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ABSTRACT OF DISSERTATION

Multi-Domain Adaptation for Image Classification,
Depth Estimation, and Semantic Segmentation

The appearance of scenes may change for many reasons, including the viewpoint, the time
of day, the weather, and the seasons. Traditionally, deep neural networks are trained and
evaluated using images from the same scene and domain to avoid the domain gap. Recent
advances in domain adaptation have led to a new type of method that bridges such domain
gaps and learns from multiple domains.

This dissertation proposes methods for multi-domain adaptation for various computer
vision tasks, including image classification, depth estimation, and semantic segmenta-
tion. The first work focuses on semi-supervised domain adaptation. I address this semi-
supervised setting and propose to use dynamic feature alignment to address both inter- and
intra-domain discrepancy. The second work addresses the task of monocular depth esti-
mation in the multi-domain setting. I propose to address this task with a unified approach
that includes adversarial knowledge distillation and uncertainty-guided self-supervised re-
construction. The third work considers the problem of semantic segmentation for aerial
imagery with diverse environments and viewing geometries. I present CrossSeg: a novel
framework that learns a semantic segmentation network that can generalize well in a cross-
scene setting with only a few labeled samples. I believe this line of work can be applicable
to many domain adaptation scenarios and aerial applications.
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Chapter 1

Introduction

Deep learning has achieved great successes in computer vision, especially in image clas-
sification [69], object detection [47], and semantic segmentation [80]. The key factor of
deep learning is a large amount of labeled training data. Annotating source training data,
however, is time-consuming and expensive. Moreover, massive labeled source data cannot
always guarantee conventional neural networks to generalize well because it cannot always
represent the target environment, especially when there is a potential mismatch or bias in
the training data. For example, a deep learning system of self-driving cars trained on sunny
environment data may not perform well in the rainy/snowy/foggy environment because of
the domain shift [155]. In this work, I develop frameworks of multiple domain adaptation
scenarios for various computer vision tasks, including image classification, depth estima-
tion, and semantic segmentation.

1.1 Understanding Domain Shift

Since the prevalence of machine learning, the most dominant type of machine learning
method is supervised learning no doubt. Fully supervised learning methods achieved much
success across different applications in many areas. However, it assumes that the training
and test data are selected from the same distribution. However, this assumption is often
invalid for many real-world scenarios, and the model trained only on the source domain
will likely experience a performance drop when tested on data from other target domains.
This performance drop caused by the mismatch between train and test data is usually called
a domain gap.

To bridge this domain gap and alleviate the dataset mismatch and bias mentioned above,
I consider Domain Adaptation approaches. Unsupervised Domain Adaptation utilizes la-
beled training data and unlabeled target data to build a neural network that performs well
on the target environment [122, 38]. In most of the real-world scenarios, however, there
exists a small number of labeled samples in the target domain for us to use [22, 136], so
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how to make the most advantage of those data becomes another vital problem, which is ad-
dressed by Semi-Supervised Domain Adaptation. Even though multiple domain adaptation
methods have been proposed recently [53, 111, 98, 64], the domain shift and mismatch is
still a challenging, open problem, especially on multimodal data including both 2D images
and 3D point cloud data. Many efforts have been devoted to improving network general-
ization ability and bridging the domain gap [7, 18, 43]. Among them, adversarial train-
ing [116, 145], which trains networks with source samples and target/adversarial samples
alternatively, stands as one of the most effective methods. In this work, I propose multiple
variants of adversarial learning methods to tackle both unsupervised and semi-supervised
domain adaptation problems for different vision tasks.

Another factor that affects the generalization ability of deep neural networks is the
multi-modality of training data. For example, in 2D vision, pre-training a network on a
rich source dataset (e.g., ImageNet [21]) can boost the performance once fine-tuned on
a much smaller target dataset. Recently, learning-based 3D vision methods have made
much progress [1, 17, 20]. However, training from scratch on the target dataset is still the
dominant strategy [28, 36] compared to its 2D counterpart, which takes great advantage of
pre-training. How to train the networks appropriately using multimodal data is a crucial
point for many applications. In this work, I not only discuss 2D vision tasks including im-
age classification and semantic segmentation but also explore the 3D task depth estimation.
My goal is to provide a general multi-domain adaptation solution for various vision tasks.

1.2 Classification, Semantic Segmentation, and Depth Estimation

In this section, I introduce three fundamental computer vision tasks, image classification,
semantic segmentation, and depth estimation. I especially consider their applications in
aerial and remote sensing data.

Image classification is the most fundamental task among the three mentioned above that
attempts to understand an entire image as a whole. The purpose is to classify the input im-
age by labeling it with one specific category. Typically, image classification can be applied
to images in which only one predominant object appears. In contrast, semantic segmen-
tation considers pixel-level classification and usually analyzes more realistic scenarios in
which multiple objects may exist in the image. Depth estimation shares the same idea with
semantic segmentation by predicting at the pixel level, but instead of classifying pixels into
categories, depth estimation regresses the distance between the pixel in the scene and the
camera.

Traditionally, hand-crafted features are widely used in these tasks before the prevalence
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of deep neural networks. Those hand-crafted features are mostly designed on the basis
of domain-specific knowledge, and the problem is that unfeasible to address the need of
considering all of the details embedded in all forms of real data via the use of pre-designed
hand-crafted features. Instead of relying on shallow manually engineered features, deep
neural networks are able to automatically learn informative representations of raw input
data with multiple levels of abstraction.

Instead of considering the predominant object in the image and assigning it to a spe-
cific label, semantic segmentation explores pixel-wise classification and considers multiple
objects in the input data. Semantic segmentation is one of the most challenging tasks in
automatic visual understanding, leading to a deeper understanding of the image content if
compared with simpler problems like image classification or object detection. Historically,
semantic segmentation has moved its origins as an enriched representation and understand-
ing of the scene with respect to the simpler task of image classification: the advent of novel
problems to address requiring a higher level of interpretation of the scenes and the possi-
bility to accomplish it, thanks to novel architectures and paradigms (e.g., deep learning),
have paved the way to the wide success of semantic image segmentation. While image
classification allows classifying what is contained in an image at a global level (i.e., one
label is assigned to each image), semantic image segmentation generates a pixel-wise mask
of each object in the images (i.e., one label is assigned to each pixel of each image). Being
the former a much simpler task, it has been tackled for a long time with both traditional
techniques based on a feature extraction step (e.g., using SIFT or other feature extractors)
followed by a classification stage (e.g., using SVM, LDA, or Random Forests) and, more
recently, with deep learning ones. For this reason, some early-stage works in semantic
segmentation build up from classification works, adapting and extending them. The most
recent state-of-the-art approaches rely on an autoencoder structure, composed of an en-
coder and a decoder in order to extract global semantic clues while retaining input spatial
dimensionality.

Starting from the well-known Fully Convolutional Networks (FCN) architecture [80],
many models have been proposed, such as PSPNet [147], DRN [139] and the various
versions of the DeepLab architecture [10, 13, 12]. These models can achieve impressive
performance, but this is strictly related to the availability of a massive amount of labeled
data required for their training. For this reason, even though the pixel-wise annotation
procedure is highly expensive and time-consuming, many datasets have been created: for
example, Cityscapes [19] and Mapillary [92] for urban scenes; Pascal VOC [31], MS-
COCO [76] and ADE20K [150] for visual objects in common contexts. In light of these
considerations, many recent works try to exploit knowledge extracted from other sources or
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domains, where labels are plentiful and easily accessible, to reduce the amount of required
manually annotated data. My work focuses on using a limited number of labeled data to
train a model that can generalize well to other new domains.

Depth estimation is another important task for many vision scenarios including au-
tonomous vehicles, UAVs, robotics, and remote sensing. Recent research on monocular
depth estimation can be categorized into three groups [63]: supervised, weakly super-
vised, and self-supervised. Supervised depth estimation networks [26, 27, 34] require a
larger volume of ground-truth depth annotations. These methods formulate depth estima-
tion as a regression problem and directly learn from the supervised losses. The weakly-
supervised line of depth estimation works [82, 70] do not require depth annotations but
require other labels, including semantic labels or odometry. For instance, DESC [82] pro-
poses an unsupervised domain adaptation depth estimation network that uses ground-truth
semantic labels from both source and target domains to enforce the consistency between
the predictions from a semantic branch and a depth estimation branch. CoMoDA [70] adds
a velocity loss to Monodepth2 [49] and performs inference-time adaption to unseen test
data. Pseudo-labeling-based methods [154, 15, 134] generate pseudo labels from internet
photo collections by using the ground-truth ordinal depth information as a cue and lever-
aging multi-view stereo reconstruction algorithms. The self-supervised group explores
learning algorithms using either rectified stereo image pairs [40, 48] or monocular video
sequences [151, 137, 49, 63] as training data. The video-based depth estimation meth-
ods [77, 84] use consecutive monocular frames to estimate depth during inference, making
the assumption that scenes are mostly rigid. There are also several works on monocular
depth completion [29, 87, 135] that have been proposed to capitalize on sparse depth maps
with corresponding images, resulting in dense depth estimations. My proposed method
uses monocular video sequences as training data and can be considered as a combination
of supervised and self-supervised approaches.

Monocular depth estimation methods typically consider a single domain, usually
ground-level indoor and outdoor images, without considering how they generalize to
other domains, such as aerial images. A recent work [88] directly applies a variant of
Monodepth2 [49] to UAV videos and achieves reasonable results. However, this work is
also limited to a single domain of aerial images, and it does not consider adapting the
model to both ground-level and aerial images simultaneously.
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1.3 Contributions

The focus of this research is learning from limited labeled data from multiple domains for
image classification, semantic segmentation, and depth estimation. I develop three novel
frameworks to address these major issues and solve them. I also conduct a variety of
experiments to show the effectiveness of the proposed methods. The contributions of this
dissertation are as follows:

• Semi-Supervised Domain Adaptation: I address this semi-supervised setting and
propose to use dynamic feature alignment to address both inter- and intra-domain
discrepancy. I propose to align the target features to a set of dynamically updated
class prototypes, which I use both for minimizing divergence and pseudo-labeling.
By updating based on class prototypes, I avoid problems that arise in previous ap-
proaches due to class imbalances.

• Multi-Domain Depth Estimation: I address the task of monocular depth estimation
in the multi-domain setting. Given a large source dataset with ground-truth depth
maps, and a set of unlabeled target datasets, my goal is to create a model that works
well on unlabeled target datasets across different scenes. This is a challenging prob-
lem when there is a significant domain shift, often resulting in poor performance on
the target datasets. I propose to address this task with a unified approach that in-
cludes adversarial knowledge distillation and uncertainty-guided self-supervised re-
construction. My approach significantly improves upon conventional domain adap-
tation baselines and does not require additional memory as the number of target sets
increases.

• Few-Shot Semantic Segmentation: I consider the problem of semantic segmenta-
tion for aerial imagery with diverse environments and viewing geometries. Conven-
tional semantic segmentation approaches can only recognize the classes at test time
that have appeared in the training set and are hard to generalize well to unseen ob-
ject categories. This is a significant limitation for autonomous systems, especially for
those deployed in a realistic real-time setting, e.g., unmanned aerial vehicles (UAVs).
In this work, I address the task of few-shot semantic segmentation for different aerial
scenes. I present CrossSeg: a novel framework that learns a semantic segmentation
network that can generalize well in a cross-scene setting with only a few labeled
samples. Instead of using a set of fixed prototypes, CrossSeg offers high-quality
probabilistic prototypes which can not only represent different semantic classes but
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can also enhance the huge variations in aerial images. Experiments show that my
method performs better than previous baselines without requiring extensive tuning.

The contribution of this dissertation is an improved framework for domain adaptation
that is more robust than previous approaches while also allowing part of the network to be
reused by other applications without massive modifications.

1.4 Dissertation Outline

The remainder of this document consists of the following chapters:

• Chapter 2 provides a technical background that is necessary for understanding the
work in this dissertation. I provide an overview of related background knowledge and
research in the convolutional neural net, semi-supervised learning, self-supervised
reconstruction, and prototypical learning.

• Chapter 3 introduces a semi-supervised domain adaptation framework, which uses
dynamic feature alignment to address both inter- and intra-domain discrepancy. The
key contribution is to align the target features to a set of dynamically updated class
prototypes, which I use both for minimizing divergence and pseudo-labeling. By up-
dating based on class prototypes, I avoid problems that arise in previous approaches
due to class imbalances.

• Chapter 4 proposes the task of monocular depth estimation in the multi-domain
setting. Given a large source dataset with ground-truth depth maps, and a set of un-
labeled target datasets, my goal is to create a model that works well on unlabeled
target datasets across different scenes. This is a challenging problem when there is a
significant domain shift, often resulting in poor performance on the target datasets. I
propose to address this task with a unified approach that includes adversarial knowl-
edge distillation and uncertainty-guided self-supervised reconstruction.

• Chapter 5 considers the problem of semantic segmentation for aerial imagery with
diverse environments and viewing geometries. I introduce a novel few-shot learning-
based method for the semantic segmentation of aerial images. My method can per-
form segmentation for unseen object categories with only a few annotated samples.
My method proposes to model prototypes in a probabilistic way instead of using
fixed prototypes for each class.
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• Chapter 6 summarizes the contributions of this dissertation. I highlight the key
findings as well as discuss the significance of each contribution. Finally, I discuss
several possible future research directions.
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Chapter 2

Technical Background

In this chapter, to help readers understand the proposed study, relevant technical back-
ground information is provided. The concept of convolutional neural networks, a type of
neural network commonly used for image-related tasks, is first introduced, followed by the
description of semi-supervised learning. Semi-Supervised learning is widely used in deep
learning model training, especially when the number of labeled data is limited. Then the
method of self-supervised reconstruction is discussed, which is a novel modeling tool used
for video sequences. Finally, this chapter ends with prototypical learning, a framework that
learns representative feature vectors from each class and computes the distances between
the input data and the prototypes. Prototypical learning has been widely used in domain
adaptation and few-shot learning settings.

2.1 Convolutional Neural Networks

Biological neural networks in human brains inspired the invention of a computing model
called an artificial neural network. Convolutional Neural Network (CNN) is a type of neural
network, first introduced in the 1980s by Neocognitron [35]. This architecture proposed
the two basic types of layers in CNNs: convolutional layers and downsampling layers.
In the 1990s, LeNet [71], a gradient-based pioneering CNN, was proposed. Since Alex
Krizhevsky designed the AlexNet structure in 2012 [69], CNNs have dominated the field
of computer vision, achieving significant success. AlexNet outperforms the previous state-
of-the-art methods significantly, dropping the classification error from 26% to 15% on the
task of classifying 1.2 million images to 1,000 classes. Since then, CNNs have gener-
ated much excitement in research and industry. Researchers in computer vision continue
using CNNs and have shown great success on traditional computer vision problems: im-
age classification [69, 83], object detection [47, 107], and semantic segmentation [80, 96].
Furthermore, different big companies started employing deep learning in their services,
such as face recognition at Facebook, photo search at Google, and product recommenda-

8



Figure 2.1: Convoluational neural network (CNN) structure (A), and feature visualizations
(B) [6].

tion systems at Amazon. One of the main reasons behind the great performance of CNNs is
their ability to learn hierarchical feature representation of the input images while traditional
methods use hand-engineered features.

How can CNNs learn the hierarchical features representation of an image? Computers
see an image as an array of numbers with size equals width× height× channels. For ex-
ample, in image classification, the input is a matrix, and the expected output is a probability
distribution over the different classes. To perform image classification, CNNs look for low-
level features such as edges and curves in the training images and then construct abstract
concepts through a series of linear and nonlinear operations achieved by a combination of
layers.

The major components of a CNN model are several convolutional and subsampling
layers optionally followed by fully connected layers. The excellent performance of CNNs
most of the time comes from problems that involve learning discriminative models that
usually map high-dimensional data (e.g., image) to a class label as shown in Figure 2.1 (A),
and CNNs achieve this by extracting useful features showed in Figure 2.1 (B). This learning
approach, supervised learning, for training convolutional neural networks depends on large
amounts of labeled samples as training data. Conventional CNNs including AlexNet [69]
and ResNet [55] only works for 2D images. For 3D data, for instance, point cloud and
RGBD data, several widely used architectures are designed to handle these unordered point
sets in 3D space. In this dissertation, we propose different variants of CNNs to solve image
classification, depth estimation, and semantic segmentation problems.

2.2 Domain Adaptation

Deep neural networks have achieved impressive performance on a wide range of tasks,
including image classification, semantic segmentation, and object detection. However,
models often generalize poorly to new domains, such as when a model trained on in-
door imagery is used to interpret an outdoor image. Domain Adaptation (DA) methods
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aim to take a model trained on a label-rich source domain and make it generalize well to
a label-scarce target domain. Recently, most studies on domain adaptation have focused
on the Unsupervised Domain Adaptation (UDA) setting, in which no labeled target data is
available.

2.2.1 A Clinical Case for Unsupervised Domain Adaptation

One of our recent works provides a simple yet effective UDA solution to medical imag-
ing [144].
Overview Generalization is one of the key challenges in the clinical validation and appli-
cation of deep learning models to medical images. Studies have shown that such models
trained on publicly available datasets often do not work well on real-world clinical data due
to the differences in patient population and image device configurations. Also, manually
annotating clinical images is expensive. In this work, we propose an unsupervised domain
adaptation (UDA) method using Cycle-GAN to improve the model’s generalization ability
without using any additional manual annotations.

We know if we train a deep learning model on a labeled dataset A (source domain), it
may achieve high performance on A but low performance on an unlabeled dataset B (target
domain) because A and B may have different attributes. We hypothesize the UDA method
will improve the model’s performance on B while maintaining the high performance on A.
Dataset The public mammogram dataset Digital Database of Screening Mammography
(DDSM) [56] and a private mammogram dataset, UKY [131], are used in this work. These
two datasets have different attributes: DDSM contains digitalized screen film mammo-
grams and UKY contains full-field digital mammograms recently collected from a com-
prehensive breast imaging center. Several recent works explored the different attributes
of those two or other similar datasets [146, 74, 142]. In this work, we use 1860 positive
and 2781 negative images from DDSM and 1922 positive and 2330 negative images from
UKY. We split the data in 80% for training and 20% for testing.
Method Figure 2.2 illustrates our UDA method. We first train the Cycle-GAN [152] on
unpaired images without any labels, then we synthesize DDSM data from UKY data to
generate training samples in the target domain. Finally, we train a deep neural network on
a mixture of UKY and synthesized DDSM images. We compared our UDA method with
the baseline method, which trains on one dataset and directly tests on another dataset. In
addition, we train the models on labeled DDSM and synthesized UKY by switching the
source and target domains for a two-way verification.
Experimental Results Our results are summarized in Table 2.1. Two off-the-shelf archi-
tectures are used for evaluation: AlexNet [69] and ResNet [55]. When training and testing
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Figure 2.2: Stepwise illustration of our unsupervised domain adaptation(UDA) method.
Step 1) train Cycle-GAN by using unpaired, unlabeled UKY and DDSM datasets; Step 2)
translate UKY to DDSM; 3) train deep learning models by using UKY and synthesized
DDSM.

Table 2.1: Testing Results of Different Methods.

Training Set Testing Set
Mean auROC (95% Confidence Interval)
AlexNet ResNet50

Baseline UDA Baseline UDA

UKY
DDSM 0.516± 0.004 0.601 ± 0.005 0.624± 0.004 0.672 ± 0.002
UKY 0.785± 0.003 0.769± 0.007 0.836± 0.008 0.869± 0.016

DDSM
UKY 0.491± 0.007 0.578 ± 0.002 0.565± 0.002 0.674 ± 0.003

DDSM 0.673± 0.015 0.653± 0.024 0.762± 0.008 0.759± 0.012

on different datasets, UDA achieves significant improvement compared to the baseline.
For instance, when we trained on UKY and tested on DDSM with AlexNet, the baseline
only achieved 0.516 auROC while UDA achieved 0.601 auROC. The table also shows
when training and testing on the same dataset, UDA maintains similarly high performance,
which verified our hypothesis.
Conclusion Our results show that the proposed UDA method improves deep learning
models’ generalization without requiring expensive manual annotations. However, there is
still room for improvement. We expect combining improved versions of Cycle-GAN with
small amounts of labeled data in the target domain will help bridge the gap.
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Figure 2.3: SSDA via Domain Mixup Architecture

Despite the reported high performance of deep learning models in crafted training data,
generalization remains the challenge due to differences in publicly available and real-world
clinical datasets. Our UDA method helps train models that can generalize between datasets,
thereby significantly improving the results and lowering the cost of using deep learning
models in clinical practice.

2.2.2 From Unsupervised to Semi-Supervised Domain Adaptation

One of the limitations of unsupervised domain adaptation settings is that we usually have a
small number of labeled samples from the target domain in the real world. So how to make
the most advantage of that becomes a vital problem. Few-shot learning approaches take
advantage of that small portion of labeled target data but ignore a large number of unlabeled
samples, while UDA methods do not take advantage of the small number of labeled samples
from the target domain at all. In this section, we address this particular scenario as Semi-

Supervised Domain Adaptation (SSDA), in which a relatively small amount of labeled data
is available in the target domain.

In Semi-Supervised Domain Adaptation (SSDA), we have the access to the labeled
source domain S = {(xs

i , y
s
i )}ns

i=1 where ysi ∈ Y = {1, ..., Y } with ns annotated pairs.
In the target domain, we are also given a limited number of labeled target samples Tl =

{(tti, yti)}nt
i=1, as well as a relatively large number of unlabeled samples Tu = {tuj }nu

j=1. Our
goal is to find a model that performs well on unlabeled target domain test data.

Domain adaptation approaches are effective at aligning source and target feature distri-
butions without any labels from the target domain. In the real-world scenario, we usually
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have access to a limited number of labeled targets, which can help to improve the perfor-
mance, but UDA frameworks do not take advantage of those [111, 61]. This problem is
addressed as semi-supervised domain adaptation. SSDA is a vital task in computer vision
and deep learning [2, 22, 136]. However, it is not sufficiently explored, especially con-
cerning deep learning-based methods. MME [111] proposes a minimax entropy approach
that adversarially optimizes an adaptive few-shot learning model, and the key idea is to
minimize the distance between the class prototypes and neighboring unlabeled target sam-
ples. BiAT [61] proposes a bidirectional adversarial training method to effectively generate
adversarial samples and bridge the domain gap. Both MME and BiAT focus on aligning
source and target features by minimizing errors. However, Mixup [140] claims that neural
networks trained to minimize errors change their predictions drastically when evaluated
on examples just outside the training distribution. This makes the model fail to generalize
well to adversarial samples and samples from other domains. ICT [125] proposes a Mixup
approach to move the decision boundary to low-density regions of data distribution and
achieves state-of-the-art performance on semi-supervised learning. An illustration of the
Mixup-based method can be found in Fig 2.3. However, ICT focuses on semi-supervised
learning and ignores the distribution shift between domains.

2.3 Self-Supervised Reconstruction

To exploit the temporal information in the input video sequences in the unlabeled target
sets. and learn domain-invariant features from various targets, we follow the state-of-the-
art self-supervised depth estimation work [49] and reconstruct the appearance of a target
image from the viewpoint of an adjacent image by combining predicted depth, pose, and
known camera intrinsic parameters. The process is illustrated in Fig. 2.4.

The pose regressor in our model yields the relative pose Tt→t′ for each source view im-
age It′ , with respect to the target image It, from a consecutive monocular video sequence,
by taking a pair of features extracted from (It, It′) as the inputs. The depth estimation
decoder predicts a dense depth map Dt simultaneously. Our goal is to minimize the recon-
struction error Lr, where

Lr =
∑
t′

||It − It′→t||. (2.1)

The image reconstruction loss, in our case, is the ℓ1 distance in pixel space. By using the
source image It′ , the predicted depth Dt, the relative pose Tt→t′ , and the camera intrinsic
parameters K, we can reconstruct the target image It by:

It′→t = It′
〈
proj(Dt, Tt→t′ , K)

〉
. (2.2)
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Figure 2.4: Self-Supervised Reconstruction Illustration [49].

where proj() are the resulting 2D coordinates of the projected depths Dt in It′ and
〈〉

is the
sampling operator. To reduce noise in the prediction, we use edge-aware smoothness [48,
49]:

Ls = |∂xd∗t | e−|∂xIt| + |∂yd∗t | e−|∂yIt|, (2.3)

where d∗t = dt/dt is the mean-normalized inverse depth to discourage shrinking of the
estimated depth. The complete self-supervised loss can be represented as:

L′
recon = Lr + λsLs (2.4)

2.4 Prototypical Learning

Prototypical learning is a widely applied approach in deep learning, particularly in few-shot
settings, which aims to learn a set of prototypes that effectively represent each class. The
focus on few-shot segmentation has been growing in recent years, with various methods
proposed to address the challenge. A conditional branch [115] was first proposed for few-
shot segmentation to generate parameters θ from the support set for tuning the segmentation
of the query set. A follow-up [104] combined extracted support features with the query fea-
tures and utilized a decoder to produce the segmentation maps. A masked average pooling
method [143] was proposed to enhance the extraction of foreground/background features
from the support set. And an attention model [60] investigated guiding at multiple stages of
the segmentation architecture. These methods generally adopt a parametric module, which
blends information obtained from the support set to produce the segmentation results.

A metric learning-based method [25] tackled few-shot segmentation using the concept
of prototypical learning networks. But the issue is that the approach is complex, requir-
ing three training stages and intricate training configurations. Additionally, their method
determined prototypes based on an image-level loss and utilized them to guide the seg-
mentation of the query set, as opposed to directly obtaining segmentation from the metric
learning. In contrast, our model features a simpler design, more akin to the Prototypical
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Network [117]. Furthermore, it has been established [103] that late fusion is the optimal
way to integrate the groundtruth annotations, making it more suitable for handling cases
with sparse or changing masks.

My work in Chapter 5 is strongly connected to prototypical learning, and the goal is
to develop a segmentation model that can quickly learn to perform segmentation based
on a limited number of annotated images from new classes. Consistent with previous
works [115], the following model training and testing protocols are adopted. Consider two
sets of non-overlapping classes, Cseen and Cunseen, from which the training set Dtrain is built
using Cseen and the test set Dtest is built using Cunseen. The segmentation model M is trained
on Dtrain and evaluated on Dtest. Our training and test sets, Dtrain and Dtest are structured as
a series of episodes. Each episode includes a group of annotated support images, S, and
a set of query images, Q. The training set is composed of Ntrain episodes, represented as
Dtrain = {(Si,Qi)}Ntrain

i=1 while the test set consists of Ntest episodes, represented as Dtest =

{(Si,Qi)}Ntest
i=1 . The task for each training/test episode (Si,Qi) is defined as a C-way K-

shot segmentation learning problem. The support set Si includes K ⟨image, mask⟩ pairs per
semantic class and there are C unique classes from Cseen for training and Cunseen for testing,
represented as Si = {(Ic,k,Mc,k)} with k = 1, 2, · · · , K and c ∈ Ci, where |Ci| = C.
The query set Qi contains Nquery ⟨image, mask⟩ pairs from the same set of classes Ci as
the support set. The model first extracts knowledge about the C classes from the support
set and then applies the learned knowledge to perform segmentation on the query set. As
each episode contains different semantic classes, the model is trained to generalize well to
unseen classes. After training the segmentation model M using Dtrain, its performance on
few-shot segmentation tasks is evaluated using Dtest. This evaluation involves utilizing the
model to perform segmentation on the images in the query set Qi for each testing episode,
using the support set Si as guidance.

By following this protocol, prototypical models learn representative and well-separated
prototypes for each semantic class, using the prototypical network [117]. PANet [129]
improves upon the previous approach of averaging over the entire input image [117] by
using the groundtruth annotations in the support images to learn separate prototypes for
the foreground and background. Two strategies for exploiting the segmentation masks
exist, early fusion and late fusion [103]. Early fusion involves masking the support images
before they are fed into the encoder [115, 60, 25], while late fusion masks the feature maps
directly to create separate foreground/background features [143, 104]. Late fusion strategy
was adopted in PANet [129] since it maintains consistency for the shared encoder network.

To obtain high-quality class prototypes, prototypical learning models [129, 117] first
extract the feature map Fc,k for the image Ic,k from a given support set Si = {(Ic,k,Mc,k)},
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where c represents the class index and k = 1, . . . , K represents indices of the images in the
support set. And the prototype of class c is generated by using a masked average pooling
module [143]:

pc =
1

K

∑
k

∑
x,y F

(x,y)
c,k 1[M

(x,y)
c,k = c]∑

x,y 1[M
(x,y)
c,k = c]

, (2.5)

where (x, y) stands for the location of a pixel, and 1(·) represents an indicator function that
takes the value of 1 if the M

(x,y)
c,k = c is satisfied, and 0 otherwise.

These prototypes are optimized in an end-to-end manner through non-parametric metric
learning, as explained in Chapter 5.
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Chapter 3

Semi-Supervised Domain Adaptation for Image Classification

In this chapter, we introduce a semi-supervised domain adaptation framework for image
classification. Most research on domain adaptation has focused on the purely unsupervised
setting, where no labeled examples in the target domain are available. However, in many
real-world scenarios, a small amount of labeled target data is available and can be used to
improve adaptation. We address this semi-supervised setting and propose to use dynamic
feature alignment to address both inter- and intra-domain discrepancy. Unlike previous
approaches, which attempt to align source and target features within a mini-batch, we pro-
pose to align the target features to a set of dynamically updated class prototypes, which
we use both for minimizing divergence and pseudo-labeling. By updating based on class
prototypes, we avoid problems that arise in previous approaches due to class imbalances.
Our approach, which doesn’t require extensive tuning or adversarial training, significantly
improves the state of the art for semi-supervised domain adaptation. We provide a quanti-
tative evaluation on two standard datasets, DomainNet and Office-Home, and performance
analysis.

3.1 Introduction

Deep neural networks have achieved impressive performance on a wide range of tasks,
including image classification, semantic segmentation, and object detection. However,
models often generalize poorly to new domains, such as when a model trained on in-
door imagery is used to interpret an outdoor image. Domain Adaptation (DA) methods
aim to take a model trained on a label-rich source domain and make it generalize well to
a label-scarce target domain. Recently, most studies on domain adaptation have focused
on the Unsupervised Domain Adaptation (UDA) setting, in which no labeled target data
is available. However, in real-world scenarios, there is often a small amount of labeled
target data available: the Semi-Supervised Domain Adaptation (SSDA) setting. Recent
works [65, 111] demonstrate that directly applying UDA methods in the semi-supervised
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setting can actually hurt performance. Therefore, finding a way to effectively use the small
amount of labeled target imagery is an important problem. We propose a novel approach
that is tailored to the SSDA setting.

In addition to poor generalization in terms of model performance, the intermediate
features for source and target domain inputs often display a significant domain shift. This
motivates approaches that use feature alignment strategies [38, 9, 23, 24, 58, 152, 61, 111]
to minimize the distances between source and target distributions. These methods address
the shift between source and unlabeled target samples but ignore the shift within the target
domain brought by the small number of labeled target samples. A recent work APE [65]
addresses this issue as intra-domain discrepancy and proposes three schemes—attraction,

perturbation, and exploration, to alleviate this discrepancy. Attraction is used to push
the unlabeled features to the labeled feature distribution. Perturbation aims to move both
labeled and unlabeled target features to their intermediate regions to minimize the gap in
between. Exploration is complementary to the other two schemes by selectively aligning
unlabeled target features to the source.

Due to the imbalance between the large amount of labeled source data and the small
amount of labeled target data as well as the class imbalance (e.g. the existence of long-
tail classes), a random mini-batch of aligned features can not always represent the true
distribution of the data. Therefore, the alignment of unlabeled features can be inaccurate.
Moreover, errors can be accumulated when incorrectly predicted unlabeled samples are
selected to be used for pseudo-label training during exploration.

Considering the concerns mentioned above, we propose a novel Dynamic Feature

Alignment (DFA) framework for the SSDA problem. Instead of directly aligning the
unaligned target features to the aligned features within a mini-batch, we propose to align
the unlabeled target features to a set of dynamically updated class prototypes, which are
stored in a dynamic memory bank B. To utilize these prototypes for pseudo-labeling, we
selectively collect unlabeled samples based on their distances to class prototypes and their
prediction entropy. We evaluate our method on standard domain adaptation benchmarks,
including DomainNet and Office-Home, and results show that our method achieves
significant improvement over the state of the art in both the 1-shot and 3-shot settings.

3.2 Related Works

We introduce related works in unsupervised and semi-supervised domain adaptation and
describe their relationship to our approach.
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3.2.1 Unsupervised Domain Adaptation

UDA is a machine learning technique that trains a model on one or more source domains
and attempts to make the model generalize well on a different but related target domain [4,
106]. One of the key challenges of UDA is to mitigate the domain shift (or distribution
shift) between the source and target domains. In general, three types of techniques can be
used [130, 132]: (1) adversarial, (2) reconstruction based, and (3) divergence based.

The adversarial methods achieve domain adaptation by using adversarial training [24,
58, 152, 61, 111]. For instance, CoGAN [78] uses two generator/discriminator pairs for
both the source and target domain, respectively, to generate synthetic data that is then used
to train the target domain model. Domain-Adversarial Neural Networks (DANN) [39]
promote the emergence of features that are discriminative on the source domain and unable
to discriminate between the domains.

Reconstruction-based methods [45, 5, 44] use an auxiliary reconstruction task to create
a representation that is shared by both domains. For instance, Deep Reconstruction Clas-
sification Network (DRCN) [45] jointly learns a shared encoding representation from two
simultaneously running tasks. Domain Separation Networks (DSN) [5] propose a scale-
invariant mean squared error reconstruction loss. Those learned representations preserve
discriminability and encode useful information from the target domain.

While adversarial methods are often difficult to train and reconstruction-based meth-
ods require heavy computational cost, divergence-based methods align the domain dis-
tributions by minimizing a divergence that measures the distance between the distribu-
tions during training with minimal extra cost. For instance, Maximum Mean Discrepancy
(MMD) [51] has been used in [110] to align the features of two domains by using a two-
branch neural network with unshared weights. Deep CORAL [120] uses the Correlation
Alignment (CORAL) [119] as the divergence measurement and Contrastive Adaptation
Network (CAN) [64] measures the Contrastive Domain Discrepancy (CCD). Our proposed
method DFA can be categorized as a divergence-based method.

3.2.2 Semi-Supervised Domain Adaptation

UDA approaches are effective at aligning source and target feature distributions without
taking advantage of any labels from the target domain. In real-world scenarios, we usually
have access to a small number of labeled target samples, which can be used to improve
adaptation. This problem is addressed as semi-supervised domain adaptation (SSDA) [111,
61, 65, 90, 121]. Conventional UDA methods can be applied to SSDA simply by combining
the source data with labeled target data. However, due to the imbalance between the large
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amount of source data and the small amount of labeled target data as well as the class
imbalance issue, this strategy may align target features misleadingly [2, 22, 136].

To explore more effective solutions for the SSDA problem, BiAT [61] proposes a bidi-
rectional adversarial training method to effectively generate adversarial samples and bridge
the domain shift. MME [111] proposes a minimax entropy approach that adversarially
optimizes an adaptive few-shot learning model. The key idea is to minimize the dis-
tance between the class prototypes and neighboring unlabeled target samples. The recent
work APE [65] extends MME [111] by combining attraction, perturbation, and exploration
strategies to bridge the intra-domain discrepancy. In contrast to previous works, we aban-
don the direct alignment between source and target features. Instead, our method is built
upon a set of dynamically updated class prototypes.

3.2.3 Memory Bank

Memory banks have been applied in unsupervised learning and contrastive learning [133,
54, 79] as a dictionary look-up to reduce the computational complexity of calculating dis-
tances or similarities between features. For instance, the memory bank in [133] is designed
to compute the non-parametric softmax classifier more efficiently for large datasets. To
learn discriminative features from unlabeled samples, it stores one instance per class and
is updated with the newly seen instances every iteration. The smoothness of the training
was encouraged by adding a proximal regularization term, not a momentum update directly
applied to the features. Another similar work is MoCo [54], which maintains a dynamic
dictionary as a queue to replace old features with the current batch of features. Instead of
applying the momentum on the representations, MoCo uses momentum to keep the encoder
slowly evolving during training. The dictionary size of MoCo can be very large, but it is
not designed to be class-balanced during training when the size is small. Both [133, 54] are
effective for contrastive learning but not ideal for SSDA when the goal is to learn stable,
representative, and class-balanced prototypes for aligning features from different domains
and pseudo-labeling. Our work aims to resolve this issue by designing a dynamic memory
bank for better feature alignment.

3.3 Approach

We introduce Dynamic Feature Alignment (DFA), a domain adaptation approach designed
to work well in the semi-supervised setting. In the remainder of this section, we formalize
the problem and describe the key components of our approach (see Fig 3.1 for an overview).
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Figure 3.1: Framework of Dynamic Feature Alignment. Both labeled source and labeled
target samples are passed into the feature extractor F . Normalized feature embeddings
and labels are then stored in the dynamic memory bank as class prototypes for dynamic
alignment and pseudo-labeling. The feature extractor for unlabeled target samples shares
the same weights.

3.3.1 Problem Statement

In SSDA, we have the access to many labeled source domain samples Ds = {(xs
i , y

s
i )}ns

i=1

where ysi ∈ Y = {1, ..., Y } with ns annotated pairs. In the target domain, we are also given
a limited number of labeled target samples Dl =

{(
xl
i, yi

l
)}nl

i=1
, as well as a relatively large

number of unlabeled samples Du = {(xu
i )}

nu

i=1. Our goal is to train a robust model that can
perform well on the target domain by making the most advantage of Ds, Dl, and Du.

3.3.2 Supervised Classification in Normalized Feature Space

Our proposed DFA framework aligns the features of labeled examples from both domains
using a supervised classification loss. A feature extractor f(·) is trained to extract the
features from the input image x. The feature m, which is normalized to be unit length, is
represented as:

m = f(x). (3.1)

The classifier takes as inputs the normalized features m and compares the cosine similarity
between m and the prototype weight vector wk (k = 1, ..., K) of class k. The similarities
are scaled by a temperature τ = 0.05, which controls the concentration level of the dis-
tribution [57, 127]. The probability of m being categorized as class k can be presented

21



as:

P (k|m) =
exp(wT ·m/τ)∑K
j=1 exp(w

T
j ·m/τ)

. (3.2)

P (k|m) is then passed to the classification loss [133, 54]. During training, we utilize cross-
entropy as the supervised classification loss:

Lcls = −E(x,y)∈Ds∪Dl

K∑
k=1

logPk. (3.3)

When aligning the normalized features by training the network, the labeled target features
f(xl) are closely aligned to the labeled source features f(xs) [111, 65], and we aim to
utilize both labeled source and target samples and reduce the domain shift.

3.3.3 Dynamic Memory Bank

We propose to maintain a dynamic memory bank B that stores representative features,
which we call prototypes, for each class. If our feature extractor was fixed, we could simply
extract all the features once and compute their averages. This isn’t feasible since we are
actively updating our feature extractor. We could recompute the prototypes periodically,
but this would be computationally expensive. Instead, we keep a weighted average of
recently extracted features. A natural strategy for maintaining the memory bank would be
to update the corresponding class prototype for each labeled sample in the current mini-
batch. This could be done, for example, as an exponentially weighted moving average
(EWMA). The downside of this approach is that the class prototype for common classes
would update more frequently, which leads to difficulty in setting update weights. It also
doesn’t take into account the potential for a large domain shift to lead to less informative
class prototypes, especially when many samples are misclassified.

To maintain our dynamic memory bank B, we propose to use an intermediate memory
bank b to enable us to make consistent, class-balanced updates. For every minibatch, we
update b as follows: we check the network output f(xk) on the input image xk, which could
be from the source or target domain. If xk is correctly classified, then the corresponding
vector in b is replaced with f(xk). Therefore, b always stores the feature of the most recent
correctly classified image for each class. We use the intermediate memory bank b to update
B, using an EWMA, as follows:

B = γ · Bt−1 + (1− γ) · b (3.4)

where γ regulates the pace of the update: a lower value results in a faster updating pace
and a higher value leads to a slower update.
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Figure 3.2: Illustration of Dynamic Feature Alignment. (left) Shows that unlabeled target
features (red dots) gradually move to class prototypes of the source (blue dots) and target
(green dots). (right) Shows that unlabeled target features with lower entropy values and
higher similarity scores (surrounded by the green curve) will be selected for pseudo-label
training.

The dynamic memory bank B is updated based on labeled source features f(xs) and
labeled target features f(xl). Therefore, each feature vector in B represents a class and
can be interpreted as a class prototype, so B stores the prototypes of all classes. In the fol-
lowing section, we describe how this dynamic memory bank can be applied to (1) align the
unlabeled target features to class prototypes accurately and (2) selectively collect unlabeled
samples for pseudo-label estimation.

3.3.4 Dynamic Feature Alignment

Since the labeled target features f(xl) are already closely aligned to the labeled source
features f(xs) [111, 65], we focus on the intra-domain discrepancy by directly minimizing
the distance between f(xu) and class prototypes. We choose to use Maximum Mean Dis-
crepancy (MMD) [52] to measure the difference between distributions. The basic idea of
MMD is that if two distributions are identical, then all the statistics of these two should be
the same [153].

DH(B,Du) ≜
∥∥EB[ϕ(mi)]− EDu [ϕ(f(x

u
j ))]

∥∥2

H , (3.5)

where mi is the i-th feature stored in B, representing the prototype of class i, and f(xu
j ) is

the j-th feature in the unlabeled target features Du. Here ϕ(·) represents Gaussian Radial
Basis Function (RBF) kernels, which map the input feature maps to the reproducing kernel
Hilbert space H. The MMD loss can be presented as:

Lmmd = DH(B,Du). (3.6)
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By minimizing Lmmd, the domain discrepancy will be bridged and unaligned target fea-
tures will be gradually moving close to the aligned class prototypes. See Fig 3.2 (left) for
illustration.

To accelerate the learning process as well as further improve the accuracy, we take
advantage of the large number of unlabeled samples and propose a pseudo-label estimation
strategy. For an unlabeled image xu, we compute the distances between f(xu) and every
class prototype m stored in B. Here, cosine similarity is used for distance measurement.
Since mi is the representative prototype of the i-th class, a higher similarity value represents
a higher probability that xu belongs to class i. Then the pseudo-label estimation function
can be formulated by using a softmax function with a temperature τp as follows:

Pdist(i|xu) =
exp(mT · f(xu)/τp)∑K
j=1 exp(m

T
j · f(xu)/τp)

. (3.7)

Training with inaccurate pseudo-labels can accumulate errors. We adopt a sample se-
lection strategy to keep the high-quality pseudo-labels in the training loop and eliminate the
inaccurate ones. First, those samples with similarity scores higher than the threshold ϵdist

will be stored in Mdist. Second, we collect samples with the prediction entropy Hw(Pdist)

less than a threshold ϵent and store them in Ment. This step will selectively collect the sam-
ples that are close to the aligned features [65]. See Fig 3.1 (right) for illustration. Last, we
take the intersection of Mdist and Ment, noted as Mpse. Thus, only samples satisfying both
conditions will be used in the pseudo-label training loop.

The network output ŷx of each sample x in Mpse is used as the pseudo-label for calcu-
lating the cross entropy loss Lpseudo:

Lpseudo = −EDu [1Mpse(x) log p(y = ŷx|x)]. (3.8)

To further minimize the intra-domain discrepancy, we follow [65] and apply the same
perturbation scheme. We regularize the perturbed features and the raw, clean features by
Kullback–Leibler divergence. The goal is to enforce the model to generate perturbation-
invariant features so that the perturbation loss can be presented as:

Lperturb = Ex∈Du∪Dl

[ K∑
i=1

KL[f(x), f(x+ rx)]

]
, (3.9)

where x is the input image, and rx is the optimized perturbation added to x.

3.3.5 Overall Loss Function

The overall loss function of the proposed DFA framework is the weighted sum of every
different piece of the loss function mentioned above and can be integrated as follows:
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L = Lcls + α1Lmmd + α2Lpseudo + α3Lperturb. (3.10)

3.4 Evaluation

We evaluate our method by conducting experiments on two standard domain adaptation
benchmarks. Below we describe the datasets used for these experiments, implementation
details, and extensive performance analysis.

3.4.1 Datasets

DomainNet [101] is a large-scale domain adaptation benchmark that contains 6 domains
and 345 object categories. Following the previous works MME [111] and APE [65], we
use a 4 domain (Real, Clipart, Painting, Sketch) subset with 126 classes. We report our
results on 7 scenarios for a fair comparison with the previous state-of-the-art works.

We also evaluate our model on Office-Home [124], which is another domain adaptation
benchmark that contains 4 domains (Real, Clipart, Art, Product) and 65 categories. Here
we report results on all 12 adaptation scenarios.

3.4.2 Implementation Details

We implement our model using PyTorch [100]. We follow [111, 65] and report results
on DomainNet using AlexNet and ResNet-34 as the backbones. For Office-Home, we
report on ResNet-34. All networks are pre-trained on ImageNet. Our model is trained on
labeled Ds, Dl, and unlabeled Du. To make the source and target balanced in the training
stage, each mini-batch of labeled samples contains half source samples and half target
samples. We consider both one-shot and three-shot settings, and for each class, one (or
three) labeled target samples are given for training. For evaluation, we reveal the ground-
truth labels of Du and report results on that. We follow [111, 65] and use SGD optimizer
with an initial learning rate of 0.01, a momentum of 0.9, and a weight decay of 0.0005. For
hyperparameters, we set the temperature for the classifier as τ = 0.05, and set γ = 0.1 to
update B at a fast pace. We set the temperature for pseudo-label estimation as τp = 0.07.
As for thresholds, we set ϵdist to 0.3 for ResNet-34 and 0.1 for AlexNet and set ϵent = 0.5

for both backbone networks.
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Table 3.1: Classification accuracy (%) on the DomainNet dataset for three-shot setting with
4 domains, 7 scenarios using AlexNet and ResNet-34 as backbone networks, respectively.

Net Method R to C R to P P to C C to S S to P R to S P to R MEAN

AlexNet

S+T 47.1 45.0 44.9 36.4 38.4 33.3 58.7 43.4
DANN 46.1 43.8 41.0 36.5 38.9 33.4 57.3 42.4
ADR 46.2 44.4 43.6 36.4 38.9 32.4 57.3 42.7

CDAN 46.8 45.0 42.3 29.5 33.7 31.3 58.7 41.0
ENT 45.5 42.6 40.4 31.1 29.6 29.6 60.0 39.8
MME 55.6 49.0 51.7 39.4 43.0 37.9 60.7 48.2

SagNet 49.1 46.7 46.3 39.4 39.8 37.5 57.0 45.1
APE 54.6 50.5 52.1 42.6 42.2 38.7 61.4 48.9
Ours 55.0 52.3 51.6 44.5 41.8 39.4 62.1 49.5

ResNet

S+T 60.0 62.2 59.4 55.0 59.5 50.1 73.9 60.0
DANN 59.8 62.8 59.6 55.4 59.9 54.9 72.2 60.7
ADR 60.7 61.9 60.7 54.4 59.9 51.1 74.2 60.4

CDAN 69.0 67.3 68.4 57.8 65.3 59.0 78.5 66.5
ENT 71.0 69.2 71.1 60.0 62.1 61.1 78.6 67.6
MME 72.2 69.7 71.7 61.8 66.8 61.9 78.5 68.9

SagNet 62.0 62.9 61.5 57.1 59.0 54.4 73.4 61.5
APE 76.6 72.1 76.7 63.1 66.1 67.5 79.4 71.7
Ours 76.7 73.9 75.4 65.5 70.5 67.5 80.3 72.8

Table 3.2: Classification accuracy (%) on the DomainNet dataset for one-shot setting with
4 domains, 7 scenarios using ResNet-34.

Net Method R to C R to P P to C C to S S to P R to S P to R MEAN

ResNet

S+T 55.6 60.6 56.8 50.8 56.0 46.3 71.8 56.9
DANN 58.2 61.4 56.3 52.8 57.4 52.2 70.3 58.4
ADR 57.1 61.3 57.0 51.0 56.0 49.0 72.0 57.6

CDAN 65.0 64.9 63.7 53.1 63.4 54.5 73.2 62.5
ENT 65.2 65.9 65.4 54.6 59.7 52.1 75.0 62.6
MME 70.0 67.7 69.0 56.3 64.8 61.0 76.1 66.4

SagNet 59.4 61.9 59.1 54.0 56.6 49.7 72.2 59.0
APE 70.4 70.8 72.9 56.7 64.5 63.0 76.6 67.6
Ours 71.8 72.7 69.8 60.8 68.0 62.3 76.8 68.9

3.4.3 Baselines

We compare our proposed method with different models. Baselines include training a net-
work only using labeled samples (S+T), an entropy minimization-based semi-supervised
method (ENT [50]), three feature alignment-based unsupervised domain adaptation mod-
els (DANN [38], ADR [112], and CDAN [81]), and three state-of-the-art semi-supervised
learning models (SagNet [91], MME [111], and APE [65]) that aim to the same goal as our
method.
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Table 3.3: Classification accuracy (%) comparisons on Office-Home for three-shot setting
with 4 domains, 12 scenarios using ResNet-34 as the backbone network.

Method R to C R to P R to A P to R P to C P to A A to P A to C A to R C to R C to A C to P MEAN
S+T 55.7 80.8 67.8 73.1 53.8 63.5 73.1 54.0 74.2 68.3 57.6 72.3 66.2

DANN 57.3 75.5 65.2 69.2 51.8 56.6 68.3 54.7 73.8 67.1 55.1 67.5 63.5
CDAN 61.4 80.7 67.1 76.8 58.1 61.4 74.1 59.2 74.1 70.7 60.5 74.5 68.2
ENT 62.6 85.7 70.2 79.9 60.5 63.9 79.5 62.3 79.1 76.4 64.7 79.1 71.9
MME 64.6 85.5 71.3 80.1 64.6 65.5 79.0 63.6 79.7 76.6 67.2 79.3 73.1
APE 66.4 86.2 73.4 82.0 65.2 66.1 81.1 63.9 80.2 76.8 66.6 79.9 74.0
Ours 68.3 86.9 74.1 82.3 65.9 67.8 80.4 63.0 80.3 76.6 67.8 79.1 74.4

3.4.4 Experiment Results

We summarize the comparisons between our method and the baselines on 7 adaptation
scenarios of the DomainNet dataset in Table 3.1 and Table 3.2, for three-shot setting and
one-shot setting respectively. When using the ResNet-34 as the backbone network, our
method outperforms the current state-of-the-art baseline by more than 1% and achieves the
best performance in most adaptation scenarios. For the best case S to P of the three-shot
setting, our method surpasses the second-best method by 4.4%. When AlexNet is applied
as the backbone network, the margin that our method outperforms other methods is not as
large as using ResNet-34 because our proposed scheme requires high-quality intermediate
features stored in B, and ResNet-34 has more advantage in achieving that compared with
AlexNet. Our method still performs the best in most scenarios, surpassing APE by 0.6%

on average.
The comparison results of our method with other baselines of 12 adaptation scenarios

on the Office-Home dataset are summarized in Table 3.3. We report results using ResNet-
34 as the backbone network. Our method achieves the best performance on 8 out of 12
adaptation scenarios and outperforms all the baselines on average.

3.4.5 Analysis

In Sec 3.3.3, we explain the updating rules of the dynamic memory bank B. Here we
conduct an experiment to show how γ affects the classification accuracy. We use AlexNet
as the backbone network and train the model on DomainNet with different γ. A smaller
γ means updating B faster, and larger γ means updating B in a more stable way. We
evaluate 3 adaptation scenarios and summarize the results in Table 3.4. It demonstrates
that a more stable B (with larger γ as 0.75) can not help improve the performance, and
replacing the entire B with the new one every iteration (γ = 0) can not get the optimal
performance either. Our results show that using a small (but larger than 0) γ and updating
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Table 3.4: Analysis on how γ affects the classification accuracy (%).

Method R to C R to P C to S MEAN
APE 54.6 50.5 42.6 49.2

Ours (γ = 0.75) 54.1 50.7 42.4 49.0
Ours (γ = 0.25) 54.9 52.2 43.6 50.2
Ours (γ = 0.1) 55.0 52.3 44.5 50.6
Ours (γ = 0) 54.7 52.0 44.5 50.4

Epoch 1 Epoch 10

Epoch 50 Epoch 100

Figure 3.3: The t-SNE visualization of intermediate features in the target domain of our
method at different training stages.

B at a relatively faster pace achieves the best classification accuracy.
To better understand the feature alignment progress, we show the t-SNE [123] embed-

ding of the intermediate features at different training stages in Fig 3.3. We visualize the
target features extracted by ResNet-34 in the experiment of Painting to Real scenario of the
DomainNet. Following APE [65], we randomly select 20 classes out of 126 classes in the
dataset for clarity. This shows that as training progresses, the target feature clusters will
gradually be split for better classification.
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3.5 Conclusion

We proposed a novel approach for semi-supervised domain adaptation that uses a dynamic
memory bank to support inter- and intra-domain feature alignment. Our update approach
is designed to be class balanced, thereby mitigating one of the more challenging aspects
of the problem. We evaluated our approach on two standard datasets and found that it
significantly improved the average accuracy over the previous state-of-the-art techniques.
In addition to improved accuracy, our approach has several attractive features. It doesn’t
require significant additional memory (only two copies of the class prototypes) or computa-
tion (only online updates to the intermediate and dynamic memory banks). It also doesn’t
require extensive parameter tuning: the weights for the loss function are fixed across all
experiments, accuracy isn’t particularly sensitive to the dynamic memory updates param-
eter γ, and the pseudo-label thresholds only needed to be adjusted to account for the low
discriminative power of AlexNet. Given this, we believe this approach will be applicable
to many semi-supervised domain adaptation scenarios.
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Chapter 4

CrossDepth: Cross-Scene Adaptation for Multi-Domain Depth Estimation

In this chapter, we introduce a cross-scene depth estimation framework under the multi-
domain setting. We address the task of monocular depth estimation in the multi-domain
setting. Given a large dataset (source) with ground-truth depth maps, and a set of unla-
beled datasets (targets), our goal is to create a model that works well on unlabeled target
datasets across different scenes. This is a challenging problem when there is a significant
domain shift, often resulting in poor performance on the target datasets. We propose to
address this task with a unified approach that includes adversarial knowledge distillation
and uncertainty-guided self-supervised reconstruction. We provide both quantitative and
qualitative evaluations on four datasets: KITTI, Virtual KITTI, UAVid China, and UAVid
Germany. These datasets contain widely varying viewpoints, including ground-level and
overhead perspectives, which is more challenging than is typically considered in prior work
on domain adaptation for single-image depth. Our approach significantly improves upon
conventional domain adaptation baselines and does not require additional memory as the
number of target sets increases.

4.1 Introduction

Deep neural networks have achieved impressive performance on a wide range of tasks, in-
cluding image classification, semantic segmentation, and object detection. However, mod-
els often generalize poorly to new domains, such as when a model trained on synthetic
imagery is used to process real-world imagery. Domain Adaptation (DA) methods aim to
solve this problem by adapting a model trained on a label-rich source domain to a label-
scarce target domain. Recently, most studies on domain adaptation have focused on the
single target-domain setting [58, 82, 97], in which only one target domain is considered at
a time. However, in many real-world scenarios, test data may be collected from various
sources and domains. For instance, ground-level images collected by the same self-driving
car can still be considered distinct domains due to different sensors, weather conditions,
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KITTI Virtual KITTI UAVid China UAVid Germany

Figure 4.1: From left to right, we show examples of the four diverse datasets we propose
to use, including a real-world ground-level dataset KITTI [41], a synthetic ground-level
dataset Virtual KITTI [8], and two aerial imagery datasets UAVid China and UAVid Ger-
many [85].

and changing environments. Recent work [113, 93] has demonstrated that directly applying
conventional DA methods to the multi-target setting may not achieve optimal performance.

Most existing DA for single-image depth works [82, 70, 148] have been evaluated ex-
clusively on ground-level indoor and outdoor images (e.g., adapting from synthetic-to-
real or rainy-to-sunny). While these are important and challenging problems, this line of
research has ignored the problem of domain adaptation across extreme viewpoint shifts.
With the increasing prevalence of unmanned aerial vehicles (UAVs) and unmanned ground
vehicles (UGVs), the need to adapt networks across such viewpoint shifts is increasingly
important. Therefore, we consider the problem of domain adaptation between videos col-
lected from UAVs and UGVs.

For both UAVs and UGVs, monocular depth estimation is an important fundamental
task for many vision applications including localization, navigation, and scene recognition.
However, obtaining ground-truth depth annotations is difficult, often requiring expensive
LiDAR sensors. Based on this fact, adapting models trained on label-rich source datasets
to label-scarce target datasets is meaningful for the task of depth estimation. Therefore,
developing a method that can effectively adapt one source-trained model to multiple target
datasets is important for both domain adaptation and monocular depth estimation tasks,
and we propose a novel approach that tackles this problem.

Given a source dataset, with sufficient ground-truth depth, we can easily train a network
for monocular depth estimation. Unfortunately, this performs poorly when applied out of
the domain, especially when the network is trained on UGV imagery and applied to UAV
imagery. We propose to address this task with a unified approach that includes adversarial
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knowledge distillation and uncertainty-guided self-supervised reconstruction.
When networks are applied to different domains, the intermediate feature distributions

are often very different [23, 111]. This observation has motivated approaches to domain
adaptation that focus on the learning domain-invariant features [38, 9, 23, 111]. One com-
mon solution is adversarial training, which uses a discriminator and an adversarial loss to
encourage the encoder to learn domain-invariant features. However, conventional adver-
sarial approaches are difficult to scale up when multiple targets are included. Recent work
MTKT [114] proposes a multi-target adversarial training method to tackle this problem.
However, MTKT [113] requires using a separate target decoder for each new target set to
handle the instability problem. We propose to use a unified student-teacher model to distill
knowledge from all source-target pairs with the guidance of a self-supervised reconstruc-
tion loss, without requiring additional memory.

To exploit the temporal information stored in the video sequences, we propose an
uncertainty-guided self-supervised reconstruction module and apply it to the unlabeled tar-
get imagery. This requires both depth estimates and relative pose estimates. Therefore, in
addition to depth estimation, our network is also trained to predict the relative pose between
two adjacent frames. This reconstruction loss does not require ground-truth depths or cam-
era poses, making it easy to apply to new target domains. To further improve the reliability
of the self-supervised reconstruction, we estimate the uncertainty map by computing the
average reconstruction error map from four adjacent frames in the video sequence. Pixels
with higher uncertainty will be down-weighted in the reconstruction loss during training.

We evaluate our method on four datasets (see Fig. 4.1 for example imagery): KITTI,
Virtual KITTI, UAVid China, and UAVid Germany. The evaluation shows that our method
consistently outperforms several strong baseline methods.

Our key contributions are summarized as follows:

• We develop an adversarial knowledge distillation framework that can bridge the do-
main gaps between the source and multiple targets without requiring additional mem-
ory as the number of targets increases.

• We propose an uncertainty-guided, self-supervised reconstruction loss that can be
easily applied to unlabeled new domains.

• We conduct extensive experiments on diverse datasets, which include real, synthetic,
ground-level, and aerial images, and demonstrate that our model significantly re-
duces issues due to extreme domain shifts.
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4.2 Related Work

We introduce related works in conventional domain adaptation, depth estimation, and
multi-target domain adaptation and describe their relationship to our approach.

4.2.1 Domain Adaptation

The objective of domain adaptation (DA) is to train a model on one or more source domains
and make the model generalize well to different but related target domains [4, 106]. One
of the key challenges of DA is to mitigate the distribution shift between different domains.
In general, three types of techniques have been explored [130, 132]: (1) divergence-based,
(2) reconstruction-based, and (3) adversarial.

Divergence-based methods align the intermediate features by minimizing a divergence
between the distributions during training. For instance, Maximum Mean Discrepancy
(MMD) [51] has been used in a recent work [110] to align the features of two domains
by using a two-branch neural network with unshared weights. Deep CORAL [120] uses
Correlation Alignment (CORAL) [119] as the divergence measurement and Contrastive
Adaptation Network (CAN) [64] measures the contrastive domain discrepancy.

Reconstruction-based methods [45, 5, 44] use an auxiliary reconstruction task to cre-
ate a representation that is shared by both domains. For instance, Deep Reconstruction
Classification Network (DRCN) [45] jointly learns a shared encoding representation from
two simultaneously running tasks. DRANet [72] combines both reconstruction-based and
adversarial methods to transfer visual attributes in latent space for domain adaptation.

The adversarial methods bridge the domain gaps by performing adversarial training [24,
58, 152, 61, 111]. For instance, CoGAN [78] uses two generator-discriminator modules for
both the source and target domain, respectively, to synthesize realistic data that is then used
to train the target domain model. Multi-scale adversarial domain adaptation module [73] is
also used for domain adaptation for animal pose estimation. Our proposed method can be
categorized into this type.

4.2.2 Monocular Depth Estimation

Recent research on monocular depth estimation can be categorized into three groups [63]:
supervised, weakly supervised, and self-supervised. Supervised depth estimation net-
works [26, 27, 34] require a larger volume of ground-truth depth annotations. These
methods formulate depth estimation as a regression problem and directly learn from the
supervised losses. The weakly-supervised line of depth estimation works [82, 70] do not
require depth annotations but require other labels, including semantic labels or odometry.
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For instance, DESC [82] proposes an unsupervised domain adaptation depth estimation
network that uses ground-truth semantic labels from both source and target domains to
enforce the consistency between the predictions from a semantic branch and a depth es-
timation branch. CoMoDA [70] adds a velocity loss to Monodepth2 [49] and performs
inference-time adaption to unseen test data. Pseudo-labeling-based methods [154, 15, 134]
generate pseudo labels from internet photo collections by using the ground-truth ordinal
depth information as a cue and leveraging multi-view stereo reconstruction algorithms.
The self-supervised group explores learning algorithms using either rectified stereo image
pairs [40, 48] or monocular video sequences [151, 137, 49, 63] as training data. The video-
based depth estimation methods [77, 84] use consecutive monocular frames to estimate
depth during inference, making the assumption that scenes are mostly rigid. There are also
several works on monocular depth completion [29, 87, 135] that have been proposed to
capitalize on sparse depth maps with corresponding images, resulting in dense depth esti-
mations. Our proposed method uses monocular video sequences as training data and can
be considered as a combination of supervised and self-supervised approaches.

Monocular depth estimation methods typically consider a single domain, usually
ground-level indoor and outdoor images, without considering how they generalize to
other domains, such as aerial images. A recent work [88] directly applies a variant of
Monodepth2 [49] to UAV videos and achieves reasonable results. However, this work is
also limited to a single domain of aerial images, and it does not consider adapting the
model to both ground-level and aerial images simultaneously.

4.2.3 Multi-Target Domain Adaptation

Multi-target domain adaptation (MTDA) is a variant of domain adaptation. Most previous
works in this area have focused on classification and semantic segmentation. There are two
sub-settings of MTDA [114]. The first setting assumes that the domain labels are unknown
during both training and testing [102, 16]. DAL [102] proposes an architecture that ex-
tracts domain-invariant features by performing source-target domain disentanglement and
removing irrelevant features by adding a class disentanglement loss. BTDA [16] presents
an adversarial meta-adaptation network that both aligns the source with mixed-target fea-
tures and clusters the target inputs into k adversarially aligned clusters by training an unsu-
pervised meta-learner. The second setting assumes the domain labels of training samples
are known during training but remain unknown during the inference stage. To handle this,
ITA [46] jointly learns a domain classifier and a class label predictor to separately capture
both domain-specific features and domain-invariant features. The recent work on MTDA
classification [93] adopts an end-to-end multi-target network by using a gradient reversal
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Figure 4.2: Overview of CrossAdapt. (a) Monocular video sequences from both source
and target domains are passed into the shared feature encoder. (b) The student and teacher
decoders are aligned by minimizing the KL divergence. (c) A teacher decoder takes fea-
tures from both domains and estimates depth maps. The depth map of a target frame is
combined with the relative pose predicted by the pose regressor to compute the reconstruc-
tion loss. The outputs of the teacher decoder are passed into a discriminator to compute
the adversarial loss. (d) By taking the average of the reconstruction error maps of t and
its 4 adjacent frames, an uncertainty map is estimated to further guide the self-supervised
reconstruction loss.

layer. MTKT [113] proposes a multi-target adversarial training framework for semantic
segmentation. It uses multiple target-specific decoders to bridge the domain gaps caused
by different target sets. Our work is similar to MTKT [113], but instead of considering
every input image separately, our input is a sequence of video frames so more adjacent
information can be exploited to boost the performance.

4.3 Approach

We introduce Cross-Scene Adaptation for Multi-Domain Depth Estimation (CrossAdapt),
an approach for training a monocular depth-estimation network in the MTDA setting. Our
work focuses on monocular videos because they are readily available, but our approach
could be easily adapted to stereo pairs. In this section, we formalize the problem and
describe the key components of our approach.

4.3.1 Problem Statement

We are given a set of fully labeled source-domain samples Ds = {(xs
i , y

s
i )}ns

i=1 where xs
i ∈

RH×W×3 represents an image in the source domain and ysi ∈ RH×W the corresponding
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ground-truth depth map. In addition, we are given T sets of unlabeled samples Dt,n =

{xt,n
i }nt

i=1, where xt,n
i ∈ RH×W×3 represents an image from the n-th target domain (n ≤ T ).

Our goal is to train a robust monocular depth estimation model that can perform well on all
of the target domains. This will require combining supervised training for depth estimation
on the source domain and domain adaptation strategies capable of using the unlabeled
target data.

4.3.2 Approach Overview

We visualize our overall network architecture in Fig. 4.2. During training, monocular video
sequences from the source and target domains are passed into the shared encoder E. The
encoded features from both source and target are then passed into a depth estimation teacher
decoder DT , which yields estimated depth maps for both inputs, and the source-target dis-
criminator, which encourages the network to learn domain-invariant features. In addition,
temporally adjacent target frames are passed into a pose regressor DP and a relative cam-
era pose is estimated. The estimated pose and depth are combined, along with the known
camera intrinsic parameters and the uncertainty map, to compute the reconstruction loss.
We then minimize the KL divergence between the predictions of the student decoder DS

and the teacher decoder DT . This student decoder DS is the final model to be used for
evaluation. Our model is trained towards four objectives: supervised depth estimation,
adversarial loss, alignment loss, and uncertainty-guided reconstruction loss. We describe
them in the following sections.

4.3.3 Supervised Depth Estimation

For source imagery, where ground-truth depth is available, our proposed CrossAdapt
framework is trained in a supervised manner using a depth estimation loss. An encoder is
trained to extract features from the input image x. The decoder takes as inputs the features
and predicts the depth map ys.

Here, we minimize the ℓ2 distance between the predicted depth ỹs and the ground-truth
depth ys:

Lsupervised = ||ys − ỹs||2. (4.1)

4.3.4 Adversarial Knowledge Distillation

One of the key goals of domain adaptation is to encourage the network to learn domain-
invariant features. To achieve that goal, we use a source-target discriminator DD to classify
the output feature FT that comes from the penultimate layer of DT as either source (1) or
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target (0) by using binary cross entropy LBCE .

Ldis = LBCE(FT , 1)source + LBCE(FT , 0)target. (4.2)

Our network has two goals: one is to predict accurate depth maps, and the other one
is to fool the discriminator. To achieve the second goal, here we use the response from
the discriminator in the following loss and always encourage it to predict source (1) for all
inputs. Note that the input feature to the discriminator comes from the penultimate layer of
the teacher decoder.

Lextractor = LBCE(DD(FT ), 1). (4.3)

And the total adversarial loss is represented as:

Ladv = Ldis + λadvLextractor. (4.4)

To distill knowledge from the teacher decoder the to student decoder, we use the output of
the penultimate layer the teacher decoder FT , and the student decoder FS to compute the
KL divergence.

Lalign = LKL(FT , FS). (4.5)

We pass mini-batches of source-target pairs into the model, repeat the process men-
tioned above, and keep alternating between different targets during training. The student
decoder gradually learns from the teacher decoder and tends to be able to represent features
from all target sets in the end.

4.3.5 Uncertainty-Guided Reconstruction

To exploit the temporal information in the input video sequences in the unlabeled target
sets. and learn domain-invariant features from various targets, we follow the state-of-the-art
self-supervised depth estimation work [49] and reconstruct the appearance of a target image
from the viewpoint of an adjacent image by combining predicted depth, pose, and known
camera intrinsic parameters. We found that naively applying this will cause inaccurate
predictions, especially for fast-changing pixels in the temporal sequences. To overcome
this, we propose to estimate an uncertainty map by taking the average of the reconstruction
error maps of an input frame and its 4 adjacent frames and using that to further guide the
reconstruction loss.

The pose regressor in our model yields the relative pose Tt→t′ for each source view im-
age It′ , with respect to the target image It, from a consecutive monocular video sequence,
by taking a pair of features extracted from (It, It′) as the inputs. The depth estimation
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Figure 4.3: Illustration of the uncertainty maps. The 1st row shows the input images, the
2nd row shows the predicted depth maps, and the last row shows the estimated uncertainty
maps, which mostly highlight rapidly-changing pixel regions including vehicles and build-
ing edges.

decoder predicts a dense depth map Dt simultaneously. Our goal is to minimize the recon-
struction error Lr, where

Lr =
∑
t′

||It − It′→t||. (4.6)

The image reconstruction loss, in our case, is the ℓ1 distance in pixel space. By using the
source image It′ , the predicted depth Dt, the relative pose Tt→t′ , and the camera intrinsic
parameters K, we can reconstruct the target image It by:

It′→t = It′
〈
proj(Dt, Tt→t′ , K)

〉
. (4.7)

where proj() are the resulting 2D coordinates of the projected depths Dt in It′ and
〈〉

is
the sampling operator.
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To reduce noise in the prediction, we use edge-aware smoothness [48, 49]:

Ls = |∂xd∗t | e−|∂xIt| + |∂yd∗t | e−|∂yIt|, (4.8)

where d∗t = dt/dt is the mean-normalized inverse depth to discourage shrinking of the
estimated depth. The complete self-supervised loss can be represented as:

L′
recon = Lr + λsLs (4.9)

We propose to estimate uncertainty maps by computing the reconstruction error map
generated from It and its N (in this case N=4 is used) adjacent frames It+1, It+2, It−1,
It−2. Following Eq- 4.7, the uncertainty map is estimated by taking the average of all the
adjacent reconstruction error maps:

Ut =
1

N

N−1∑
i=0

||Iti→t − It||. (4.10)

Note that the estimated uncertainty maps highlight drastically changing pixels (see Fig. 4.3
for illustration), e.g., edges of buildings. Therefore, those pixels with higher uncertainty
are down-weighted in the reconstruction loss:

Lrecon =
λrL′

recon

Ut

+ L′
recon. (4.11)

4.3.6 Overall Loss Function

The overall loss function of the proposed CrossAdapt framework is the weighted sum of
the loss functions mentioned above and can be written as follows:

L = Lsupervised + α1Ladv + α2Lalign + α3Lrecon. (4.12)

4.4 Experiments

We evaluated our method by conducting experiments on four diverse datasets. Below we
describe the datasets used for these experiments, implementation details, and extensive
performance analysis.

4.4.1 Datasets

We describe the datasets considered in this work. While we consider the following four
datasets, it is easy to extend our approach to other datasets as well.
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Table 4.1: KITTI−→UAVid China + UAVid Germany

Target Method ℓ1 (prev) ℓ1 (next) SSIM (prev) SSIM (next)

UAVid China

Monodepth2 [49] 0.1230 0.1261 0.3181 0.3226
CoMoDA [70] 0.1193 0.1042 0.2901 0.3009
MTKT [114] 0.0812 0.0833 0.2216 0.2305
CrossAdapt (w/o reconstruction) 0.0910 0.0907 0.2270 0.2299
CrossAdapt (w/o uncertainty) 0.0629 0.0651 0.1876 0.1841
CrossAdapt (Ours full) 0.0620 0.0513 0.1702 0.1788

UAVid Germany

Monodepth2 [49] 0.1861 0.1873 0.3909 0.3981
CoMoDA [70] 0.1741 0.1725 0.3676 0.3755
MTKT [114] 0.1785 0.1680 0.3601 0.3761
CrossAdapt (w/o reconstruction) 0.1801 0.1795 0.3644 0.3606
CrossAdapt (w/o uncertainty) 0.1581 0.1526 0.3511 0.3537
CrossAdapt (Ours full) 0.1468 0.1541 0.3488 0.3412

Table 4.2: KITTI−→UAVid China + UAVid Germany + Virtual KITTI

Target Method ℓ1 (prev) ℓ1 (next) SSIM (prev) SSIM (next)

UAVid China

Monodepth2 [49] 0.1487 0.1401 0.3590 0.3574
CoMoDA [70] 0.1386 0.1344 0.3067 0.3156
MTKT [114] 0.1345 0.1509 0.2687 0.2459
CrossAdapt (Ours) 0.0918 0.0927 0.2141 0.2108

UAVid Germany

Monodepth2 [49] 0.1762 0.1705 0.3921 0.3700
CoMoDA [70] 0.1676 0.1609 0.3822 0.3850
MTKT [114] 0.1887 0.1654 0.3709 0.3885
CrossAdapt (Ours) 0.1531 0.1676 0.3596 0.3677

Virtual KITTI

Monodepth2 [49] 0.1648 0.1732 0.3390 0.3371
CoMoDA [70] 0.1731 0.1704 0.3219 0.3232
MTKT [114] 0.1666 0.1796 0.3395 0.3368
CrossAdapt (Ours) 0.1634 0.1681 0.3183 0.3210

• KITTI [42]: the KITTI dataset was recorded from a vehicle while driving around
Karlsruhe, Germany. In our work, we use both raw images and the corresponding
depth annotations from KITTI. We follow Zhou’s [151] pre-processing to remove
static frames and obtained 39,810 image-depth pairs for training and 4,424 pairs
for validation. Following [49], we use the same camera intrinsic parameters for all
images and set the principal point to the image center and the focal length to the
average of all the focal lengths in KITTI. The resolution of the KITTI raw images
we use is 1242× 375. In this work, we consider KITTI as the source domain.

• Virtual KITTI [8]: the Virtual KITTI is one of the most commonly used datasets
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for the task of synthetic-to-real domain adaptation. It contains 50 photorealistic syn-
thetic videos, including 21,260 image-depth pairs of size 1242× 375. It was created
using a game engine [37] to synthesize realistic videos from the KITTI dataset. We
use virtual KITTI as one of the target datasets to evaluate the performance of our
model on synthetic data, and we choose to use the same camera parameters as KITTI.

• UAVid China[85]: UAVid is a recent aerial imagery dataset with 4K resolution. The
images are captured by a drone from a low altitude. It provides ground-truth semantic
labels for segmentation, in which 10 frames every 5s are labeled. UAVid contains 42
videos in total, and each video includes 900 frames. Among those videos, 31 videos
were collected in China, which gives us 27,900 frames at a resolution of 3840×2160.
Following [88], we use a frame rate of 1 fps to minimize noise and parallax effects.

• UAVid Germany[85]: UAVid Germany is also a subset of UAVid. The videos are
captured in both rural and urban areas in Germany. It contains 9 aerial videos, which
gives us 8,100 frames in total, at the resolution of 4096× 2160. Here we use a frame
rate of 10 fps to achieve optimal performance. The scene complexity of the UAVid
Germany dataset is lower than UAVid China [94].

4.4.2 Implementation Details

We implement our model using PyTorch [99]. We follow the same publication standard of
several recent MTDA works [113, 93] and report results on two adaptation scenarios: 1-
source−→2-target scenario and 1-source−→3-target scenario. Following the existing state-of-
the-art methods [49, 70], we use a similar U-Net style architecture and adopt the ResNet-18
as the feature extraction backbone to ensure a fair comparison. All networks are pre-trained
on ImageNet. We also use the training protocol from previous work [49], with a learning
rate of 10−4 for the first 15 epochs which is then dropped to 10−5 for the rest of the training
process. For hyperparameters, the adversarial term λadv is set to 1.0, the smoothness term
λs is set to 0.001, and the reconstruction term λr is set to 0.01. For the overall loss function,
we set α1 and α2 to 0.1 and α3 0.01 to maintain a balance between each term during
training. For data pre-processing, we resize all input images to 640 × 192. For ground-
levels images, including KITTI and Virtual KITTI, we apply random horizontal flipping
for data augmentation. For UAVid images, we disable that due to the principal point offset
to the image center [88].
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4.4.3 Baselines

To the best of our knowledge, no directly comparable previous works have addressed
the problem of multi-target domain adaptation for depth estimation. Therefore, we
choose to compare with the state-of-the-art, self-supervised depth-estimation network,
Monodepth2 [49], a recent single-target, domain-adaptation approach for depth estima-
tion, CoMoDA [70], and a state-of-the-art multi-target domain adaptation for semantic
segmentation approach, MTKT [114]. There are several other works on domain adaptation
on depth estimation, e.g., DESC [82] and GASDA [148]. However, these works either
consider using semantic labels in both source and target domains as a weak training signal,
which may boost the performance or uses source-to-target image translation, which is
not straightforward to perform for the multi-target setting. In our setting, we do not have
any forms of labels for the target domains. The baselines we choose to compare are
summarized as follows:

• Monodepth2 [49]: Monodepth2 is considered as a solid self-supervised depth-
estimation network that can generalize well to many ground-level imagery datasets.
Here we use it as a naı̈ve baseline by training it on KITTI and directly testing on our
target dataset to demonstrate the significant domain gaps.

• CoMoDA [70]: CoMoDA is a recent state-of-the-art domain adaptation approach
for depth estimation. Instead of considering the training stage adaptation only, it also
considers the inference stage adaptation.

• MTKT [114]: MTKT is a recent state-of-the-art multi-target domain adaptation ap-
proach for semantic segmentation. We applied the proposed multi-adversarial frame-
work to our depth estimation problem and considered that as a strong baseline.

4.4.4 Evaluation Metrics

Considering the fact that we do not have access to the ground-truth depth labels of UAVid
for computing absolute depth errors, here we choose to report errors related to the recon-
struction quality of neighboring frames in the monocular sequence, including the previous
frame and the next frame, which can cross-validate how accurate the depth predictions
are. More specifically, we report four metrics: ℓ1 (prev), ℓ1 (next), SSIM (prev), and
SSIM (next). ℓ1 (prev)/(next) represents the ℓ1 error between the target image and the re-
constructed target image from the previous/next frame. To better evaluate the structural
similarity between the original and reconstructed images, we also adopt a commonly used
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Inputs Monodepth2 [49] CoMoDA [70] CrossAdapt (Ours)

Figure 4.4: Qualitative results of KITTI−→UAVid China + UAVid Germany. Both
CrossAdapt and CoMoDA[70] achieve reasonable visual performance on overhead im-
agery, but CrossAdapt outperforms CoMoDA[70] in terms of more accurate details.

image similarity metric SSIM [59], which is shown as SSIM (prev), and SSIM (next) in
the tables. Noted that the numbers we reported in the tables are 0SIM loss, which means
1-SSIM (score).

4.4.5 Experimental Results

We summarize the comparisons between our method and the baselines in Table 4.1 and 4.2.
We use KITTI as the source for all the adaptation scenarios since it contains the most
complete depth annotations. For the 1-source−→2-targets scenario, we use both UAVid
China and UAVid Germany as targets to evaluate the model’s ability to handle extreme
viewpoint changes. Both quantitative results (Table 4.1) and qualitative results (Fig. 4.4)
show that our model outperforms the baselines. For the 1-source−→3-targets scenario, we
use UAVid China, UAVid Germany, and Virtual KITTI as targets. The results are listed in
Table 4.2. We also conduct an ablation study for the first scenario (1−→2), listed in Table 4.1
as well. The experiments show that the self-supervised reconstruction loss significantly
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improved the performance and the uncertainty guidance slightly boosted the performance
when it was applied together with the reconstruction loss.

From Fig. 4.4, we can see that Monodepth2 (second column) yields crude depth esti-
mates. This failure shows the difficulty of adaptation from ground-level to UAV imagery.
CoMoDa (third column) performs better and captures rough outlines of buildings, but it of-
ten merges adjacent buildings. Predicted depth maps from our method, CrossAdapt (fourth
column) are able to accurately separate buildings and get fine estimates for trees.

4.5 Conclusion

We introduced CrossAdapt, a novel approach to multi-target domain adaptation for the task
of monocular depth estimation. A key feature of our approach is the use of a combination
of the student-teacher model and uncertainty-guided self-supervised reconstruction, which
enables training on video sequences without ground-truth depth. These, together with the
supervised depth estimation for the source, result in a strong performance on unlabeled
target domain imagery.

We evaluated our method on four diverse datasets, including two from the ground-level
perspective and two from an aerial perspective. This extreme viewpoint shift is important
to address given the need for UAVs to operate at many altitudes and for teams of UAVs
and UGVs. Our approach provides a strong foundation for the creation of general-purpose
image understanding systems that can operate across many viewpoints. In future work, we
plan to explore the multitask setting, including semantic segmentation and object detection,
which we expect to yield improvements in performance metrics at the expense of additional
computational cost and model complexity.
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Chapter 5

CrossSeg: Cross-Scene Few-Shot Aerial Segmentation Using Probabilistic Prototypes

In this work, we propose a novel framework called CrossSeg that addresses the task of
few-shot semantic segmentation for different aerial imagery. Conventional semantic seg-
mentation approaches struggle to generalize well to unseen object categories, making them
a significant limitation for modern intelligent systems, especially those deployed in real-
istic real-time settings, such as unmanned aerial vehicles (UAVs). CrossSeg overcomes
this limitation and generalizes well in a cross-scene setting with only a few labeled sam-
ples. Unlike traditional methods that use a set of fixed prototypes for each class, CrossSeg
utilizes high-quality probabilistic prototypes that can not only represent different semantic
classes but also handle significant variations in different scenes. We evaluate our method
on four datasets, Potsdam, Vaihingen, Aeroscapes, and UAVid, which contain widely vary-
ing viewpoints and are more challenging than those considered in prior work on few-shot
learning for semantic segmentation. Our approach significantly improves upon conven-
tional few-shot segmentation baselines and does not require extensive tuning.

5.1 Introduction

Deep neural networks have achieved impressive performance on a variety of vision-related
tasks, including image classification, object detection, and semantic segmentation. Among
those tasks, semantic segmentation is usually considered the most challenging one, mostly
because of the requirement of categorizing every single pixel. In recent years, people
have proposed different types of methods to tackle tasks around semantic segmenta-
tion [80] [10] [138], and these methods are primarily designed to recognize the classes
that have shown up in the training phase, not unseen classes. However, modern intelligent
autonomous systems, especially unmanned aerial vehicles (UAVs) and unmanned ground
vehicles (UGVs), often require the models deployed on devices should be able to adapt
quickly to the surrounding environment and make reasonable predictions even for unseen
objects and classes without extensive human intervention or tuning. This is particularly
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important for aerial applications—images collected by drones and satellites are often under
drastically different conditions, e.g., scenes, weather, light, camera poses, and geographic
location, and it is often impossible to manually label all pixels for those data to train a
model. Failing in recognizing unseen objects may lead to inaccurate behaviors or even
severe safety issues, especially for fast-moving UAVs. To tackle this problem, we propose
to build a model that can quickly learn from a very limited number of annotated images to
predict reasonable pixel-level semantic labels across different scenes. More specifically,
we aim to provide a few-shot learning framework for semantic segmentation that can be
applied to multiple aerial and remote sensing scenes.

Semantic segmentation, which is also referred to as image classification in the remote
sensing field, aims to assign pixel-level labels to the input images. Typically, training such
segmentation models requires massive datasets with pixel-level labels, which are usually
expensive to acquire. To deal with this challenge, weakly supervised, semi-supervised,
and unsupervised methods are proposed but these are still difficult to generalize well to
unseen categories without extensive tweaking and tuning. Instead of learning from mas-
sive annotated data, few-shot learning methods are designed to identify objects from novel
categories by only looking at a few labeled samples, as humans can do. And few-shot
learning methods can be useful for many aerial scenarios, for example, it is easy to find
a segmentation model trained for a certain class, for instance, a road extractor, but people
may aim to perform segmentation on other categories, e.g., buildings, without needing a
large amount of training data. To solve such problems, few-shot learning models are not
trained to remember any certain class, but to know the difference between objects from
different classes.

Existing few-shot semantic segmentation methods [129] [62] usually extract feature
vectors from the support images and compute a fixed set of prototypes from those vectors
before applying a distancing function to segment images from the query set. However, such
methods have several limitations and do not always generalize well, especially to complex
aerial images. First, a deterministic class prototype can not always be the most representa-
tive feature of pixels from that class, especially when the prototype is learned from a small
set. Second, during the inference stage, using the averaged features as class prototypes does
not consider the confidence of every prediction made by the model. To tackle these two
limitations, we propose a probabilistic prototype-based framework for few-shot semantic
segmentation. Our method models the class prototypes as a probabilistic distribution in-
stead of a set of fixed vectors, which is more robust to the uncertainty brought by the limited
number of labeled support samples. Specifically, a prior net is used to learn class-specific
probabilistic prototypes from the support set, and a true posterior distribution of the query
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set is further learned by a posterior net to guide the prior net. The prototypes sampled
from the prior distribution are used for predicting query images. Furthermore, instead of
using the groundtruth labels of the support set only for masking, we propose to use a cycle-
regularization module to reverse the query and support sets by sampling prototypes from
the posterior distribution. During inference, unlike the previous methods which usually
use the averaged feature from each class as the prototype, we adopt a confidence-weighted
strategy to predict the final segmentation map. We evaluate our method on multiple diverse
aerial datasets, including Potsdam, Vaihingen, Aeroscapes, and UAVid, and results show
that our method achieves significant improvement over the state-of-the-art cross-domain
and in-domain settings.

We list the main contributions of the proposed method as follows.

• We introduce a novel probabilistic prototype-based few-shot semantic segmentation
framework for aerial applications.

• Our method proposes to use a cycle-regularization module to further exploit the an-
notations of the support set.

• We propose to use a confidence-weighted strategy to predict segmentation maps dur-
ing inference.

• We explore four diverse aerial and remote sensing datasets and conduct experiments
on both in-domain and cross-domain settings, and demonstrate the robustness of our
model.

5.2 Related Works

In this section, we introduce three topics relevant closely to our work, including the origin
and development of few-shot learning, important semantic segmentation models proposed
in recent years, and how the existing few-shot semantic segmentation models relate to our
proposed method.

5.2.1 Few-shot Learning

Few-shot learning aims to learn universal knowledge that is easy to transfer to new do-
mains and classes with only a few annotated samples. Most of the recent works are based
on deep neural networks and primarily include two types: metric-learning-based meth-
ods [117] [126] and optimization-learning-based methods [105] [32]. Metric-learning-
based methods aim to encode input samples into an embedded feature space and to per-
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form the distancing matching for classification [126]. The prototypical network [117] fur-
ther improves this idea by learning a metric space where the input is classified based on
its distance to the prototypical features of each class. Optimization-learning-based type of
methods, which are also referred to as meta-learning-based methods, consider the inconsis-
tency between the training and test set and tackle this problem by tuning the model quickly
in the test phase [105] [32]. Our work follows the few-shot learning setting and extends it
to the task of semantic segmentation.

5.2.2 Semantic Segmentation

Semantic segmentation aims to assign a set of predefined semantic classes to every pixel
in the input images. CNNs-based methods [80] [75] [3] [147] [11] achieve great success
in this field. For example, FCN [80] first adopts deep CNNs and proposes a fully con-
volutional network which improves segmentation performance by a large margin. Dilated
convolutions [138] [11] are widely applied to increase the size of the receptive field with-
out losing spatial information. Another interesting line of work is based on the conditional
variational autoencoder (C-VAE) [118]. C-VAE extends VAE [66] into the conditional
generative model for supervised learning.

More recently, probabilistic models have been [141] [33] [149] introduced to CNN-
based models to handle the uncertainty caused by scarce training data, and C-VAE has
also been broadly applied in segmentation tasks. For example, the probabilistic U-net [67]
which combines U-Net [108] with C-VAE for semantic segmentation achieves great suc-
cess in handling the ambiguities existing in medical images. An extension [68] of the prob-
abilistic U-Net introduces a hierarchical graphical model to decompose the latent space. A
similar framework [89] proves that this strategy can also be applied to instance segmenta-
tion. In this work, we follow CNN-based segmentation networks, adopt the idea of C-VAE
to the few-shot learning scenario, and propose a novel few-shot segmentation framework
to generalize the powerful segmentation networks to new domains and classes with only a
few annotated samples.

5.2.3 Few-shot Semantic Segmentation

Few-shot segmentation is a more demanding yet challenging task when compared to few-
shot classification. The initial few-shot segmentation models [115] [104] usually generate
a group of parameters from the support images using a conditioning branch, merge the
extracted support features with the query features, and then use a fine-tuned decoder to
predict segmentation maps. Other approaches [143] [60], utilize either a masked average
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pooling strategy or an attention module to extract background and foreground features
from the support set more effectively. In general, these methods adopt a parametric module,
which combines information extracted from the support set to generate segmentation maps.

A similar approach [25] was proposed to solve the problem of few-shot segmentation
using a variant of the prototypical network. This approach uses the concept of prototypical
learning and metric learning to solve the problem, but it has a complicated configuration
and a three-stage training pattern. Additionally, their method focuses on extracting pro-
totypes based on image-level losses and using them as guidance for fine-tuning the seg-
mentation of the query set. In contrast, our model adopts a simplified end-to-end design
and is more closely aligned with the original Prototypical Network [117]. Furthermore,
we propose a probabilistic method for generating class prototypes, which is modeled as a
distribution instead of a single deterministic vector, making the model more robust to adapt
to cases with sparse or changing annotations. We further introduce a cycle-regularization
scheme, which is learned for exploiting the annotations from both support and query sets.
We will introduce our approach in detail in the next section.

5.3 Approach

In this section, we introduce our method CrossSeg, a few-shot semantic segmentation
model using probabilistic prototypes. We explain the design of each component and the
training and inference process in detail. The illustration of our method can be found in
Fig. 5.1.

5.3.1 Problem Statement

We aim to propose a method for quickly adapting a segmentation model to perform seg-
mentation on unseen objects using only a few annotated samples. We follow recent ap-
proaches [62] [129] in the field and adopt a standard training and inference protocol. The
images are divided into two non-overlapping sets of classes: Cseen and Cunseen. The training
set Dtrain is constructed from Cseen and the test set Dtest is constructed from Cunseen. The seg-
mentation model is trained on Dtrain and evaluated on the unseen set Dtest. Both the training
set Dtrain and test set Dtest contain numerous episodes, each of which consists of a set of an-
notated support images S and a set of query images Q. Specifically, Dtrain = {(Si,Qi)}Ntrain

i=1

and Dtest = {(Si,Qi)}Ntest
i=1 , where Ntrain and Ntest represent the number of episodes for train-

ing and test respectively.
We formulate our task as a C-way K-shot learning segmentation task. Specifically, C-

way represents that there are C different classes in total, and K-shot means that there are K
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Figure 5.1: Overview of our method. (a) The support images and the corresponding class
masks are passed to the prior network. The query images are passed into the posterior
branch. (b) A prior encoder takes as input the support image-label pairs and generates
semantic features and the probabilistic distribution of class-specific prototypes. The sup-
port masks are used to guide the prototype pooling. (c) The posterior encoder takes as
input the query images and predicts the true distribution of query prototypes and semantic
features for further segmentation. (d) The groundtruth labels of query images are used to
compute the supervised semantic loss. (e) To exploit the support information, we use a
cycle-alignment module to use query predictions as pseudo masks to generate support pro-
totypes. Those prototypes are then used to segment the semantic features from the support
set.

images per semantic class in each episode. A support set consists of Nsupport image-mask
pairs and can be represented as Si = {(Ic,k,Mc,k)}, where k = 1, 2, · · · , K and c ∈ Ci
with |Ci| = C. The query set Qi consists of Nquery image-mask pairs from the same set
of classes in the support set. We train our model to learn knowledge from the support
set and then use that knowledge to segment images in the query set. Noted that each
episode consists of different semantic classes, so the model is not trained to learn those
class-specific features but to learn the differences between classes and generalize well new
classes. In general, our goal is to train the segmentation model on the training set Dtrain,
and evaluate its performance on the test set Dtest by only seeing a few annotated samples
from the novel classes. Specifically, during evaluation, the model is further tuned on the
labeled support set Si from each test episode in Dtest and evaluated on the unseen query set
Qi.
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5.3.2 Method Overview

In the context of few-shot learning, our model is geared to handle new classes that were not
encountered during model training. Instead of learning a set of class-specific representa-
tions, the model should have the capability to acquire transferable knowledge for seen and
unseen classes.

To achieve this goal, our model is designed to learn from support-query pairs and it
models class prototypes as probabilistic distributions rather than a set of fixed vectors,
making it more robust to the uncertainty introduced by the limited number of labeled sup-
port samples. As shown in Fig. 5.1, we first pass the support images and the corresponding
groundtruth masks into the prior net, followed by a semantic decoder to generate support
predictions and a prior generator (Gprior in Fig. 5.1) to embed the support set into a la-
tent space. The class prototypes are sampled from this space and then used together with
the query features to generate query semantic segmentation map predictions. In general,
the proposed method comprises two key components: a prior network that learns class-
specific probabilistic prototypes from the support set and a posterior network that infers
the true posterior distribution of the query set. The two networks are trained together in
an end-to-end fashion, where the prototypes generated by the prior network are used for
predicting the segmentation of query images, and the guidance from the posterior network
helps tune the prior network. The network is also supervised by the semantic loss com-
puted between the query prediction and the query groundtruth annotations. Additionally,
instead of utilizing the groundtruth labels of the support set solely for masking, we pro-
pose to use a cycle-alignment module (illustrated in Fig. 5.1 (e)) to reverse the roles of the
query and support sets by sampling prototypes from the posterior distribution, which are
then utilized to predict support segmentation maps. This scheme helps further exploit the
support information.

5.3.3 Prior-Posterior Architecture

The key component of our model is the prior-posterior architecture, which includes a prior
network estimating the prototype distribution for each class and a posterior network gen-
erating the true distributions of query images. Specifically, the prior net deploys a CNN
encoder to extract representations of support set images, which are then projected into a
latent space by a generator. Here we make an assumption that the prototype latent space
for each class follows a multivariate Gaussian distribution with a mean and a diagonal co-
variance structure. The groundtruth annotations over the support images are used to pool
the prototype for each category separately. We follow PANet [129] and adopt a late fusion
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strategy, which masks the feature maps to produce class-wise features separately instead
of directly masking the images before feeding them into the networks. We pool the feature
map for each category and get a fix-sized vector c as the class representation. The genera-
tor directly inputs c and splits the output into two equal dimensional vectors, µ and σ2. To
further constrain the range of the variance vector σ2, we propose to rescale it by using a
Sigmoid function S with learnable parameters w and b. Therefore, the learned latent space
parameters can be represented as:

[µprior, σ
2] = Gprior(c), (5.1)

σ2
prior = w · S(σ2) + b. (5.2)

The idea behind the prior network is to sample multiple prototypes as we need, which
increases the generalization capability of the class-specific prototypes. However, directly
guiding the query prediction by using such distributions generated from the support set
without supervision is not always reliable.

Therefore, we propose to use a posterior net to generate true prototype distributions of
the query set. Similar to the prior net, the posterior net uses the same CNN encoder to
extract the features of query images and then uses predicted segmentation masks as pseudo
masks to obtain the true prototype distribution for each class. Finally, a mean vector µpost

and a variance vector σ2
post are output from the posterior net for the posterior distribution

using the same protocol as the prior net.
We minimize the KL divergence to bridge the gap between the prior and the posterior

distribution. This encourages the inferred prototypes from the support images to match
those from the query images.

LKL = DKL[q(zq|Q)||p(zp|S)], (5.3)

where q and p represent the posterior (query) and prior (support) net respectively, and zq

and zp represent the predicted class prototypes.

5.3.4 Cycle-Alignment

Instead of using the groundtruth annotations from the support set only for mask-
ing [115] [104] [128], we propose a cycle-alignment module to further exploit those
annotations by reversing the query and support images and sampling prototypes from the
posterior distributions during training. In previous works, the support annotations are used
only for masking, which actually does not adequately exploit the support information for
few-shot learning. This design is intended to exploit the information from the support set
and improve the ability of the model to generalize from limited examples.
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It makes sense that if the model is able to effectively predict a segmentation mask for
the query image using prototypes learned from the support set, then the prototypes derived
from the query set based on the predicted masks should be capable of producing good
segmentations on the support images. Therefore, our cycle-alignment module makes the
segmentation network perform few-shot learning in a reverse direction, that is, treating the
query and its predicted mask as the new support set to segment the original support images.
It is important to note that this process only happens during training, and all the support
and query images used are taken from the training set Dtrain.

The cycle-alignment module is illustrated in Fig. 5.1 (e). Once a predicted segmentation
map is made for the query image, we use it to pool the query features and sample prototypes
from the posterior latent space. This results in a new set of prototypes. Subsequently,
these prototypes are used to predict the segmentation masks for the support images in a
non-parametric way. Finally, the cycle-alignment loss Lcycle is calculated by comparing
the support predictions with the support groundtruth annotations. This cycle-alignment
approach is essentially swapping the roles of the support and query sets, and by doing
that the model is encouraged to learn a uniform latent space that aligns support and query
prototypes.

5.3.5 Training and Inference

During training, we iterate every episode that contains support and query sets. We sample
class-specific prototypes from the prior distribution, use them to predict the segmentation
maps of query images, and compute the supervised segmentation loss Lseg. The posterior
network utilizes the predicted masks to generate the posterior distribution, and the KL
divergence is used to minimize the distance between the prior and posterior distributions.
Finally, the predicted segmentation maps of the query images are used to generate query
prototypes, which are subsequently employed for the cycle-alignment procedure outlined
above. The total loss for training our model is thus

L = Lseg + λ0LKL + λ1Lcycle (5.4)

where λ0 and λ1 serve as loss weights. In our experiments, we keep both weights as 1 since
different values give little improvement.

During the inference phase, we have a few labeled support images from Dtest and our
goal is to segment the unlabeled query images from the same set. Specifically, we need to
obtain a set of high-quality class prototypes from the limited number of labeled samples
and use them to predict segmentation maps of query images. For the k-shot setting, we
generate a prior distribution {Ni(µi, σ

2
i )}ki=1for each of the k support image-mask pairs.
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Subsequently, we adopt a variance-weighted average strategy and generate an overall dis-
tribution:

µ =

∑k
i=1

1
σ2
i
µi∑k

i=1
1
σ2
i

, (5.5)

σ2 =
k∑k

i=1
1
σ2
i

. (5.6)

The variance-weighted average operation differs from the equal-weighted average op-
eration by assigning greater weight to distributions with lower variance. This leads to the
enhancement of more representative distributions while limiting the impact of less signifi-
cant ones.

5.4 Evaluation

In this section, we present an overview of the datasets employed in our research, highlight
the baseline methods we used for comparison, and display the results and analysis of our
experiments.

5.4.1 Dataset

• Potsdam&Vaihingen [109]: This dataset is usually referred to as ISPRS, and it con-
tains very high-resolution aerial images collected in two cities of Germany: Vaihin-
gen and Potsdam. And for each aerial image, the ground truth labels are provided on
six classes: buildings, impervious surfaces (Imp. surf.), low vegetation (Low veg.),
trees, cars, and clutter.

• Aeroscapes [95]: Aeroscapes is a large labeled aerial dataset for semantic segmen-
tation. There are 3269 labeled images with 12 classes. Image size is 1280 × 720.
Most images are captured in an urban setting.

• UAVid[86]: UAVid is a recent aerial imagery dataset with 4K resolution. The images
are captured by a drone from a low altitude. It provides ground-truth semantic labels
for segmentation, in which 10 frames every 5s are labeled. UAVid contains 42 videos
in total, and each video includes 900 frames. Among those videos, 31 videos were
collected in China, which gives us 27,900 frames at a resolution of 3840 × 2160.
Following [88], we use a frame rate of 1 fps to minimize noise and parallax effects.
UAVid Germany videos are captured in both rural and urban areas. It contains 9 aerial
videos, which gives us 8,100 frames in total, at the resolution of 4096× 2160. Here
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Figure 5.2: Qualitative results of 1-way 5-shot learning for cross-domain on Vaihingen
dataset. The first three rows represent building, tree, and low vegetation respectively. And
the bottom row represents two failure cases, caused by the strong light reflection or the
shadow. Class annotations are blue for support images and green for query images.

we use a frame rate of 10 fps to achieve optimal performance. The scene complexity
of the UAVid Germany dataset is lower than UAVid China [94].

5.4.2 Implementation Details

We deploy the ResNet50 backbone pre-trained on ImageNet as the encoder. The prior
encoder and the posterior encoder share weights during training. The generator is imple-
mented by using two fully connected layers, for predicting mean and variance respectively.
Input images are resized to (417, 417) and augmented using random horizontal flipping.
The model is trained end-to-end by SGD with a momentum of 0.9 for 30,000 iterations.
The learning rate is initialized to 1e-3 and reduced by 0.1 every 10,000 iterations. The
weight decay is 0.0005 and the batch size is 1. Noted that we consider the mask of each
support image to be a binary mask (background and foreground). We compare with two
state-of-the-art few-shot semantic segmentation methods, PANet [129] and FPS [62], as
baselines. We report the F1 score of each class to evaluate the segmentation performance.
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Table 5.1: Cross-Domain Evaluation: Results on the Vaihingen Datasets.

Methods Imp. Surf Buildings Low Veg. Trees Cars Overall
FCN [80] (oracle) 90.5 93.7 83.4 89.2 72.6 89.1

PANet [129] 51.4 71.1 39.6 75.7 23.5 62.1
FPS [62] 62.6 73.1 38.7 80.5 41.1 67.7

Ours 64.5 75.8 39.1 82.1 43.0 70.1

Table 5.2: Cross-Domain Evaluation: Results on the Potsdam Datasets.

Methods Imp. Surf Buildings Low Veg. Trees Cars Overall
FCN [80] (oracle) 92.5 96.4 86.7 88.9 94.7 90.3

PANet [129] 49.7 66.7 40.9 60.1 20.0 52.5
FPS [62] 50.6 67.7 40.5 60.3 24.9 53.2

Ours 52.4 69.3 40.1 62.6 27.0 54.8

Table 5.3: Cross-Domain Evaluation: Results on the Aeroscapes Datasets.

Methods Car Road Construction Vegetation Road Overall
PANet [129] 52.3 63.1 38.7 65.6 54.1 53.2

FPS [62] 53.8 68.4 40.7 64.7 55.9 55.6
Ours 55.1 70.4 43.1 66.9 57.8 59.8

5.4.3 Cross-Domain Evaluation

We evaluate the cross-domain performance of our model by training the model on PASCAL
VOC 2012 [30] while testing on multiple aerial datasets in a few-shot learning setting. We
follow the experimental settings used in [129] and use 15 classes from PASCAL-5i during
training. Due to the extremely large sizes of aerial images, we follow [62] and split the im-
ages into smaller (417 × 417) patches. We adopt the standard episodical learning scheme
and conduct 5-shot learning experiments. We list the performance of our proposed method
of Vaihingen in Table 5.1 and Potsdam in Table 5.2. The FCN [80] (oracle) was trained
using the full training set in a fully supervised way, and we consider that as the upper bound
of our method. We also conduct experiments on Aeroscapes [95] and UAVid [86]. Perfor-
mances show that our method surpasses the previous methods FPS [62] and PANet [129]
by a large margin on all datasets. We also include a qualitative evaluation of the Vaihingen

Table 5.4: Cross-Domain Evaluation: Results on the UAVid Datasets.

Methods Building Tree Low Veg. Human Road Overall
PANet [129] 54.7 60.4 55.3 47.5 69.3 58.5

FPS [62] 58.1 63.6 56.8 46.4 70.6 61.7
Ours 60.7 66.5 57.9 49.9 73.3 65.4
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Table 5.5: Cross-Domain vs. In-Domain Segmentation performance on Building and Imp.
Surface Classes of Vaihingen Dataset.

Method Category Cross-Domain In-Domain

FPS
building 73.1 77.4

imp. surface 62.6 72.0

Ours
building 75.8 78.3

imp.surface 64.5 73.1

Table 5.6: Assessing the impact of changing the dimensionality N of the sampled proto-
types.

Dimension N=3 N=6 N=12
Performance 76.9 78.3 78.1

dataset, both successful and failure cases are illustrated in Fig. 5.2.

5.4.4 In-Domain Evaluation

Beyond the cross-domain evaluation, we also test our model under the in-domain setting.
Following FPS [62], we train the model on selected classes from Vaihingen and evaluate
the segmentation performance on other classes from the same dataset with 5 annotated
images per class. We conduct experiments with two settings: 1) we train our model on
the classes including impervious surface, low vegetation, tree, and car and test the perfor-
mance on building class and 2) we train our model on the classes including building, low
vegetation, tree, and car and test the performance on impervious surface. Table 5.5 lists the
performance of these two experiments conducted on Vaihingen. The results show that our
model performs better than the baseline learning with only 5 annotated labels.

5.4.5 Prototype Dimension

We sample prototypes from the latent space with the dimension of N , and then broadcast
the prototypes to the same size as the semantic feature maps. We analyze the size of the
latent vector N and conduct experiments under the in-domain evaluation protocol using
the building class in the Vaihingen dataset. The results are shown in Table 5.6. We see that
even as the latent vector size increases, the performance of our method remains roughly
stable.
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Table 5.7: Ablation Study: 5-shot cross-Domain Evaluation on the Vaihingen Dataset.

Method Buildings
PANet [129] 71.1

FPS [62] 73.1
Ours (w/o prior-posterior) 73.3

Ours (w/o cycle-alignment) 74.9
Ours (full) 75.8

5.4.6 Ablation Study

To verify the effectiveness of the two major components in our model, we conduct an
ablation study listed in Table 5.7. We perform 1-way 5-shot learning on the Vaihingen
dataset under the cross-domain setting, and the results show that both the prior-posterior
and the cycle-alignment components bring improvement, although the prior-posterior part
brings more.

5.5 Conclusion

We introduce a novel cross-scene few-shot semantic segmentation framework for aerial
imagery. Our method can perform segmentation for unseen object categories with only
a few annotated samples. This is important for autonomous systems, especially for those
deployed in a realistic real-time setting, e.g., unmanned aerial vehicles (UAVs). We present
CrossSeg: a novel framework that learns a semantic segmentation network that can gener-
alize well in a cross-scene setting with only a few labeled samples. Instead of using a set of
deterministic prototypes, CrossSeg offers high-quality probabilistic prototypes which can
not only represent different semantic classes but can also enhance the huge variations in
aerial images. We provide both quantitative and qualitative evaluations on multiple aerial
and remote sensing datasets. These datasets contain widely varying viewpoints, which is
more challenging than is typically considered in prior work on few-shot learning for se-
mantic segmentation. Our approach significantly improves upon conventional few-shot
segmentation baselines and does not require extensive tuning. We believe this work will be
useful for many aerial and remote sensing applications.
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Chapter 6

Discussion

Building a robust deep-learning framework for visual tasks is a challenging problem. While
methods for unsupervised domain adaptation have had great success, semi-supervised do-
main adaptation and multi-domain adaptation without further refinement steps have yet
to catch up. Our dissertation focused on improvements to those problems and settings.
We proposed a novel method for semi-supervised domain adaptation, multi-domain depth
estimation, and multi-domain few-shot aerial segmentation.

6.1 Findings

In Chapter 2, we introduce the technical background used in this dissertation, specifically
convolutional neural networks, domain adaptation, self-supervised reconstruction, and pro-
totypical learning. We also introduce a clinical case for unsupervised domain adaptation on
mammogram imaging in Section 2.2.1, which is one of my early works in the Ph.D. study.

In Chapter 3, we introduce a semi-supervised domain adaptation framework for image
classification. Most research on domain adaptation has focused on the purely unsupervised
setting, where no labeled examples in the target domain are available. However, in many
real-world scenarios, a small amount of labeled target data is available and can be used to
improve adaptation. We address this semi-supervised setting and propose to use dynamic
feature alignment to address both inter- and intra-domain discrepancy. Unlike previous
approaches, which attempt to align source and target features within a mini-batch, we pro-
pose to align the target features to a set of dynamically updated class prototypes, which
we use both for minimizing divergence and pseudo-labeling. By updating based on class
prototypes, we avoid problems that arise in previous approaches due to class imbalances.
Our approach, which doesn’t require extensive tuning or adversarial training, significantly
improves the state of the art for semi-supervised domain adaptation. We provide a quanti-
tative evaluation on two standard datasets, DomainNet and Office-Home, and performance
analysis.
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In Chapter 4, we introduce a cross-scene depth estimation framework under the multi-
domain setting. We address the task of monocular depth estimation in the multi-domain
setting. Given a large dataset (source) with ground-truth depth maps, and a set of unla-
beled datasets (targets), our goal is to create a model that works well on unlabeled target
datasets across different scenes. This is a challenging problem when there is a significant
domain shift, often resulting in poor performance on the target datasets. We propose to
address this task with a unified approach that includes adversarial knowledge distillation
and uncertainty-guided self-supervised reconstruction. We provide both quantitative and
qualitative evaluations on four datasets: KITTI, Virtual KITTI, UAVid China, and UAVid
Germany. These datasets contain widely varying viewpoints, including ground-level and
overhead perspectives, which is more challenging than is typically considered in prior work
on domain adaptation for single-image depth. Our approach significantly improves upon
conventional domain adaptation baselines and does not require additional memory as the
number of target sets increases.

In Chapter 5, we introduce a cross-scene few-shot semantic segmentation framework
for aerial images. Conventional semantic segmentation approaches can only recognize the
classes at test time that have appeared in the training set and are hard to generalize well
to unseen object categories. This is a significant limitation for autonomous systems, es-
pecially for those deployed in a realistic real-time setting, e.g., unmanned aerial vehicles
(UAVs). In this work, we address the task of few-shot semantic segmentation for different
aerial scenes. We present CrossSeg: a novel framework that learns a semantic segmen-
tation network that can generalize well in a cross-scene setting with only a few labeled
samples. Instead of using a set of deterministic prototypes, CrossSeg offers high-quality
probabilistic prototypes which can not only represent different semantic classes but can
also enhance the huge variations in aerial images. We provide both quantitative and qual-
itative evaluations on multiple aerial and remote sensing datasets. These datasets contain
widely varying viewpoints, which is more challenging than is typically considered in prior
work on few-shot learning for semantic segmentation. Our approach significantly improves
upon conventional few-shot segmentation baselines and does not require extensive tuning.

6.2 Future Works

This dissertation proposed several methods for domain adaptation and few-shot segmenta-
tion. Our work focused on the multi-domain setting, primarily using prototypes. There are
several possible future research directions for extending this work. One line of research that
has become popular is using Graph Neural Network or Transformer to model the relation-
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ship between each prototype in a set. By exploiting the relationship between prototypes,
we may be able to find a better way to distill common knowledge from the training data.
For depth estimation, we believe a future direction of fusing the semantic information and
the depth information in a smart way may boost the performance since both sources contain
geometry information and can be cross-verified during training. As for the future direction
on few-shot segmentation, we believe that exploiting the information in unlabeled data will
lead to a new state-of-the-art in this field. Currently, the support set only contains a few
labeled samples, and the knowledge that the model learned from those is limited. With the
fast development of self-supervised methods,e.g, SimCLR [14], how to use that in few-shot
learning still remains an interesting and open problem.
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