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Abstract 

Efficient and machine-readable representations are needed to accurately identify, validate and communicate infor-
mation of chemical structures. Many such representations have been developed (as, for example, the Simplified 
Molecular-Input Line-Entry System and the IUPAC International Chemical Identifier), each offering advantages specific 
to various use-cases. Representation of the multi-component structures of nanomaterials (NMs), though, remains out 
of scope for all the currently available standards, as the nature of NMs sets new challenges on formalizing the encod-
ing of their structure, interactions and environmental parameters. In this work we identify a set of principles that a NM 
representation should adhere to in order to provide “machine-friendly” encodings of NMs, i.e. encodings that facilitate 
machine processing and cooperation with nanoinformatics tools. We illustrate our principles by showing how the 
recently introduced InChI-based NM representation, might be augmented, in principle, to also encode morphology 
and mixture properties, distributions of properties, and also to capture auxiliary information and allow data reuse.

Keywords Cheminformatics representations, InChI, Nanomaterial identifiers, Nanomaterial structure

Introduction
Nanotechnologies and nanomaterials (NMs) are among 
the key enabling technologies for European industry, 
with significant potential for addressing societal chal-
lenges in the twenty-first century. During the past dec-
ades, there was significant public and private investment 
to study potential environmental and human health risks 
of NMs, leading to the development of advanced experi-
mental methods for extensive generation of nanotoxicity 

data. The rapidly developing field of nanoinformatics 
covers a variety of computational and decision making 
tools for data management and the extraction of useful 
information from available experimental datasets.

In silico modeling includes computational simulations 
ranging from quantum level, to molecular and coarse 
grain simulations depicting NM interactions, including 
agglomerate formation, as well as interactions between 
NMs and the environment or biological targets. NM 
characterization, design and discovery have been boosted 
by machine learning algorithms [1, 2], that take advan-
tage of computational power, high dimension features 
and big data (when available). Quantitative Structure 
Activity Relationship models (QSARs) correlate NM 
properties and behavior according to calculated or meas-
ured descriptors of the chemical structure. These mod-
els can prove useful for preliminary risk assessment [3, 
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4] and are increasingly accepted as alternative methods 
to reduce animal testing. Finally, omics models leverage 
experimental assays for well-established end-points [5] to 
study the biomolecular processes involving NMs and link 
from a Molecular Initiating event through a set of key 
events to an adverse outcome pathway (AOP) [6].

To support these data-driven models, there has been 
significant effort during the past decade to create and 
populate large databases of experimental data produced 
from industry and research supplemented with calcu-
lated descriptors for NMs [7]. Wilkinson et  al. [8] pro-
vided guidelines for Findable, Accessible, Interoperable 
and Reusable (FAIR) data, to increase the capacity of 
machines to access, curate, search, reuse, exchange and 
analyze large and complex datasets. The European Com-
mission (EC) has invested in coordinated efforts to col-
lect and make available the NM characterization data and 
biological and toxicological information generated from 
several large EU-funded projects under the e-NanoMap-
per database [9]. The e-NanoMapper and the NanoCom-
mons research infrastructure and KnowledgeBase [10, 
11] proposed a computational infrastructure for toxico-
logical data management of engineered NMs based on 
open standards, ontologies and an interoperable design, 
embracing the FAIR principles and facilitating the devel-
opment of predictive models [12].

There is a lack of a standardized semantic characteriza-
tion of NM structural features (such as NM size, shape, 
number of components and their relations) and environ-
mental variables (such as temperature, medium and other 
external factors) which are an inseparable part of NM 
description. This makes it difficult to aggregate, compare, 
curate and evaluate NM data from different sources and 
(re)use them for simulations or for training new models.

For conventional chemical substances, web-databases 
and repositories (e.g., ChEMBL [13], PDBe [14], ZINC15 
[15], Pubmed [16] etc.) use standardized linear notations 
for substance identification (e.g., SMILES [17], SYBYL 
Line Notation [18], or InChI [19–21]). These notations 
are also used in deep learning tools [22] to guide the gen-
eration of feasible molecular structures featuring desir-
able properties (e.g., Generative Adversarial networks 
(GANs) [23], Variational Auto-Encoders (VAEs) [24], 
Recurrent Neural networks (RNNs) [25] etc.). Extension 
of e.g., InChI notations have been proposed to consider 
polymers, mixtures and reactions, and are currently con-
sidered for other cheminformatics-relevant components 
and procedures.

NMs entail additional challenges compared to con-
ventional chemicals. Recently, Lynch et al. [26] initiated 
an extensive discussion among various stakeholders 
and proposed a framework for an InChI standard for 
NMs and a roadmap for its development. They aimed 

to address the variety of complex nanostructures, using 
a hierarchical approach which introduces new layers on 
the InChI notation for the size, shape, crystal structure 
and ligand binding of the NM, and possibly extrinsic 
and surface properties.

In the current work we continue and extend this dis-
cussion, responding to the need for data normalization, 
NM description, and protocols for entering, curating 
and representing data and datasets in NM databases. To 
achieve this, we present representation assessments on 
top of which we build concrete extensions that provide 
standardized methods to represent NMs. Our approach 
provides the needed framework, according to the prin-
ciples set out in “Methodology” Section that the repre-
sentation needs to be accurate, flexible, complete and 
computable, to enable the systematic building of rep-
resentations able to depict the complexity of NMs. The 
proposed principles will allow the construction of rep-
resentations that should be able to encode all relevant 
information that a user might need to convey using a 
higher-level representation. The relevant information, 
we should note, is not necessarily the most detailed 
possible, as that is conveyed by, for example, a .mol file 
(which would include atomic, molecular, crystal struc-
ture / unit cell, surface etc.). Such detailed information 
could not be a substitute for characterization of the NM.

As a proof of concept implementation of our work, in 
“Results” Section we focus on suggesting layer exten-
sions (e.g., to the morphology and mixture layers) and 
generic extensions (e.g., for distributions and auxil-
iary information) to the recently proposed nano-InChI 
framework developed for accurate encoding and com-
municating of NMs [26]. We also propose an extension 
that allows users to create and communicate their own 
data structures. This enables future-proof solutions for 
better communication of the intrinsic or extrinsic dif-
ferences between NM objects, mixtures of NMs/impu-
rities etc. This is important for the development of 
data-driven approaches for the prediction of NM prop-
erties/activities and their correlation.

Finally, by promoting unique representations we aim 
to facilitate the development of reverse engineering 
tools for the design of NMs with desirable functionali-
ties, as well as safety and sustainability features under 
the Safe and Sustainable by design (SSbD) framework 
[27, 28]. Note that in the case of NMs, the representa-
tion should also consider the dynamic nature of real 
systems, i.e., the extrinsic properties of NMs. This is a 
very challenging aspect in terms of implementation that 
has not been considered in past works. “Conclusions 
and Outlook” Section, discusses how the proposed 
work can assist the step towards the consideration of 
non-pristine materials and NM dynamics.
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Methodology
To devise appropriate representation extensions, we 
first extracted the representation requirements by per-
forming a two-stage analysis in order to (a) define the 
requirements for a representation that could facilitate 
the development of data-driven structure-property mod-
els, and (b) identify a set of descriptors to focus on and 
propose extensions to make them more fit for structural 
representation of NMs and to facilitate machine-based 
applications.

Specific objectives and requirements
In this section we identify a set of principles that a NM 
representation should adhere to in order to provide 
“machine-friendly” or machine actionable encoding of 
NMs, that is able to support data management and cura-
tion, development and application of modeling tools for 
phys/chem/bio property prediction, and other machine-
oriented operations essential to nanoinformatics. As a 
whole, an ideal representation should:

• provide a standardized language able to depict the 
complexity of NMs and able to support similarity 
assessments and complex search queries in data-
bases;

• be able to encode all relevant NM information at all 
description levels, meaning that it should accurately 
describe the core components, shapes, sizes, distri-
bution of those elements, the chemical composition, 
type of structure or phase and surface characteristics 
of the NM; and

• be easily extendable by being able to provide—or at 
least facilitate—future-proof definitions and exten-
sions so that new features can be accurately recorded 
and communicated, without the need for revising the 
model.

In this sense, the three crucial features for a machine-
friendly NM representation considered here are: 
accuracy, completeness and flexibility [22, 29–33], as 
explained below in more detail. In addition, we also con-
sider computability as a desirable characteristic for a 
machine-friendly representation.

A representation, therefore, following these principles 
is:

Accurate, when a descriptor can be represented 
without loss of information, meaning that when 
we have the representation of a descriptor we can 
retrieve the descriptor instance exactly as it was 
before the representation encoding. For example, 
using a real number to represent average nano-

particle size is an accurate representation. Or, for 
another example,  a  .mol or a  .xyz file enables an 
accurate representation of the atoms’ position of a 
chemical substance since all known relevant  infor-
mation can be extracted by the representation 
without any ambiguities or loss of information. It is 
evident that the term “accuracy” refers to a specific 
aspect of the information that is conveyed, so a rep-
resentation can be accurate in some sense but not 
accurate in another. In the example of the .mol or 
.xyz files, these they are not an accurate representa-
tion of, for example, the dynamics or the stability 
of the structure. Since an accurate descriptor does 
not lose information, this could also cover the need 
for reversibility. Note that linear chemical identi-
fiers are not always able to fully capture the 3D 
structure of conventional chemicals [34]. However, 
NMs comprise a distribution of individual parti-
cles (in terms of sizes, surface properties etc.) and, 
therefore, a distribution of chemical compositions. 
So, the challenges in nano-identifiers lie beyond 
the representation of chemical composition and 
include how to fully capture the 3D structure of the 
particles or a median representation.
Flexible, when it can encode incomplete informa-
tion and can be used in different contexts. There-
fore, a flexible representation is also incremental, 
since it should be able to capture information in 
various stages of completeness without sacrific-
ing the accuracy of the representation. A direct 
result of this is that a flexible representation can be 
used as a building block for new representations, 
for example by reusing small components as parts 
of bigger new structures or even defining incom-
plete components as placeholders/generic reusable 
structures. Therefore, in a sense, flexibility defines 
successive layers of information-content where the 
current representation is accurate. For example, 
the recently proposed NInChI [26] representation 
is flexible regarding the use of existing InChIs for 
the small molecule functionalizing ligand. Simi-
larly, but in a much different context, a flexible 
representation for describing sizes could include 
layers for increasingly detailed information con-
tent such as: knowing the mean size, knowing the 
general distribution of the sizes, etc.
Complete, if it can encode the entire range of 
descriptor instances. For example, a representation 
that encodes nanoparticle shapes using categorical 
descriptors (e.g.,  “sphere”, “rod”, “tube”, etc.) is not 
“complete”, since it cannot capture all possible nano-
particle shapes. Similarly, encoding nanoparticle size 
using a real number is not “complete” in the sense 
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that a single number is not enough to capture all the 
nanoparticle size information, which is usually a dis-
tribution or a value in some confidence interval, etc.

Two additional important characteristics of a machine-
friendly representation are its ability to form general 
queries, and its computability (or calculability). The 
combination of those two characteristics enables a wide 
range of calculations that are of importance to machine 
operations, and would include similarity calculations 
to facilitate searches within a database, grouping/read 
across, pattern extraction etc., as well as quantifica-
tion of deviations from desired features with respect to 
shape and size, composition etc. of the NM. To allow 
the formation of general queries, a representation has to 
encode the relevant information using a consistent and 
uniform structure, that is, a structure that stays the same 
for all—or as many as possible—different realizations 
of a representation. Moreover, the structure and type of 
the information encoded should be known before-hand 
in full detail and the information should be encoded in 
such a way that retrieval is, ideally, efficient. These calcu-
lations would find use, for example, in setting boundaries 
for nanoforms or sets of nanoforms, or for quality con-
trol in materials production e.g., to ensure a NM produc-
tion is within the allowed deviation from the required 
characteristics.

Note that we will only consider computability as a 
required characteristic of a machine-friendly represen-
tation. The ability to form general queries is implied, to 
some extent, by computability as computability enables 
the ability to form queries of a consistent and uniform 
structure.

Also, the characteristic of “uniqueness” is not abso-
lutely necessary in order to facilitate machine operations. 
It is, in general, desirable that representations be unique: 
two datastructures that represent the same chemical 
structure should produce identical string outputs. This 
is achieved by “canonicalizing” the representation; if a 
chemical structure can be represented more than one 
way, specific rules are put in place so that only one of 
these acts as the “valid”/”canonicalized” representation. 
In the case of NMs, though, the requirement for unique-
ness would, among other things, obstruct the incre-
mental properties and increase the complexity of the 
representation excessively. Therefore, a machine-friendly 
representation will not guarantee uniqueness and will 
allow for the possibility that a certain NM corresponds 
to more than one representation instance. This is not as 
important as it might seem since (a) it does not apply 
to the individual components for which already exist-
ing, canonical representations are inherited, and (b) the 
“computability” of machine-friendly representations will 

allow for similarity comparisons thus making the identifi-
cation of identical representations and NMs a trivial task.

Finally, a consistent and uniform approach sets the 
groundwork for creating user friendly representations. 
Even though user-friendliness is not a requirement for an 
approach which is good for machine applications, it still 
needs to be considered as interactions between users and 
systems are unavoidable and should thus be facilitated. 
Computability/calculability, on the other hand, is very 
important for predictive models [35, 36].

Key challenges to be addressed
The second step of our analysis considers the struc-
tural descriptors most commonly used in current NM 
databases, as well as in simple datasets dedicated to 
the development of specific prediction models. The 
e-Nanomapper database [37] is an excellent paradigm 
for a FAIR and extended database built to support model 
development. Among the descriptors investigated, we 
identified those that showed a high usability rate but 
either failed to accurately describe all use cases or lacked 
a standardized representation. We then investigated the 
potential of the InChI implementations, like the recent 
NInChI [26] on the representation of these descriptors 
according to the requirements set out in “Specific objec-
tives and requirements” Section. Through this analysis, 
we identified 11 key challenges, which we grouped into 
5 categories according to the strategy used herein to 
address them.

An important challenge is how to deal with the 
many missing values or incomplete information in 
the databases. We consider this in all of the proposed 
extensions presented in “Results” Section by using incre-
mental representations according to “Specific objectives 
and requirements” Section.

One large category of challenges has to do with the 
morphology/shape representation of NMs. Shape repre-
sentation is especially important for NMs but it is also 
very challenging to construct appropriately. For exam-
ple, we see it as important to have a generic description 
of the particle morphology, and not to depend on a set 
of predefined shapes. Furthermore, the use of categori-
cal variables introduces discontinuities in QSAR mod-
els, and makes it difficult to search in databases, quantify 
structural similarity and investigate morphology-based 
behavior. NMs of the same shape might not even be 
directly comparable, or might be more similar to differ-
ent shapes than to others of the same shape. For example, 
shapes marked as “rods” might be closer to “nanotubes” 
or “spheres” than other “rods”, depending on the charac-
teristic one is more interested in (for example surface/
volume ratio or main axis ratio, etc.). Figure  1 show-
cases three pairs of shapes of the same and different 
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morphologies along with metric for their comparison 
(surface/volume ratio). Other similar issues have to do 
with the easier extraction of shape similarity metrics ena-
bling user definable morphologies and providing consist-
ent, continuous and comparable ranges/distributions. 
For all these issues, our general approach, described in 
“Distributions and ranges” Section and “Morphology” 
Section, is to use abstract mathematical formulations to 
describe shape, size and ranges.

The other group of issues that we would like to address 
have to do with: a) the representation of more complex 
hierarchies and relations in a way that is consistent with 
the main principles and requirements we presented, 
and b) the facilitation of the description of mixtures, 
defects and, ideally, other impurities present in NMs. We 
approach these by introducing relevant abstract struc-
tures and operators, as described in detail in “Mixtures & 
Interfaces” Section.

Finally, it is important to include a method that will 
enable one to capture and query auxiliary informa-
tion. To address this, we propose the introduction of a 

structured comment layer as discussed in “Auxiliary info/
Comments” Section.

The results of this analysis of issues hampering devel-
opment of structural representation of NMs are summa-
rized in Table 1, along with the proposed approaches to 
address these shortcomings. Note that the abstract math-
ematical formulations to describe shape, size and ranges 
can consider distributions as discussed in “Distribu-
tions and ranges” Section. Regarding the dependence on 
standard representations, alliance with existing standards 
is certainly beneficial e.g., for cross-referencing across 
databases.

In addition to the requirements described in “Specific 
objectives and requirements” Section, we also consider 
the following practical issues to extend the applicabil-
ity potential of our approach. Firstly, we try to keep our 
results compatible with existing InChI notations, par-
ticularly the recent NInChI proposal which aims to 
become a universal standard for NM notation. Also, 
the extensions aim to improve the NInChI dependen-
cies on other InChIs, so that we confine the complexity 

Fig. 1 Showcasing the multitude of shapes of NMs and the difficulty of describing and comparing them. Different shapes might share common 
characteristics, while similar shapes might differ significantly in their parameters. In this figure: sphere/ellipsoid, pyramids, and solid versus hollow 
tubes
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of the representation when mixture or reaction InChIs 
are used, and promote a more consistent and uniform 
approach. Note that consistency and uniformity are 
herein understood in the context of machine implemen-
tation: i.e., readable, able to support queries etc. There-
fore, a consistent and uniform approach is consistent in 
the use of keywords, operators and the structure of the 

representation. Secondly, we explicitly try to focus on 
extendable approaches, meaning that the proposed defi-
nitions should be made as future-proof as possible. This 
will circumvent the need for specification-setting meet-
ings, improve user-to-user communication, achieve 
faster communication cycles, and create a NM represen-
tation that adapts to specific user needs.

Table 2 provides a summary of the requirements identi-
fied as being critical for a NM representation suitable to 
facilitate machine processing and cooperation with exist-
ing and future nanoinformatics tools.

Results
The NInChI proposal [26] extends the InChI represen-
tation of chemicals by suggesting new layers aiming to 
encode specific features of the multi-component struc-
tures of nanomaterials. The initial proposal suggests 6 

Table 1 Summary of issues hampering the development of structural representation of NMs in a machine-readable format, and 
proposed approaches to overcome them

Issue Proposed approach

Missing or incomplete information Incremental representations (see “ Specific objectives and requirements” Section)

Description of general shapes Use abstract mathematical formulation to describe shape, size and ranges

Shapes and Sizes as continuous variables (not categorical)

Easier extraction of shape similarity metrics

User definable morphologies

Consistent, continuous and comparable ranges/distributions

Represent complex hierarchies and relations Introduce operators that allow abstract nested structures and flexible hierarchies

Streamline dependency on other InChIs

Missing description of defects Introduce modification operators

Capture auxiliary info Introduce structured comment layer

Query auxiliary info

Table 2 Summary of requirements for a machine friendly 
representation of NMs

Primary requirements Secondary requirements

Accurate NInChI compatible

Flexible Reduced complexity

Complete Extendable/future-proof

Computable/Calculable

Fig. 2 An example of an alpha version (indicated by the 1A) NInChI string that encodes a nanomaterial with two components. Component 1 is a 
Au shell coating, component 2 is a SiO2 spherical core. Note: the working group on NInChI are aware of some inconsistencies in this approach and 
its alignment with InChI that will be addressed in the next iteration (beta version or standard extension for nanomaterials 1.0 once accepted by the 
InChI Trust)
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new layers with the first 5 being “sublayers” of the “struc-
tural representation layer”. Each (sub) layer includes 
information related to different properties of a specific 
component. More specifically, these layers are (Fig. 2):

Composition layer that provides elemental-chemical 
composition information using the notation inherited 
from the InChI representation.

• Morphology layer providing information on the 
morphology of a component.

• Size layer that specifies the size of a component.
• Crystal layer that specifies the crystaline structure 

of a component, if such a structure can be speci-
fied.

• Chirality layer, which, at the moment, is focused 
on describing the chiral vector (n,m) for carbon 
canotubes (CNTs).

• Overall structure layer that specifies the overall 
structure, i.e., the relation between the individual 
components. This layer is defined as a “top” layer 
in the initial proposal, unlike the previous sublay-
ers that are part of the “structural representation” 
layer.

The (sub) layers are separated from each other using 
the symbol “/”. The components are separated from 
each other with the symbol “!”. The sublayer is specified 
by a prefix: ‘m’ for the morphology layer, ‘s’ for the size 
layer, ‘k’ for the crystal layer, ‘w’ for the chirality layer 
and ‘y’ for the overall structure layer. Each (sub) layer, 
then, uses its own “dictionary” to convey the needed 
information (see Fig. 2 and [26]).

We now present in detail the proposed extensions 
that aim to address the identified key issues (Table  1) 
while conforming to the set principles for a structural 
representation of NMs (Table 2). We propose 5 exten-
sions to the existing NInChI alpha version proposal, as 
follows:

(1) an extension to describe particle distributions; this 
extension should be available to be applied every-
where where a real number needs to be represented 
(“Distributions and ranges” Section),

(2) an extension to the morphology layer that bypasses 
categorical variables (“Morphology” Section),

(3) an extension of the way that mixtures and interfaces 
are represented (“Mixtures & Interfaces” Section), 
based on the introduction of logical operators that 
apply to other already defined layers. This is built on 
top of the mixture-InChI [38], which has the goal of 
facilitating the representation of defects.

(4) an extension for structured comments (“Auxiliary 
info/Comments” Section) that allows consistent 

and uniform capturing of auxiliary information and 
facilitates database curation, and finally

(5) an extension that allows the definition of macros 
and shortcuts allowing, thus, the definition of reus-
able, parametrizable and human-readable compo-
nents (“Macros & Aliases” Section).

Distributions and ranges
Most values in NMs are described as ranges or distribu-
tions, rather than specific values, for example size distri-
butions, non-uniform charge distributions, non-uniform 
surface coverage of ligands/polymers etc. Our database 
investigation highlighted patterns in range and distribu-
tion use (Table 3) that we can categorize into two groups. 
Firstly, we observe large inconsistencies in how distribu-
tions are presented, and secondly properties that can be 
presented as distributions in the database but are not. 
These properties include all those related to morphology 
(size and shape) on one hand, and other properties like 
purity or doping on the other hand. The proposed exten-
sion covers both cases in a consistent way. As already 
discussed in “Methodology” Section, a machine-friendly 
NM representation should allow for the consistent and 
uniform description of such ranges through a prede-
fined set of functions that can be easily manipulated. 
The results of this investigation also illustrated the chal-
lenges in searching and integrating data, and the need for 
harmonization.

A complete set of such functions should at the very 
least include a function that can easily describe ranges, 
such as a sigmoid function (e.g., logistic, error or Heav-
iside-step function), and a function that can easily 
describe simple distribution functions from their prob-
ability density function (pdf), such as a commonly used 
pdf (e.g., the normal pdf or the gamma pdf). A sigmoid 
function (Fig. 3) also allows the description of inequality 
relationships and can be derived from a cumulative dis-
tribution function (cdf ) of the respective probability dis-
tribution (see Fig. 3).

TABLE 3 Typical distributions and range excerpts found in NM 
databases

Less than 100 nm

90% is below 20 nm

Size between 60–100 nm

50% < 5 nm, 30% 5–10

Mean 27 nm, stdev 8 nm

15 nm (size distribution 99%)

Mean 115 nm, mode 95 nm
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Such functions have been exhaustively studied and 
there are many ways to query specific values and ranges, 
and many ways to compute similarities between them. 
For example, since the employed distributions are known, 
one could use metrics such as the Jensen-Shannon diver-
gence or the Kolmogorov-Smirnov distance to measure 

discrepancy or the similarity between two NMs distribu-
tions. Also, it is impossible to make a meaningful com-
parison of the NM size histogram and TEM images data 
in Fig. 4 by inspection alone, or just by knowing the mean 
and standard deviation of the data. By simply including 
a general pdf fit for the data in the representation, the 

Fig. 3 a Probability distribution functions (pdf ), and b their corresponding sigmoid-type cummulative density functions (cdf )

Fig. 4 Nanoparticles of various sizes and their respective size distributions. The distributions are fitted to a gamma pdf after calculating the 
distribution parameters
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comparison is straightforward: assuming a gamma distri-
bution fit of Γ(0.44, 23.8) and Γ(0.5, 18.4) respectively, we 
calculate their Jensen-Shannon divergence at 0.8. General 
queries then work in a similar manner where a needed 
feature is calculated as a distance from a desired value, or 
using geometric means to compare across NMs.

Rules for the combination of the above cdf, pdf etc. 
functions should also be specified. For example, the 
functions could be combined via multiplication, addi-
tion or other more complex functions. Furthermore, 
their respective reversed functions and inverse functions 
could be defined, providing a very flexible framework for 
describing the necessary distributions and ranges, based 
on very few components (see Table 4). Table 4 uses a pdf 
and a cdf function, based on gamma distributions. The 
known parameters can be specified (for example the con-
fidence interval, the standard deviation or the mean) and 
the corresponding gamma distribution parameters would 
be inferred as the best fit to the given parameters. A ‘mix-
ing’ function (denoted by “*” in Table  4) ensures that 

multiple conditions can be specified simultaneously (e.g. 
size  ≥ 60 nm and size  ≤ 100 nm). Figure 5 gives a graphi-
cal example of a possible implementation.

As a proof of concept implementation, it is very easy to 
extend the layer definitions of the InChI/NInChI frame-
work [26] to include the proposed functions. Below is an 
example of how the proposed extension can be imple-
mented in the NInChI notation for Au (/Au/) spherical 
(/msp/) nanoparticles of diameter 30  nm (/s30d-9/). 

Note that the shape description is discussed in “Mor-
phology” Section. The /k[P4_2/mnm]]/ part describes 

the crystal structure of the core NM by providing the rel-
evant space group information.

.
We now consider that more information was available 

but is lost when using the usual representation, such as 
the diameter of the Au nanoparticles, following a normal 
pdf with mean 30 nm and standard deviation 2 nm. This 
can be represented as follows:

.
Regarding the particle distributions of Fig. 5, they can 

be represented with the following notations (assuming 
that they correspond to Au spherical nanoparticles):

.

Morphology
During our analysis, it became evident that the shape 
description was mostly given either qualitatively through 
visual-inspection or approximately by simple image anal-
ysis. At times, a more accurate shape descriptor might 
be given [39] but in most cases the morphology descrip-
tion was given as a general shape through generic identi-
fiers like “sphere”, “prism”, etc. Table  5 lists some of the 
most frequently found shapes in NM databases. The 
requirements of a machine-friendly approach that were 

Table 4 Distribution examples using an example set of 
functions for some pdfs, the respective cdf, the reversed cdf 
(rcdf ) and a mixing function (*). Where parameters are missing, 
default values are implied that should be defined in the 
representation implementation

Before After

Less than 100 nm cdf(100) nm

At least 99.5% purity cdf(1, 0.995) → use in mixture exten-
sion ("Mixtures and Interfaces" Section)

90% is below 20 nm cdf(20, 0.9) nm

Size between 60-100 nm rcdf(60) ∗ cdf(100) nm

50% < 5 nm, 30% 5–10 cdf(5) nm, rcdf(5) ∗ cdf(10) nm
combine with mixture extension ("Mix-
tures and Interfaces" Section)

Mean 27 nm, stdev 8 nm pdf(27, σ = 8) nm

15 nm (size distribution 99%) pdf(15, ci = (u, 0.99)) nm

Mean 115 nm, mode 95 nm pdf(115,m = 95) nm

Fig. 5 A graphical example of a possible implementation for numbers, distributions & ranges: a pdf for “larger than 40 nm” (left), a specific number 
that implies a normal distribution (middle) and a range “30–50 nm” (right)
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set in “Methodology” Section dictate that a morphol-
ogy representation should use a consistent and uniform 
way to encode all description cases (however accurate or 
approximate), ideally in a flexible/incremental method.

In the NInChI proposal [26] a NM shape is described 
by selecting a category from a predefined set of shapes: 
for example, tube, sphere, shell, etc. In our view this 
solution is problematic as it is very difficult to predict 
what will be needed in terms of morphology, and the 
categorical approach lacks the expressiveness needed 
to easily and accurately query for shapes and similari-
ties between shapes. It is, therefore, very important 
that shapes can be abstractly defined. Varsou et  al. 
(2020)[40] proposed geometric mean as a way to com-
pare across particles. TEM images of the particles have 
also provided the basis to calculate a set of parameters 
(e.g., boxivity etc.) [41].

In general, it is very difficult to abstractly define 
shapes in a way that is at the same time accurate, flex-
ible and complete. Additionally, we need a user-friendly 
representation of the morphology, although this is not 
strictly necessary to meet the requirements we have 
set out in “Methodology” Section. However, user-
friendliness needs to be considered here since at some 
point there will be a user that has to manually encode 
a desired shape, and we deem it important that such 
interaction should be facilitated.

We propose that all shapes be described by an 
approximation using a set of predefined functions. 
Such sets of functions have been studied in depth in the 
relevant field of digital geometry, where encodings of 
arbitrary 3D shapes are being studied. NM descriptors 
could borrow techniques from these digital geometry 
paradigms or use simplified representations through 
shape descriptors. Another option is to use a combina-
tion of sets of 3D orthogonal functions like the spheri-
cal harmonics. In any case, a way to combine functions/
methods should be provided to allow for the incremen-
tal description of the NM morphology, capturing the 
appropriate level of detail that is available.

Through the known set of functions, it is now much 
easier to extract a needed characteristic and compare 
it between NMs. Calculations of relative volumes or 
surface/volume ratios, for example, are now straight 
forward, and other similarity measures can be easily 
constructed through the functions’ parametrization, to 
assist general queries.

Table  6 provides examples for the form of possible 
morphology extensions, using the NM shapes given 
in Table  5. Here, approximations through expansion 

Table 5 Most frequently found shapes reported in NM 
databases

Spherical

Irregular

Spherical mixed with irregular

Mixture of spherical, prismatic and rod-shaped

Wire

Triangular or rhombic

Cylindrical

Hexagonal, clubbed

Tubes

Rods

Nanohorn

TABLE 6 Examples for the form of possible morphology extensions

Before After

Irregular Use bounding box distributions

Spherical mixed with irregular As above + combine with mixtures extension (“Mixtures & 
Interfaces”Section)

Mixture of spherical, prismatic and rod-shaped As above + combine with mixtures extension (“Mixtures & 
Interfaces”Section)

Wire Y(0,0)*scale(100, 1, 1)

 

Cylindrical Y(0,0)*scale(…) + Y(0,1)*scale(…) + Y(0,2) …

Rods Y(0,0)*scale(4, 1, 1)}

Nanohorn

Y(3, 5)  
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to spherical harmonics have been used to describe the 
shapes. A series of spherical harmonics paired with scal-
ing parameters for each term can be used to approximate 
arbitrary 3D shapes [42]. In the simplest cases, a series 
of 1 to 3 terms will suffice. In the InChI/NInChI frame-
work, the proposed functions could replace the categori-
cal values of the morphology layer. Using the example of 
the spherical Au nanoparticles of the previous subsec-
tion, the categorical variable msp  that is set to denote 
a sphere:

.

can be replaced by using spherical harmonics:
.

Using spherical harmonics enables the calculation 
of similarity metrics, so we can evaluate the similar-
ity between this nanoparticle and, e.g., an Au rod nano-
particle in terms of their surface to volume or volume 
ratios characteristics. By combining this approach with 
the macros & aliases extension, an even more powerful 

representation becomes possible (see “Macros & Aliases” 
Section).

Mixtures and interfaces
The need for descriptions of mixtures of different NMs or 
the portion of impurities/defects which are ubiquitous, 
also emerged. Table 7 shows some of the many different 
ways where a notation for mixing is needed. In the cur-
rent NInChI proposal [26] the description of mixtures is 
approached through a dependency on the Mixture-InChI 
[38] representation while interfaces are not yet imple-
mented. A key difference, though, between NM relation 
description and mixtures descriptions is that, in the NM 
case one mostly needs to describe the structure of the 
relations. Mixture-InChI on the other hand has the goal 
of capturing definitely what is known about the composi-
tion of a given mixed substance. Here we treat mixtures 
and interfaces as different parts of the same structure 
since a mixture always has some components and each 
component always has some relation with the others. 
Therefore, a successful mixture and interface representa-
tion should allow the complete graph representation of 
the NM structure in an incremental way, describing all 
known structural information including interfaces, rela-
tions-hierarchies and defects.

We propose the introduction of hierarchy and inter-
face operators that can be applied on top of the exist-
ing definitions to capture information about component 
relations, interfaces, bonds, etc. The hierarchy operators 
are representation operators that should at least describe 
the spatial relation between components so that a “hier-
archy” graph can be built as, for example, the structure 
seen in Fig. 6.

Note that the graph structure on the right of Fig.  6 
refers to a Silica coated Au sphere. Using the NInChI 
framework, it may correspond to NInChI = 1A/Au/
msp/s20d-9!/O2Si/msh/s3t-9/y1&2, where the “!” sepa-
rates the two components, namely component 1 “/Au/

Table 7 Typical descriptions of mixtures, defects and interfaces 
found in NM databases

(Size) &50% < 5 nm, 30% 5–10

(Size) 90% is below 20 nm

(Shape) mixture of spherical, prismatic and rod-shaped

(Shape) triangular or rhombic

(Media) 0.45% NaCl w/ 0.1% glucose

(Media) mass-concentration proportions (96 mg/L A, 60 mg/L B, 60 mg/L 
C, 4 mg/L D)

(Defect) at least 99.5% purity

Fig. 6 Tree structure using the hierarchy and interface operators. Left: 
a gold-coated silicon nanoparticle. Right: An abstract nanomaterial 
with some components “A”–”E”. Component “C” is connected through 
some “bond-a” to component “D”, etc. The percentages 30%, 70% 
make specific sense in specific contexts; e.g. a mixture with 30% of “B” 
and 70% of the structure “C–D–E”

Table 8 Examples of operators used to describe particle 
distributions in terms of particle size or shape

Before After

50% < 5 nm, 30% 5–10 {5 nm, 5–10 nm}:{0.5, 0.3}

Mixture of spherical, prismatic and rod-
shaped

{sphere, prism, rod}:{}

0.45% NaCl w/ 0.1% glucose {NaCl, glucose}:{0.0045,0.001}

Mass-concentration proportions:(96 mg/L 
A, 60 mg/L B, 60 mg/L C, 4 mg/L D)

{A, B, C, D}:{96, 60, 60, 4}mg/L

At least 99.5% purity …:{cdf(1, 0.995)} → combine 
with distributions exten-
sion (see "Distributions & 
Ranges" Section)
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msp/s20d-9” and component 2 “/O2Si/msh/s3t-9/”, and 
the structural layer “/y1&2/” sets the order of the com-
ponents from the inside-out. The graph structure on 
the left is an abstract representation of a mixture of two 
substances or components in a 30:70% mixture; bond 
information (“Bond-a”, “Bond-b”) is also given for two 
of the constituents. The interface operators, on the other 
hand, should at least describe the most common possible 
interfaces—in a way explaining the type of hierarchy—
between components and other relevant information 
concerning the relation between components such as 
bonds, functionalization etc. (represented by the infor-
mation on the edges of the graph in Fig.  6). Ideally, the 
definition would be future-proof, allowing the extension 
of the interfaces that can be described by the user. The 
defect operators should at least describe the most com-
mon possible point defect types, through unions, inter-
sections, etc. The above allows the creation of a graph 
that describes the structure of the NM. For example, a 
chemical component and other relevant information 
could be translated to a graph structure by firstly forming 
nodes (purple circles in Fig. 6) representing each compo-
nent. One, then, can define the hierarchy and interface 
operators as operators that annotate the edges between 
the nodes, defining the complete structure of Fig.  6. 
Based on the graph one can easily construct efficient 
queries as a graph is already a data structure particularly 
suited for this task.

In terms of implementation, the operators could be 
realized as incremental descriptors that specify the afore-
mentioned relationships as shown in Table 8. There, the 
mixture specifications have been replaced by groups of 
descriptors where the information is now split among 
the groups. The first group now specifies the main infor-
mation content (e.g., size, shape or component) while 
the second group provides the interface information (in 
this case the mixing percentages) in a one-to-one cor-
respondence. It is already evident that information can 
be easily processed using this representation; in the first 
line of Table 8, for example, one can directly confirm that 
there is missing information for 20% of the input (even if 
such information can be inferred, it should be noted that 
it is missing from the original representation).

In the InChI/NInChI framework, the layer defini-
tions can be extended to include the proposed opera-
tors. The new NInChI layer could be defined to include 
these operators as a core component or could simply 
by extended by appending the operators to the struc-
tural layer. For example, a two component NM with 

 

and an , in 
the NInChI proposal [26] would be written as:

.

The “overall structure” layer  would either be 
replaced or extended with operators signifying the spe-
cific relation of the components. For example, “compo-
nent 2 includes component 1 with a relation (or bond) of 
type “b” in a 70:30 ratio”:

.

Auxiliary information/comments
NM databases are full of important auxiliary information 
(Table  9). Such information is usually lost in the repre-
sentation but it is often crucial and should be both query-
able and user-definable so that auxiliary data can be 
canonically curated, stored and communicated. Table 10 
gives some typical examples of defined data types, not 
confined to NM databases.

We propose that a method to capture and query aux-
iliary information should be included in a representa-
tion specification. We define a comment structure that 
includes a formally defined header followed by the con-
tent of the comment. The header serves three purposes: 
(1) it defines the type and structure of the content; (2) it 
describes the type of the content; and (3) it names this 
structure so that it can be reused. Ideally, the header 
could be stored externally so that it is made publicly 
available for communication and re-use. The existence of 

Table 9 Some of the auxiliary information appearing in the NMs 
databases

Zeta potential

Test organism

Test conditions

Dates (in various contexts)

Other descriptors

Table 10 Examples of defined data types

Data type Values

Date ISO date

Float Real numbers or distributions

Text Utf-8 string

Units SI-unit

URI URLs, ISBNs, DOIs, etc

Enumeration List of acceptable values
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a structure alone greatly facilitates queries. It is very easy 
to search for and convert from the comment structure to 
an application-appropriate data structure that will make 
any query easy and efficient. Table 11 provides examples 
of comment header structures.

In the InChI/NInChI framework, a comment layer 
could be defined which would follow our proposed defi-
nitions. For example, if we know the zeta potential of a 
NM:

NInChI = 1A/Au/msp/s30d-9/k[P4_2/mnm]/y1.
it can be included in a comment as follows:

Macros and aliases
A complementary proposition of high importance is the 
inclusion of a macros & aliases extension that would 
provide a method to define NMs components that are 
reusable, parametrizable and human-readable. These 
can be used to describe complete layers in InChI (e.g., 
sphere(30e-9)) or specific sub-features of NMs such 
as crystallographic structures, standardized mixtures, 
specific doping or defects, or an abstract structure 
(for example a core-coating structure) etc. This would 
greatly facilitate future-proof definitions, curation, 
communication etc. using the NInChI. We propose the 
inclusion of a macro/alias layer that could contain such 
extra information as detailed below. In the (N)InChI 
framework, and in the absence of an appropriate tool-
chain that could process such information, this layer 
should be silently discarded. In an ideal scenario, the 
appropriate tool-chain will be developed to automati-
cally process and curate this information. The intended 
workflow would also include pointers to a public data-
base of commonly used alias/macro definitions.

An important goal with the introduction of a macro-
layer is to enable one to meaningfully store and/or com-
municate part of a NM characteristic or feature (NM 
structure, component, shape, etc.) keeping its structure 
and making it available for communication and reuse. 
This way, for example, a partially defined component 
can be shared as a template or complex shapes can be 
defined and reused in a database (Table 13).

Table 11 Examples of header structures

Title Description Type1[;type2;…]

Zpotential Zeta potential values; units; URL to medium description Float;units;uri

Publication Publication date; Authors; Journal name Date;text;text

Taxonomy Subphylum name; Link to taxonomy database Enumeration;uri

Table 12 Example uses of the defined header structures that 
can be included in NInChI specifications

Before After

Zeta potential Zpotential[− 35;mV;urlx]

Type of test organism Taxonomy[crustacean]

Date of publication and authors Publication[21/10/2019;"Au
thor A., Coauthor B.";"J.Nan"]

Table 13 Example uses of the macros & aliases extension

Definition Use

Anatase: = 2O.Ti/k[Ir_1/amd] Anatase

Sphere(%x): = Y(0,0)*%x Sphere (30e-9)

Mystructure (%a,%b,%c): = core (%a) coating (%b) 
sphere (%c)

Mystructure 
(Au,C8H8,30e-9)

This structured comment makes it very easy to curate, 
search and find the relevant information. Note that zeta 
potential is strongly pH and salt-dependent and the solu-
tion pH needs to be measured and reported with every 
zeta potential measurement. This information should 
be provided at the web address URL that provides the 
description of the medium, denoted above as “urlx”.

We stress that an InChI implementation of the com-
ment-extension could be made very easily by simply 
allowing InChI to respect but not define the comment 
layer structure. The comment structure itself can be 
specified elsewhere leaving the specification-work to an 
external entity, instead of amending the InChI specifica-
tion itself. Table 12 provides example uses of the header 
structures defined in Table 11, in the comment extension.
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As with the comment layer, in the InChI/NInChI 
framework, a macro/alias layer could be defined. For 
example, following our proposed structure to define 
and replace shape (  denotes a morphology yet 
undefined):

.

or define and replace crystal phase:

A second driving point for the introduction of a macro/
alias layer is opening the door to more general represen-
tations encompassing many different descriptors and 
facilitating NM curation and standardization of repre-
sentations. A macro/alias extension could serve as a first 
step towards a programmatic approach to NM represen-
tation (see “A language for NM representation” Section).

Conclusions and outlook
In this work we have analyzed the needs and specified the 
requirements for future NM representations suitable to 
facilitate machine processing and cooperation with nano-
informatics tools. At the same time, we have identified in 
this context, challenges that existing NM representation 
proposals face, and which the approach described here 
aims to address. We have laid out the basic principles 
for an ideal machine-friendly representation. Namely, 
such a representation should provide a standardized 
language able to depict the complexity of NMs and sup-
port similarity assessments and complex search queries 
in databases. It should be able to encode all relevant NM 
information at all description levels and also be eas-
ily extendable. We codified these principles into four 
requirements: a machine-friendly representation should 
be accurate, flexible, complete and computable.

We also presented specific extensions which can improve 
existing NM representations on the basis of the principles set 
here. We have shown how the recently introduced InChI for 
NMs, in principle, might be augmented through these exten-
sions. The extensions concern the notation layers which 
define: (a) ranges and distributions, (b) NM morphology, 
(c) mixtures and interfaces, (d) capturing auxiliary informa-
tion (comments), and (e) macros and aliases. There are still 
certain open issues at various levels, for example for the rep-
resentation of morphologies, and the handling of missing 
values for mandatory fields, which are key topics currently 
being discussed in the Nanomaterials InChI Working Group 
(https:// www. inchi- trust. org/ nanom ateri als/). The incre-
mental approach presented here is the key to addressing 
these yet enabling implementation immediately.

Toolchain development
An immediate next goal for this work is to build the 
appropriate tools that are needed to realize such a rep-
resentation. The representations discussed in this work 
are not meant to be handled manually by the users but 
are designed around an assumed workflow that is based 
on the existence of appropriate tools. These tools should 
provide the users with the necessary tool-chain and 
library support that actually enables the use of such rep-
resentations. These tools crucially include user interfaces 
and application programmable interfaces (UI and API) 
that (a) validate representations, (b) translate between 
representations and descriptions, and (c) canonicalize 
representations. Moreover, tools to connect to endpoints, 
share the representations, etc. would also prove useful to 
end users and should be considered.

A groundwork for further discussion
Τhe proposed principles set the groundwork for a use-
ful, universal, NM representation, able to address current 
challenges in machine processing of NM data. It would 
be advantageous for a NM representation to be as com-
patible as possible with other standardized representa-
tions like InChI and its extensions to mixtures, reactions 
and NMs. Thus, the details and specific forms of the pro-
posed extensions need to be discussed with and approved 
by the NM community and other stakeholders involved 
in the stages of development, implementation and adop-
tion of a standard notation. To this end, the authors par-
ticipate actively in relevant discussions as members of 
the Nanomaterials InChI Working Group (https:// www. 
inchi- trust. org/ nanom ateri als/).

One important issue to be addressed, specific to 
NMs and a key component of accurate and correct NM 
description, is NM dynamics. NMs rarely are only use-
ful or found in their pristine (i.e., as synthesized) forms. 
NMs constantly evolve through interactions and through 
their integration with biofluids, the environment etc. 
Such information is currently available, e.g., in terms of 
time-resolved data about specific NMs under specific 
environmental conditions (so-called instances of a NM 
in the terminology developed by the US CEINT NIKC 
database which was integrated into the NanoCommons 
KnowledgeBase [10] to allow aged NMs to be linked to 
pristine (parent) NMs) [43].

Linear representations usually only consider the pris-
tine forms (as, for example, Lynch et  al. [26]) and only 
represent a frozen-in-time special case of the NM. We are 
confident that the principles we set out in “Methodology” 
Section for an accurate, flexible/incremental, complete 

https://www.inchi-trust.org/nanomaterials/
https://www.inchi-trust.org/nanomaterials/
https://www.inchi-trust.org/nanomaterials/
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etc. approach, can provide the theoretical background 
to gradually capture the real particle dynamics. A lot of 
decisions will need to be made, so that dynamic aspects 
are represented efficiently, consistently, accurately, and 
would enable data processing and extraction of useful 
knowledge. For instance, consideration is needed on how 
to include the time dimension within the representation 
(e.g., using a commonly acceptable discretization of the 
time domain); how to register additional information on 
the different media where NMs are dispersed; or how to 
consider surface stabilizing or functionalizing ligands 
which can be displaced by proteins or other ligands with 
higher binding affinities etc. The proposed extensions 
provide practical solutions for implementation of such 
cases, e.g., allowing users to: (i) easily define aged NM-
variants using parts of their parent structure, and ena-
ble the tracking of similarities (common parts) between 
them; (ii) define mixtures and interfaces for NMs bear-
ing surface-conjugated ligands; (iii) handle variabilities 
or uncertainties in transformation data e.g., for particle 
sulfidation, partial dissolution, etc.

A language for NM representation
An interesting perspective addressing all the above would 
be the creation of a domain specific language (DSL) for 
NM representation. A DSL has the “feel” and structure 
of a general programming language, but is intended for 
use by specialists in the specific domain (in this case NM 
experts, handlers, experimentalists etc.) providing tools, 
methods and language syntax greatly facilitating NM 
data curation, communication and processing. A DSL 
would, therefore, incorporate all of the ideas discussed in 
this work, in a consistent, practical, reusable and extensi-
ble programming framework. Based on the requirements 
set in this work, a DSL would, essentially, form a lingua 
franca for NMs, able to address the peculiarities of NMs 
description and accessible to experts and non-experts 
alike. Clearly, the DSL implementation should include 
interfaces to standard notations.

Following the discussion in “A groundwork for further 
discussion” Section, the DSL would move further from 
pristine forms and would enable, at the same time, the 
consideration of the particle dynamics and hence the 
time evolution of these systems. For example, by taking 
advantage of the ideas on hierarchy and interface opera-
tors (see “Mixtures & Interfaces” Section), a DSL could 
offer the tools to describe relationships between differ-
ent states of a NM and information on the transitions 
between those states. A DSL, therefore, would extend to 
the description of NM dynamics, evolution and interac-
tions. Through these, the DSL could greatly facilitate the 
curation and processing of NM data and, ultimately, play 

an important role in predicting the properties of and 
designing new NMs.
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