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Abstract: Remanufacturing, as a way to achieve the circular economy paradigm, can help save the 

environment by reducing the use of raw materials and energy, cutting greenhouse gas emissions and 

virtually eliminating the need for landfill. Disassembly is a critical first step in the remanufacturing process. 

This research uses the Bees Algorithm to optimise robotic disassembly sequence planning. Three 

sustainability strategies are addressed in the proposed model-based system for robotic disassembly 

planning: reuse, remanufacturing, and recycling. The results of two case studies based on end-of-life 

industrial gear pumps demonstrate that the Bees Algorithm can find the best solution for robotic 

disassembly sequence planning. 
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1. INTRODUCTION 

As part of a circular economy (CE), remanufacturing benefits 

the environment, society and the economy (Ellen MacArthur 

Foundation, 2015). Remanufacturing reduces waste 

generation and energy and resource consumption in 

manufacturing (Chiodo and Ijomah, 2014). Several 

researchers have pointed out that disassembly is the most 

critical step in remanufacturing (Lambert, 2003; Wang et al., 

2013, 2014; Xia et al., 2014; Zhou et al., 2018). Disassembly 

sequence planning (DSP) involves designing a detailed 

sequence for breaking up the product (Lambert, 2003; Zhou et 

al., 2018). 

Optimising the disassembly of a product is classified as an NP 

problem, which means that the number of solutions increases 

exponentially as the number of parts in the system increases 

(Elsayed et al., 2012; Meng et al., 2017). When calculated 

manually, this problem requires a significant amount of time 

to find the best solution. Over the last two decades, 

computational researchers have used metaheuristic algorithms 

to accelerate the solution of complex problems. The Bees 

Algorithm (BA), introduced by Pham et al. (2005), is one of 

the metaheuristics that is robust in finding near-optimal 

solutions to solve complex problems faced by industry (Yuce 

et al., 2013). 

Intelligent disassembly systems have been studied for many 

years (IFAC, 2004).  Recent investigations have focused on 

the sequencing of manual disassembly (Laili et al., 2022). The 

use of robots in place of manual labour, on the other hand, has 

emerged as part of a transition to flexible automation in the era 

of Industry 4.0. This research focuses on robotic disassembly 

sequence planning (RDSP), which addresses disassembly 

processes utilising industrial robots. As highlighted by Liu et 

al. (2018), robotic disassembly presents challenges when 

compared to manual disassembly due to the differences in 

characteristics between robots and humans, particularly the 

moving path of the robot’s end effector to avoid collision, 

which also affects the total time required for disassembly. 

Numerous researchers have proposed optimal solutions for 

robotic disassembly. Laili et al. (2019, 2022) and Li et al. 

(2018) demonstrate that the optimal solution for robotic 

disassembly using the BA outperforms those found by other 

metaheuristic algorithms. This study proposes a sustainability 

model and the optimal RDSP solution using the BA. 

The structure of this paper is as follows. Section 2 provides an 

overview of the related literature using a bibliographic 

analysis. Then, the methodology and the sustainability model 

are described in Section 3. Section 4 provides the results and 

discussion of the optimal solution of RDSP using the BA for 

the sustainability-based model. Moreover, the last section 

provides the conclusion and further research directions. 

2. LITERATURE REVIEW 

Readers are referred to the work of Zhou et al. (2018) for a 

systematic literature review of disassembly sequence 

planning. The steps below describe the RDSP literature review 

in this study. The search terms “robot*” AND “disassembly” 
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AND “sequenc*” yielded 151 articles in the Scopus database. 

The following criteria were used to refine the articles: the full 

text was in English and was available. The final results were 

36 articles on robotic disassembly sequence planning and 10 

on human-robot collaboration in product disassembly. Articles 

involving human-robot collaboration were excluded as this 

work concerns fully robotised disassembly. The bibliographic 

records for RDSP were downloaded for further analysis. The 

first article on robotic disassembly task sequencing was 

published in 1996 by Suzuki et al., focusing on learning 

control systems using Petri nets. Figure 1 shows slow progress 

in robotic disassembly research, and the last four years saw a 

rising trend, with the most articles in 2018. 

A co-occurrence analysis was conducted that revealed the 

clustering of co-authors, co-citations, and co-keywords, 

highlighting research trajectories, academic communities 

identification, and research trends (Van Eck and Waltman, 

2017; Deniz and Ozcelik, 2019). Co-authorship based on 

authors with a threshold of a minimum of 2 documents per 

author shows that from 98 authors, 28 authors have worked on 

the same articles at least twice. The results show 7 clusters, 

with two closely related (Figure 2). The leading academic 

collaborators are Pham, Zhou, Xu and Liu. Co-authorship 

based on country shows that authors from seven countries have 

published more than two documents together.  Four closely 

related countries were China, the UK, the USA and Spain with 

11, 8, 8 and 4 documents, respectively. Germany had five 

documents without connection to other countries. This result 

reveals that the RDSP collaborators are concentrated in 4 

countries.  

The co-occurrence analysis also revealed the most popular 

keywords. 361 keywords were found, and based on a minimum 

of 4 occurrences, there were 19 keywords in 2 clusters. The 

top keywords were robotics, disassembly sequence, robot 

programming, disassembly sequence planning, robots, robotic 

disassembly, disassembly process, end-of-life products, and 

remanufacturing.   

For a visual representation of the VOS analysis, readers can 

refer to https://doi.org/10.25500/edata.bham.00000778 

The citation analysis in Figure 3 shows that the most cited 

documents were Elsayed et al. (2012), Gil et al. (2007), 

Vongbunyong et al. (2015), Liu et al. (2018), Ramírez et al. 

(2020) and Alshibli et al. (2016). The most cited authors are 

Pham, Zhou, Xu, and Liu, who are also the leading academic 

collaborators, as previously mentioned. 

The last step in the literature review was document 

classification, emphasising the sustainability model in RDSP. 

Of the 36 RDSP articles, only 3 used sustainability objectives. 

Another article, Alshibli et al. (2018), considered 

environmental, economic and social criteria and adopted the 

analytical hierarchy process (AHP) to decide the end-of-life 

option focusing on minimising disassembly time. The main 

contribution of this research is the sustainability-based model 

as shown in Table 1. 

Table 1. Research Position 

Authors Recovery Options Objectives Disassem-

bly Output 

Alshibli 

et al. 

(2018) 

Recycling, Reuse, 

Disposal 

Min time. Using 

AHP for 

environmental, 

economic, 

social criteria 

Sequence 

and 

Recovery 

Gao et 

al. 

(2018) 

- Min energy Sequence, 

Direction, 

Tool 

Wang et 

al. 

(2021) 

- Min makespan 

and energy  

Sequence 

This 

paper 

Recycling, 

Remanufacturing, 

Reuse, Disposal 

Max profit, 

energy savings, 

environmental 

impact 

Sequence, 

Recovery, 

Direction, 

Tool 

Figure 1. Robotic Disassembly Sequence Planning Trends 
 

Figure 2. Top RDSP Co-authorship based on authors 

 

 

Figure 3. Top RDSP Citation based on documents 
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3. METHODOLOGY AND MODEL 

The research steps are shown in Figure 4. To eliminate 

infeasible sequences, the first step was to prepare the input data 

and evaluate part interference and precedence relationships, as 

suggested by Zhou et al. (2018). Initially, extensive 

information was acquired on the product, its components, its 

properties, and the viability of its recovery. Data from CAD 

files were used as the input for the model. Additionally, unlike 

manual disassembly, the model must include the disassembly 

direction to establish the proper paths for robot movement. 

Finally, the proposed model was evaluated on two industrial 

gear pumps (Figures 5 and 6) to demonstrate its feasibility. 

 

 

This study utilises three sustainable recovery strategies to 

address the RDSP: reuse (REU), remanufacturing (REM), and 

recycling (REC). Due to the nature of the components, not all 

of them may have the same recovery mode. For instance, the 

gasket will be unsuitable for reuse, remanufacturing or 

recycling and therefore will be discarded. Consequently, three 

strategies were developed for each component. Table 2 shows 

the strategies in detail. 

 

Table 2. Sustainability Strategy for each part 

Gear pump A strategy Gear pump B strategy 

 
Part REU REM REC Part REU REM REC 

 
1 3 

3 

3 3 1 3 3 3 
2 3 3 3 2 3 3 3 
3 3 3 3 3 3 3 3 
4 3 3 3 4 3 3 3 
5 3 3 3 5 3 3 3 
6 3 3 3 6 3 3 3 
7 1 2 3 7 1 2 3 
8 4 4 4 8 4 4 4 
9 1 2 3 9 1 2 3 

10 1 2 3 10 1 2 3 
11 1 2 3 11 1 2 3 
12 1 2 3 12 1 2 3 
13 1 2 3 13 1 2 3 
14 1 2 3 14 4 4 4 
15 1 2 3 15 4 4 4 

    16 4 4 4 
    17 4 4 4 
    18 1 2 3 
    19 1 2 3 
    20 1 2 3 
    21 3 3 3 
    22 3 3 3 
    23 3 3 3 
    24 3 3 3 

Recovery mode: 1=reuse, 2 = remanufacturing, 3 = recycling,4 = disposal 

 

The disassembly precedence in six disassembly directions 

(X+, X-, Y+, Y-, Z+, Z-) is described using the space 

interference matrix, as proposed by Jin et al. (2013). However, 

when the products to be disassembled contain fasteners, the 

previous approach is inadequate. Liu et al. (2018) proposed a 

solution to this problem, called modified feasible solution 

generation (MFSG), to analyse each matrix independently. 

The second step is the model formulation for the RDSP, which 

includes objective definition and problem formulation. The 

optimisation goal of this robotic disassembly operation is to 

maximise the objective, as shown in Eq. (1): 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =  𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓1, 𝑓𝑓2, 𝑓𝑓3)                 (1) 

The variable descriptions for the equations are listed in Table 

3. The objectives are profit (f1), energy savings (f2) and 

environmental impact reduction (f3), as presented in Eqs. (2)-

(4), respectively. In addition, Eq. (5) ensures that each part 

only has one recovery mode, Eq. (6) guarantees that all parts 

are disassembled, Eq. (7) ensures that the precedence 

 

Figure 4. Research Steps 

Figure 5. Gear Pump A (Exploded view). 

Source: Liu et al. (2018) 

Figure 6. Gear Pump B (Exploded view). 

Source: Grabcad Community (2020) and Ramírez et al. (2020) 
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disassembly sequence is followed, and Eq. (8) guarantees that 

the total number of dismantled parts is not exceeded. Of 

course, different sustainability strategies produce different 

outcomes, and the purpose of this model is to identify the most 

suitable strategies for each objective. 

𝑓𝑓1 = ∑ ∑ 𝑅𝑅Piri,j𝛼𝛼i + ∑ RCiri,3𝛼𝛼i − ∑ CN
i=1 Diri,4

N
i=1 (1 −2

j=1
N
i=1

𝛼𝛼i) − [∑ tb(xi)𝛼𝛼icT
N−1
i=1 + ∑ (𝑃𝑃𝑃𝑃(xi,𝑀𝑀)

ve
+N−1

i=1

tc(xi, xi+1) + 𝑃𝑃𝑃𝑃(𝑀𝑀,xi+1)
ve

+ tu(xi, 𝑀𝑀) +

tw(𝑀𝑀, xi+1) 𝛾𝛾i𝛼𝛼icT + ∑ (𝑃𝑃𝑃𝑃(xi,xi+1)
ve

+N−1
i=1

tz(xi, xi+1)) (1 − 𝛾𝛾i)𝛼𝛼icT] − ∑ ∑ rci,jri,j𝛼𝛼i
2
j=1 −N

i=1

∑ ∑ ohi,jri,j𝛼𝛼i
4
j=1 − ∑ ∑ dpi,jri,j𝛼𝛼i

4
j=1

N
i=1

N
i=1   (2) 

𝑓𝑓2 = ∑ ∑ 𝑟𝑟𝑖𝑖,𝑗𝑗gr𝑖𝑖,𝑗𝑗𝑓𝑓𝑤𝑤α𝑖𝑖 − ∑ [𝑡𝑡𝑏𝑏(𝑥𝑥𝑖𝑖)PR1γ𝑖𝑖 +𝑁𝑁−1
𝑖𝑖=1

2
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1

𝑃𝑃𝑃𝑃(𝑀𝑀,𝑥𝑥𝑖𝑖)PR2γ𝑖𝑖
𝑣𝑣𝑒𝑒

+ 𝑡𝑡𝑐𝑐(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖+1)PR2γ𝑖𝑖 + 𝑃𝑃𝑃𝑃(𝑀𝑀,𝑥𝑥𝑖𝑖+1)PR2γ𝑖𝑖
𝑣𝑣𝑒𝑒

+
𝑃𝑃𝑃𝑃(𝑥𝑥𝑖𝑖,𝑥𝑥𝑖𝑖+1)PR2(1−γ𝑖𝑖)

𝑣𝑣𝑒𝑒
] 𝑓𝑓𝑤𝑤α𝑖𝑖

3600 − ∑ ∑ 𝑟𝑟𝑖𝑖,𝑗𝑗gc𝑖𝑖,𝑗𝑗𝑓𝑓𝑤𝑤α𝑖𝑖
3
𝑗𝑗=1 −𝑁𝑁

𝑖𝑖=1

∑ 𝑟𝑟𝑖𝑖,4gc𝑖𝑖,4𝑓𝑓𝑤𝑤(1 − α𝑖𝑖)𝑁𝑁
𝑖𝑖=1                (3) 

 

𝑓𝑓3 = ∑ ∑ 𝑟𝑟𝑖𝑖,𝑗𝑗𝑒𝑒𝑟𝑟𝑖𝑖,𝑗𝑗𝛼𝛼𝑖𝑖
2
𝑗𝑗=1 −𝑁𝑁

𝑖𝑖=1 ∑ ∑ 𝑟𝑟𝑖𝑖,𝑗𝑗𝑒𝑒𝑒𝑒𝑖𝑖,𝑗𝑗𝛼𝛼𝑖𝑖
3
𝑗𝑗=1 −𝑁𝑁

𝑖𝑖=1
∑ 𝑟𝑟𝑖𝑖,4𝑒𝑒𝑒𝑒𝑖𝑖,4(1 −𝑁𝑁

𝑖𝑖=1
𝛼𝛼𝑖𝑖) − ∑ 𝑒𝑒𝑒𝑒(𝑥𝑥𝑖𝑖)𝛼𝛼𝑖𝑖 −𝑁𝑁−1

𝑖𝑖=1 ∑ 𝑒𝑒𝑒𝑒(𝑥𝑥𝑖𝑖,, 𝑥𝑥𝑖𝑖+1)𝛼𝛼𝑖𝑖
𝑁𝑁−1
𝑖𝑖=1               (4) 

 

∑ 𝑟𝑟𝑖𝑖,𝑗𝑗 = 1        ∀𝑖𝑖4
𝑗𝑗=1      (5) 

𝑟𝑟𝑖𝑖,1 + 𝑟𝑟𝑖𝑖,2 + 𝑟𝑟𝑖𝑖,3 ≤ 𝛼𝛼𝑖𝑖         (6) 

𝛼𝛼𝑖𝑖 ≥ 𝛼𝛼𝑖𝑖+1                           (7) 

∑ 𝛼𝛼𝑖𝑖 ≤ 𝑁𝑁 − 1𝑁𝑁
𝑖𝑖=1                 (8) 

4. RESULTS AND DISCUSSION 

The algorithm used in this study to find the best solution for 

RDSP was the Bees Algorithm proposed by Pham et al. 

(2005). In this research, the version called the Enhanced 

Discrete Bees Algorithm (EDBA) presented by Liu et al. 

(2018) was adopted. The algorithm starts from initialisation 

with parameter settings as follows: number of elite sites (e) = 

1, number of selected sites (m) = 5, number of elite site bees 

(nep) = 10, number of selected site bees (nsp) = 5, population 

sizes (n) = 50, 60, 70, 80.  The maximum number of iterations, 

which was chosen as the stopping criterion, was set at 100, 

200, 300, 400, and 500. MFSG was used to generate (n) scout 

bees that represented feasible disassembly sequences. 

Subsequently, the n scout bees were sorted by fitness value. 

The elite site bees (nep) used a neighbourhood strategy to 

search the elite sites (e). The nsp bees adopted the same 

neighbourhood strategy to search the selected sites (m). The 

remaining bees (n-m) performed a random search exploring 

the solution space. The best RDSP data were retained, and the 

procedure repeated until the maximum number of iterations 

was reached. 

Table 3. Variable Description 

Variable Description 

αi indicator that takes the value of 1 if component i is to be 

disassembled and 0 otherwise. 

CDi disposal cost of component i being disposed of 

cT cost per unit of time 

dpi,j depreciation cost assigned to component i to be disassembled 

eci,j environmental impact in the recovering process of 

component i with mode j 

ed(xi) environmental impact in disassembly operation xi 

ed(xi,xi+1) environmental impact produced by the movement of the 

robot between disassembly operations xi and xi+1, considering 

that the robot must change the tool in M if operation xi+1 

requires using a tool different from the one used in the 

previous operation xi. 

eri,j  reclaimed environmental impact from component i being 

reused or remanufactured 

fW conversion factor from kWh to monetary units 

gci,j  energy consumption involved in recovering component i with 

mode j 

gd1,i(xi) energy consumption of the robot in the disassembly operation 

of component i 

gd2,i(xi,M) energy consumption of the robot in the movement between 

the position xi and M 

gd3,i(M) energy consumption of the robot in the tool change 

gd4,i(M,xi+1) energy consumption of the robot in the movement between 

M and xi+1  

gd5,i(xi,xi+1) energy consumption of the robot in the movement between xi 

and xi+1  

γi indicator taking the value 1 if operation xi+1 requires changing 

the tool used in previous operation xi 

gri,j energy reclaimed from component i being reused or 

remanufactured 

i index for each component and varies from 0 to N 

j indicator of the recovery mode and equal to 1 if component i 

is assigned to be reused, 2 if it is to be remanufactured, 3 if it 

is to be recycled or 4 if it is to be disposed of. 

ohi,j overhead cost assigned to component i to be disassembled 

PD(M,xi+1) length between the position of the tool magazine (M) and the 

point of the disassembly operation xi+1  

PD(xi,M) distance between the point of the disassembly operation xi 

and the position of the tool magazine (M) 

PD(xi,xi+1) distance between the point of the disassembly operation xi 

and the point of disassembly operation xi+1  

PR1 power of the robot used in the disassembly operation 

PR2 power of the robot used in the movements between the 

disassembly points 

RCi revenue obtained from component i being recycled 

rci,j recovery cost of component i being reused or remanufactured 

ri,j indicator of the recovery mode: 1 if mode j is assigned to 

component i 

RPi the revenue obtained due to the component i to be reused or 

remanufactured not having been manufactured again for a 

new product 

tb(xi) basic time to perform disassembly operation xi 

tc(xi,xi+1) tool change time and depends on the tool type 
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disassembly sequence is followed, and Eq. (8) guarantees that 

the total number of dismantled parts is not exceeded. Of 

course, different sustainability strategies produce different 

outcomes, and the purpose of this model is to identify the most 

suitable strategies for each objective. 

𝑓𝑓1 = ∑ ∑ 𝑅𝑅Piri,j𝛼𝛼i + ∑ RCiri,3𝛼𝛼i − ∑ CN
i=1 Diri,4

N
i=1 (1 −2

j=1
N
i=1

𝛼𝛼i) − [∑ tb(xi)𝛼𝛼icT
N−1
i=1 + ∑ (𝑃𝑃𝑃𝑃(xi,𝑀𝑀)

ve
+N−1

i=1

tc(xi, xi+1) + 𝑃𝑃𝑃𝑃(𝑀𝑀,xi+1)
ve

+ tu(xi, 𝑀𝑀) +

tw(𝑀𝑀, xi+1) 𝛾𝛾i𝛼𝛼icT + ∑ (𝑃𝑃𝑃𝑃(xi,xi+1)
ve

+N−1
i=1

tz(xi, xi+1)) (1 − 𝛾𝛾i)𝛼𝛼icT] − ∑ ∑ rci,jri,j𝛼𝛼i
2
j=1 −N

i=1

∑ ∑ ohi,jri,j𝛼𝛼i
4
j=1 − ∑ ∑ dpi,jri,j𝛼𝛼i

4
j=1

N
i=1

N
i=1   (2) 

𝑓𝑓2 = ∑ ∑ 𝑟𝑟𝑖𝑖,𝑗𝑗gr𝑖𝑖,𝑗𝑗𝑓𝑓𝑤𝑤α𝑖𝑖 − ∑ [𝑡𝑡𝑏𝑏(𝑥𝑥𝑖𝑖)PR1γ𝑖𝑖 +𝑁𝑁−1
𝑖𝑖=1

2
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1

𝑃𝑃𝑃𝑃(𝑀𝑀,𝑥𝑥𝑖𝑖)PR2γ𝑖𝑖
𝑣𝑣𝑒𝑒

+ 𝑡𝑡𝑐𝑐(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖+1)PR2γ𝑖𝑖 + 𝑃𝑃𝑃𝑃(𝑀𝑀,𝑥𝑥𝑖𝑖+1)PR2γ𝑖𝑖
𝑣𝑣𝑒𝑒

+
𝑃𝑃𝑃𝑃(𝑥𝑥𝑖𝑖,𝑥𝑥𝑖𝑖+1)PR2(1−γ𝑖𝑖)

𝑣𝑣𝑒𝑒
] 𝑓𝑓𝑤𝑤α𝑖𝑖

3600 − ∑ ∑ 𝑟𝑟𝑖𝑖,𝑗𝑗gc𝑖𝑖,𝑗𝑗𝑓𝑓𝑤𝑤α𝑖𝑖
3
𝑗𝑗=1 −𝑁𝑁

𝑖𝑖=1

∑ 𝑟𝑟𝑖𝑖,4gc𝑖𝑖,4𝑓𝑓𝑤𝑤(1 − α𝑖𝑖)𝑁𝑁
𝑖𝑖=1                (3) 

 

𝑓𝑓3 = ∑ ∑ 𝑟𝑟𝑖𝑖,𝑗𝑗𝑒𝑒𝑟𝑟𝑖𝑖,𝑗𝑗𝛼𝛼𝑖𝑖
2
𝑗𝑗=1 −𝑁𝑁

𝑖𝑖=1 ∑ ∑ 𝑟𝑟𝑖𝑖,𝑗𝑗𝑒𝑒𝑒𝑒𝑖𝑖,𝑗𝑗𝛼𝛼𝑖𝑖
3
𝑗𝑗=1 −𝑁𝑁

𝑖𝑖=1
∑ 𝑟𝑟𝑖𝑖,4𝑒𝑒𝑒𝑒𝑖𝑖,4(1 −𝑁𝑁

𝑖𝑖=1
𝛼𝛼𝑖𝑖) − ∑ 𝑒𝑒𝑒𝑒(𝑥𝑥𝑖𝑖)𝛼𝛼𝑖𝑖 −𝑁𝑁−1

𝑖𝑖=1 ∑ 𝑒𝑒𝑒𝑒(𝑥𝑥𝑖𝑖,, 𝑥𝑥𝑖𝑖+1)𝛼𝛼𝑖𝑖
𝑁𝑁−1
𝑖𝑖=1               (4) 

 

∑ 𝑟𝑟𝑖𝑖,𝑗𝑗 = 1        ∀𝑖𝑖4
𝑗𝑗=1      (5) 

𝑟𝑟𝑖𝑖,1 + 𝑟𝑟𝑖𝑖,2 + 𝑟𝑟𝑖𝑖,3 ≤ 𝛼𝛼𝑖𝑖         (6) 

𝛼𝛼𝑖𝑖 ≥ 𝛼𝛼𝑖𝑖+1                           (7) 

∑ 𝛼𝛼𝑖𝑖 ≤ 𝑁𝑁 − 1𝑁𝑁
𝑖𝑖=1                 (8) 

4. RESULTS AND DISCUSSION 

The algorithm used in this study to find the best solution for 

RDSP was the Bees Algorithm proposed by Pham et al. 

(2005). In this research, the version called the Enhanced 

Discrete Bees Algorithm (EDBA) presented by Liu et al. 

(2018) was adopted. The algorithm starts from initialisation 

with parameter settings as follows: number of elite sites (e) = 

1, number of selected sites (m) = 5, number of elite site bees 

(nep) = 10, number of selected site bees (nsp) = 5, population 

sizes (n) = 50, 60, 70, 80.  The maximum number of iterations, 

which was chosen as the stopping criterion, was set at 100, 

200, 300, 400, and 500. MFSG was used to generate (n) scout 

bees that represented feasible disassembly sequences. 

Subsequently, the n scout bees were sorted by fitness value. 

The elite site bees (nep) used a neighbourhood strategy to 

search the elite sites (e). The nsp bees adopted the same 

neighbourhood strategy to search the selected sites (m). The 

remaining bees (n-m) performed a random search exploring 

the solution space. The best RDSP data were retained, and the 

procedure repeated until the maximum number of iterations 

was reached. 

Table 3. Variable Description 

Variable Description 

αi indicator that takes the value of 1 if component i is to be 

disassembled and 0 otherwise. 

CDi disposal cost of component i being disposed of 

cT cost per unit of time 

dpi,j depreciation cost assigned to component i to be disassembled 

eci,j environmental impact in the recovering process of 

component i with mode j 

ed(xi) environmental impact in disassembly operation xi 

ed(xi,xi+1) environmental impact produced by the movement of the 

robot between disassembly operations xi and xi+1, considering 

that the robot must change the tool in M if operation xi+1 

requires using a tool different from the one used in the 

previous operation xi. 

eri,j  reclaimed environmental impact from component i being 

reused or remanufactured 

fW conversion factor from kWh to monetary units 

gci,j  energy consumption involved in recovering component i with 

mode j 

gd1,i(xi) energy consumption of the robot in the disassembly operation 

of component i 

gd2,i(xi,M) energy consumption of the robot in the movement between 

the position xi and M 

gd3,i(M) energy consumption of the robot in the tool change 

gd4,i(M,xi+1) energy consumption of the robot in the movement between 

M and xi+1  

gd5,i(xi,xi+1) energy consumption of the robot in the movement between xi 

and xi+1  

γi indicator taking the value 1 if operation xi+1 requires changing 

the tool used in previous operation xi 

gri,j energy reclaimed from component i being reused or 

remanufactured 

i index for each component and varies from 0 to N 

j indicator of the recovery mode and equal to 1 if component i 

is assigned to be reused, 2 if it is to be remanufactured, 3 if it 

is to be recycled or 4 if it is to be disposed of. 

ohi,j overhead cost assigned to component i to be disassembled 

PD(M,xi+1) length between the position of the tool magazine (M) and the 

point of the disassembly operation xi+1  

PD(xi,M) distance between the point of the disassembly operation xi 

and the position of the tool magazine (M) 

PD(xi,xi+1) distance between the point of the disassembly operation xi 

and the point of disassembly operation xi+1  

PR1 power of the robot used in the disassembly operation 

PR2 power of the robot used in the movements between the 

disassembly points 

RCi revenue obtained from component i being recycled 

rci,j recovery cost of component i being reused or remanufactured 

ri,j indicator of the recovery mode: 1 if mode j is assigned to 

component i 

RPi the revenue obtained due to the component i to be reused or 

remanufactured not having been manufactured again for a 

new product 

tb(xi) basic time to perform disassembly operation xi 

tc(xi,xi+1) tool change time and depends on the tool type 

Variable Description 

tu(xi,M) penalty time for process direction changes along the path 

between xi and the tool magazine (M) and formulated as 

follows: 0 if the direction is not changed, p1 if the direction is 

changed by 90o, p2 if the direction is changed by 180o 

tw(M,xi+1) penalty time for process direction changes along the path 

between the tool magazine (M) and xi+1, and is formulated as 

tu  

tz(xi,xi+1) penalty time for process direction changes along the path 

between xi and xi+1, and formulated as tu  

ve  line velocity of the industrial robot’s end effector 

 

The input data used in this study and the results obtained can 

be found at https://doi.org/10.25500/edata.bham.00000778.  

As discussed earlier, a single-objective experiment for each 

objective was conducted to find the near optimal solution for 

the three sustainability strategies. The experimental results for 

each objective show that the BA under different population 

sizes and iteration sizes yielded similar optimal solutions for 

the reuse, recycling, and remanufacturing strategies. Figure 7 

presents the experimental results, showing the maximum 

fitness value for each goal. 

 

The REU strategy yielded the highest fitness value, followed 

by remanufacturing and recycling strategies for both gear 

pumps. This is understandable due to the additional processing 

for REM and REC compared to the REU Strategy. The 

findings show that the best sustainability strategies for each 

goal were REU and REM. The first objective, profit, yields the 

highest value for the REU strategy as well as the lowest 

solution for the REC strategy among the objectives. The 

environmental impact reduction (Goal 3) show the lowest 

recovery value (in Euros). 

Table 4 illustrates the RDSP output by displaying the 

disassembly output for gear pump A in the REM strategy. The 

sequence, direction, recovery mode, and tools are all 

presented. The previous link provides the results for the REC 

and REU strategies and for gear pump B. 

Table 4. Gear Pump A (REM strategy) 

Goal Disassembly 
1 Sequence 

 

15-1-2-3-4-5-6-7-10-11-9-14-13-8-12 
 Direction 1-2-2-2-2-2-2-2-2-2-2-1-1-2-1 
 Mode 2-3-3-3-3-3-3-2-2-2-2-2-2-4-2 
 Tool 2-1-1-1-1-1-1-4-3-3-3-3-3-3-4 
 MFV 37.58 Euro 

2 Sequence 

 

2-1-6-5-4-3-7-9-11-10-8-15-12-13-14 
 Direction 2-2-2-2-2-2-2-2-2-2-2-1-2-2-2 
 Mode 3-3-3-3-3-3-2-2-2-2-4-2-2-2-2 
 Tool 1-1-1-1-1-1-4-3-3-3-3-2-4-3-3 
 MFV 0.55 Euro 

3 Sequence 

 

3-5-4-1-6-2-7-8-10-9-13-11-15-12-14 
 Direction 2-2-2-2-2-2-2-2-2-2-2-2-1-2-1 
 Mode 3-3-3-3-3-3-2-4-2-2-2-2-2-2-2 

 Tool 1-1-1-1-1-1-4-3-3-3-3-3-2-4-3 
 MFV 0.46 Euro 
Disassembly Direction: 1 = Y+ direction, 2 = Y- direction 

Disassembly Mode: 1=reuse, 2=remanufacturing, 3=recycling, 4=disposal 

Disassembly Tool: 1=Spanner-I, 2 = Spanner-II, 3 = Gripper-I, 4 = Gripper-II 

MFV = Max Fitness Value 

 

5. CONCLUSION 

This research has contributed a sustainability-based method 

using the Bees Algorithm to solve the RDSP problem. Three 

recovery strategies, REC, REM and REU, have been 

investigated. The REU and REM strategies both yielded 

positive values for profit, energy savings and environmental 

impact reduction.  In comparison, REC gave negative values 

for all three objectives. This study has determined the highest 

possible value for each goal when considered independently of 

the others. Further research will be conducted using a 

multiobjective, nondominated approach to examine the 

interaction between the goals.  In addition, the Bees Algorithm 

will be benchmarked against other optimisation techniques to 

establish its strong performance.  
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