obtain a statistically significant result.   

Overall, the results suggest that TNCs are a minor factor in road safety outcomes, 

at least within the limits of what we can measure with the available data.  This finding is 

broadly consistent with past research on the topic.  The conclusions from the independent 

scientific studies which explored the potential linkages of TNC operations and their impact 

on road traffic safety outcomes are surprisingly mixed (Barrios et al., 2019; Brazil & Kirk, 

2016; Dills & Mulholland, 2018b; Greenwood & Wattal, 2017; Kirk et al., 2020; Morrison 

et al., 2018).  Past research has hypothesized various reasons for such mixed results. One 

possible reason for such mixed results lies in the non-availability of TNC trip-level data. 

Few researchers believe that the cost of TNC trips is still the primary factor of whether 

people use such services as an alternate mode of transport, and until it falls below the total 

perceived cost (private vehicles or other public transportation model options), people are 

unwilling to make such a shift. However, this study found a limited effect with spatially 

detailed data available and still did not find a significant effect in either direction. Our 

results are consistent with previous research (Kontou & McDonald, 2020a) investigated 

the influence of Ride Austin, a local TNC service in Travis County, Texas, using real-

world data available from RideAustin's open records concludes no significant relationship 

between TNCs and road crash data (Kontou & McDonald, 2020a). 

6.3 Recommendations 

Our study found that TNCs may increase crashes indirectly due to higher exposure 

and changes to vehicle speeds, but these increases are offset by TNCs’ direct effect on 
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crash outcomes.  TNC’s pick-up and drop-off (PUDO) activity positively correlates with 

road crashes. It is unsurprising, given that “TNC operates in the most congested areas at 

the most congested time of the day”(ITDP, 2019).  

Therefore, one of our study's first recommendations is that the city actively 

regulates curbside road spaces to ensure that multimodal needs (including urban freight 

delivery service providers, micro-mobility services, transit, pedestrian, and bicyclists) for 

safe and efficient curbside access are not compromised.  

The city administration should work with the TNC providers (data) to identify 

streets with high TNC usage rates. Based on the strategic goal and priorities, these hotspots' 

curb space should be re-designed or introduced with passenger loading/unloading (PLC) 

zones. It will reduce PUDO activities or double parking in travel lanes, bus stops, or bike 

lanes, reducing road conflicts with other users and streamlining traffic movement.  

Efforts should be made to digitize all road assets, including curb spaces. To 

optimize curb space allocation, mechanisms should be implemented to update these digital 

assets routinely (or dynamically). These digital inventories should be standardized, and 

data should be available to public and private actors. It will ensure widespread acceptance 

of such curbside rules and, therefore greater success rate. For example, in Washington 

D.C., the authority converted traditional parking spaces around popular dining and 

entertainment areas with passenger load/unloading zones (ITE, 2014). In 2020, with TNC 

providers' help, San Francisco digitally geofenced congested streets like Market Street so 

that the passengers were redirected to nearby side-street locations for pick-ups and drop-

offs (Rodriguez, 2020). A study conducted by the University of Washington found that, on 

average, introducing dedicated passenger loading zones reduced the total time taken by 

TNC drivers to drop off and pick up passengers by 42seconds in South Lake Union (SLU) 

area, which is the main campus for Amazon and served by extensive TNC trips (Goodchild 

et al., 2019).  

Second, the California Public Utility Commission (CPUC), responsible for 

managing TNC licenses within the state, should envisage a mechanism by which TNC-
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related road crashes are matched with the police, hospital, and emergency department 

records. Such integration will help agencies understand road safety trends within their area 

limits. It will also ensure no underreporting of road crashes in all categories. It will help 

the authorities to develop comprehensive data-led road safety countermeasures.  

As of 2023, Judge Mason’s landmark judgment on August 2022 mandates TNC 

service operators to submit annual accident and incidents information to CPUC on or 

before 19th September of the following year. The redacted version of the crash information 

excluding sensitive personal information regarding the TNCs driver and passenger is 

available to the general public from 2021 onwards. However, it lacks spatial information 

about the crash (coordinates), crucial for developing a data-driven and evidence-based road 

safety management scheme at all levels (local, state, and federal agencies). Accurate crash 

data goes a long way in establishing road crash and severity trends. It helps decision-

makers develop and implement scientific techniques at a lower cost, leading to higher 

returns.  

Another recommendation will be mandating the background of the vehicle number 

plates of TNC fleets to be distinctly different from passenger or commercial vehicles. For 

example, as per the Government of India's Motor Vehicle Act, 1988, all vehicles plying on 

the road must be registered with the Regional Transport Office (RTOs) (GoI, 1988). In 

addition, specific rules regarding automobile registration plates exist and are implemented 

following its 1989 amendment. For example, all private or non-commercial vehicles (two-

wheelers and four-wheelers) are required to bear white number plates (GoAP, 2023). A 

vehicle bearing a white license plate with black lettering signifies that it is for 

private/personal use only and cannot be used to transport goods or carry passengers (GoAP, 

2023).  On the other hand, a yellow-colored number plate with black lettering indicates a 

commercial vehicle. Commercial vehicles have different tax structures than private 

vehicles and require commercial driving licenses (GoAP, 2023). It can be an alternative 

low-cost measure until proper laws involving TNCs are enacted.  
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6.4 Limitations and Future Research 

It is important to note that this work is subject to several limitations and offers 

rich future research opportunities.  

On a geographical front, the results and analysis are limited to San Francisco county 

and, therefore, only depict the association between TNC and road safety for said area. It 

may be the case that choosing a geographical location with different urban forms and 

topology may produce a different result.  

The second is the analytical design. The research evaluates the objectives using a 

classic quasi-experimental design framework. The 2010 data represent the traffic flow 

conditions before the TNC services launch, while the 2016 data represents the after TNC 

services begin operations. Changes in values get compared within the individual (in our 

case, road category per census tract) over time, not between the individual and a control. 

The setup is a low-cost, convenient, and valid alternative to a more survey-intensive study. 

However, such a design setup faces particular limitations: 

• It lacks a control group that can be used to provide some evidence that changes 

occurring over time were not the result of natural temporal trends or of 

unmeasured events that occurred during the same time of the study.  

• Another issue in before and after studies is the statistical phenomenon of 

regression to the mean (RTM). It may be the case that the number of crashes 

observed between these two years is purely random, and we are observing 

simply noise. However, RTM can be accounted for and minimized by adding 

more data points (at least three years) for pre- and post-intervention periods.  

The third limitation is the non-variability of traffic flows and vehicle speeds. The 

study uses the annual average daily vehicle miles traveled as an exposure measure, which 

can be too aggregate to capture the safety effects of traffic flow variations and daily 

operations. Flow characteristics such as speed variation and congestion level play a 

significant role in road crash occurrence and should be explored.  
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The fourth limitation relates to road crash information. There are three aspects 

related to road crash data.  

• Involvement of TNC in a crash – The crash data do not record whether any 

parties were TNC drivers or passengers.  If these data were recorded, it would 

allow for more direct measurement of the rate of crashes involving TNCs versus 

the general population.  As it stands, the best this study can do is to infer the 

effect of TNCs on the overall crash rates.   

• Underreporting of crashes - One major cause is the underreporting of road crash 

data.  Sciortino et al., in their San Francisco-focused study, noted that police 

records underestimated the number of injured pedestrians by 21% (Sciortino et 

al., 2005). While their conclusions are long outdated, the possibility of such an 

event is not obscure. One of the primary reasons for such underreporting may 

be related to reporting. Contrary to the general belief, not all road crashes must 

be reported. Some percentages of crashes never get included in the official 

records because the incidents are notified to the respective authorities. These 

include a private settlement between involved parties for insurance purposes, 

no third-party participation (single-vehicle crashes), or no injuries after the 

motor vehicle crash. Crashes involving motorcyclists, pedestrians, bicyclists, 

and PDOs have the highest under-reporting rates (Abay, 2015; Alsop & 

Langley, 2001; Amoros et al., 2006; Elvik & Mysen, 1999; M. Imprialou & 

Quddus, 2019; Salifu & Ackaah, 2012; Watson et al., 2015). Underreported 

crashes can affect the crash frequency count model and injury severity analysis 

(M. Imprialou & Quddus, 2019; P. E. Ma, 2009; Yamamoto et al., 2008; 

Yasmin & Eluru, 2013; Ye & Lord, 2011). For this study, which compares two 

points in time, it is especially important that any be consistent in both time 

periods.  Unfortunately, we do not have a basis to evaluate how consistently 

crashes were recorded over these two periods.  

• Crash location and time – Around 44% of all crashes in 2010 did not have 

locational attributes. For 2016, this percentage rises to 47%. In general, the 

more severe the road crash, the higher the probability is that the incident is 
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accurately reported, although property damage-only (PDO) crashes are 

estimated to be approximately ~70% of all crashes (NHTSA, 2022c). Errors in 

reported crash locations generate complexity in data pre-processing. For 

instance, each crash must be accurately linked to the road link to develop an 

annual road crash frequency model. Failure to do so may lead to incorrect 

tagging, which may bias the model result. While no information is available on 

the impact of wrong crash location on road safety analysis, past studies indicate 

that it affects the estimation of the model coefficients (M.-I. Imprialou, 2015) 

and post-construction performance of countermeasures proposed (Brown et al., 

2015) 

• Crash severity records – Not all crashes have an equal societal impact; 

therefore, there is a need to classify crash injuries correctly (M. Imprialou & 

Quddus, 2019). While the public authorities follow strict criteria (in the current 

study case, the California Collision Investigation Manual 2003), studies have 

shown that injury severity classifications are not always accurate, leading to 

potential misclassifications. For instance, McDonald et al. found that 15% of 

crashes reported as “slight” injury crashes are found to be “life-threatening,” 

according to hospital data (McDonald et al., 2009). Amoros et al. found that 

such misclassification is not random and targets specific crashes or user 

characteristics (Amoros et al., 2006). The classification bias and crash under-

reporting may affect our count regression analysis involving crash severity.  

Finally, the study is limited by the quantity of data.  Crashes are relatively rare 

occurrences, so for many observations, the number of crashes may increase by a small 

number but results in a significant percentage change, such as from 0 to 1 for one 

observation and 1 to 0 for a similar observation.  Such changes can occur for any number 

of reasons that are seemingly random and go beyond what our models can reasonably 

explain.  A large enough sample can overcome this variation in the data, which may be one 

reason why the models for total crashes and fatal and injury crashes include more 

coefficient estimates that are statistically significant than the other models.  If this study is 

repeated with more data, either from more cities or from more years within the same city, 
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it might be possible to detect more meaningful effects, and it might be possible further to 

segment those effects by road type or crash type.  

6.5 Policy Implications 

This study found that TNCs may increase crashes indirectly due to higher exposure 

and changes to vehicle speeds, but these increases may be offset by TNCs’ direct effect on 

crash outcomes.  However, this finding—particularly the direct effect—comes with a low 

degree of confidence.  The evidence suggests that TNCs are a minor factor in road safety 

outcomes.   

This finding is of interest to engineers, planners, and policymakers who seek to 

improve road safety.  It suggests that TNCs are neither a significant cause of the safety 

problems on American roads nor an effective solution to those problems.  Those aiming to 

reduce traffic crashes would do well to focus on known solutions like adopting a safe 

system approach as recommended by the U.S. Department of Transportation (DOT) and is 

part of their National Roadway Safety Strategy to reduce roadway fatalities and serious 

injuries (FHWA, 2022; USDOT, 2022). Regarding roads, the design should allow humans 

to make mistakes and greatly reduce injury impacts. It can be achieved by managing 

vehicle speeds, reducing road user conflicts, improving vehicle safety technology such as 

driver assistance and collision avoidance, vehicle design to reduce the size and weight of 

vehicles, or reducing exposure through reduced VMT.  
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A1: Primary Modeled Scenarios with intermediary steps – Fatal and Injury Crashes 

 

Fatal and Injury 

Scen
ario 

sub-
scenario

s 
Description 

Observed Additional 
Crashes Variable 

Contrib
ution Year 

2010 
Year 
2016 

Year 
2010 

Year 
2016 

A   2010 2961         

B 

B1 CounterFactual (CF) 2016 - traffic volumes       98 98 

B2 CounterFactual (CF) 2016 - traffic volumes + 
Time Effects (TE)       166 68 

B3 CounterFactual (CF) 2016 - traffic volumes + 
Time Effects (TE) + CF CSPD       434 268 

C   2016 - traffic volumes + TE + CF CSPD       568 134 
D   2016 - traffic volumes + TE + CSPD       708 140 

E 
E1 2016 - traffic volumes + TE + CSPD + TNC VMT       -576 -1284 

E2 2016 - traffic volumes + TE + CSPD + TNC VMT 
+ PUDO Effect   3288   329 905 
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A2: Primary Modeled Scenarios with intermediary steps – Pedestrian and Bicycle crashes 

Pedestrian and Bicyclists 

Scen
ario 

sub-
scenario

s 
Description 

Observed Additional 
Crashes Variable 

Contrib
ution Year 

2010 
Year 
2016 

Year 
2010 

Year 
2016 

A   2010 1296         

B 

B1 CounterFactual (CF) 2016 - traffic volumes       20 20 

B2 CounterFactual (CF) 2016 - traffic volumes + 
Time Effects (TE)       32 12 

B3 CounterFactual (CF) 2016 - traffic volumes + 
Time Effects (TE) + CF CSPD       84 52 

C   2016 - traffic volumes + TE + CF CSPD       112 27 
D   2016 - traffic volumes + TE + CSPD       193 81 

E 
E1 2016 - traffic volumes + TE + CSPD + TNC VMT       -570 -763 

E2 2016 - traffic volumes + TE + CSPD + TNC VMT 
+ PUDO Effect   1352   61 630 
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A3: Primary Modeled Scenarios with intermediary steps – Alcohol-involving Crashes 

DUI 

Scen
ario 

sub-
scenario

s 
Description 

Observed Additional 
Crashes Variable 

Contrib
ution Year 

2010 
Year 
2016 

Year 
2010 

Year 
2016 

A   2010 502         

B 

B1 CounterFactual (CF) 2016 - traffic volumes       38 38 

B2 CounterFactual (CF) 2016 - traffic volumes + 
Time Effects (TE)       -24 -62 

B3 CounterFactual (CF) 2016 - traffic volumes + 
Time Effects (TE) + CF CSPD       68 93 

C   2016 - traffic volumes + TE + CF CSPD       118 49 
D   2016 - traffic volumes + TE + CSPD       194 77 

E 
E1 2016 - traffic volumes + TE + CSPD + TNC VMT       -105 -300 

E2 2016 - traffic volumes + TE + CSPD + TNC VMT 
+ PUDO Effect   537   34 140 
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A4: Primary Modeled Scenarios with intermediary steps – Property-damage-only (PDO) 

Crashes 

PDO 

Scen
ario 

sub-
scenario

s 
Description 

Observed Additional 
Crashes Variable 

Contrib
ution Year 

2010 
Year 
2016 

Year 
2010 

Year 
2016 

A   2010 1469         

B 

B1 CounterFactual (CF) 2016 - traffic volumes       49 49 

B2 CounterFactual (CF) 2016 - traffic volumes + 
Time Effects (TE)       177 128 

B3 CounterFactual (CF) 2016 - traffic volumes + 
Time Effects (TE) + CF CSPD       634 458 

C   2016 - traffic volumes + TE + CF CSPD       700 65 
D   2016 - traffic volumes + TE + CSPD       1063 363 

E 
E1 2016 - traffic volumes + TE + CSPD + TNC VMT       -120 -1183 

E2 2016 - traffic volumes + TE + CSPD + TNC VMT 
+ PUDO Effect   2028   548 668 
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A5: Modeled Scenarios with facility types classified into five classes 

I. Freeways 

Total Crashes 
Models (→) 

linear speed non-linear 
speed 

Only TNC 
PUDO 

Only TNC 
TNC VMT Independent Variables (↓) 

Ln(Tot VMT) -0.1  0.82 -0.173  1.25 0.00 0.00 -0.173  1.25 

Congested Speed -0.488 *** 0.08 -0.467  0.25 0.00 0.00 -0.467  0.25 

Congested Speed2     0  0.00 0.00 0.00 0  0.00 

Ln(PUDO)         0.00 0.00     

Ln(Tot TNC VMT) -0.084 * 0.04 -0.082  0.04     -0.082  0.04 

year_2016_dummy 0.453  0.36 0.443  0.38 0.00 0.00 0.443  0.38 

                  

Log pseudolikelihood -72.73 -72.73     -72.73 

Wald Chi2() 382.78 387.62     387.62 

 

Count Fatal and Injury Crashes 
Models (→) 

linear speed non-linear 
speed 

Only 
TNC 

PUDO 

Only TNC 
TNC VMT Independent Variables (↓) 

Ln(Tot VMT) 0.158  1.259 -1.27  1.599 0 0 -1.27  1.599 

Congested Speed -0.269 ** 0.104 0.175  0.248 0 0 0.175  0.248 

Congested Speed2     -0.006  0.003 0 0 -0.006  0.003 

Ln(PUDO)         0 0     

Ln(Tot TNC VMT) 0.017  0.051 0.049  0.058     0.049  0.058 

year_2016_dummy -0.246  0.433 -0.42  0.475 0 0 -0.42  0.475 

                  

Log psuedolikelihood -59.597 -58.798     -58.798 

Wald Chi2() 50.94 64.29     64.29 
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Count Pedestrian and Bicyclist Crashes 
Models (→) 

linear speed non-linear speed Only TNC 
PUDO 

Only TNC TNC 
VMT Independent Variables (↓) 

Ln(Tot VMT) 38.317 * 15.14 38.782 * 15.95 0.00 0.00 38.782 * 15.95 

Congested Speed 4.019 * 1.68 3.88  2.56 0.00 0.00 3.88  2.56 

Congested Speed2     0.002  0.02 0.00 0.00 0.002  0.02 

Ln(PUDO)         0.00 0.00     

Ln(Tot TNC VMT) 0.855  0.51 0.849  0.52     0.849  0.52 

year_2016_dummy -3.959  2.90 -3.952  2.89 0.00 0.00 -3.952  2.89 

                  

Log psuedolikelihood -7.99 -7.99     -7.99 

Wald Chi2() 9.06 9.47     9.47 

 

Alcohol Involved Crashes 
Models (→) 

linear speed non-linear 
speed 

Only TNC 
PUDO 

Only TNC TNC 
VMT Independent Variables (↓) 

Ln(Tot VMT) 0.977  4.35 0.907  6.71 0.00 0.00 0.907  6.71 

Congested Speed -0.558  0.33 -0.542  0.89 0.00 0.00 -0.542  0.89 

Congested Speed2     0  0.01 0.00 0.00 0  0.01 

Ln(PUDO)         0.00 0.00     

Ln(Tot TNC VMT) -0.058  0.21 -0.056  0.24     -0.056  0.24 

year_2016_dummy -0.313  1.88 -0.322  2.03 0.00 0.00 -0.322  2.03 

                  

Log psuedolikelihood -35.55 -35.55     -35.55 

Wald Chi2() 5.58 5.57     5.57 
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II. Major Arterial 

Total Crashes 
Models (→) 

linear speed non-linear speed Only TNC 
PUDO 

Only TNC TNC 
VMT Independent Variables (↓) 

Ln(Tot VMT) 0.76  0.42 0.613  0.39 0.879 * 0.40 1.075 ** 0.39 

Congested Speed 0.105  0.13 1.144 ** 0.43 0.397  0.33 0.293  0.31 

Congested Speed2     -0.036 * 0.01 -0.013  0.01 -0.012  0.01 

Ln(PUDO) 0.174 * 0.09 0.304 ** 0.09 0.038  0.04     

Ln(Tot TNC VMT) -0.165 * 0.08 -0.302 ** 0.09     -0.015  0.04 

year_2016_dummy 0.147  0.32 0.343  0.32 -0.341  0.26 -0.049  0.33 

                  

Log psuedolikelihood -291.94 -288.65 -293.33 -293.74 

Wald Chi2() 15.46 21.49 9.16 9.79 

 

Count Fatal and Injury Crashes 
Models (→) 

linear speed non-linear 
speed 

Only TNC 
PUDO 

Only TNC 
TNC VMT Independent Variables (↓) 

Ln(Tot VMT) 1.088 * 0.50 0.904  0.47 1.142 * 0.49 1.37 ** 0.46 

Congested Speed 0.077  0.15 1.488 ** 0.46 0.683  0.36 0.554  0.34 

Congested Speed2     -0.048 ** 0.02 -0.024  0.01 -0.022  0.01 

Ln(PUDO) 0.154  0.10 0.33 ** 0.10 0.041  0.05     

Ln(Tot TNC VMT) -0.148  0.10 -0.33 ** 0.11     -0.016  0.05 

year_2016_dummy 0.053  0.38 0.292  0.38 -0.462  0.28 -0.14  0.36 

                  

Log psuedolikelihood -256.65 -252.29 -256.32 -256.67 

Wald Chi2() 14.40 27.53 15.70 14.35 
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Count Pedestrian and Bicyclist Crashes 
Models (→) 

linear speed non-linear 
speed 

Only TNC 
PUDO 

Only TNC 
TNC VMT Independent Variables (↓) 

Ln(Tot VMT) 1.183  0.70 0.967  0.68 1.259  0.68 1.645 * 0.68 

Congested Speed 0.235  0.20 1.878 ** 0.61 0.511  0.46 0.391  0.48 

Congested Speed2     -0.06 ** 0.02 -0.016  0.02 -0.017  0.02 

Ln(PUDO) 0.339 * 0.14 0.586 *** 0.16 0.067  0.07     

Ln(Tot TNC VMT) -0.328  0.17 -0.612 ** 0.19     -0.019  0.08 

year_2016_dummy 0.244  0.64 0.754  0.66 -0.669  0.41 -0.2  0.59 

                  

Log psuedolikelihood -164.34 -161.49 -165.98 -166.40 

Wald Chi2() 17.63 23.36 10.55 8.42 

 

Alcohol involved Crashes 
Models (→) 

linear speed non-linear 
speed 

Only TNC 
PUDO 

Only TNC 
TNC VMT Independent Variables (↓) 

Ln(Tot VMT) 1.996  1.03 1.738  1.05 1.923  1.10 2.115  1.11 

Congested Speed -0.117  0.34 1.658  1.05 0.925  0.80 0.946  0.75 

Congested Speed2     -0.064  0.04 -0.041  0.03 -0.043  0.03 

Ln(PUDO) 0.034  0.22 0.273  0.25 0.012  0.12     

Ln(Tot TNC VMT) -0.036  0.23 -0.301  0.27     -0.043  0.13 

year_2016_dummy -0.214  0.95 0.209  0.94 -0.476  0.71 -0.119  0.93 

                  

Log psuedolikelihood -106.35 -105.12 -105.63 -105.58 

Wald Chi2() 6.07 7.81 7.96 8.01 
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III. Minor Arterial Road 

Total Crashes 
Models (→) 

linear speed non-linear speed Only TNC 
PUDO 

Only TNC TNC 
VMT Independent Variables (↓) 

Ln(Tot VMT) 0.488  0.38 0.464  0.34 0.463  0.34 0.488  0.33 

Congested Speed 0.119  0.24 2.447 *** 0.70 2.459 *** 0.70 1.989 ** 0.62 

Congested Speed2     -0.087 *** 0.02 -0.087 *** 0.02 -0.072 *** 0.02 

Ln(PUDO) -0.007  0.10 0.143  0.11 0.15 * 0.06     

Ln(Tot TNC VMT) 0.095  0.13 0.008  0.13     0.135  0.07 

year_2016_dummy -0.573  0.44 -0.939 * 0.47 -0.927 * 0.37 -0.943 * 0.47 

                  

Log pseudolikelihood -206.41 -201.50 -201.51 -202.31 

Wald Chi2() 9.35 34.90 32.79 27.15 

 

Count Fatal and Injury Crashes 
Models (→) 

linear speed non-linear 
speed 

Only TNC 
PUDO 

Only TNC 
TNC VMT Independent Variables (↓) 

Ln(Tot VMT) 0.284  0.39 0.221  0.34 0.247  0.34 0.267  0.35 

Congested Speed 0.041  0.25 2.58 ** 0.80 2.294 ** 0.80 1.694 * 0.71 

Congested Speed2     -0.096 ** 0.03 -0.084 ** 0.03 -0.066 * 0.03 

Ln(PUDO) 0.098  0.10 0.269 * 0.12 0.125  0.07     

Ln(Tot TNC VMT) -0.057  0.13 -0.167  0.15     0.074  0.08 

year_2016_dummy -0.207  0.50 -0.551  0.52 -0.806  0.43 -0.571  0.51 

                  

Log pseudolikelihood -180.00 -175.93 -176.66 -177.89 

Wald Chi2() 4.50 18.61 13.92 10.38 
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Count Pedestrian and Bicyclist Crashes 
Models (→) 

linear speed non-linear speed Only TNC PUDO Only TNC TNC 
VMT Independent Variables (↓) 

Ln(Tot VMT) 1.104  0.70 1.097  0.69 1.095  0.70 1.112  0.68 

Congested Speed 0.185  0.30 2.559 ** 0.82 2.571 ** 0.81 2.043 ** 0.70 

Congested Speed2     -0.091 ** 0.03 -0.091 *** 0.03 -0.073 ** 0.02 

Ln(PUDO) -0.006  0.14 0.153  0.15 0.159  0.09     

Ln(Tot TNC VMT) 0.109  0.17 0.007  0.17     0.145  0.09 

year_2016_dummy -0.802  0.63 -1.139  0.65 -1.127 * 0.54 -1.149  0.64 

                  

Log pseudolikelihood -124.98 -123.12 -123.12 -123.46 

Wald Chi2() 6.13 25.66 25.66 19.97 

 

Alcohol involved Crashes 
Models (→) 

linear speed non-linear 
speed 

Only TNC 
PUDO 

Only TNC 
TNC VMT Independent Variables (↓) 

Ln(Tot VMT) 0.772  1.55 0.813  1.51 0.911  1.47 0.881  1.48 

Congested Speed -0.119  0.57 -1.351  2.45 -1.624  2.51 -2.066  2.37 

Congested Speed2     0.047  0.09 0.06  0.09 0.071  0.09 

Ln(PUDO) 0.292  0.29 0.234  0.30 -0.022  0.16     

Ln(Tot TNC VMT) -0.348  0.33 -0.322  0.32     -0.11  0.17 

year_2016_dummy 0.522  1.14 0.713  1.21 0.095  1.04 0.687  1.21 

                  

Log pseudolikelihood -69.32 -69.19 -69.65 -69.47 

Wald Chi2() 2.11 2.20 1.37 1.90 
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IV. Collector Road 

Total Crashes 
Models (→) 

linear speed non-linear speed Only TNC 
PUDO 

Only TNC 
TNC VMT Independent Variables (↓) 

Ln(Tot VMT) 0.17  0.36 0.13  0.34 0.34  0.38 0.529  0.37 

Congested Speed -0.098  0.35 4.409 * 1.74 1.759  1.59 1.803  1.58 

Congested Speed2     -0.176 * 0.07 -0.072  0.07 -0.073  0.07 

Ln(PUDO) 0.434 *** 0.12 0.55 *** 0.12 -0.012  0.06     

Ln(Tot TNC VMT) -0.511 *** 0.12 -0.621 *** 0.13     -0.089  0.06 

year_2016_dummy 0.666 * 0.32 0.67 * 0.32 0.032  0.31 0.479  0.33 

                  

Log pseudolikelihood -253.22 -250.40 -259.90 -258.35 

Wald Chi2() 20.71 26.58 3.92 6.27 

 

Count Fatal and Injury Crashes 
Models (→) 

linear speed non-linear speed Only TNC 
PUDO 

Only TNC 
TNC VMT Independent Variables (↓) 

Ln(Tot VMT) 0.082  0.43 -0.003  0.38 0.232  0.45 0.479  0.44 

Congested Speed -0.096  0.47 7.63 *** 1.84 4.358 ** 1.61 4.414 ** 1.59 

Congested Speed2     -0.303 *** 0.08 -0.174 ** 0.07 -0.175 ** 0.07 

Ln(PUDO) 0.467 ** 0.16 0.686 *** 0.16 0.003  0.08     

Ln(Tot TNC VMT) -0.542 ** 0.16 -0.755 *** 0.16     -0.094  0.08 

year_2016_dummy 0.618  0.42 0.658  0.42 -0.114  0.40 0.453  0.43 

                  
Log pseudolikelihood -215.08 -209.07 -218.15 -217.04 
Log pseudolikelihood 12.44 28.81 8.13 8.95 
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Count Pedestrian and Bicyclist Crashes 
Models (→) 

linear speed non-linear speed Only TNC 
PUDO 

Only TNC 
TNC VMT Independent Variables (↓) 

Ln(Tot VMT) 0.007  0.57 -0.056  0.53 0.126  0.57 0.299  0.58 

Congested Speed 0.111  0.63 5.099 * 2.57 2.096  2.55 2.338  2.46 

Congested Speed2     -0.198  0.10 -0.08  0.10 -0.088  0.10 

Ln(PUDO) 0.442 * 0.20 0.599 ** 0.21 -0.042  0.09     

Ln(Tot TNC VMT) -0.556 ** 0.21 -0.701 ** 0.22     -0.144  0.09 

year_2016_dummy 0.825  0.62 0.806  0.60 0.148  0.56 0.795  0.60 

                  

Log pseudolikelihood -156.46 -154.93 -1593.35 -158.20 

Wald Chi2() 8.20 12.30 2.29 4.81 

 

Alcohol involved Crashes 
Models (→) 

linear speed non-linear 
speed 

Only TNC 
PUDO 

Only TNC 
TNC VMT Independent Variables (↓) 

Ln(Tot VMT) -0.677  1.06 -0.693  1.09 -0.536  1.10 -0.372  1.11 

Congested Speed -1.058  0.88 -6.594  6.43 -7.73  6.38 -8.334  6.36 

Congested Speed2     0.205  0.23 0.248  0.23 0.273  0.23 

Ln(PUDO) 0.513  0.43 0.4  0.44 0.086  0.16     

Ln(Tot TNC VMT) -0.423  0.47 -0.336  0.47     0.04  0.17 

year_2016_dummy -0.384  1.04 -0.241  1.06 -0.529  0.95 -0.306  1.05 

                  

Log pseudolikelihood -76.44 -76.13 -76.39 -76.50 

Wald Chi2() 2.69 3.34 2.72 2.47 
  



 

163 
 

V. Local Road 

Total Crashes 
Models (→) 

linear speed non-linear 
speed 

Only TNC 
PUDO 

Only TNC 
TNC VMT Independent Variables (↓) 

Ln(Tot VMT) 0.308  0.29 0.318  0.29 0.325  0.27 0.358  0.25 

Congested Speed 0.235 ** 0.08 -0.064  1.40 -0.082  1.37 -0.131  1.40 

Congested Speed2     0.013  0.06 0.014  0.06 0.016  0.06 

Ln(PUDO) 0.052  0.11 0.047  0.11 0.038  0.06     

Ln(Tot TNC VMT) -0.014  0.08 -0.008  0.09     0.028  0.05 

year_2016_dummy -0.117  0.32 -0.119  0.32 -0.117  0.32 -0.068  0.28 

                  

Log pseudolikelihood -314.72 -314.70 -314.70 -314.74 

Wald Chi2() 31.06 45.28 44.34 45.12 

 

Count Fatal and Injury Crashes 
Models (→) 

linear speed non-linear 
speed 

Only TNC 
PUDO 

Only TNC 
TNC VMT Independent Variables (↓) 

Ln(Tot VMT) 0.094  0.34 0.052  0.35 0.238  0.32 0.271  0.30 

Congested Speed 0.17  0.09 1.198  1.95 0.661  1.90 0.805  1.93 

Congested Speed2     -0.045  0.09 -0.019  0.09 -0.026  0.09 

Ln(PUDO) 0.227  0.17 0.247  0.17 0.021  0.08     

Ln(Tot TNC VMT) -0.183  0.13 -0.205  0.13     -0.018  0.07 

year_2016_dummy -0.076  0.47 -0.065  0.48 -0.003  0.48 0.234  0.42 

                  

Log pseudolikelihood -269.79 -269.64 -270.41 -270.41 

Wald Chi2() 18.83 33.27 32.38 32.04 
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Count Pedestrian and Bicyclist Crashes 
Models (→) 

linear speed non-linear 
speed 

Only TNC 
PUDO 

Only TNC 
TNC VMT Independent Variables (↓) 

Ln(Tot VMT) 0.128  0.43 -0.067  0.46 0.135  0.41 0.16  0.40 

Congested Speed 0.04  0.11 3.851  2.93 3.114  2.73 3.355  2.85 

Congested Speed2     -0.17  0.13 -0.135  0.12 -0.146  0.13 

Ln(PUDO) 0.174  0.24 0.26  0.24 0.025  0.12     

Ln(Tot TNC VMT) -0.109  0.16 -0.209  0.17     -0.019  0.09 

year_2016_dummy -0.333  0.76 -0.237  0.75 -0.144  0.74 0.122  0.60 

                  

Log pseudolikelihood -175.02 -174.21 -174.55 -174.55 

Wald Chi2() 2.52 6.92 6.61 6.48 

 

Alcohol involved Crashes 
Models (→) 

linear speed non-linear 
speed 

Only TNC 
PUDO 

Only TNC 
TNC VMT Independent Variables (↓) 

Ln(Tot VMT) 2.046 * 0.95 2.19 * 0.94 1.927 * 0.82 1.775 * 0.76 

Congested Speed 0.452 * 0.21 -6.774  4.51 -6.184  4.26 -6.206  4.40 

Congested Speed2     0.319  0.20 0.291  0.19 0.291  0.20 

Ln(PUDO) -0.278  0.44 -0.417  0.46 -0.128  0.21     

Ln(Tot TNC VMT) 0.122  0.36 0.268  0.38     -0.047  0.17 

year_2016_dummy 0.403  1.18 0.431  1.20 0.394  1.22 -0.059  1.09 

                  

Log pseudolikelihood -111.16 -109.71 -109.94 -110.10 

Wald Chi2() 6.54 9.27 9.36 9.06 
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