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Abstract
In this work, we investigate the diffusive optical tomography (DOT) problem in the case
that limited boundary measurements are available. Motivated by the direct sampling method
(DSM)proposed inChowet al. (SIAMJSciComput 37(4):A1658–A1684, 2015),we develop
a deep direct sampling method (DDSM) to recover the inhomogeneous inclusions buried in
a homogeneous background. In this method, we design a convolutional neural network to
approximate the index functional that mimics the underling mathematical structure. The
benefits of the proposed DDSM include fast and easy implementation, capability of incorpo-
rating multiple measurements to attain high-quality reconstruction, and advanced robustness
against the noise. Numerical experiments show that the reconstruction accuracy is improved
without degrading the efficiency, demonstrating its potential for solving the real-world DOT
problems.

Keywords Deep learning · Inverse problems · Direct sampling methods · Diffusive optical
tomography · Reconstruction algorithm

1 Introduction

Diffusive optical tomography (DOT) is a promising imaging technique with many clinical
applications, such as screening for breast cancer and the development of cerebral images
[18, 19, 22]. As its mechanism, the input flux of near-infrared (NIR) photons is used to
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illuminate the body and the output flux is measured on the surface of the body. In this process,
chromophores in the NIR window such as oxygenated and deoxygenated hemoglobin, water,
and lipid, are abundant in the body tissue, and a weighted sum of their contributions gives
different absorption coefficients [13]. Then the measured pairs of the fluxes provide some
information for detecting and reconstructing the optical properties inside the body by creating
images of the distribution of absorption coefficients inside the body. Let the absorption
medium occupy an open bounded connected domain � ⊆ R

2 with a piecewise C2 boundary
and D be a subdomain of � representing the inhomogeneous inclusions. The absorption
coefficient of the media in � is described by a non-negative function μ ∈ L∞(�), while
μ0 is the absorption coefficient of the homogeneous background medium and the support of
μ−μ0 occupies the subdomain D. We consider the DOTmodel that the potential u ∈ H1(�)

representing the photon density field satisfies the following equation:

−�uω + μuω = 0 in �, (1.1)

∂uω

∂n
= gω on ∂�, ω = 1, 2, · · · , N , (1.2)

where gω ∈ H−1/2(∂�) denotes the surface flux along ∂�, and fω = uω|∂� is the mea-
surement of the surface potential on the boundary. In this paper, we consider the Neumann
boundary value problem for simplicity, and the proposed algorithm can be also applied to
the Robin boundary value problem. The overarching goal of the DOT problem is to recover
the geometry of the inhomogeneous inclusions D from the N pairs of potential-flux data
(gω, fω)Nω=1, referred as Cauchy data pairs. It is noted that the considered model can be
viewed as a special case of the more general one [7] which has more complicated jump
conditions.

The inverse procedure in theDOT problem can be described by thewell-knownNeumann-
to-Dirichlet (NtD) mapping

�μ : H−1/2(∂�) → H1/2(∂�), g �→ u|∂�, (1.3)

where u is the trace of the solution of (1.1) according to the boundary condition g ∈
H−1/2(∂�). It is known that theNtDmapping preserves all the information needed to recover
μ [7]; see also the discussion in Sect. 3. However, approximating the whole NtD mapping
requires a large number of Cauchy data pairs, which hinders the application in many practical
situations. To circumvent the application limitation, in this work, we focus on developing the
reconstruction algorithm that only requires a reasonably small number of Cauchy data pairs.

Over the past decades, much effort has been rewarded with many promising developments
of solving the DOT problem. One type of the widely used algorithms are iterative methods.
The augmented Lagrange method [1] and the shape optimization methods [42, 43] recon-
struct the inhomogeneous inclusions by minimizing a functional measuring the observed
and simulated data. To alleviate the onerous computational costs caused by the necessity of
using a fine mesh, the multigrid methods [33, 38] have been proposed to resolve this issue.
Another standard approach formulates an integral function involving the Green’s function
corresponding to background absorption coefficient, and use the Born type iteration [37,
39] to solve this integral equation until convergence. Nonetheless, the major issue of these
approaches is that a large number of the forward PDEs need to be solved in the iterative
process, which is time-consuming and computationally infeasible in many practical situa-
tions such as three-dimensional problems. Thus, for ultrasound-modulated DOT, the works
in [2–4] provide the hybrid method that is capable of reconstructing the parameters in known
inclusions with only a few iterations.
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Another popular group ofmethods for solving theDOTproblemare non-iterativemethods.
The joint sparsity methods [31, 32] have been investigated to solve the aforementioned
integration equation by a non-iterative approach in which an ill-conditioned matrix needs
to be inverted and some suitable preconditioners or regularization are demanded. The well-
known factorization methods described in [7, 12, 28] compute the spectral information of
the boundary data mapping and determine the inclusion shape by checking the convergence
property of a series involving the spectral data. Based on a nonlinear Fourier transform, theD-
bar methods in [35, 36] reconstruct the absorption coefficient by solving a boundary integral
equation. Nevertheless, the severe ill-posedness of the original inverse problem will manifest
itself in the computation of the boundary integral equations, which brings strenuousness
in computation. This is improved in [29, 30] by linearizing the reconstruction problem and
reducing it to a well-posed boundary-value problem for a coupled system of elliptic equations
such that it can be efficiently solved. Besides these classical approaches, vast development
of deep neural networks-based algorithms has been undergone for solving the DOT problem,
for instance, using CNN to learn the nonlinear photon scattering physics and reconstruct
the 3D optical anomalies [41] and FDU-Net that is able to fast recover the irregular-shaped
inclusions with accurate localization for breast DOT [20], and some detailed surveys can be
found in the recent monologue [6, 40].

Recently, direct sampling methods (DSM) arise as very appealing non-iterative strategies
to solve many geometric inverse problems.

The critical component of DSM is to construct a certain index function indicating the
shape and location of the inclusions through a duality product operating on the boundary
data and some probing functions. The DSM has been proven to be highly robust, effective
and efficient for many inverse problems, such as electrical impedance tomography (EIT)
[16], inverse scattering [25, 26], moving potential reconstruction [17] and the inversion of
Radon transform for computed tomography [14]. For the DOT problem, the original DSM
[15] designs an elegant index function format for the case of a single measurement pair.
However, only a single measurement results in insufficient accuracy of the reconstruction
in more complicated cases, which stymies its application in practical scenarios of medical
imaging. Indeed, the closed form of explicit index function for multiple Cauchy data pairs
or complex-shaped domain may become very intricate and deriving it with conventional
mathematical approaches will be very challenging.

On the one hand, deep learning recently has become an alternative approach to canonical
mathematical derivation. On the other hand, it is worth mentioning that the index function
of DSM can be regarded as a mapping from a specially generated data manifold to the
inclusion distribution. The data manifold consists of data functions built up by solving the
forward problem with background coefficient, and this underling mathematical structure
serves as our crucial guideline to design the neural networks (NN) such that the complicated
nonlinear mapping can be learned by data. In our previous work for EIT [23], we have
found and shown that the corresponding data-driven index function can successfully capture
the essential structure of the true index function, smooth out the noise and outperform the
conventional DSM.

To address this barrier from the original DSM, in this work we develop a novel deep direct
sampling method (DDSM) for solving the DOT problem based a convolutional network
(CNN). The main benefits of the proposed DDSM contain:

• It is easy to implement for 2D and particularly 3D cases which challenge many
conventional approaches.
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• The index function in the DDSM is able to incorporate multiple Cauchy data pairs which
enhances the reconstruction quality and robustness with respect to noise.

• The DDSM inherits the high efficiency of DSM [15], which is benefitted from its offline-
online decomposition structure. For given measurements, the reconstruction is based on
the fast evaluation of the CNN-based index function in the online stage, which has almost
the same speed as the original DSM.

• Similar to DSM, constructing data functions by solving elliptic equations smooths out
the noise on the boundary such that the resulting NN is highly robust against the noise.

• It is capable of incorporating very limited boundary data points to achieve satisfactory
reconstruction.

• It can yield adequate reconstruction even if the absorbing coefficients of materials to
be recovered are significantly different from those used for training, which is of much
practical interest as only very rough guess is needed.

The rest of the paper is organized as follows. In Sect. 2, we briefly review the originalDSM.
The development of our proposed DDSM and its theoretical justification are introduced in
Sect. 3. The numerical experiments to validate the advantages of the DDSM are provided in
Sect. 4. Finally, Sect. 5 summarizes the research findings.

2 Direct SamplingMethods

In this section, we briefly review the conventional DSM proposed by Chow et al. In [15] for
DOT that will serve as the framework guiding us to design suitable neural networks. The
main idea is to approximate an index function satisfying

I(x) =
{
1 if x ∈ D,

0 if x ∈ �\D,
(2.1)

which depends on the given Cauchy data. Since the key structure of the index function in
[15] assumes only a single pair of Cauchy data, we follow this assumption in this section.

We begin with introducing a family of probing functions ηx (ξ) with x ∈ � on ∂� which
are the fundamental ingredients for both the theory of uniqueness of DOT [7] and the DSM
[15]. Consider the following diffusion equation with homogeneous background medium
absorption coefficient μ0:

− �wx + μ0wx = δx in �; wx = 0 on ∂�, (2.2)

where δx (ξ) is the delta function associated with x ∈ �. For a fixed point x ∈ �, the probing
function ηx is defined as the surface flux of wx over ∂�:

ηx (ξ) := ∂wx (ξ)

∂n
, ξ ∈ ∂�. (2.3)

An essential component of DSM is the dual product,

〈φ,ψ〉∂�,s :=
∫

∂�

(−�∂�)sφ ψ ds on H2s(∂�) × L2(∂�), (2.4)

where (−�∂�)s is a certain fractional order of the surface Laplacian operator defined on ∂�.
The index function can be defined as

I(x) = c0(x)
〈ηx , f − �μ0g〉∂�,s

|ηx |Y (2.5)
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where c0(x) is a constant for normalization specified later, and | · |Y is an algebraic function
of seminorms in H2s(∂�) (itself may not be a norm or seminorm), and a typical choice in
[15] is | · |Y = | · |1/2

H1(∂�)
| · |3/4

L2(∂�)
. In the DSM for various geometric inverse problems [15,

16, 26], this duality product structure plays an important role in index functions since it can
effectively remove the errors contained in the data f − �μ0g by the high smoothness of ηx
near ∂�.

Note that the format of the index function in (2.4) may not be computationally effective
since probing functions ηx changewith respect to x . Therefore, an alternative characterization
of the index function is derived in [15] which is the foundation of our neural network. Let
ϕ denote the solution of the following equation also with only the background absorption
coefficient

− �ϕ + μ0ϕ = 0 in �; ϕ = −(−�∂�)s( f − �μ0g) on ∂�. (2.6)

Then the index function in (2.5) can be effectively computed through ϕ. To show the rela-
tionship between the duality product and ϕ, we provide a brief derivation for s = 0. Based
on the equation (2.2), the definition of duality product in (2.3) and Green’s formula, we have

〈ηx , f − �μ0g〉∂�,0 =
∫

∂�

ηx ( f − �μ0g)ds = −
∫

∂�

∂wx

∂n
ϕds

=
∫

∂�

wx
∂ϕ

∂n
− ∂wx

∂n
ϕds =

∫
�

wx�ϕ − ϕ�wxdx

=
∫

�

wx (μ0ϕ) − ϕ�wxdx = ϕ(x).

(2.7)

The same result can be obtained for s = 1 in [15]. With (2.5) and (2.7), the index function
can be equivalently rewritten as

I(x) = c0(x)
ϕ(x)

|ηx |Y , (2.8)

where the typical choice for c0 is (‖ϕ‖L∞(�) + ϕ(x))−1 [15].
It is highlighted that the index function depends on the Cauchy data only through the

function ϕ while the value of |ηx |Y is only based on the geometry of �. This mathematical
structure guides us to set ϕ as the input of the networks designed to approximate the index
function, which will be detailed in the next section. Given the importance of ϕ, we shall call
it the Cauchy difference function in our following discussion. Note that ϕ is readily solvable
and only needs to done once from (2.6) for a single pair of Cauchy data ( f , g). Since there
is only one PDE to solve in the reconstruction procedure, the cost is much lower than the
optimization-based methods. Our proposed DDSM inherits this advantage, namely only N
PDEs are required to be solved for N Cauchy data pairs.

Besides ϕ, the index function in (2.8) is determined by the probing functions ηx computed
from (2.2) and (2.3). However, the evaluation of ηx requires solving (2.2) for every x that
needs to be located, which maybe inefficient. To address this issue, the explicit formulas are
provided in [15] for some specific domains; for instance, the probing function corresponding
to a unit circle is

ηx (ξ) = 1

2π

∑
n∈Z

Jn(i
√

μ0rx )

Jn(i
√

μ0)
ein(θx−θξ ), ξ ∈ S

1, (2.9)

where Jn are the Bessel functions, and (rx , θx ) is the polar coordinate for a point x . However,
it has not escaped our notice that such explicit formulas may not be available for all type
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Fig. 1 The boundary data with independent and identically Gaussian noise (left), the generated ϕ(x) without
noise (middle), ϕ(x) with noise (right)

Fig. 2 The structure of CNN for 2D DOT problem. The input is a 3D matrix in ∈ R
nx×ny×(N+2) and the

output is a matrix in R
n1×n2

of geometries. Different from the analytical typed index function (2.5) in the conventional
DSM, the index function in the proposed DDSM is represented by a neural network and
learned from data, which is not in a closed form but capable of handling more complicated
and practical problems.

3 Deep Direct SamplingMethods

Despite the successful application of the originalDSM,webelieve some aspects can be further
improvedwith the recently developedDNN techniques, forwhich conventionalmathematical
derivation may face some difficulties.

First, the index function format above may only involve a single Cauchy data pair, which
may limit its accuracy. Moreover, our numerical results show that including one pair of
Cauchy data is robust for the spatially-invariant noise used in [15]. Butwhen the noise become
highly spatially variant for boundary data points, for example independent and identically
Gaussian distribution illustrated in the left plot of Fig. 1, the reconstruction may not be robust
as shown by the numerical results in Fig. 5, which brings out the importance and necessarity
of including multiple measurements. However, it has been unclear so far how to theoretically
develop an explicit index functionwith a closed form that systematically incorporatemultiple
Cauchy data pairs through canonical mathematical derivation, though some basic strategies
can be applied such as average, maximum or product of each individual index function.
Second, even for the case of a single measurement, the format of the index function I(x)
may not be the optimal approximation to the true index function, for example the empirical
choice of the tuning parameter s and norm | · |Y . We believe this is where the DNN models
can exploit their advantages to replace some theoretical derivation by data driven approaches
such that the more optimal index function can be obtained.
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Table 1 Relationship between DSM for DOT problems and image segmentation problems

DSM for DOT Image segmentation

x mesh point in � pixel

φω(x) Cauchy difference functions image features (channels)

I index of inclusion distribution dense prediction

Therefore, to enhance the performance of DSMs based the aforementioned aspects, in
this work, we propose a Deep Direct Sampling Method (DDSM) by mimicking the under-
ling mathematical structure suggested by the DSM. For simplicity, we mainly discuss the
two-dimensional case and the method can be readily and naturally extended to the three-
dimensional case. We have implemented the method for both the 2D and 3D DOT problems
where the numerical examples and reconstruction results will be provided in Sect. 4.

3.1 Neural Network Structure

We note that the index function (2.8) suggests the existence of a non-linear mapping or
operator from ϕ to the location of x , namely whether it is inside or outside the inclusions. We
shall see in Sect. 3.2 that this operator theoretically exists if the NtD mapping is given, i.e.,
all the Cauchy data pairs are available, but it is not easy to derive an explicit index function
to fully incorporate the information with limited Cauchy data pairs.

Motived by the classical DSM, we define Cauchy difference functions {ϕω}Nω=1, where
ϕω(1 ≤ ω ≤ N ) is the solution of (2.6) with the boundary value formed by the ω−th pair of
Cauchy data fω − �σ0gω, namely

− �ϕω + μ0ϕ
ω = 0 in �; ϕω = −(−�∂�)s( fω − �∂�gω) on ∂�. (3.1)

Then, the input of the DNN is designed as (x, ϕ1, . . . , ϕN ). Using these data functions as
the input is one of the main difference between our proposed DDSM and the learning-based
approaches reviewed in the literature, which brings quite some advantages. First, it extends
the boundary data to the domain interior that mimic images and features, for instance the
input can be treated as a (N + 2)-channel image, and the nonlinear operator to be trained
can be viewed as semantic image segmentation process [11, 24] partitioning a digital image
into multiple segments (set of pixels) based on two characteristics: inside or outside the
inclusions. The relationship is listed in Table 1for readers from various background. This
analogy provides us with some well-established tools such as the architecture of the CNN
[24]. Then, the new index function is assumed to take the form

I = FCNN(x, ϕ1, . . . , ϕN ) : [H1(�)]2N+2 → L2(�), (3.2)

where FCNN is a function expressed by CNN with parameters to be trained. This structure
agrees with the theory discussed in Sect. 3.2. Note that I becomes an operator from one
Sobolev space to another, so in the following discussion we shall call it an index operator,
which is one of the main differences from the original DSM. In addition, a remarkable feature
of generating ϕ as the inputs is that the noise can be smoothed out at the boundary through
solving the elliptic type PDEs, namely they are highly smoothed inside the domain. For
example, in Fig. 1, ϕ on the right has rough behavior only near the boundary but very smooth
inside the domain while ϕ without noise is shown in the middle.
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Fig. 3 Reconstruction for 3 cases in Scenario 1 (4 circles) with different Cauchy data number and noise level:
Case 1(top), Case 2(middle) and Case 3(bottom)

Nowwe proceed to describe the detailed structure of the proposedCNN. For simplicity, we
first assume that � has rectangular shape and leave the general situation for later discussion
about the implementation details. Thenwe suppose that� is discretized by a n1×n2 Cartesian
grid where n1 and n2 are corresponding to the direction of x1 and x2 respectively. Based on
the previous explanation, the input of the CNN is a 3Dmatrix (a 4D tensor for 3D problems).
For example, for an inclusion sample with N Cauchy difference functions {ϕω}Nω=1 generated
from {gω, fω}Nω=1, the corresponding input denoted by zin ∈ R

nx×ny×(N+2) is a stack of N+2
matrices in R

n1×n2 , where the first two slices are formed by spatial coordinates x1 and x2
respectively, and the rest N slices are the numerical solutions ϕ1(x), . . . , ϕN (x) computed
at the Cartesian grid points. The pictorial elucidation of zin is shown in Fig. 2.

The overall configuration of the proposed CNN consists of two parts – convolution and
transposed convolution networks as illustrated inFig. 2. The convolution network corresponds
to feature extractor that transforms the input to multidimensional feature representation,
where the i−th block can be represented as

φc
i (zconv) = M(κ(β(Wconv ∗ zi + bconv))), (3.3)

in which zi is the input image, M is the max-pooling layer that mainly help in highlighting
the most prominent features of the input image by selecting the maximum element from
each non-overlapping subregions, Wconv is the convolution filter for the 2D convolutional
layer, κ indicates the activation function, β is batch normalization layer [24], ∗ denotes the
convolution operation, and bconv refers the bias. The transposed convolution network is more
like a backwards-strided convolution that produces the output by dilating the extracted feature
with the learned filter, where the i−th block can be expressed as

φt
i (ztrans) = C(κ(β(T (zi ,Wtrans, btrans)))), (3.4)

where T refers a fractionally-strided convolution layer,Wtrans and btrans are the corresponding
transposed convolutional filter and the bias, C is a concatenation layer, and other notations
are the same as (3.3). � is defined as all the unknown parameters to be learned in training,
which includes the convolution and transposed convolutional filters, as well as the biases. In
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this work, we consider two activation functions: the ReLu and sigmoid

κ(z) = max{0, z} and κ(z) = 1

1 + e−z
. (3.5)

It is known that choosing ReLu can significantly enhance the sharpness of reconstruction.
But our experience suggests that only using ReLu may not yield satisfactory reconstructions
sometimes for the situation that inclusions are far away from the training data set. Never-
theless, the numerical results show that using the sigmoid activation in the last layer may
improve the reconstruction for those situations.

Then the entire CNN model can be represented as

yout = φt
Nt

◦ · · · ◦ φt
1 ◦ φc

Nc ◦ · · · ◦ φc
1(zin), (3.6)

where the output yout is a n1 × n2 matrix which is supposed to approximate an inclusion
distribution, i.e., the entire index function values on the domain �. Here the complicated
DNN function can approximate the index functional or operator, namely

φt
Nt

◦ · · · ◦ φt
1 ◦ φc

Nc ◦ · · · ◦ φc
1 ≈ I,

where, again, the input is not the data at individual points but on the entire domain. As
mentioned before, different from the conventional DSM, there is no closed form for the
DNN-based index functional, but those parameters to be trained may better approximate the
true index operator for the current available data.

Let S be the total number of training samples. To measure the accuracy of the CNNmodel
(3.6), we employ the mean squared error (MSE) as the loss function

Lloss(�) = 1

S

S∑
�=1

( yout(z
�
in) − I�)�( yout(z

�
in) − I�), (3.7)

where I� is the true distribution (index values) corresponding to the �−th inclusion sample,
z�in denotes the input image that is related to Cauchy difference functions {ϕ(�,ω)}Nω=1 for the
�−th inclusion sample. To reduce the infeasibility of gradient descent algorithm for large
datasets, stochastic gradient descent (SGD) is implemented to find the minimization of the
loss function (3.7), for which we omit the details here.

3.2 Unique Determination

Note that the proposed DNN model implicitly assumes that inclusion distribution can be
uniquely determined by those data functions {ϕω}Nω=1. In this subsection, we show that this
is indeed true for N → ∞ andμ0 > 0,μ ≥ μ0 in D, i.e., the boundary data are all known in
the Sobolev space H−1/2(∂�)× H1/2(∂�). Let us recall some known results at first. Define
the difference between the operators �μ and �μ0 as

�̃μ = �μ − �μ0 : H−1/2(∂�) → H1/2(∂�). (3.8)

According to [7], based on the assumption thatμ0 > 0 andμ ≥ μ0 in D, it is known that �̃μ

is a self-adjoint and positive operator, and thus it admits the eigenpairs (λω, νω), ω = 1, 2...,
with λω > 0, such that

�̃μνω = λωνω, ω = 1, 2..., (3.9)
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where νω form an orthogonal basis of the space H−1/2(∂�). Let R(�̃
1/2
μ ) be the range of

the operator �̃
1/2
μ . By the factorization theory for DOT [7], it is known that the information

of R(�̃
1/2
μ ) together with the probing functions can be used to determine the inclusion

distribution. Here we shall employ this theory to show that the data functions can also
uniquely determine the inclusion distribution.

Theorem 3.1 Given a collection of orthonormal basis functions {gω}∞ω=1 in H−1/2(∂�), let
{gω,�μgω}∞ω=1 be the corresponding Cauchy data pairs and let {ϕω}∞ω=1 be the generated
data functions. Then the inclusion can be uniquely determined by the data functions {ϕω}∞ω=1.

Proof According to [7], we know that x ∈ D if and only if the corresponding probing function
ηx (ξ) ∈ R(�̃

1/2
μ ). By the Picard’s criterion, it is further equivalent to the convergence of the

following sequence

S(x; {νω}∞ω=1) =
∞∑

ω=1

(ηx , νω)2∂�

|λω| < ∞. (3.10)

Let us first focus on {gω}∞ω=1 being exactly the eigenfunctions {νω}∞ω=1 in (3.9). Then, using
νω = λ−1

ω �̃μνω and the identity in (2.7), i.e., using the integration by parts, we have

(ηx , νω)∂� = λ−1
ω (ηx , �̃μνω)∂�

= λ−1
ω (ηx , (�μ − �μ0)νω)∂� = λ−1

ω ϕω(x)
(3.11)

where ϕω are the data functions corresponding to gω = νω solved from (2.6) with s = 0.
Then, combining (3.10) and (3.11), we have

S(x; {νω}∞ω=1) =
∞∑

ω=1

|ϕω(x)|2
|λω|3 . (3.12)

Since |λω| = ‖ϕω‖L2(∂�)/‖νω‖L2(∂�), the inclusion distribution is determined by the con-
vergence property of the sequence in (3.12) which is further determined by ϕω. Next, for
general orthonormal basis {gω}∞ω=1 as the basis, following the argument in [5, Theorem 3.8],
we can express {νω}∞ω=1 by the expansion of {gω}∞ω=1 which is then used to express {ϕω}∞ω=1
corresponding to {gω}∞ω=1. Plugging it in (3.12) we have the new series to determine the
inclusion shape that only depends on {ϕω}∞ω=1. ��
Remark 3.2 According to the theory above, we can conclude that the whole uniqueness does
not depend on the value of μ0 and μ, which only requires they are distinguished from each
other. Indeed, this theoretical property in a certain sense can manifest itself in the proposed
DDSM since the nice reconstruction can be obtained for the different values ofμ even if they
are significant from those used for training.

Remark 3.3 In our work for EIT [23], a similar data function is generate, but the input of
the fully neural network is the gradient of the Cauchy difference function. This difference is
theoretically supported by the format of ϕ in the generated series (3.12).

Suppose that the data functions {gω} are exactly the eigenfunctions {νω}, ω = 1, 2...,
and let ϕω be the corresponding harmonic extensions. Then, the argument of Theorem 3.1
enables us to explicitly construct a function approximating the true indicator function: given
any ε > 0, there exists a sufficiently large integer N and a function IN depending on ϕω,
ω = 1, ..., N , such that

‖I − IN‖L∞(�) ≤ ε. (3.13)
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To see this, according to the series in (3.12), we defineSN (x) := ∑N
ω=1

|ϕω(x)|2
|λω|3 . Theorem 3.1

suggests that there is a constant ρ such that ρ > SN (x), ∀x ∈ D, and given each ε > 0 there
is an integer N such that SN (x) > 4ρε−2/π2, ∀x /∈ D. Then, we can define IN as

IN (x) = 1 − 2

π
arctan

(
πε

2ρ
SN (x)

)
(3.14)

The desired inequality in (3.13) can be simply verified by the basic inequality z > arctan(z) ≥
π
2 − z−1, ∀z > 0. However, it is worthwhile to mention that such function IN is generally
not computable in practice as it still requires the full spectrum information of �̃μ. If there
are only limited data pairs available, the approximation formula remains unknown in theory.
Here, instead we borrow the mathematical structure described above to construct CNN for
approximation.

3.3 Implementation Details

In order to perform the convolution operator, the discretization of � needs to be chosen as
Cartesian grids which are natural for rectangular domain. Note that the data functions ϕω are
solved from the equations merely with the background absorption coefficient, so there is no
need to require the mesh to align with the interface, and a simple Cartesian mesh may yield
satisfactory numerical solutions. As for a general shaped domain, we just need to immerse
it into a rectangle such that the Cartesian grid can be generated on the whole rectangular
fictitious domain. However, if the data functions ϕω are computed on a general triangular
mesh, they need to reevaluated at the generated Cartesian grid points since the values at
the triangle mesh points are not able to directly support the CNN computation. To alleviate
the computational burden, we can prepare these data functions before training rather than
solve them during training. It should be noted that the DDSM indeed requires morememories
compared with other deep learning approaches that directly input the original boundary point
data, since the newly generated data functions are at least 2D.

4 Numerical Experiments

In this section, we present numerical experiments to demonstrate that our newly developed
DDSMs are effective and robust for the reconstruction of inhomogeneous inclusions in the
DOT. For such medical imaging problems, in general only limited data can be obtained from
real clinical environments, but instead, simulation or the so-called synthetic data are cheap,
easily accessible and are not subject to the objective factors. As suggested by many works
in the literature [8, 21, 23, 27, 44], these features make synthetic data suitable for training
DNN, and the resulting network can be further enhanced by realistic data from clinics. So we
shall sample the inclusion distribution by randomly creating some basic geometric objects
in � which are then used to generate synthetic data set for training and testing.

4.1 2D Problem Setting and Data Generation

Let the boundary (interface) of the i-th (i = 1, 2, ..., M) basic geometric object be represented
by a level-set function �i (x1, x2), then define the boundary of the inclusion as the zero level
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set of

�(x1, x2) = min
i=1,2,...,M

{�i (x1, x2)}. (4.1)

Then the support of the inclusions is the subset {(x1, x2) : �(x1, x2) < 0}. More specifically,
we consider the follow two scenarios with different basic geometric objects for training data
generation:

Scenario 1: �i are 5 random circles with the radius sampled from U(0.2, 0.4) and the
center sampled from U(−0.7, 0.7).

Scenario 2: �i are 4 random ellipses with the longer axis, the eccentricity and the center
points sampled from U(0.2, 0.6), U(0, 0.9) and U(−0.7, 0.7), respectively.
Here U(a, b) denotes the uniform distribution over [a, b]. Sampling circles or ellipses are
widely used in many deep learning methods for generating synthetic data in DOT [21, 27].
However, a major difference is that the format (4.1) allows those basic inclusions to touch
and overlap with each other such that the overall inclusion distribution could be much more
geometrically complicated, which makes the reconstruction more challenging. Besides, we
set μ0 = 0 and μ1 = 50 for our experiments.

For the boundary conditions, following our previous work [23], we still use Fourier func-
tions as the applied surface flux boundary data gω since they naturally form the orthogonal
bases on the boundary. In particular, we pick the first N modes:

gω(θ) = cos(ωθ) ω = 1, 2, ..., N/2 and gω(θ)

= sin((ω − N/2)θ), ω = N/2 + 1, ..., N , (4.2)

where θ ∈ [0, 2π) is the angle of (x1, x2) ∈ ∂�, and we choose g1(θ) = cos(θ) for the case
of a single measurement, i.e., N = 1, and N = 10, 20 for the case of multiple measurements
(Fig. 6).

For the diffusion–reaction equation with a discontinuous absorption coefficient, the
solutions generally have smooth first-order derivatives [10] such that typical second-order
schemes may achieve optimal convergence for sufficiently fine meshes. But if the jump of the
coefficient is large, there might be a thin layer around the inclusion interface [10] requiring
extremely fine meshes to resolve [9]. Here, for simplicity, we focus on the case of moderate
jump and apply a uniform 100× 100 Cartesian mesh to solve the forward model (1.1). Nev-
ertheless, as we only need the simulated solutions on the boundary, which is away from the
coefficient discontinuity, the numerical solution may not be effected much by the disconti-
nuity. For each inclusion sample with every boundary condition in (4.2), we can obtain the
numerical solutions uω and fω = uω|∂�, and the data pairs ( fω, gω)Nω=1 are used in (3.1)
to generate data functions as the input of the proposed DNN. Even so, numerical errors can
not be avoided in this procedure, which are then considered as noise in the data. In fact, such
errors are much smaller than the artificial noise described below.

On the one hand, it is generally difficult to obtain the accurate knowledge of the physio-
logical noise presented in human data. On the other hand, as discussed in Sect. 3 and shown
in the left plot of Fig. 1, using boundary data to generate the data functions ϕω can smooth
out the noise in the sense that the interior of the data functions can be highly smooth. Both the
original DSM [15, 16] and our recent work using DDSM for solving EIT [23] indicate that
this mechanism can significantly enhance the robustness with respect to the noise. Therefore,
instead of adding noise in the training set, we will add very large noise in the test data. This
is intentionally to test the robustness of the proposed DNN with respect to noise that is not
contained in the training set. In particular, we apply the following point-wise noise on the
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Table 2 Comparison of NNs with f − f0 as the input and with φ as the input (μ0 = 0, μ = 10)

Methods 1 data pair 10 data pair
MSE CrossEntropy Dice MSE CrossEntropy Dice

f 0.0538 0.1776 0.2446 0.0440 0.1516 0.1880

ϕ(x) 0.0301 0.1058 0.1605 0.0310 0.1090 0.1595

improvement 43.95% 40.44% 34.38% 29.56% 28.11% 15.19%

synthetic measured data

f δ
ω(x) = (1 + δG(x)) fω, (4.3)

where δ is the signal-to-noise ratio chosen as 0, 5% and 10%, G(x) are Gaussian random
variables with standard norm distribution which are assume to be independently identical
with respect to the points x . Different from the set-up in [15] that uses a spatially-invariant
noise, such noise will cause very rough data on the boundary as shown in Fig. 1, challenging
the robustness of the reconstruction algorithms more seriously.

4.2 2D Reconstructions

Now we present reconstruction results for each scenario in 2D, and explore the performance
of the proposed algorithm for some more challenging situtions.

Effect of φ. To begin with, we first present a group of results to demonstrate that using ϕ

as the input to the DNNs can indeed significantly improve the reconstruction accuracy. For
this purpose, we train a CNN with merely f − f0 as the input and compare the performance
with the proposed DDSM by examining their average accuracy on a test set in terms of
different metrics. The numerical results are reported in Table 2where we can see the DDSM
outperforms the approach with f − f0 as the input a lot. In addition, the employment of φ can
improve the performance inmany aspects.When applying the NNs trained withμ0 = 0, μ =
10 to the data generated with μ0 = 0, μ = 100, we still observe significant improvement.
As for the reconstruction for out-of-distribution, i.e., the shape to be reconstructed is very
different from the training data set, the improvement is also huge, see the numerical example
of Fig. 9.

Some basic results:The reconstruction results for three basic cases are provided in Figs. 3
and 4 for each scenario. The figures clearly show the accurate reconstruction of the proposed
algorithm. In particular, for the third case of Fig. 4, the true inclusion has a concave por-
tion near the domain center away from the boundary data which is generally difficult to be
captured. But the proposed algorithm can recover it quite satisfactorily.

We observe that the proposed algorithm using single or multiple measurements almost
gives comparably good reconstruction. However, our further numerical results suggest that
using multiple measurements can significantly enhance the robustness of the reconstruction
with respect to noise. To demonstrate this, for the first case in Scenario 1 (the top one in Fig. 3),
we present the reconstruction of the single pair and 10 pairs with noise in Fig. 5. It is observed
that even 5% noise can totally destroy the reconstruction for the single measurement case
while the performance of 10 pairs ofmeasurements ismuch better but still worse than 20 pairs.
It is also worth mentioning that, even for the single measurement, the reconstruction is still
highly robust with respect to the spatially-invariant noise used in [15], i.e., G is independent
of x in (4.3), of which the results are omitted here (Fig. 6).
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Fig. 4 Reconstruction for 3 cases in Scenario 2 (4 ellipses) with different Cauchy data number and noise
level: Case 1 (top), Case 2 (middle) and Case 3 (bottom)

Fig. 5 Comparison of reconstruction with respect to noise for the single measurement and 10 pairs of
measurements
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Fig. 6 Plots of g1,ω|∂�, g2,ω|∂� and g1,ω|∂� − g2,ω|∂� versus the polar angle θ (of points on the boundary)
where g1,ω and g2,ω correspond to inclusion distribution with and without the center inclusion respectively
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Fig. 7 Comparison of reconstruction for two close inclusion distribution

Fig. 8 CNN-DDSM reconstruction for 3 special inclusion shapes: one triangle (top), two long rectangular
bars (middle) and a rectangular ring (bottom)

Sensitivity to Data: The DOT is well-known to be highly ill-posed which means the
inclusions are very insensitive to the boundary data. To examine this phenomenon and test
the sensitivity of the algorithm with respect to the data, we consider two different inclusion
distributions in Fig. 7, where the only difference is the center inclusion. We plot the corre-
sponding fω by fixing the applied flux gω, ω = 1, 2, ..., 10, which are indeed quite close to
each other. Namely, the center inclusion is extremely insensitive to noise, which makes its
reconstruction very difficult. The results in Fig. 7 show that the center inclusion can still be
clearly captured. We highlight that for 20 pairs of measurements the center inclusion is cap-
tured even with 5% noise which is even larger than the relative difference of their boundary
data. These results demonstrate that the proposed algorithm can dig out the small difference
buried in boundary data for various inclusion distribution but still keep the robustness with
respect to the noise.

Out-of-distribution: We note that the basic geometric shape such as circles or ellipses
may be more appropriate to be chosen to imitate the tumors for the clinical application
of the DDSM. But even so, it may not be expected that the shape to be reconstructed is
always covered by or close to the training data set, which triggers us to further investigate the
capability of the DDSM for the inclusion distribution that has the geometry out of the scope
of the training data, that is, they can not be generated by those basic geometry objects. Here
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Fig. 9 DDSM reconstruction for a hexagon (out-of-distribution) with different inputs: input f − f0 without
harmonic extensions (top), input ϕ(x) (bottom). MSE loss: 0.0471 for the input f and 0.0169 for the input ϕ
(1 data pair); 0.0262 for the input f − f0 and 0.0125 for the input ϕ (10 data pair). The improvment by using
ϕ is 64.12% (1 data pair) and 52.29% (10 pairs)

we present the reconstruction for three different shapes: a triangle, two bars and an annulus
in Fig. 8. In particular, the annulus has a hollow center which is difficult to be captured by
the lights sourced at the boundary. But we can still observe the satisfactory reconstruction of
their basic geometric properties for all these inclusions. Similar to the previous results, the
reconstruction by 20 parts is still robust with respect to the large noise. Note that one can add
these shapes to the training data set if some more accurate reconstruction is needed.

In addition, we also apply the trainedDNN to a hexagonal inclusion, see the reconstruction
in Fig. 9. Here, we specifically compare two different DNNs where one has ϕ as the input
which is the key for the proposed DDSM, and the other one trivially has the f − f0 as the
input.

Limited data points:Note that all the previous results are generated by assuming that the
data are available at every boundary grid point for using finite difference methods to generate
data functions ϕω, which may not be practical. Indeed, according to DOT experiments, see
[34] for example, even if a camera may receive the light at every point, the light sources can
be placed on only a few points on the boundary. So we shall explore this issue by limiting
the data points where the Neumann data gω are available. In particular, we consider the case
that there are 4 L , L = 8, 16, data points on the boundary with L points equally distributed
on each side of the domain. The data gω are assumed to be obtained at these points which
are then linearly interpolated to generate functions on the boundary. These functions are then
used to generate the corresponding Dirichlet data functions fω available at all the boundary
mesh points. Then the interpolated Neumann data and the simulated Dirichlet date are used to
generate data functions ϕω as the input to the same DNN used above, and the reconstruction
results are presented in Fig. 10 for the first case in Fig. 4. As we can see, the three relatively
larger ellipses are reconstructed quite satisfactory even with 10% noise. However, the result
for the small ellipse is not as good as the others. We guess it may be due to its small size
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Fig. 10 DDSM reconstruction for random ellipses with limited data points and N = 20

Fig. 11 CNN-DDSM reconstruction for different μ: (μ0, μ) = (0, 200) (left three columns) and (1, 100)
(right three columns)

that receives too little light for passing its geometric information to the boundary. Despite
its inaccurate shape, the algorithm still tells us that an inclusion exists around the upper-left
corner.

Reconstruction for different μ: Nowwe demonstrate that the proposed algorithm can be
used to obtain reasonable reconstruction even though the true absorption coefficient values
are much different from those used to generate training data. Here we also use the first
case in Fig. 4 of the scenario 2 as an example. But we generate the boundary data with two
different groups of absorption coefficient values (μ0, μ1) = (0, 200) and (1, 100) where
the background and inclusion coefficient values may both vary. The same DNN is used
predict the inclusion geometry of which the results are presented in Fig. 11. Although the
reconstruction is not as good as the one shown in Fig. 4, we can see that all the four ellipses
are clearly captured and the reconstruction is still stable with respect to noise. We highlight
that this feature is very important for the practical clinical situations as the material property
of patients’ tumors may vary and may not be known accurately. In spite of this, the proposed
algorithm still has the potential to detect the appearance and shapes of the tumors to certain
extend.

In addition, we also apply the trained DNNs to a non-piecewise-constant functionμwhich
has a Gaussian distribution here, see Fig. 12for the reconstruction. In this case, the inclusion
boundary can be understood as a diffusion interface. Note that the training data set used here
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Fig. 12 DDSM reconstruction for μ with a random Gaussian distribution

is still generated by μ as piecewise constants. Indeed, we can still observe quite reasonable
reconstructions of the location.

Comparison of DSM and DDSM: we also present a group of numerical examples to
compare the classical DSM and the proposed DDSM. The classical DSM is implemented
through the formula (2.8), where ϕ(x) is obtained by solving (2.6) with s = 1. The numerical
results are reported in Fig. 13 . Specifically, we have implemented the formula with the
boundary data generated from various frequencies. It can be certainly observed that the
proposed DDSM can generate sharper reconstruction than the classical DSM with a single
data pair. Of course, with multiple data pairs, the reconstruction can be improved a lot. Note
that the classical DSMmay not handle multiple data pairs systematically. In addition, we also
present the plots of the normalizedϕwhich do not show any reasonable information. Thus, the
process by CNN is critical to dig the hidden information to produce accurate reconstructions.

4.3 3D Reconstruction

In this subsection, we apply the DDSM to 3D DOT problems. We consider a cubic
domain � = (−1, 1) × (−1, 1) × (−1, 1), and two ellipsoids with the level-set functions
�i (x1, x2, x3), i = 1, 2, which have the axis length, rotation angles and center points sam-
pled fromU(0.4, 0.6),U(0, 2π) and [U(−0.4, 0.4)]3, respectively. Similar to (4.1), we let the
inclusions be generated by the following function involving the random variables described
above

�(x1, x2, x3) = min
i=1,2

{�(x1, x2, x3)}. (4.4)

In the 3D case, we employ the first 9 spheric harmonic functions below and map them to the
surface of the domain

�Ym
l (θ, φ) =

√
2l + 1

4π

(l − m)!
(l + m)! P

m
l (cos(θ)) sin(mφ)

�Ym
l (θ, φ) =

√
2l + 1

4π

(l − m)!
(l + m)! P

m
l (cos(θ)) cos(mφ)

(4.5)

to generate the flux boundary data, where Pm
l (z) are the Legendre polynomials with l =

0, 1, 2, 0 ≤ m ≤ l, of which some examples are plotted in Fig. 14. The other setting-ups are
similar to the 2D case.

The reconstruction results of two typical cases are presented in Fig. 15 , where the two
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Fig. 13 Comparison of DSM reconstruction and DDSM reconstruction for 3 circles. The MSE of the results
of DSM with frequency cos θ , cos 2θ , cos 4θ , cos 8θ are 0.0512, 0.0532, 0.0502 and 0.0487. The MSE of the
results of DDSM with 1 and 10 data pairs are 0.0429 and 0.0161, respectively. The last row is the normalized
ϕ, i.e., ϕ/(‖ϕ‖L∞(�) + |ϕ(x)|)
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Fig. 14 Harmonic functions on the surface of �

Fig. 15 Reconstruction for 2 cases with different Cauchy data number and noise level: Case 1(top) and Case
2(bottom)

ellipsoids are glued together in the first case and separated in the second one. To show the
reconstructed inclusion distribution, we employ the 3D density plots: the red, blue and mesh
surface are corresponding to the isosurface with the values 0.75, 0.06 and 0.025, respectively,
which is the first row of each case. In addition, we also plot some cross sections which
are given in the second row of each case. As shown by all these plots, the reconstruction
results are quite accurate and also robust with respect to large noise. Note that for 3D DOT
problems, solving 3D forward problems for iterative methods can be highly expensive. Given
the efficiency, accuracy and robustness of the proposed DDSM, we believe it can be very
attractive for further real-world applications.
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Fig. 16 Data points on two faces
of the cubic domain

Fig. 17 Reconstruction with limited data points on the boundary

Fig. 18 Reconstruction for a duck-shaped inclusion with different noise level

For the second case, we also test the performance of the DDSM for that the boundary data
are only available at a few points not every grid point. Specifically, as only the low-frequency
data are used for the 3D examples, we assume there are only 9 points evenly distributed
on each face of the domain, see Fig. 16 for an illustration, then there are only 26 points
distributed on the boundary. Similar to the 2D case, linear interpolation is used to generate
data functions on each face. The reconstruction results are presented in Fig. 17, where we
can see the shape can be recovered quite well even though the data is extremely limited.

Moreover, we apply the DNN to an inclusion which has a duck shape that is not in the
scope of the training data set, i.e., it is certainly not a union of two ellipsoids (Fig. 18). In
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this case, we can still observe that the reconstruction can capture the basic duck shape which
is still robust with respect to the large noise. But the geometry of the beak is lost as the
training data set is only sampled from two ellipsoids. It can be expected that more detailed
geometry can not be recovered accurately. However, one can still addmore inclusion samples
with various geometric randomness to the training data set in order to attain better accuracy
(Fig. 18).

5 Conclusions

Inspired by the DSM [15], this paper proposes a novel deep direct sampling method for the
DOT problem, where the neural network architecture is designed to approximate the index
functional. Hybridizing the DSMandCNNhas several advantages. First, the index functional
approximated by the CNN is capable of systematically incorporating multiple Cauchy data
pairs, which can improve the reconstruction quality and the algorithmic robustness against the
noise. Second, once the neural network is well trained, the data-driven index functional can
be executed efficiently, which inherits the main benefit of the conventional DSM. Third, the
DDSM can successfully handle challenging cases such as limited data and 3D reconstruction
problems, which shows great potential in its practical application. Various numerical exper-
iments justify these findings. Hence, we believe the proposed DDSM provides an efficient
technique and a new promising direction for solving the DOT problem.
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