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Abstract
Coherent manipulation of atoms with atom-optic light pulses is central to atom
interferometry. Achieving high pulse efficiency is essential for enhancing fringe
contrast and sensitivity, in particular for large-momentum transfer interferometers
which use an increased number of pulses. We perform an investigation of optimizing
the frequency domain of pulses by using tailored polychromatic light fields, and
demonstrate the possibility to deliver high-efficiency and resilient atom-optic pulses
even in the situation of inhomogeneous atomic clouds and laser beams. We find that
this approach is able to operate over long interrogation times despite spontaneous
emission and to achieve experimentally relevant pulse efficiencies for clouds up to
100 μK. This overcomes some of the most stringent barriers for large-momentum
transfer and has the potential to reduce the complexity of atom interferometers. We
show that polychromatic light pulses could enhance single-photon-based
large-momentum transfer atom interferometry—achieving 850�k of momentum
splitting with experimentally accessible parameters, which represents a significant
improvement over the state-of-the art. The benefits of the method extend beyond
atom interferometry and could enable groundbreaking advances in quantum state
manipulation.

Keywords: Atom-optics; Atom interferometry; Large momentum transfer

1 Introduction
Many quantum technologies rely on the coherent manipulation of atomic states. In atom
interferometry-based quantum sensors, splitting and recombining atomic wavepack-
ets [1–3] is achieved through suitable light pulses delivering a specific fraction of pop-
ulation transfer [4]. Fringe contrast and sensor sensitivity are ultimately bounded by the
efficiency of these elementary operations. Those are however reduced in practice by in-
homogeneities experienced by the atomic wavepacket [5–7] and sources of decoherence.
As different atoms within the cloud experience different laser intensities (due to their po-
sitions within the beam) and see different Doppler-shifted laser frequencies (due to their
individual thermal velocities), common pulses fail to simultaneously address all of them,
resulting in a reduced overall pulse efficiency. Additionally, spontaneous emission causes
decoherence leading to atom losses also reducing the pulse efficiency. These effects be-
come especially limiting in large-momentum transfer (LMT) atom interferometry [8–15]
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where high pulse efficiency must be maintained over long pulse sequences despite cloud
expansion, accumulated Doppler shifts and spontaneous emission. Current efforts to de-
liver more homogeneous beams remain limited by the available technology. Interesting
approaches like composite pulses [5, 16–18]—where the phase of the beams is tuned to
increase pulse resilience—and adiabatic passages [19, 20] have been developed, as well as
recent demonstrations including driving an interferometer using frequency combs [21]
and the use of Floquet atom optics [22]. However, most of these typically require longer
pulse durations, leading to more decoherence from spontaneous emission, which remains
a limiting factor in single-photon LMT atom interferometry [11] yet to be addressed by
any scheme.

In this article, we take a different approach by proposing to optimize the frequency do-
main of pulses, and implement it to drive atom optic transitions using polychromatic
light pulses. While most existing literature relies on the paradigmatic monochromatic
pulse model [23], studies have pointed out the richer internal dynamics of an atom sub-
jected to light fields comprised of several frequencies [24–27]. With a plethora of exotic
effects [28–31], they offer additional handles to control and optimize the atom-light dy-
namics. In this work, we demonstrate the ability to tailor such fields to increase the pulse
resilience to atomic cloud inhomogeneity, hence delivering high-efficiency pulses at the
atomic cloud scale [see Fig. 1]. Moreover, by tailoring the light fields to design non-trivial
atomic internal dynamics, we demonstrate a reduced impact of spontaneous emission in
single photon interferometers over unprecedented times. We find that such schemes can
enable major benefits for LMT atom interferometry with currently available technology.

2 Results
Polychromatic dynamics Consider a two-level atom (|g〉, |e〉) as used in single-photon1

atom interferometry [32],2 driven by a generic structured polychromatic field containing
N frequency components at frequencies ωn = ωL + δωn, where we have introduced ωL as
the central laser frequency. Here, we consider a regime where the frequency differences
δωn are at the scale of the Rabi frequency (≈kHz–MHz), hence much smaller than the
optical frequencies ωn, ωL. In this regime, using the rotating wave approximation permits
to neglect fast-oscillating terms at optical frequencies so that the coherent atom dynamics
take the general form

i∂t

(
cg

ce

)
=

(
0 �(t)/2

�∗(t)/2 �

)(
cg

ce

)
, (1)

with �(t) =
∑

n �nei(δωnt+φn) where �n is the individual Rabi frequency of the nth fre-
quency component,3 φn its phase, and � ≡ ωat – ωL with ωat the atomic frequency. The
coefficients ce(t), cg(t) are the excited—and ground-state wavefunction amplitudes and

1We anticipate that the ideas presented here could be adapted to the case of two-photon transitions such as Bragg or Raman
schemes, which reduce to an effective single-photon problem under suitable conditions, although a proper derivation
would require a careful treatment.
2In an atom interferometer where internal and momentum degrees of freedom are entangled, the two quantum states live
in a tensorial product of the two (internal and momentum) Hilbert spaces. Here, as the difference in momentum imparted
by the different field components remains extremely small, |kn – km| � kL , we can safely assume that the system can still
be considered as a two-level system.
3Equation (1) generically describes any linear interaction between a two-level atom and an electric field, yet the exact
relation between �n and the electric field amplitude of the n-th component depends on the considered transition.
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fulfill the normalization condition |ce|2 + |cg |2 = 1. In the presence of spontaneous emis-
sion, the dynamics are captured instead by the optical Bloch equations (OBE) on the den-
sity operator ρ̂

i∂tρeg = –
(

i
	

2
+ �

)
ρeg – �(t)

(
ρee –

1
2

)
,

i∂tρee = –i	ρee – 2i Im
[
�(t)ρeg

]
(2)

with 	–1 the lifetime of the excited state.
When considering an atomic cloud, we introduce the cloud-averaged transition proba-

bility defined as

〈
Pg→e(t)

〉
=

∫
v

∫
r

f (r)fv(v)Pg→e[t, r, v] d3v d3r, (3)

where f (r) is the cloud spatial distribution, fv(v) its velocity distribution, and Pg→e[t, r, v]
is the excited state probability of a single atom at position r and velocity v initially in the
ground-state, after a pulse duration t. This single-atom probability is given by |ce|2 = ρee,
which can be numerically computed by solving Eqs. (1)–(2) with initial condition ρgg(0) =
|cg(0)|2 = 1 and substitutions � → �–kL.v (Doppler shift on each frequency of the driving
field4) and �n → �n,r (with �n,r encoding the spatial dependence of the Rabi frequency of
each component of the driving field). In all this work, we will assume a Maxwell–Boltzman
velocity distribution, fv(v) = 1

(2π )3/2σ 3
v

exp–v2/2σ 2
v with σv =

√
kBT/m, and a Gaussian spatial

distribution for the cloud, f (r) = 1
(2π )3/2σ 3

pos
exp–r2/2σ 2

pos .
In polychromatic fields, the interplay between the different frequency components in

�(t) generically gives rise to time-dependent interference effects underlying a non-trivial
dynamics in Eqs. (1)–(2) [see Sect. A.1 in the Appendix]. In particular, at variance with
monochromatic Rabi oscillations, polychromatic dynamics generally show an asymmetry
in the occupation of the ground and excited states, as observed in a variety of situations
at the single-atom level [24–27, 31] and depicted on Fig. 1. However, extending to many-
atom clouds results in averaging and incoherence, possibly blurring out these effects. For
usual monochromatic pulses, this results in a loss of contrast and damping of Rabi os-
cillations [see Fig. 1]. In the following, we demonstrate that through a suitable tailoring
of polychromatic fields, such features can be preserved and further exploited to achieve
disruptive pulse efficiency, resilience and coherence.

Tailored polychromatic fields We consider polychromatic models with the form of fre-
quency combs, which offer an intuitive framework while being versatile to experimentally
implement and tailor. We assume a comb of frequencies centred around the laser fre-
quency ωL and made of N evenly-spaced pairs of symmetrically-detuned peaks. Denoting
δω as the spacing between adjacent peaks, we will consider two situations: (i) Spectra with
a resonant component, in which case the field has components at frequencies δωn = nδω,
n ∈ Z; (ii) Spectra with no resonant component, in which case the field has components at
frequencies δωn = (n–sign(n)/2)δω, n ∈ Z

∗ [see Fig. 2]. We assume the polychromatic light

4As the spectrum wavevector dispersion remains extremely small, |kn – km| � kL , we find that assuming a global Doppler
shift of kL .v for all frequencies is a very accurate approximation here.



Lellouch et al. EPJ Quantum Technology            (2023) 10:9 Page 4 of 16

Figure 1 Illustrative comparison between the monochromatic and polychromatic dynamics of different
atoms within a cloud, and the resulting cloud-average. This drawing is based on simulation results obtained
with a polychromatic comb of type C [see Fig. 2] with α = 0.9; the representation of the spectra above is
purely illustrative though

to be aligned along the z-axis, and create a Gaussian spatial intensity distribution in the
(x, y) plane, I(r) = I0 exp–(x2+y2)/2σ 2

beam . Introducing the Rabi frequency associated with the
total intensity at the center of the beam, �T = d/�

√
2I0/cε0,5 individual Rabi frequencies

�n,r therefore read6 �n,r = �n exp–(x2+y2)/4σ 2
beam with the power normalisation condition∑

n �n
2 = �2

T . We assume here a constant power ratio α between two adjacent pairs of
peaks, α = �n+1

2/�n
2 for all n ≥ 0. In the particular case α = 1 (equal amplitude comb), it

gives �n = �T /
√
N where N = 2N + 1 is the number of peaks with a resonant component,

and N = 2N without. We further introduce the comb aspect ratio ε ≡ δω/�n0 with �n0

the Rabi frequency of the most central component (n0 = 0, 1 depending on whether there
is a resonant component).

A detailed description of the dynamics of a single atom subjected to such frequency
combs is provided in Sect. A.1 in the Appendix. In particular, we find there that two con-
ditions enable the design of flat extended oscillation plateaus: an aspect ratio ε = 1, and
all field components to be in phase, φn = 0; in this case, constructive time-dependent in-
terference indeed occurs between field components as visible from Eq. (4) [Sect. A.1]. In
the following, we work under these conditions and evidence how tailoring such flat asym-
metric Rabi oscillations enables an increased pulse efficiency, resilience and coherence at
the atomic cloud scale.

5This is assuming an electric-dipole interaction; the relation between Rabi frequency and intensity may be different for
other types of transitions.
6This assumes the same intensity distribution for all field components.
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Figure 2 Cloud-averaged transition probability without considering spontaneous emission for a
monochromatic pulse (blue) and three polychromatic spectra A, B (equal amplitude, N = 10) and C (α = 0.7)
with the same total Rabi frequency �T = 4.8MHz (which correponds for instance to a power P = 100 mW on
the 1S0–3P1 transition in 87Sr). Combs B and C have no resonant component and the aspect ratio is ε = 1 in all
three cases. Here, σpos = 2 mm and σbeam = 5 mm. While polychromatic fields display an enhanced efficiency
even at high temperatures (left), contrast loss over time can be eliminated by removing the resonant
component (middle), and smooth population transfers can be performed by shaping the pulse power
spectrum (right)

Pulse efficiency and temperature resilience Figure 2 compares the cloud-averaged tran-
sition probability obtained with three polychromatic comb models and a monochromatic
field of same total power and intensity distribution, in the absence of spontaneous emis-
sion. With a maximal probability transition topping ≈1, we find that polychromatic pulses
permit higher-efficiency population transfers for the atomic cloud. This can be under-
stood from an enhanced resilience to cloud averaging arising from the robustness of the
scheme to individual atomic positions and velocities. On the one hand, clean plateaus re-
duce the sensitivity to pulse duration and local Rabi frequency inhomogeneities within
the cloud.7 Therefore, we define the polychromatic π-time as the duration to reach the
middle of the first plateau. On the other hand, polychromatic combs remain rather insen-
sitive to individual thermal Doppler shifts, which arises from the combs being regular and
narrowly-spaced—ensuring any detuned atom will be near-resonant with another close
peak—and from their high bandwidth: while we find here that ε ≈ 1 is enough to ensure
the former, the pulse bandwidth �BW at fixed ε can be increased at no cost of optical
power by increasing the number of peaks, �BW ∝ √

N . This guarantees high resilience to
detunings and thermal averaging [see Fig. 3, left]. As a result, polychromatic pulses could
enable high-efficiency quantum state manipulation at high temperatures, removing major
complexity barriers in atom-optics based quantum technologies.

Comb tailoring With standard pulse shaping techniques [33–35], interesting pulse prop-
erties can be designed by tailoring the spectrum envelope. For example, introducing a
power ratio α < 1 produces smoother plateaus [Fig. 2, right], which ensures that the single-
atom π-time, τ poly

π = π/δω [see Sect. A.1 in the Appendix], can be used as an optimal pulse

7This is slightly subtler as atoms at different positions experience different aspect ratios ε ; yet, an appropriate choice of
ε = 1 proves optimal here.
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Figure 3 Left: Efficiency of a π -pulse as a function of detuning � =ωat –ωL for a monochromatic and a
polychromatic [spectrum (B), N = 10, ε = 1] pulse without considering spontaneous emission, with
T = 100 μK, �T = 4.8MHz and σbeam = 5 mm. The efficiency is obtained by taking the cloud-averaged
transition probability at the chosen π -time (monochromatic: first Rabi maximum; polychromatic: middle of
the first plateau). Due to their larger bandwidth, polychromatic pulses are more resilient to detunings. Right:
Efficiency of a π - and 5π -pulse as a function of cloud temperature in the monochromatic and two
polychromatic cases [combs (A) and (B), N = 10, ε = 1] with �T = 4.8MHz, σpos = 1 mm and σbeam = 5 mm.
Polychromatic pulses enable a higher efficiency up to large temperatures, which can be maintained over
several Rabi cycles by removing the comb’s resonant component

duration even when addressing a cloud with no reduction of the pulse efficiency—an asset
over monochromatic pulses. However, polychromatic combs offer further tailoring op-
tions, especially at long timescales where the discreteness of the spectrum—and not only
its envelope—starts to be relevant. An interesting effect is the mitigation of contrast loss
over long pulse times. While monochromatic Rabi oscillations are unavoidably damped
due to accumulating dephasings between atoms, we find that polychromatic fields with no
resonant component are more robust [Fig. 2, middle]. This can be understood from Eq. (4)
[Sect. A.1 in the Appendix], which shows that in the absence of a resonant component,
the oscillation frequency for a given atom does not depend on the local Rabi frequency
but only on δω so all atoms oscillate in phase. At low temperature, when only position
effects are relevant, this results in a complete suppression of the damping [Fig. 3, right].
When increasing the temperature, the Doppler broadening of the peaks makes the two
models (A) and (B) more indistinguishable so that they both converge to an intermediate
behaviour where the damping saturates to a stationary value after a few cycles.

Spontaneous emission mitigation Another appealing feature of polychromatic pulses is
the suppression of spontaneous emission, which, in monochromatic pulses, usually intro-
duces an unavoidable decay of the amplitude of Rabi oscillations. For instance, on the in-
tercombination line transition 1S0–3P1 on 87Sr (λ = 689 nm, 	 = 2π ×7.4 kHz), the excited-
state lifetime of 21.6 μs is a severe limiting factor for long pulse sequences such as desired
in LMT interferometry [11]. Here, we demonstrate that designing highly asymmetric dy-
namics within the pulse timescale can overcome this barrier by allowing the atoms to
spend most of their time in the ground-state. To do so, we use here an equal-amplitude
comb (B) with ε = 1. Figure 4 displays the polychromatic dynamics of a 87Sr atom initially
in the ground—(red dashed line) or excited—(green solid line) state. While starting in the
ground state increases spontaneous emission over the monochromatic case (blue) as a
consequence of the atom spending longer time in the excited state, starting in the excited
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Figure 4 Single-atommonochromatic (blue) and polychromatic (red/green) dynamics of a 87Sr atom on the
1S0–3P1 transition for different initial conditions. Used here is comb (B) with N = 10 and P = 100 mW,
σbeam = 5 mm (hence �T = 4.8MHz). When starting the polychromatic dynamics in the ground state (red
dashed), spontaneous emission is enhanced over the monochromatic case due to the atom’s plateauing in
the excited state. Conversely, when starting in the excited state (green), the atom spends very little time in it,
resulting in reduced spontaneous emission

state strongly suppresses it, as the atom spends most of its time in the ground state. The
latter approach enables the maintenance of high oscillation contrast over times larger than
the excited-state lifetime.

Large-momentum transfer Maintaining a high pulse efficiency over long timescales de-
spite accumulating dephasings and spontaneous emission is particularly interesting in the
context of LMT atom interferometry based on sequential π-pulse schemes. So far, the
record LMT reported with such schemes, operating on the 1S0–3P1 transition in 87Sr, is
141�k [11]. The 21.6 μs excited state lifetime is however a particularly stringent limit-
ing barrier here, and most current efforts with monochromatic pulses focus on deliv-
ering shorter pulses, which unfortunately entails large amounts of optical power. Due
to their ability to operate on longer coherence times if used in a suitable implementa-
tion, polychromatic pulses could permit to overcome this paradigm. We propose here a
LMT scheme that fully exploits these benefits [see Fig. 5, top]. It assumes that one arm is
put into a dark state—by performing the opening π/2 pulse on the 1S0–3P0 clock transi-
tion (λ = 698 nm, 	 = 2π × 1 mHz)—while the other is prepared in the excited state of
the 1S0–3P1 transition—e.g. by using an initial monochromatic pulse—to ensure effective
spontaneous emission mitigation. The beamsplitter sequence is then driven by M poly-
chromatic pulses coming from alternate directions: if the pulse duration is set to half the
length of the plateaus on Fig. 4, atoms will oscillate between the ground—and excited-
state, receiving a momentum �k from each pulse. Light is switched on/off after each pulse
to change direction. After M pulses, a LMT of M�k is reached and M further pulses de-
celerate the addressed arm; after a mirror pulse, the closing sequence is symmetrically
constructed to create the interferometer [13].

Compared to the analogous scheme operating on monochromatic pulses only [Fig. 5,
bottom], this polychromatic scheme enables a significant LMT improvement. Using typ-
ical experimental parameters and a polychromatic field of type (B) with N = 10, we find
that the overall interferometer visibility [see Sect. A.2 in the Appendix], which is a good
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Figure 5 Top: Possible scheme for LMT on 87Sr based on sequential polychromatic π -pulses with
spontaneous emission reduction. Bottom: Analogous scheme on 87Sr when operating with monochromatic
π -pulses. Due to the benefits of polychromatic pulses, the polychromatic scheme enables a factor of 13
improvement on the momentum separation of the interferometer for the same experimental parameters. The
numbers presented here (850�k and 64�k) correspond to the LMT after which the interferometer visibility
drops to 2%, which is obtained from a full calculation of the LMT visibility on both schemes assuming
commonly used experimental parameters [see the Appendix, Sect. A.2]

estimate of the expected fringe contrast, drops to 2% after 64�k in the monochromatic
case, versus 850�k in the polychromatic case [Fig. 9], which corresponds to a factor of 13
improvement in LMT order. Although this polychromatic scheme addresses only one arm
of the interferometer (in order for spontaneous emission to be suppressed), it still proves
advantageous over a two-arm-based symmetric monochromatic scheme [see Sect. A.1 in
the Appendix, Fig. 10], pushing the LMT order achieved (assuming the same 2% visibility
threshold) from 151�k to 850�k, or allowing alternatively an increase of the interferom-
eter visibility at 151�k from 2% to 55%. This represents a ≈27 times improvement in
visibility at no cost of optical power or cooling. We further stress that due to the large
polychromatic pulse bandwidth (≈90 MHz), no Doppler-shift compensation is required
until ≈3000�k, whereas this would have been necessary to reach LMT beyond ≈600�k
with monochromatic pulses.

We note that we have focused here on demonstrating improvements on the interferom-
eter visibility, yet subtleties may arise as regards the interferometer phase. In particular,
the relative uncertainty in the transferred momentum induced by the spectrum exten-
sion can result in an uncertainty on the phase and the scale-factor of the interferometer.8

For instance, as the spectrum bandwidth is several orders of magnitude smaller than light
frequencies �k/k ≈ 10–8, we expect, for an interrogation time T = 1 s, the resulting uncer-
tainty on the phase MkgT2 to remain below typical shot noise (1 mrad/shot) up to LMT

8Such effects may also be induced by the finite velocity acquired by the atomic cloud, which amounts to its seeing a shifted
frequency comb; while the scheme we propose is particularly resilient to frequency detunings as regards pulse efficiencies
[see Fig. 3], how this affects the interferometer phase may require a detailed analysis.
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orders of 104
�k. For higher LMT orders, a more careful analysis would be needed to assess

these effects and possible trade-offs to be made.

3 Discussion
Compared to other pulse engineering techniques such as composite pulses [5, 16–18], adi-
abatic passages [19, 20] and Floquet atom optics [22], tailored polychromatic pulses could
offer new benefits such as reducing decoherence and the impact of spontaneous emission
without requiring any increase of mean laser power. This is achieved, instead, by taking
advantage of the non-trivial features of the polychromatic quantum dynamics which al-
lows the circumvention of short pulses. Compared to other works involving polychromatic
pulses [24–27, 31], our study is to our knowledge the first to evidence such effect and the
first to implement such pulses in a many-atom configuration. Polychromatic pulses are a
particular type of shaped pulses, as used for instance in NMR [33], that permit the inves-
tigation of optimizing the frequency domain of pulses.

The comb configuration we have proposed offers a versatile and intuitive framework for
demonstrating the underlying mechanisms while being convenient to experimentally im-
plement. For a small number of comb teeth, the most direct way would be to use several
lasers in parallel at different frequencies and phase lock them; splitting that way the to-
tal mean power between a small number of different lasers would already produce visible
benefits over the monochromatic case. For higher numbers of field components, which
would allow even greater benefits, an option would be to use an electro-optic modula-
tor in a single sideband configuration and generate the requisite spectra with the radio-
frequency signal created by an arbitrary waveform generator. While the combs require-
ments we have identified are commensurate with the current capabilities of commercial
modulators, some technical details, such as the precise control of the phase relationship
between field components or the robustness of the scheme against imperfections in the
design of comb teeth, might need a careful attention.

While we have focused here on comb tailoring in frequency and amplitude, we expect
that combining this with comb shaping in phase could allow even greater tailoring options
and benefits, which is left for future studies. In particular, while we have focused here on
demonstrating improvements on the interferometer visibility, polychromatic pulse shap-
ing in phase could lead to a better control of the interferometer phase. Moreover, the ideas
presented here could be extended in the future to arbitrary spectra, such as continuous
ones, potentially leading to new findings in the field of pulse frequency spectrum opti-
mization.

4 Conclusions
Polychromatic pulses have the potential to enable the pulse efficiency improvements re-
quired to realise next levels of LMT and sensitivity for atom interferometers with no tech-
nological push needed on cooling or power, which represents a paradigmatic shift. By
mitigating even the most fundamental effects such as spontaneous emission, they enable
the use of single-photon transitions with a reduced need to operate on long lifetime clock
transitions, opening the route to atom interferometers for fundamental physics [36, 37].
While we have evidenced their benefits on single-photon π-pulses, the idea could be ex-
tended to other pulses and multi-photon transitions, having relevance to both current and
future fundamental and applied experiments. Furthermore, tailored polychromatic pulses
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have the potential to reduce the complexity of atom interferometry systems through en-
abling high efficiency pulse schemes to be achieved at high temperatures, and through
reducing the technological needs of delivering fast, high repetition, pulses. Such techno-
logical potential, as well as the robustness against position/velocity shifts, could under-
pin the development of high-sensitivity robust field-deployable gravity sensors [38, 39].
Moreover, such pulse schemes could be relevant to quantum information approaches that
address many atoms, where realising high efficiency and mitigating decoherence are cur-
rently major challenges [40].

Appendix
A.1 Single-atom polychromatic dynamics
In this section, we review the properties and give some insight into the dynamics of a
single atom subjected to the polychromatic comb models considered in this work. The
single-atom dynamics is numerically obtained by solving Eq. (2) [Eq. (1) in the absence
of decoherence sources] with some given initial condition. For simplicity, we assume here
that the atom is initially in the ground state (ρgg(0) = |cg(0)|2 = 1) and we are interested
in the excited-state probability (Pe(t) = |ce|2 = ρee) as a function of time. Note that in the
specific case of a non-detuned (� = 0) atom in the absence of decoherence, the problem
becomes fully solvable analytically [41] and we find Pe(t) = sin2 A(t)/2 with

A(t) =
∫ t

–∞
�

(
t′)dt′ =

N∑
n=–N

�n
(sin δωnt + φn)

δωn
. (4)

For the sake of simplicity, we focus here the analysis on equal amplitude combs (i.e. of type
A and B) and assume all field components to be in phase, φn = 0.

Assuming first a comb of type B (no resonant component), Fig. 6 shows how adding more
and more frequency components modifies the shape of Rabi oscillations. The dynamics
[in blue] features a global periodicity, inside which smaller structures appear; these differ-
ent timescales arise from the two frequency scales of the comb, namely: (i) its spacing δω,
which implies a periodicity of 2π/δω in the dynamics; (ii) its bandwidth ≈N δω, which is
associated with the shorter timescale of the first maximum, τrapid ≈ π/N δω. When N is
large enough, flat and extended oscillation plateaus appear, separated by sharp drops as
a consequence of the time-dependent Rabi frequency �(t) [plotted in red] being sharply
peaked around multiples of 2π/δω. This behaviour can be qualitatively understood in the
time domain where, for a large number of field components, the polychromatic pulse bares
similarities with a train of short pulses; in this picture, at t = 0, the first pulse of the train
would drive a rapid π-pulse arising from all field components being in phase, while all the
subsequent pulses, which have a double pulse area, would correspond to quick 2π-pulses
(going back and forth the excited-state)—overall producing plateau-shaped Rabi oscilla-
tions. While the short term dynamics is therefore similar to a short monochromatic pulse,
the later dynamics, such as the existence of plateaus spaced by π/δω, is intimately linked
to the comb’s inner structure. As a consequence, it is advantageous to define the polychro-
matic π-time as the duration to reach the middle of the first plateau, which is given for a
single atom by τ

poly
π = π/δω. By setting a polychromatic π-time at this timescale, we are

able—at the expense of longer pulses—to exploit the new features of the polychromatic
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Figure 6 Frommonochromatic to polychromatic Rabi oscillations—For a comb of type B, plotted is the
excited state probability for a single non-detuned (� = 0) atom (blue); when gradually increasing the number
of peaks at fixed mean power, the standard sinusoidal Rabi oscillations distort to eventually feature extended
plateaus. In red, the time-dependent Rabi frequency �(t) corresponding to the considered spectrum. We
note that the dynamics displayed here are very general in the sense that changing the total power in the
comb would only amount to rescaling the timescale of the dynamics, producing the same curves as a
function of �1t

dynamics, getting additional benefits over short monochromatic pulses, such as an en-
hanced resilience to spatial inhomogeneities (arising from flat-top Rabi oscillations) and
specific comb tailoring options to mitigate contrast loss [see main text].

Figure 7 (right) shows how the dynamics is modified when the comb spacing δω is
changed (as measured here by the comb aspect ration ε = δω/�1). Not only the periodicity
is modified as per 2π/δω, but also the height of the plateaus is changed. This can be quan-
tified by computing the π-pulse efficiency, which is given by the excited-state probability
at mid-plateau time (polychromatic π-time τ

poly
π ). As visible on Fig. 8, the latter displays

a maximum at ε = 1, which motivates why such tailoring choice is made in the paper.
For combs of type A (i.e. containing a resonant component), the dynamics also display

similar plateaus of length 2π/δω [see Fig. 7 (left)]. However, at variance with combs B, the
plateaus’ length does not correspond to a periodicity in the dynamics: writing the aspect
ratio ε ≡ δω/�0 = p/q, a true global periodicity is only restored after p plateaus, i.e. after
a time 2πp/δω = 2πq/�0. This can be understood from Eq. (4): while all non-resonant
terms in the sum oscillate at δω (hence the overall periodicity for combs B), the resonant
component in combs A oscillates at �0. Therefore, the existence of a global periodicity de-
pends on the degree of commensurability between δω and �0, which is captured through
the parameter ε. If ε is irrational, there is no periodicity in the dynamics, which become
quasiperiodic. Interestingly, we observe that the first plateau is very similar to what it is for
a comb of type B. As a result, the π-pulse efficiency as a function of comb spacing displays
a very similar behaviour than in the case of combs B [see Fig. 8], justifying here as well the
choice ε = 1 made in this paper.

Finally, we observe [see Fig. 7] that in the limit δω → ∞ where all non-resonant field
component are set to infinity, the dynamics for combs A converges to the expected
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Figure 7 Excited-state probability of a single atom initially prepared in the ground-state and subjected to a
polychromatic field with (comb A, left) and without (comb B, right) a resonant component, for different values
of the comb aspect ratio ε . For combs B, the dynamics display a periodicity of 2π /δω = 2π /ε�1; for combs
A, such segments of length 2π /δω do not repeat periodically and it is only if the comb spacing and the
resonant component are commensurate, ε ≡ δω/�0 = p/q that a global periodicity is restored after
2πp/δω = 2πq/�0

Figure 8 For a non-detuned single atom, π -pulse efficiency as a function of the comb aspect ratio ε . The
π -pulse efficiency is obtained by taking the transition probability at the polychromatic π -time (middle of the
first plateau, given by π /δω in the single-atom case considered here). For combs both with and without a
resonant component, the efficiency is maximal at ε = 1, which can be seen from Eq. (4). We have used here
N = 10 pairs of peaks

monochromatic dynamics as the plateaus get smaller and smaller to reconstruct the shape
of a Rabi oscillation at frequency �0; in turn, for combs B, the excited-state probability
identically converges to zero are there is no resonant component. In the limit, δω → 0,
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the dynamics for both combs A and B converges to rapid monochromatic Rabi oscilla-
tions at the total Rabi frequency �T , as all field components coalesce.

A.2 Large-momentum transfer and interferometer visibility
We consider here the two LMT schemes (resp. polychromatic and monochromatic) de-
picted on Fig. 5 as well as the monochromatic symmetric scheme depicted on Fig. 10
and assume the following commonly-used parameters: T = 3 μK, σpos = 160 μm, σbeam =
0.75 mm, P = 40 mW (which correspond to τmono

π = 161 ns). We assume the polychromatic
field to be of type (B) with 10 pairs of peaks (yielding τ

poly
π = 720 ns). Figure 9 compares

the interferometer visibility of these three LMT sequences as a function of LMT order.
It is defined here as the product of the individual efficiencies of all the pulses involved
in the sequence, taking into account cloud averaging and decoherence mechanisms de-
scribed previously as well as cloud expansion along the sequence. We have checked on
shorter pulse sequences that compared to an exact simulation of the full interferometric
sequence, this common approximation of multiplying individual pulse efficiencies yields
very similar results at reduced computational cost, with a tendency to only slightly under-
estimate the overall interferometer visibility. No Doppler-shift compensation is required
here due to the large polychromatic pulse bandwidth (≈90 MHz) which corresponds to
≈3000�k.9 We assume here no time delay between pulses. Possible light shift effects are
expected to be comparable to the monochromatic case as the light shift experienced by
a given atom is dominated by the closest-resonant peak(s); details of these may result in
additional tailoring of the field, which will be the object of follow-up studies. We find
that the overall interferometer visibility drops to 2% after 64�k in the simple monochro-

Figure 9 Interferometer visibility of the polychromatic (red), monochromatic (yellow) and monochromatic
symmetric (blue) LMT sequences respectively depicted on Fig. 5 (top, bottom) and Fig. 10. We have used here
the same parameters: σpos = 160 μm, σbeam = 0.75 mm T = 3 μK and a laser power of 40 mW. The
polychromatic sequence uses comb B with N = 10 and ε = 1. We assume here no time delay between pulses

9For the monochromatic case, this also holds up to 600�k.
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Figure 10 Monochromatic symmetric LMT scheme. Due to the large pulse bandwidth (≈19 MHz), if no arm
is put into a dark state and no particular Doppler shift compensation is applied, each pulse will act on both
arms of the interferometer with good efficiency and impart 2�k of momentum splitting—resulting in a
symmetric scheme

matic case and 151�k in the monochromatic symmetric configuration, versus 850�k in
the polychromatic case.
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