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Key points 
1. A range of molecular breeding technologies have been developed for forage plant species 

including both transgenic and non-transgenic methodologies. 
2. The application of these technologies has the potential to greatly increase the range of 

genetic variation that is available for incorporation into breeding programs and subsequent 
delivery to producers in the form of improved germplasm. 

3. Further developments in detailing the phenotypic effect of genes and alleles both through 
research in target species and through inference from results from model species will 
further refine the delivery of new forage cultivars.  
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Introduction 
 
The application of molecular breeding technologies in forage plant breeding offers the 
potential for more accurate development of cultivars with broader adaptation within a shorter 
generation time. These benefits are already being realised in other plant species, as shown by 
the development of genetically modified canola (Brassica napus) varieties, and the use of 
molecular markers for trait selection in Australian barley (Hordeum vulgare) (Langridge and 
Barr, 2003) and wheat (Triticum aestivum) (Marshall et al., 2001) breeding programs.  
 
In recent years, a concerted research effort has led to the development of tools for the 
implementation of molecular breeding technologies in forage species. This paper will discuss 
the application of both molecular marker-based and transgenic technologies in forage plant 
breeding, using specific examples from our research programs. 
 
Molecular marker technologies in forage plants 
 
Molecular maps have been described for key forage grass species such as perennial ryegrass 
(Lolium perenne L.) (Hayward et al., 1998; Armstead et al., 2002; Jones et al., 2002a, 2002b; 
Faville et al., 2004), meadow fescue (Festuca pratensis Huds.) (Alm et al., 2003), tall fescue 
(Festuca arundinacea Schreb.) (Xu et al., 1995; Saha et al., 2005), as well as pasture legumes 
such as white clover (Trifolium repens L.) (Jones et al., 2003; Barrett et al., 2004), red clover 
(Trifolium pratense L.) (Isobe et al., 2003) and alfalfa/lucerne (Medicago sativa L.) (Diwan et 
al., 2000). 
 
The use of these maps to identify quantitative trait loci (QTL) controlling the expression of 
key agronomic traits is described elsewhere in these proceedings (Yamada and Forster, 2005). 
However, it is worth noting that in a relatively short time, QTLs have been identified for a 
large number of traits and this has led to a large increase in the available information on the 
genomic location of genes controlling key forage species traits. In perennial ryegrass for 
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instance, QTLs have been identified for resistance to the crown rust pathogen (Puccinia 
coronata f.sp. lolii) (Dumsday et al., 2003); various aspects of flowering time and 
reproductive development (Armstead et al., 2004; Yamada et al., 2004; Jensen et al., 2005); 
and forage quality traits (Cogan et al., 2005). Some of the identified QTLs have only 
accounted for relatively small proportions of the phenotypic variation for the relevant 
quantitative traits. However, in several instances perennial ryegrass QTLs have been 
identified in regions of conserved synteny with known QTLs or genes for equivalent traits in 
other Poaceae species. Syntenic relationships have been inferred between a heading date QTL 
region in perennial ryegrass and the Hd3 locus in rice (Armstead et al., 2003); a region 
containing a ryegrass forage digestibility QTL cluster and several lignin biosynthetic genes 
from wheat (Cogan et al., 2005); and a vernalisation response QTL from perennial ryegrass 
and the VRN1 locus from wheat (Jensen et al., 2005). This co-location information helps to 
assess the likely biological basis and significance of QTL data derived from forage species, 
and will be crucial for the choice of QTLs for practical implementation in forage programs. 
More importantly, the co-location of QTLs that are robust across multiple environments with 
candidate genes involved in physiological processes correlated with target phenotypes will 
facilitate the identification of gene-associated single nucleotide polymorphisms (SNPs). 
Development of SNP markers diagnostic for associated with favourable alleles will permit 
marker assisted selection in outcrossing forage species free of the complexities associated 
with use of linkage markers (Spangenberg et al., 2005). It is interesting to note that although 
relatively few studies have been published on QTL locations in forage species, a number of 
instances of candidate gene-QTL co-location have already been observed. For perennial 
ryegrass, these include the co-location of the VRN1 gene with a vernalisation response QTL 
on LG4 (Jensen et al., 2005); the co-location of a casein protein kinase (Lpck2a-1) gene 
(Shinozuka et al., in preparation) with a flowering time QTL on LG4 identified by Yamada et 
al. (2004); and the co-location of several lignin biosynthetic genes (Heath et al., 1998; Lynch 
et al., 2002; McInnes et al., 2002) with QTLs for forage digestibility (Cogan et al., 2005). 
While more extensive research is required to validate positive associations between haplotype 
and phenotype for putative candidate genes that map to QTL locations, proof-of-concept for 
this approach is currently being developed for the abiotic stress tolerance gene LpASRa1 
(Spangenberg et al., 2005) 
 
Molecular marker technologies in Neotyphodium species 
 
Many of the pasture and turf grasses within the Lolium-Festuca complex are hosts to 
symbiotic fungi of the genus Neotyphodium (Christiansen et al., 1993). Although this 
symbiosis provides positive agronomic benefits to the plant through the mitigation of nutrient 
and water stress, the fungi also produce a range of alkaloid compounds that are toxic to 
grazing herbivores, leading to the disorders known as ryegrass staggers and fescue toxicosis. 
Recently, a number of endophyte strains have been identified that do not produce certain 
toxins and these are being marketed in both perennial ryegrass (e.g. AR1, AR6, NEA2) and 
tall fescue (MaxP, ArkPlus) varieties. SSR markers have been developed to detect genetic 
variability within and between Neotyphodium species (van Zijll de Jong et al., 2003) and this 
technology has been extended to allow in planta detection and co-genotyping of 
Neotyphodium strains (van Zijll de Jong et al., 2004). As would be expected for an asexually 
propagated species, the majority of the variation was present between rather than within 
species (van Zijll de Jong et al., 2003). However, ’novel’ endophyte strains were clearly 
distinguishable from many of the wild-type variants (Figure 1) (van Zijll de Jong et al., 2005). 
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Table 1  The identity and incidence of endophyte strains in perennial ryegrass seed lots 
classified on the basis of endophyte SSR polymorphism 
  

 Endophyte Number  Number  AR1 Strain B Strain C Unclassifieda 

 Inoculated of plants infected 
 
Line 1 AR1 95 75 75 0 0 0 
Line 1 Strain B 90 82 0 79 0 3 
Line 2 Strain B 90 67 0 43 23 0 
  
a Unable to discriminate endophyte strain. 
 
 
Development of transgenic technologies in forage plants 
 
The use of biolistic or Agrobacterium-mediated transformation allows for the targeted up- or 
down-regulation of genes coding for individual enzymes in complex biochemical pathways, 
such as those involved in fructan metabolism or lignin biosynthesis (Spangenberg et al., 1998; 
2001), or induction of plants to produce novel compounds through the transfer of genes from 
unrelated organisms, such as the introduction of a bacterial gene coding for fructan production 
into Italian ryegrass (Ye et al., 2001). Genetic modification is particularly useful for 
elucidation of the role of enzymes in key biosynthetic pathways, and for the modification of 
traits for which there is no known genetic variation, or that have proven difficult to 
manipulate through selection and crossing. The number of genes available to plant breeders 
has rapidly increased with the advent of large-scale gene discovery programs such as those 
based on expressed sequence tags (ESTs) from relevant target species like perennial ryegrass 
and white clover (Sawbridge et al., 2003a, 2003b) or the whole genome sequencing of model 
species such as barrel medic (Medicago truncatula L.) (Kulikova et al., 2004), Lotus 
japonicus L. (Stougaard, 2001) and rice (Oryza sativa L.) (Goff et al., 2002; Yu et al., 2002). 
The limitation to adoption of gene technologies in breeding programs is not, therefore, the 
isolation of the genes themselves, but rather the functional annotation of these genes and the 
‘proof-of-phenotype’ in target species. 
 
This paper highlights the use of transgenic technologies in forage plant breeding using two 
examples: first, manipulation of forage quality in grasses through the modification of lignin 
biosynthesis is described, and second, improvement of biotic stress tolerance in white clover 
through the development of plants immune to infection by alfalfa mosaic virus (AMV) using 
virus coat protein-mediated resistance. 
 
Genetic modification of forage quality in grasses 
 
To date, most of the functional effects of altering the expression of genes involved in lignin 
biosynthesis have been described in model plant species such as Arabidopsis thaliana L. or 
tobacco (Nicotiana tabacum L.), the results of which have been reviewed by Casler (2001). In 
summary, modification of the expression of genes coding for enzymes early in the lignin 
synthesis pathway such as phenylalanine ammonialyase (PAL) led to a wide range of negative 
phenotypes, along with general reductions in lignin concentration (Elkind et al., 1990) and 
improved digestibility in tobacco plants with down-regulated PAL activity (Sewalt et al., 
1997). The results of manipulating the expression of down-stream enzymes in the 
phenylpropanoid or monolignol pathways have been more promising, with down-regulation 
of expression of the key enzymes caffeic acid O-methyl transferase (OMT) and cinnamyl 
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alcohol dehydrogenase (CAD) leading to favourable changes in lignin composition and 
digestibility (Bernard Vailhé et al., 1996; Sewalt et al., 1997). Casler (2001) noted that the 
phenotypic expression of these changes was similar to that obtained with natural variants 
selected for altered lignin concentration or digestibility, but that the extreme phenotypes were 
relatively common compared to the rarity of natural variants. The other aspect of 
transformation-generated variation is that it will allow the targeted manipulation of 
combinations of enzymes in complex pathways, to facilitate the development of extreme 
phenotypes that are outside the range of natural variation. 
 
Recently, perennial ryegrass homologues of 3 key genes in the monolignol biosynthesis 
pathway have been cloned and characterised: CAD (Lynch et al., 2002), 4-coumarate:CoA-
ligase (4CL) (Heath et al., 1998) and cinnamyl CoA reductase (CCR) (McInnes et al., 2002). 
Transgenic perennial ryegrass plants with sense and anti-sense regulation of these genes are 
currently being generated, and will provide the opportunity of assessing phenotypic changes 
in digestibility of perennial ryegrass. The role of down-regulating OMT in altering the 
digestibility phenotype of transgenic tall fescue plants has already been demonstrated in tall 
fescue (Chen et al., 2004) with digestibility increased by approximately 10% in some plants, 
although variation of the effect on increased in digestibility was observed. Further 
understanding of the cause of this variation will lead to optimisation of transgenic breeding 
strategies and aid the development of routine phenotypic screening programs for the 
deployment of transgenic technologies to improve grass digestibility. 
 
Development of AMV resistant white clover  
 
Our most advanced application of molecular breeding of forages using genetic modification is 
the development of white clover that is immune to alfalfa mosaic virus (AMV) (Emmerling et 
al., 2004). AMV, white clover mosaic virus (WCMV) and clover yellow vein virus (CYVV) 
are members of the Bromoviridae, potexvirus group and Potyviridae respectively, and are 
estimated to cause combined losses to the Australian rural industries of more than $A800 
million per year. Infections with these viruses result in reduced foliage yield, reduced 
nitrogen-fixing capacity and reduced vegetative persistence and can affect the production 
potential of white clover pastures by up to 30% (Campbell and Moyer, 1984; Dudas et al., 
1998; Garrett, 1991; Gibson et al., 1981; Latch and Skipp, 1987; Nikandrow and Chu, 1991).  

 
Even though potential sources of tolerance or resistance to AMV, CYVV or WCMV have 
been described in Trifolium species and Medicago sativa L. (Barnett and Gibson, 1975; Crill 
et al., 1971; Gibson et al., 1989; Martin et al., 1997; McLaughlin and Fairbrother, 1993), 
conventional breeding programs have not been successful. This is mostly due to limitations 
imposed by virus strain variability, lack of durability of natural resistance and barriers to 
interspecies sexual and/or somatic hybridisation. Chemical control of insect, fungal or 
nematode vectors is environmentally unacceptable and economically non-viable for forage 
legumes.  
 
White clover was transformed with a binary vector carrying a chimeric gene for expression of 
a cDNA corresponding to AMV RNA4 using Agrobacterium mediated transformation (Ding 
et al., 2003). After selection, putative transgenic plants were analysed for the presence and 
copy number of the transgene by Southern hybridisation as well as levels of expression of the 
transgene by northern and western hybridisation analyses. The plants were clonally 
propagated and evaluated in a field trial in Hamilton, Victoria. Over a 2-year period, the 
plants proved to be immune to heavy natural aphid-mediated AMV challenges. White clover 
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plants originating from 2 independent transformation events, H1 and H6, were chosen for the 
development of elite germplasm due to their high level of expression of the transgene (see 
Figure 2) and the high titre of the AMV coat protein (AMV-CP; data not shown) as well as 
their AMV immunity phenotype and agronomical performance during the field trials. 
 
 

 
Figure 2  Molecular analysis of T0 AMV-CP transgenic plants. A) Southern hybridisation 
analysis with genomic DNA isolated from white clover plants obtained from 4 independent 
transformation events. C indicates wild type (negative) control, P indicates plasmid (binary 
vector) control. B) Northern hybridisation analysis with RNA isolated from leaves of the 
same white clover plants. C indicates wild type (negative) control. Both blots were hybridised 
with an AMV CP cDNA probe. 
 
 
The two selected transgenic AMV-resistant white clover lines, H1 and H6, were crossed with 
the parents of the white clover cultivar “Mink” and subjected to an elite germplasm 
development strategy designed to bring the transgene to homozygosity while minimising 
inbred depression (Kalla et al., 2000). More than 8,000 T2 offspring of these crosses were 
analysed by real time-PCR (RT-PCR), and a total of 1,300 plants homozygous for the AMV-
CP transgene were identified, 888 derived from the H1 event, 412 from the H6 event.  
 
A spaced plant field trial was subsequently established in Hamilton, Victoria, to evaluate the 
1,300 transgenic white clover T2 progeny (see Figure 3). The plants were assessed for virus 
infection with AMV four and five months after being established in the field. None of the 
transgenic plants showed any sign of virus infection whereas 28% of the non-transgenic 
wildtype control plants were infected with AMV.  
 
An initial selection of agronomically superior plants comprised 179 H1-derived and 104 H6-
derived elite transgenic clover plants. The selection was based on the basis of plant height, 
stolon density, leaf length, internode length, flower number, summer growth and survival, and 
autumn and spring vigour. During the second growth season, a further selection out of the 
initially selected plants led to the identification of 21 H1-derived and 16 H6-derived elite 
plants. These plants, resulting from the world’s first breeding nursery for white clover, are the 
Syn0 parents for the production of agronomically superior transgenic AMV-immune white 
clover elite cultivars. We are currently working to transfer this AMV immunity into other 
backgrounds, and to combine AMV immunity with non-transgenic sources of resistance to 
CYVV.  
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Figure 3  Layout of the spaced plant breeding nursery established in Hamilton, Victoria, to 
evaluate T2 of spring of elite transgenic white clover lines homozygous for the AMV-CP 
transgene (GMAC PR64X2). Checks of non-transgenic control plants (cv. “Mink”, total of 
200 plants) are uniformly distributed among the 1,300 transgenic T2 white clover plants. 
 
 
Conclusions 
 
The application of molecular breeding technologies in forage plant breeding is beginning to 
deliver on the promises of delivering novel genetic variation (e.g. AMV immune white 
clover) and more precise understanding of the nature of the genetic variation underlying key 
phenotypic effects (e.g. genetic variation in Neotyphodium, co-location of candidate genes 
and QTLs for forage quality and flowering time). Recent developments in genomics will 
greatly increase this genetic knowledge and provide candidate genes that are available for 
deployment in forage plant breeding. The development of robust phenotypic assays and 
molecular breeding strategies will ensure that these advances are efficiently captured and 
utilised to develop improved forage cultivars for the benefit of industry.  
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