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Abstract Recently, some studies have constructed one-coordinate arithmetics on elliptic curves. For example,
formulas of the 𝑥-coordinate of Montgomery curves, 𝑥-coordinate of Montgomery− curves,𝑤-coordinate of Edwards
curves, 𝑤-coordinate of Huff’s curves, 𝜔-coordinates of twisted Jacobi intersections have been proposed. These
formulas are useful for isogeny-based cryptography because of their compactness and efficiency.
In this paper, we define a novel function on elliptic curves called the generalized Montgomery coordinate that has
the five coordinates described above as special cases. For a generalized Montgomery coordinate, we construct
an explicit formula of scalar multiplication that includes the division polynomial, and both a formula of an image
point under an isogeny and that of a coefficient of the codomain curve.
Finally, we present two applications of the theory of a generalized Montgomery coordinate. The first one is the
construction of a new efficient formula to compute isogenies on Montgomery curves. This formula is more efficient
than the previous one for high degree isogenies as the

√
élu’s formula in our implementation. The second one is

the construction of a new generalized Montgomery coordinate for Montgomery− curves used for CSURF.

Keywords: isogeny-based cryptography, Vélu’s formulas, elliptic curves, Kummer line, generalized Montgomery
coordinates
2010 Mathematics Subject Classification: 94A60, 14Q05

1 INTRODUCTION
For both mathematics and cryptography, it is an interesting problem for abelian varieties to construct formulas

using few coordinates for their group arithmetics. In fact, there have been several studies that have used Kummer
varieties to construct such formulas describing arithmetic of abelian varieties in unified coordinates. These theories
are classically known to be due to theta functions of level 2. In 1986, D.V. and G.V Chudnovsky constructed some
algorithms by using this theory [10]. Montgomery provided a scalar multiplication algorithm via 𝑥-coordinates of
Montgomery curves [34]. In 2009, Gaudry and Lubicz constructed formulas of group arithmetics of characteristic
2 in [20]. Moreover, Lubicz and Robert proposed compatible group arithmetics of Kummer varieties in [32]. Karati
and Sarker investigated the connection between elliptic curves of Legendre form and Kummer lines [27]. In 2018,
Hisil and Renes described the relationship of Kummer lines and some popular elliptic curves (Montgomery curves
and twisted Edwards curves) [21].

Apart from the above, recently, the development of researches about isogeny-based cryptography has increased
interest in efficient and compact isogeny computations of elliptic curves. Indeed, several studies have proposed
formulas of scalar multiplications and isogeny computations by using only one-coordinate systems of elliptic
curves. For example, formulas via the 𝑥-coordinates of Montgomery curves, 𝑤-coordinates of Edwards curves,
𝑤-coordinates of Huff’s curves, and 𝜔-coordinates of twisted Jacobi intersections are known. These constructions
have been performed individually. Table 1 summarizes such studies. These one-coordinate formulas are often
used in isogeny-based cryptography owing to their compactness and efficiency. Studies have constructed efficient
formula for each of the coordinates. Meyer and Reith constructed efficient formulas for isogeny computations of
the 𝑥-coordinate of Montgomery curves [33], and Bernstein et al. developed a method of computing this formula
in �̃� (

√
ℓ) times [5], while the original Vélu’s formulas are computed in𝑂 (ℓ) times. They described this method on

the 𝑥-coordinates of Montgomery curves. This method has been extended to the 𝑤-coordinate of Edwards curves
[35] and the 𝑤-coordinate of Huff’s curves [41, 28].

The greatness of these coordinates is that they write down both scalar multiplications and isogeny computations
in the language of one-coordinate systems. Unfortunately, as mentioned above, these coordinates have been

*Corresponding Author: tomoki_moriya@mist.i.u-tokyo.ac.jp
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Table 1: Previous results on one-coordinate arithmetic
Forms Scalar multiplication Isogeny computation

Montgomery Montgomery [34] Renes [38], Costello and Hisil [13]
Montgomery− Castryck and Decru [7]

Edwards Farashahi and Hosseini [17] Kim, Yoon, Park, and Hong [29]
Huff Huang et al. [23], Dryło, Kĳko, and Wroński [15]

Twisted Jacobi Hu, Wang, and Zhou [22]intersections

proposed individually, and there is no framework for handling these coordinates in a unified way as far as we
know. As a classical trial to unify some one-coordinate type formulas, we know the theory of Kummer varieties
(especially Kummer lines). Even using this theory, it seems hard to unify formulas of the coordinates in the
previous paragraph. Indeed, the theory of Kummer lines is a framework for some one-coordinate type formulas of
“scalar multiplications”; however, this theory cannot unify formulas of isogeny computations. Certainly, there are
some studies about isogeny computations from the theory of Kummer varieties. For example, Lubicz and Robert
constructed higher dimensional analogs of Vélu’s formulas via theta functions [31], and Cosset and Robert proposed
the algorithm to compute (ℓ, ℓ)-isogenies via the theory of theta functions [11]. Unfortunately, these methods of
computing isogenies seem not suitable to unify the target formulas, because these methods focus on higher degree
abelian varieties and are too complex. Moreover, Costello proposed an algorithm to compute Richelot isogenies of
Kummer surfaces of Jacobian varieties of genus-2 curves [12]. This study excels at computing Richelot isogenies;
however, it is hard to adapt the method to unify formulas of isogeny computations on curves because this study
considers special cases of isogenies. Therefore, we propose the following question:

Can we construct one-coordinate formulas of scalar multiplication and isogeny computation of
elliptic curves for isogeny-based cryptography in a unified manner like the theory of Kummer lines?

From the theory of divisors of functions, we can define a generalized coordinate of elliptic curves, and construct
explicit one-coordinate type formulas to compute scalar multiplications and isogeny computations. Unfortunately,
the use of divisors instead of theta functions makes it difficult to extend the theory to higher dimensional abelian
varieties. On the other hand, as far as we focus on the computational aspects of elliptic curves, the construction
from divisors is more natural than that from theta functions.

1.1 CONTRIBUTION
In this paper, we provide an affirmative answer to the above research question. We contribute to the literature

by improving the visibility of the isogeny computation of different forms of elliptic curves (see Figure 1). The
followings are specific contributions of the paper.
Defining a generalized Montgomery coordinate
The core of our research is the introduction of a novel function on elliptic curves, which we call a generalized Mont-
gomery coordinate (Definition 1). This is a generalization of coordinates that can be used to construct one-coordinate
formulas on elliptic curves, e.g., the 𝑥-coordinates of Montgomery curves, 𝑥-coordinates of Montgomery− curves,
𝑤-coordinates of Edwards curves, 𝑤-coordinates of Huff’s curves, and 𝜔-coordinates of twisted Jacobi intersec-
tions. Because these coordinates have similar divisors, we can obtain a generalization of them by considering
divisors with the appropriate form. In particular, the set of poles and zero points of these coordinates can be
considered a finite subgroup G of the elliptic curve 𝐸 and the shifted set of G by one point in 𝐸 , respectively.
More precisely, a generalized Montgomery coordinate for an elliptic curve 𝐸 can be defined by specifying a finite
subgroup G ⊂ 𝐸 as poles and the set R0 = 𝑅0+G as zero points, where 𝑅0 is a point such that 2𝑅0 ∈ G and 𝑅0 ∉ G.
Indeed, we can demonstrate that a generalized Montgomery coordinate is essentially the same as the composition
of an isogeny and the 𝑥-coordinate of a (standard) Montgomery curve (Theorem 2).

Constructing explicit formulas
Moreover, we construct explicit formulas for scalar multiplications and isogeny computations via a generalized
Montgomery coordinate. Two formulas are used to construct a formula for scalar multiplication: one is for differen-
tial addition, and the other is for doubling. We construct both formulas by considering the divisors of the functions
of the computational results of each formula. For example, the doubling formula is constructed from the divisor of
the function ℎ◦ [2], where ℎ is a generalized Montgomery coordinate. This method of construction has a high affin-
ity with the definition of a generalized Montgomery coordinate. Furthermore, two formulas are used to construct
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Figure 1: Our unified one-coordinate formulas

the formula of isogeny computation: one is for computing an image point under an isogeny, and the other is for
computing a coefficient of the codomain curve under an isogeny. We construct the first formula in the same manner
as the formula of scalar multiplication. However, the second formula cannot be constructed using divisors because it
is not a function over an elliptic curve. We construct the second formula using the 2-torsion method provided in [13].

Analyzing the difference between multiple formulas
As mentioned earlier, the formula to compute a coefficient of a codomain curve under an isogeny is not constructed
using its divisor. Therefore, this formula has several representations. We know that the formula of Montgomery
curves proposed in [38] and that proposed in [33] are different. We analyze these differences to describe all formulas
using generalized Montgomery coordinates, and we prove that this difference is due to the division polynomial of
the generalized Montgomery coordinates (Theorem 10).

Applications
We believe that the theory of a generalized Montgomery coordinate has many applications. In this paper, we consider
two applications as an initial trial. First, we construct a new efficient formula to compute isogenies on Montgomery
curves. This formula is obtained by transplanting the formula of Edwards curves to Montgomery curves, and it is
more efficient than the previous formula for high degree isogenies in our implementation. Next, we propose a new
generalized Montgomery coordinate of Montgomery− curves called the 𝑤-coordinate. We can construct a new
CSURF algorithm [7] via the 𝑤-coordinate. Some accelerating techniques have been used in previous algorithms
of CSURF, and we must consider a proper isogeny from a Montgomery− curve to a Montgomery curve to use
these techniques. However, our proposed algorithm can use these techniques through the 𝑤-coordinate without
considering any isogenies. Thus, our new algorithm provides a simple implementation of CSURF.

1.2 ORGANIZATION.
In Section 2, we introduce some mathematical concepts as preliminaries. In Section 3.1, we define the gen-

eralized Montgomery coordinate and basic notations related to it, and in Section 3.2, we prove some important
properties of a generalized Montgomery coordinate. Section 3.3 provides some examples of a generalized Mont-
gomery coordinate. We prove theorems of formulas of differential addition and doubling in Section 4.1, and we
define division polynomials of the generalized Montgomery coordinates in Section 4.2. In Section 5, we construct
formulas to compute isogenies via a generalized Montgomery coordinate. Section 6 shows some applications of
the theory of a generalized Montgomery coordinate. Finally, we conclude this paper in Section 7.

2 PRELIMINARIES
In this section, we introduce some important mathematical concepts for our study. The details of the following

facts are provided in [39, 19].
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Let 𝐾 be a field. An elliptic curve defined over 𝐾 is a pair (𝐸,𝑂𝐸) of a smooth algebraic curve 𝐸 defined over
𝐾 with genus 1 and a point 𝑂𝐸 in 𝐸 (𝐾). It is known that 𝐸 (𝐿) has a group structure whose identity element is
𝑂𝐸 , where 𝐿 is an algebraic extension field of 𝐾 . In this paper, we often use a genus-1 curve 𝐸 for representing
an elliptic curve (omit the identity point 𝑂𝐸), we fix 𝐾 , and if not mentioned, we always fix 𝐸 over 𝐾 (i.e., it
is defined over the algebraic closure of 𝐾). A Montgomery curve is an elliptic curve defined by the equation
𝑦2 = 𝑥3 + 𝛼𝑥2 + 𝑥 (𝛼 ≠ ±2). The identity point of a Montgomery curve is a point at infinity. We call a coefficient
𝛼 a Montgomery coefficient.

Let 𝑛 be an integer. We denote the multiplication-by-𝑛 map between elliptic curves by [𝑛], and denote a point
[𝑛] (𝑃) by 𝑛𝑃. We define the 𝑛-torsion subgroup of 𝐸 (𝐾) as 𝐸 [𝑛] = {𝑃 ∈ 𝐸 (𝐾) | 𝑛𝑃 = 𝑂𝐸}. If ch(𝐾) = 0 or
ch(𝐾) ∤ 𝑛, then it holds that 𝐸 [𝑛] � Z/𝑛Z ⊕ Z/𝑛Z. Here, ch(𝐾) is the characteristic of 𝐾 . For a subset 𝑆 ⊂ 𝐸 , we
define the set 1

2𝑆 as 1
2𝑆 := {𝑃 ∈ 𝐸 | 2𝑃 ∈ 𝑆}.

Let 𝐸 and 𝐸 ′ be elliptic curves defined over 𝐾 . An isogeny 𝜙 : 𝐸 → 𝐸 ′ defined over 𝐾 is a nontrivial morphism
defined over 𝐾 of algebraic curves such that 𝜙(𝑂𝐸) = 𝑂𝐸′ . It is known that 𝜙 is a group morphism of elliptic
curves. From an isogeny 𝜙, we obtain an injective map 𝜙∗ : 𝐾 (𝐸 ′) → 𝐾 (𝐸), where 𝐾 (𝐸) and 𝐾 (𝐸 ′) are the
function fields of 𝐸 and 𝐸 ′ respectively. The degree of 𝜙 denoted by deg 𝜙 is the degree of the finite extension
𝐾 (𝐸)/𝜙∗ (𝐾 (𝐸 ′)). If this extension is separable, then an isogeny 𝜙 is called a separable isogeny. If an isogeny 𝜙
is separable, it holds that deg 𝜙 = # ker 𝜙. An ℓ-isogeny is a separable isogeny whose kernel is a cyclic subgroup
of order ℓ. For any isogeny 𝜙 : 𝐸 → 𝐸 ′, there is an isogeny 𝜙 : 𝐸 ′ → 𝐸 such that 𝜙 ◦ 𝜙 = [deg 𝜙] : 𝐸 ′ → 𝐸 ′ and
𝜙 ◦ 𝜙 = [deg 𝜙] : 𝐸 → 𝐸 . This isogeny is called the dual isogeny of 𝜙. Let 𝐺 be a finite subgroup of 𝐸 . There is
a unique elliptic curve 𝐸/𝐺 up to isomorphism and a separable isogeny 𝜙 : 𝐸 → 𝐸/𝐺 such that ker 𝜙 = 𝐺. Vélu
proposed formulas to compute this isogeny in [40]. We call these Vélu’s formulas.

Let 𝑃 ∈ 𝐸 . Let ord𝑃 be the normalized valuation on the local ring of 𝐸 at 𝑃. The divisor group of an elliptic
curve 𝐸 is the free commutative group generated by points of 𝐸 , and a divisor is an element of the divisor group
of 𝐸 . Let 𝑓 be a function in 𝐾 (𝐸)× . The divisor of 𝑓 , denoted by div 𝑓 , is defined as follows:

div 𝑓 =
∑︁
𝑃∈𝐸

ord𝑃 ( 𝑓 ) (𝑃).

Let 𝐷 =
∑
𝑛𝑃 (𝑃) be a divisor. There is a function 𝑓 ∈ 𝐾 (𝐸) such that 𝐷 = div 𝑓 if and only if

∑
𝑛𝑃 = 0 and∑

𝑛𝑃𝑃 = 𝑂𝐸 in 𝐸 . Let 𝑔 ∈ 𝐾 (𝐸)× . It holds that div 𝑓 = div 𝑔 if and only if there is a constant value 𝑐 ∈ 𝐾× such
that 𝑓 = 𝑐 · 𝑔.

3 GENERALIZED MONTGOMERY COORDINATES AND THEIR BASIC
PROPERTIES

In this section, we define a new function on elliptic curves called the generalized Montgomery coordinate. This
function gives formulas to compute isogenies, which are independent of the forms of elliptic curves.

In this paper, we always let 𝐾 be a field whose characteristic is not 2. It is not a problem for isogeny-based
cryptography, because fields with large characteristic are always used in it so far.

3.1 DEFINITION OF A GENERALIZED MONTGOMERY COORDINATE
In this subsection, we define a generalized Montgomery coordinate.
Before defining a generalized Montgomery coordinate, we consider properties common to the 𝑥-coordinate

of Montgomery curves, the 𝑥-coordinate of Montgomery− curves, the 𝑤-coordinate of Edwards curves, and the
𝑤-coordinate of Huff’s curves. These curves have several common properties. Particularly, we think that the
following four properties are important as coordinates used in computations. Here, we denote a coordinate on an
elliptic curve 𝐸 as ℎ.

i) It holds that ℎ ∈ 𝐾 (𝐸).
ii) There is a finite subgroup G ⊂ 𝐸 such that

ℎ(𝑃) = ℎ(𝑄) ⇐⇒ 𝑃 +𝑄 ∈ G or 𝑃 −𝑄 ∈ G.

iii) It holds that 𝑂𝐸 is a pole of ℎ.
iv) There is a point 𝑅0 satisfying 2𝑅0 ∈ G and ℎ(𝑅0) = 0.

The property (i) indicates that ℎ is a morphism between 𝐸 and the projective line P1. The property (ii) claims
that ℎ(𝑃) = ℎ(𝑄) if and only if the addition of 𝑃 and 𝑄 or their difference belongs to a finite subgroup G. This
property comes from the intuition that coordinates with good symmetry may be related to a subgroup of elliptic

39



Moriya T., Onuki H., Aikawa Y. & Takagi T.

Table 2: Examples of normalized generalized Montgomery coordinates (Definition 1)
Forms Coordinate ℎG,R0 (normalized) G R0

Montgomery 𝑥 𝑥 {𝑂𝐸} {(0, 0)}
Montgomery− 𝑥

√
−1𝑥 {𝑂𝐸} {(0, 0)}

Edwards 𝑤 = 𝑑𝑥2𝑦2 𝑤−1 𝐶4 ∞1 + 𝐶4
Huff 𝑤 = 1/(𝑥𝑦) 𝑤 {𝑂𝐸} {∞3}

Twisted Jacobi
𝜔 =

√
𝑎𝑏𝑥2 𝜔−1 𝐸 [2] {points at infinity}intersections

curves. This intuition is also found in other papers. For example, Kohel constructed an efficient model of elliptic
curves in characteristic 2 based on this intuition [30]. The property (iii) means ℎ(𝑂𝐸) = ∞ = (1 : 0) ∈ P1, and the
property (iv) means there is a zero point of ℎ whose doubling belongs to G.

From the properties (ii-iv), we obtain zero points and poles of ℎ. Therefore, we can write down the condition
of the divisor of ℎ. By considering the simplest condition of div ℎ, we can construct the following definition of a
generalized Montgomery coordinate.

Definition 1 (Generalized Montgomery coordinate). Let 𝐸 be an elliptic curve defined over 𝐾 . Let G be a finite
subgroup of 𝐸 , and let 𝑅0 be a point satisfying 𝑅0 ∉ G and 2𝑅0 ∈ G. We denote the set 𝑅0 + G by R0. If a function
ℎG,R0 ∈ 𝐾 (𝐸) satisfies the following equality, we call ℎG,R0 the generalized Montgomery coordinate of 𝐸 with
respect to G and R0:

div ℎG,R0 = 2
∑︁
𝑃∈G

(𝑃 + 𝑅0) − 2
∑︁
𝑃∈G

(𝑃).

Here, 𝑃 + 𝑅0 means a point addition of 𝑃 and 𝑅0 in 𝐸 .

Remark 1. When we fix G and R0, a generalized Montgomery coordinate with respect to G and R0 always exists,
because it holds that

2
∑︁
𝑃∈G

𝑃 + (2#G)𝑅0 − 2
∑︁
𝑃∈G

𝑃 = 𝑂𝐸 .

Remark 2. Let 𝜗0 and 𝜗1 be functions of C ×H defined by

𝜗0 (𝑧, 𝜏) =
∞∑︁

𝑛=−∞
𝑒𝜋𝑖𝑛

2𝜏+2𝜋𝑖𝑛𝑧 , 𝜗1 (𝑧, 𝜏) =
∞∑︁

𝑛=−∞
𝑒𝜋𝑖𝑛

2𝜏+2𝜋𝑖𝑛𝑧+𝜋𝑖𝑛,

where H is the upper half-plane. Let Λ𝜏 be a Z-lattice generated by 1 and 𝜏, and 𝐸𝜏 an elliptic curve over
C biholomorphic to C/Λ𝜏 . Now, we fix 𝜏. In the theory of Kummer lines, we use a composition of a function
𝜗2

0/𝜗
2
1 and an automorphism of P1 as a unify coordinate. Because 𝜗2

0/𝜗
2
1 is well-defined over C/Λ, we consider

this function as a coordinate of 𝐸𝜏 . It is easy to see that the divisor of a function 𝜗2
0/(𝜗

2
0 (0)𝜗

2
1 − 𝜗2

1 (0)𝜗
2
0) is

2(𝑅) − 2(𝑂𝐸𝜏
), where 𝑅 is a point of order 2 in 𝐸𝜏 . Therefore, as far as we concentrate on elliptic curves, a

generalized Montgomery coordinate is a generalization of a coordinate from theta functions.

Remark 3. The name “generalized Montgomery coordinate” comes from Theorem 2.

Let 𝐸 be a Montgomery curve, let G = {𝑂𝐸}, and let R0 = {(0, 0)}; then, the 𝑥-coordinate of 𝐸 is a normalized
generalized Montgomery coordinate with respect to G and R0. As shown in Table 2, other coordinates are also
obtained by determining G and R0 properly. The definition of a normalized generalized Montgomery coordinate is
given in Definition 3. In subsection 3.3, we show that these coordinates are generalized Montgomery coordinates.

Next, we introduce an important notation regarding a generalized Montgomery coordinate which plays a role
as a standard Montgomery coefficient. Before defining this notation, we prove the following lemma.

Lemma 1. Let 𝐸 be an elliptic curve, and let G be a finite subgroup of 𝐸 . Then, the set 1
2G is a subgroup of 𝐸

including G and is decomposed as follows:

1
2
G = G ⊔ (𝑅0 + G) ⊔ (𝑅1 + G) ⊔ (𝑅0 + 𝑅1 + G),

where 𝑅0 is a point in 1
2G ∖ G, and 𝑅1 is a point in 1

2G ∖ (G ⊔ (𝑅0 + G)).
We denote 𝑅1 + G by R1.
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Proof. Let [2] be a doubling map. Since [2]−1 (G) = 1
2G, 1

2G is a subgroup of 𝐸 . Note that [2] | 1
2 G

: 1
2G → G is

surjective. As the kernel of [2] | 1
2 G

is 𝐸 [2], the index of G in 1
2G is 4. Since [2] ( 1

2G) ⊂ G, it holds that(
1
2
G

)
/G � Z/2Z × Z/2Z.

This completes the proof of Lemma 1. □

Now, we define a generalized Montgomery coefficient.

Definition 2 (Generalized Montgomery coefficient). Let (𝐸, ℎG𝐸 ,R0 ) be a pair of an elliptic curve defined over 𝐾
and its normalized generalized Montgomery coordinate. Let R1 be the set defined in Lemma 1, and let 𝑅1 be a
point in R1. We call a value 𝛼ℎG,R0

∈ 𝐾 defined by

𝛼ℎG,R0
= −ℎG,R0 (𝑅1) −

1
ℎG,R0 (𝑅1)

the generalized Montgomery coefficient of ℎG,R0 .

Remark 4. We can easily show that 𝛼ℎG,R0
is uniquely determined regardless of the way to decide R1 and 𝑅1 from

Theorem 1 and Lemma 2.

Remark 5. If ℎG𝐸 ,R0 is the 𝑥-coordinate of a Montgomery curve, then the generalized Montgomery coefficient is
the standard Montgomery coefficient.

Remark 6. Let 𝐸 be an elliptic curve, and let ℎ be a generalized Montgomery coordinate with respect to a finite
subgroup G ⊂ 𝐸 . Though a Montgomery curve can be determined from its standard Montgomery coefficient, it is
not always possible to determine 𝐸 from the generalized Montgomery coefficient of ℎ and the group structure of G.

As shown in the following lemma, there is a constant ambiguity in a generalized Montgomery coordinate. For
the sake of brevity in future discussions, we define a “normalized” generalized Montgomery coordinate.

Lemma 2. For the generalized Montgomery coordinate ℎG,R0 , there exists a constant value 𝑐 in 𝐾× such that

ℎG,R0 (𝑃 + 𝑅0) =
𝑐

ℎG,R0 (𝑃)

for any 𝑃 in 𝐸 and 𝑅0 in R0.

Proof. We define the two maps 𝜙1 and 𝜙2 mapping from 𝐸 to P1 as

𝜙1 (𝑧) = ℎG,R0 (𝑧 + 𝑅0), 𝜙2 (𝑧) =
1

ℎG,R0 (𝑧)
.

By considering zero points and poles of 𝜙1 and 𝜙2 from these definitions (Definition 3.1), we have div 𝜙1 = div 𝜙2.
Therefore, there is a constant value 𝑐 ≠ 0 such that 𝜙1 = 𝑐 · 𝜙2. □

Definition 3 (Normalized generalized Montgomery coordinate). If 𝑐 = 1 in Lemma 2, we call ℎG,R0 the normalized
generalized Montgomery coordinate.

By replacing ℎG,R0 with 1√
𝑐
ℎG,R0 , we can always take ℎG,R0 as normalized.

3.2 BASIC PROPERTIES OF A GENERALIZED MONTGOMERY COORDINATE
In this subsection, we see some basic properties of a generalized Montgomery coordinate. Theorem 1 shows that

a generalized Montgomery coordinate satisfies property ii) in Section 3.1, and Theorem 2 tells us that a normalized
generalized Montgomery coordinate is a composition of the 𝑥-coordinate of a Montgomery curve and an isogeny.

Theorem 1. Let G be a finite subgroup of 𝐸 , let 𝑅0 be a point such that 2𝑅0 ∈ G and 𝑅0 ∉ G, and let R0 be the
set 𝑅0 + G. Let ℎG,R0 be a generalized Montgomery coordinate with respect to G and R0. Then, for 𝑃,𝑄 ∈ 𝐸 , it
holds that

ℎG,R0 (𝑃) = ℎG,R0 (𝑄) ⇐⇒ 𝑃 +𝑄 ∈ G or 𝑃 −𝑄 ∈ G.
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Proof. First, we prove that the left-hand side follows from the right-hand side. We show

ℎG,R0 (𝑃) = ℎG,R0 (−𝑃 + 𝑆),

for all 𝑆 ∈ G and 𝑃 ∈ 𝐸 . For 𝑆 ∈ G, we define a map 𝜙𝑆 ∈ 𝐾 (𝐸) as follows:

𝜙𝑆 (𝑧) = ℎG,R0 (−𝑧 + 𝑆).

It is clear that div ℎG,R0 = div 𝜙𝑆 . We now prove that the constant function ℎG,R0/𝜙𝑆 is 1 in two cases. If there
is a point 𝑆 such that 2𝑆 = 𝑆, 𝑆 ∉ G, and 𝑆 ∉ R0, we have ℎG,R0 (𝑆) = 𝜙𝑆 (𝑆). Because ℎG,R0 (𝑆) is neither 0
nor ∞, it holds that ℎG,R0 = 𝜙𝑆 . Suppose that there is no point satisfying the above property. Take a point 𝑆 as a
point satisfying 2𝑆 = 𝑆. Note that 𝑆 ∈ G or 𝑆 ∈ R0. Let 𝑅 be a point of order 2, and define a function 𝑓 ∈ 𝐾 (𝐸)
satisfying

div 𝑓 =

{
2(𝑆 + 𝑅) − 2(𝑆) (if 𝑆 ∈ G),
2(𝑆) − 2(𝑆 + 𝑅) (if 𝑆 ∈ R0).

Let 𝑅′ be a point in 𝐸 [2] ∖ {𝑂𝐸 , 𝑅}. Because we have

𝑓 (𝑆 + 𝑅′) = 𝑓 (−(𝑆 + 𝑅′) + 𝑆) ≠ 0,∞,

it holds that 𝑓 (𝑧) = 𝑓 (−𝑧 + 𝑆) from considering their divisors. It holds that (ℎG,R0/ 𝑓 ) (𝑧) = 𝑐 · (ℎG,R0/ 𝑓 ) (−𝑧 + 𝑆),
where 𝑐 is a constant value. Since

(ℎG,R0/ 𝑓 ) (𝑆) = (ℎG,R0/ 𝑓 ) (−𝑆 + 𝑆) ≠ 0,∞,

it holds that 𝑐 = 1. Therefore, ℎG,R0 (𝑧) = ℎG,R0 (−𝑧 + 𝑆). Note that ℎG,R0 (𝑧) = ℎG,R0 (−𝑧) by substituting 𝑆 = 𝑂𝐸 .
We have

ℎG,R0 (𝑃) = ℎG,R0 (𝑄) ⇐= 𝑃 +𝑄 ∈ G or 𝑃 −𝑄 ∈ G.
Next, we prove the converse. If 𝑃 ∈ G or 𝑃 ∈ R0, the converse is true. Suppose that 𝑃 ∉ 1

2G. Then, we have

#{𝑄 ∈ 𝐸 | 𝑃 +𝑄 ∈ G or 𝑃 −𝑄 ∈ G} = 2#G.

Because deg ℎG,R0 = 2#G, the converse holds. Suppose that 𝑃 ∈ R1 ∪ (R0 + R1), where R1 is the set defined
in Lemma 1. From Lemma 1 and the above discussion, if 𝑄 ∉ R1 ∪ (R0 + R1), then it holds that ℎG,R0 (𝑃) ≠

ℎG,R0 (𝑄). Therefore, it suffices to show that ℎG,R0 (𝑃) ≠ ℎG,R0 (𝑃 + 𝑅0). We define a map 𝜓 ∈ 𝐾 (𝐸) as
𝜓(𝑧) = ℎG,R0 (𝑧) − ℎG,R0 (𝑧 + 𝑅0). Let �̃�0 be a point such that 2�̃�0 = 𝑅0. By considering poles of 𝜓, we have
deg𝜓 = 4#G. Note that points belonging to �̃�0 + G, −�̃�0 + G, �̃�0 + R1, or −�̃�0 + R1 are zero points of 𝜓. From
Lemma 1, these sets are disjoint. Therefore, there are no zero points other than those belonging to these sets.
Because 𝑃 ± �̃�0 ∉ G and 𝑃 ± �̃�0 ∉ R1, we have 𝑃 does not belong to the set of zero points of 𝜓. Hence, it holds
that 𝜓(𝑃) ≠ 0. This completes the proof of Theorem 1. □

Next, we state the important theorem (Theorem 2). This theorem shows that a generalized Montgomery
coordinate can be seen as a natural generalization of 𝑥-coordinates of Montgomery curves.

Theorem 2. Let G be a finite subgroup of 𝐸 with ch(𝐾) ∤ #G, let 𝑅0 be a point satisfying 𝑅0 ∈ 1
2G ∖ G, let R0 be

the set 𝑅0 +G, and let ℎG,R0 be a normalized generalized Montgomery coordinate with respect to G and R0. Then,
there is a Montgomery curve 𝐸 ′ and a separable isogeny 𝜙 : 𝐸 → 𝐸 ′ with ker 𝜙 = G such that ℎG,R0 = 𝑥 ◦𝜙, where
𝑥 is the 𝑥-coordinate of 𝐸 ′. Moreover, the Montgomery coefficient of 𝐸 ′ is the generalized Montgomery coefficient
of ℎG,R0 .

Before proving this theorem, we prove the following lemma.

Lemma 3. If a point �̃� satisfies ℎG,R0 (2�̃�) = 0, then ℎG,R0 (�̃�)2 = 1.

Proof. Because ℎG,R0 (2�̃�) = 0, we have 2�̃� ∈ R0. Thus, 4�̃� belongs to G. From Lemma 2,

ℎG,R0 (�̃� + 𝑅0) =
1

ℎG,R0 (�̃�)
,

where 𝑅0 ∈ R0. Therefore, by Theorem 1,

1
ℎG,R0 (�̃�)

= ℎG,R0 (�̃� + 𝑅0) = ℎG,R0 (3�̃�) = ℎG,R0 (−�̃�) = ℎG,R0 (�̃�).

This completes the proof of Lemma 3. □
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Now, we prove Theorem 2.

Proof of Theorem 2. Let 𝜙 be a separable isogeny 𝜙 : 𝐸 → 𝐸/G with ker 𝜙 = G. Let �̃�0 be a point in 𝐸 such that
ℎG,R0 (2�̃�0) = 0. It is easy to see that there is an isomorphism between 𝐸/G and a Montgomery curve 𝐸 ′ mapping
2𝜙(�̃�0) to (0, 0). If necessary, we compose this isomorphism and the map 𝐸 ′ → 𝐸 ′′; (𝑥, 𝑦) ↦→ (−𝑥,

√
−1𝑦), and

we denote 𝐸 ′′ by 𝐸 ′. Then, the 𝑥-coordinate of 𝜙(�̃�0) in 𝐸 ′ is ℎG,R0 (�̃�0), because ℎG,R0 (�̃�0) = ±1 from Lemma
3. It is easy to check that

div ℎG,R0 = div (𝑥 ◦ 𝜙).

Therefore, ℎG,R0 = 𝑥 ◦ 𝜙.
Let 𝑅1 be a point of 𝐸 defined in Lemma 1. Then, the generalized Montgomery coefficient of ℎG,R0 is

−ℎG,R0 (𝑅1) − 1
ℎG,R0 (𝑅1 ) . In contrast, 𝜙(𝑅1) is a point of order 2 in 𝐸 ′ other than (0, 0). Therefore, the Montgomery

coefficient of 𝐸 ′ can be represented by −𝑥(𝜙(𝑅1)) − 1
𝑥 (𝜙 (𝑅1 ) ) . From ℎG,R0 = 𝑥 ◦ 𝜙, this completes the proof of

Theorem 2. □

Although we can define a normalized generalized Montgomery coordinate as the composition of an isogeny
and the 𝑥-coordinate of a Montgomery curve from Theorem 2, we adopt Definition 1 (i.e., the definition from its
divisor). The main reason to define generalized Montgomery coordinates in this way is that this definition does
not need to consider explicit forms of elliptic curves. This means that our definition seems to be more essential
than that from a Montgomery curve. In fact, by the similar proof of Theorem 2, we can also prove naturally
that a normalized generalized Montgomery coordinate is the composition of an isogeny and the 𝑤-coordinate of a
Huff’s curve. That is to say, it is not crucial to describe a generalized Montgomery coordinate via a Montgomery
curve. Moreover, if we consider an extension of a generalized Montgomery coordinate in the future, Definition
1 looks more suitable than the definition from a Montgomery curve. It is because divisors are basic concepts for
algebraic varieties, and have a wide scope of application. For the same reason as above, though it is trivial that the
formula of scalar multiplication and the formula of isogeny computation via a generalized Montgomery coordinate
immediately hold from Theorem 2 and the formulas on the 𝑥-coordinate of Montgomery curves, we prove these
formulas from the theory of divisors without using formulas on Montgomery curves.

3.3 EXAMPLES OF GENERALIZED MONTGOMERY COORDINATES
In this subsection, we show some examples of generalized Montgomery coordinates already used for computa-

tions of isogenies. Table 2 is the summary of this subsection.

3.3.1 MONTGOMERY CURVES.

Montgomery curves are elliptic curves named after Montgomery [34] defined by the equation 𝑦2 = 𝑥3 +𝛼𝑥2 +𝑥,
where 𝛼 ≠ ±2. It is known that some computations of Montgomery curves are realized using 𝑥-coordinates [6,
13]. Note that the pole of a 𝑥-coordinate is a point at infinity, that is 𝑂𝐸 . One can see that the 𝑥-coordinate of
Montgomery curves is a generalized Montgomery coordinate with respect to {𝑂𝐸} and R0 = {(0, 0)}. In fact, it
holds that

div 𝑥 = 2((0, 0)) − 2(𝑂𝐸).

Moreover, direct calculations lead to the fact that 𝑥(𝑃 + (0, 0)) = 1/𝑥(𝑃). Therefore, 𝑥-coordinates are normalized.

3.3.2 MONTGOMERY− CURVES.

Montgomery− curves are defined by the equation
𝑦2 = 𝑥3 + 𝛼𝑥2 − 𝑥, where 𝛼 ≠ ±2

√
−1. From [7], it holds that some computations of Montgomery− curves are

computed only using 𝑥-coordinates. Since it holds that

div 𝑥 = 2((0, 0)) − 2(𝑂𝐸),

we have that the 𝑥-coordinate of Montgomery− curves is a generalized Montgomery coordinate with respect to
{𝑂𝐸} and R0 = {(0, 0)}. Moreover, direct calculations lead to the fact that 𝑥(𝑃 + (0, 0)) = −1/𝑥(𝑃). Therefore,√
−1𝑥 is a normalized generalized Montgomery coordinate.

Remark 7. Formulas of Montgomery− curves shown in [7] are obtained by applying formulas of a normalized
generalized Montgomery coordinate, which we will prove in Section 4, to

√
−1𝑥.
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3.3.3 EDWARDS CURVES.

Edwards curves are elliptic curves defined by the equation 𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2, where 𝑑 ≠ 0, 1 [16, 3]. Note
that the projective model of an Edwards curve is 𝑋2 + 𝑌2 = 𝑍2 + 𝑑𝑇2, 𝑋𝑌 = 𝑍𝑇 . The 𝑤-coordinates of Edwards
curves are defined as 𝑤 = 𝑑𝑥2𝑦2. It is known that there are some formulas on the 𝑤-coordinate of Edwards curves
[17, 29]. For an Edwards curve 𝐸 , we denote a cyclic group {(0,±1), (±1, 0)} in 𝐸 (𝐾) by 𝐶4. Because

div 𝑥 = ((0, 1)) + ((0,−1)) − (∞1) − (∞2),
div 𝑦 = ((1, 0)) + ((−1, 0)) − (∞3) − (∞4),

it holds that
div𝑤 = 2

∑︁
𝑃∈𝐶4

(𝑃) − 2
∑︁
𝑃∈𝐶4

(𝑃 + ∞1),

where ∞1 and ∞2 are points at infinity of order 2, and ∞3 and ∞4 are points at infinity of order 4. Therefore, 𝑤−1

is a generalized Montgomery coordinate with respect to 𝐶4 and R0 = ∞1 + 𝐶4. From direct calculations, we have
𝑤(𝑃 + ∞1) = 1/𝑤(𝑃). Hence, 𝑤−1 is a normalized generalized Montgomery coordinate.

Moreover, there are some well-known formulas using the 𝑦-coordinates of Edwards curves. In fact, [9] shows
formulas for scalar multiplications and isogeny computations via 𝑦-coordinates of Edwards curves. It is easy
to check that the 𝑦-coordinate is not a generalized Montgomery coordinate; however, from the following three
equations:

div (1 − 𝑦) = 2((0, 1)) − (∞3) − (∞4),
div (1 + 𝑦) = 2((0,−1)) − (∞3) − (∞4),

𝑦(𝑃 + (0,−1)) = −𝑦(𝑃),

it holds that a function (1 + 𝑦)/(1 − 𝑦) is a normalized generalized Montgomery coordinate. Therefore, formulas
of 𝑦-coordinates of Edwards curves are obtained by formulas of generalized Montgomery curves.

Remark 8. The above discussions about Edwards curves can be adapted to twisted Edwards curves proposed in
[4] defined by the following equation:

𝑎𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2.

It is because this curve is isomorphic to an Edwards curve 𝑥2 + 𝑦2 = 1 + (𝑑/𝑎)𝑥2𝑦2.

3.3.4 HUFF’S CURVES.
Huff’s curves are defined by the equation

𝑐𝑥(𝑦2 − 1) = 𝑦(𝑥2 − 1), where 𝑐 ≠ ±1 [24, 26]. It is known that some formulas of Huff curves can be computed
using 𝑤-coordinates defined as 𝑤 = 1/(𝑥𝑦) [15, 23]. Since

div 𝑥 = (𝑂𝐸) + (∞1) − (∞2) − (∞3),
div 𝑦 = (𝑂𝐸) + (∞2) − (∞1) − (∞3),

it holds that
div𝑤 = 2(∞3) − 2(𝑂𝐸),

where ∞1, ∞2, and ∞3 are points at infinity of order 2. Therefore, 𝑤 is a generalized Montgomery coordinate
with respect to {𝑂𝐸} and R0 = {∞3}. From direct calculations, we have 𝑤(𝑃 + ∞3) = 1/𝑤(𝑃). Therefore, 𝑤 is a
normalized generalized Montgomery coordinate.

3.3.5 TWISTED JACOBI INTERSECTIONS.
Twisted Jacobi intersections are defined by the equation

𝐽𝑎,𝑏 :

{
𝑎𝑥2 + 𝑦2 = 1,
𝑏𝑥2 + 𝑧2 = 1,

where 𝑎𝑏(𝑎 − 𝑏) ≠ 0 [18]. It is known that some formulas of twisted Jacobi intersections can be computed using
𝜔-coordinates defined as 𝜔(𝑥, 𝑦, 𝑧) =

√
𝑎𝑏𝑥2 [22]. By the direct computation, we have

div 𝑥 = (𝑂𝐽𝑎,𝑏 ) + ((0,−1, 1)) + ((0, 1,−1)) + ((0,−1,−1)) − (∞1) − (∞2) − (∞3) − (∞4),
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where ∞1, . . . ,∞4 are points at infinity of 𝐽𝑎,𝑏. We now show that (
√
𝑎𝑏𝑥2)−1 is a normalized generalized

Montgomery coordinate. From [18, Theorem 1] and some computations, there is an isomorphism

𝐸𝑀 : 𝑣2 = 𝑢3 − 𝑎+𝑏√
𝑎𝑏
𝑢2 + 𝑢 −→ 𝐽𝑎,𝑏,

(𝑢, 𝑣) ↦−→
(
− 2𝑣

4√
𝑎𝑏 (𝑢2−1)

,
𝑢2−2

√
𝑎
𝑏
𝑢+1

𝑢2−1 ,
𝑢2−2

√︃
𝑏
𝑎
𝑢+1

𝑢2−1

)
.

Therefore, 𝜔-coordinate is the same as the function 4𝑣2

(𝑢2−1)2 = 1
(𝑢◦[2] ) (𝑢,𝑣) on 𝐸𝑀 . Since 𝑢 is a normalized

generalized Montgomery coordinate, 𝜔−1 is also a normalized generalized Montgomery coordinate.

4 SCALAR MULTIPLICATION
In this section, we construct the formula of scalar multiplication via a generalized Montgomery coordinate

and define the division polynomial of the generalized Montgomery coordinates. Basic pseudo-operations of a
generalized Montgomery coordinate are given in Theorem 3 and Theorem 4. These theorems lead to the scalar
multiplication algorithm on an elliptic curve using a generalized Montgomery coordinate using the same method
as the Montgomery ladder [6, 14].

4.1 FORMULAS FOR SCALAR MULTIPLICATION
In this subsection, we fix a field 𝐾 with characteristic other than 2, an elliptic curve 𝐸 defined over 𝐾 , its

subgroup G, a point 𝑅0 such that 𝑅0 ∈ 1
2G ∖ G, and the set R0 = 𝑅0 + G, and we let ℎG,R0 be a normalized

generalized Montgomery coordinate with respect to G and R0.
We get the following theorems.

Theorem 3 (differential addition). Let 𝑃,𝑄 be points of 𝐸 such that 𝑃 ±𝑄 ∉ G. Then, it holds that

ℎG,R0 (𝑃 +𝑄)ℎG,R0 (𝑃 −𝑄) =
(ℎG,R0 (𝑄)ℎG,R0 (𝑃) − 1)2

(ℎG,R0 (𝑃) − ℎG,R0 (𝑄))2 .

Theorem 4 (doubling). Let 𝑃 be a point in 𝐸 such that 2𝑃 ∉ G. Then, it holds that

ℎG,R0 (2𝑃) =
(ℎG,R0 (𝑃) − 1)2 (ℎG,R0 (𝑃) + 1)2

4ℎG,R0 (𝑃)
(
ℎG,R0 (𝑃)2 + 𝛼ℎG,R0

ℎG,R0 (𝑃) + 1
) ,

where 𝛼ℎG,R0
is the generalized Montgomery coefficient of ℎG,R0 (Definition 2).

Before proving these theorems, we prove some lemmas.

Lemma 4. It holds that

ℎG,R0 (𝑃 +𝑄)ℎG,R0 (𝑃 −𝑄) =
ℎG,R0 (𝑄)2 (ℎG,R0 (𝑃) − ℎG,R0 (𝑅0 +𝑄))2

(ℎG,R0 (𝑃) − ℎG,R0 (𝑄))2 .

Proof. We define the two maps 𝜙1 and 𝜙2 mapping from 𝐸 × 𝐸 to P1 as

𝜙1 (𝑃,𝑄) = ℎG,R0 (𝑃 +𝑄)ℎG,R0 (𝑃 −𝑄),

𝜙2 (𝑃,𝑄) =
ℎG,R0 (𝑄)2 (ℎG,R0 (𝑃) − ℎG,R0 (𝑅0 +𝑄))2

(ℎG,R0 (𝑃) − ℎG,R0 (𝑄))2 .

Suppose 𝑄 ∉ R0 ∪ G. Let 𝜙1,𝑄 (𝑧) = 𝜙1 (𝑧, 𝑄) and 𝜙2,𝑄 (𝑧) = 𝜙2 (𝑧, 𝑄). By considering zero points and poles of
𝜙1,𝑄 and 𝜙2,𝑄, we have div 𝜙1,𝑄 = div 𝜙2,𝑄. Therefore, there is a constant value 𝑐 such that 𝜙1,𝑄 = 𝑐 · 𝜙2,𝑄. We
have 𝑐 = 1 because

𝜙1,𝑄 (𝑅0) = ℎG,R0 (𝑅0 +𝑄)ℎG,R0 (𝑅0 −𝑄) = ℎG,R0 (𝑅0 +𝑄)2,

𝜙2,𝑄 (𝑅0) = ℎG,R0 (𝑅0 +𝑄)2.

As R0 ∪ G is a finite set, it holds that 𝜙1 (𝑃, 𝑧) = 𝜙2 (𝑃, 𝑧) for a fixed point 𝑃. Therefore, we have 𝜙1 = 𝜙2. □
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Lemma 5. The set 1
2R0 can be decomposed as follows:

(�̃�0 + G) ⊔ (�̃�0 + R0) ⊔ (�̃�0 + R1) ⊔ (�̃�0 + R0 + R1),

where �̃�0 is a point satisfying 2�̃�0 ∈ R0, and R1 is the set defined in Lemma 1.
Moreover, one of the following holds:
• ℎG,R0 (�̃�0 + G) = ℎG,R0 (�̃�0 + R0) = {1} and
ℎG,R0 (�̃�0 + R1) = ℎG,R0 (�̃�0 + R0 + R1) = {−1};

• ℎG,R0 (�̃�0 + G) = ℎG,R0 (�̃�0 + R0) = {−1} and
ℎG,R0 (�̃�0 + R1) = ℎG,R0 (�̃�0 + R0 + R1) = {1}.

Proof. Because 𝐸 [2] ⊂ 1
2G, we have 1

2R0 = �̃�0 + 1
2G. From Lemma 1, the first part of Lemma 5 holds.

Let 𝑅1 be a point in R1. By Lemma 3, we have

ℎG,R0 (�̃�0)2 = ℎG,R0 (�̃�0 + 𝑅0)2 = ℎG,R0 (�̃�0 + 𝑅1)2 = ℎG,R0 (�̃�0 + 𝑅0 + 𝑅1)2 = 1.

Therefore, from Lemma 2,

ℎG,R0 (�̃�0) = ℎG,R0 (�̃�0 + 𝑅0) and ℎG,R0 (�̃�0 + 𝑅1) = ℎG,R0 (�̃�0 + 𝑅0 + 𝑅1).

Since the number of points in ℎ−1
G,R0

(𝑧) for some 𝑧 ∈ P1 is at most 2#G, it holds that ℎG,R0 (�̃�0+𝑅0) ≠ ℎG,R0 (�̃�0+𝑅1).
From Theorem 1, this completes the proof of Lemma 5. □

Now, we prove Theorem 3 and Theorem 4.

Proof of Theorem 3. It follows from Lemma 4 and Lemma 2. □

Proof of Theorem 4. We define the two maps 𝜙1, 𝜙2 : 𝐸 → P1 as follows:

𝜙1 (𝑧) = ℎG,R0 (2𝑧),

𝜙2 (𝑧) =
(ℎG,R0 (𝑧) − 1)2 (ℎG,R0 (𝑧) + 1)2

ℎG,R0 (𝑧) (ℎG,R0 (𝑧) − ℎG,R0 (𝑅1)) (ℎG,R0 (𝑧) − ℎG,R0 (𝑅0 + 𝑅1))
,

where 𝑅1 is a point in R1. Note that the set of zero points of 𝜙1 is 1
2R0, and the set of poles of 𝜙1 is 1

2G. Therefore,
from Lemma 1 and Lemma 5, we have div 𝜙1 = div 𝜙2. Hence, it holds that 𝜙1 = 𝑐 · 𝜙2, where 𝑐 is a constant value.

From Theorem 3, it holds that

ℎG,R0 (4𝑧)ℎG,R0 (2𝑧) =
(ℎG,R0 (3𝑧)ℎG,R0 (𝑧) − 1)2

(ℎG,R0 (3𝑧) − ℎG,R0 (𝑧))2 .

Note that 𝛼ℎG,R0
= −(ℎG,R0 (𝑅1) + ℎG,R0 (𝑅0 + 𝑅1)). We also have

ℎG,R0 (4𝑧)ℎG,R0 (2𝑧) = 𝑐 ·
(ℎG,R0 (2𝑧)2 − 1)2

ℎG,R0 (2𝑧) (ℎG,R0 (2𝑧)2 + 𝛼ℎG,R0
ℎG,R0 (2𝑧) + 1)

· ℎG,R0 (2𝑧)

= 𝑐 ·
(ℎG,R0 (2𝑧)2 − 1)2

ℎG,R0 (2𝑧)2 + 𝛼ℎG,R0
ℎG,R0 (2𝑧) + 1

.

Using Theorem 3 again, we get

ℎG,R0 (3𝑧)ℎG,R0 (𝑧) =
(ℎG,R0 (2𝑧)ℎG,R0 (𝑧) − 1)2

(ℎG,R0 (2𝑧) − ℎG,R0 (𝑧))2 .

Therefore, it holds that

𝑐 ·
(ℎG,R0 (2𝑧)2 − 1)2

ℎG,R0 (2𝑧)2 + 𝛼ℎG,R0
ℎG,R0 (2𝑧) + 1

=

(
(ℎG,R0 (2𝑧)ℎG,R0 (𝑧)−1)2

(ℎG,R0 (2𝑧)−ℎG,R0 (𝑧) )2 − 1
)2
ℎG,R0 (𝑧)2( (ℎG,R0 (2𝑧)ℎG,R0 (𝑧)−1)2

(ℎG,R0 (2𝑧)−ℎG,R0 (𝑧) )2 − ℎG,R0 (𝑧)2
)2 .
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The right-hand side of this identity can be transformed as follows:(
(ℎG,R0 (2𝑧)ℎG,R0 (𝑧) − 1)2 − (ℎG,R0 (2𝑧) − ℎG,R0 (𝑧))2)2

ℎG,R0 (𝑧)2(
(ℎG,R0 (2𝑧)ℎG,R0 (𝑧) − 1)2 − (ℎG,R0 (2𝑧) − ℎG,R0 (𝑧))2ℎG,R0 (𝑧)2)2

=
(ℎG,R0 (2𝑧)2 − 1)2ℎG,R0 (𝑧)2

(2ℎG,R0 (2𝑧)ℎG,R0 (𝑧) − ℎG,R0 (𝑧)2 − 1)2 .

Hence, we have

𝑐 · 1
ℎG,R0 (2𝑧)2 + 𝛼ℎG,R0

ℎG,R0 (2𝑧) + 1
=

ℎG,R0 (𝑧)2

(2ℎG,R0 (2𝑧)ℎG,R0 (𝑧) − ℎG,R0 (𝑧)2 − 1)2 .

Let �̃�0 be a point satisfying 2�̃�0 ∈ R0. Note that ℎG,R0 (�̃�0) = ±1, and ℎG,R0 (2�̃�0) = 0. By substituting �̃�0 for 𝑧,
we get 𝑐 = 1

4 . □

4.2 DIVISION POLYNOMIALS OF THE GENERALIZED MONTGOMERY COORDINATES
In this subsection, we define the division polynomials of the generalized Montgomery coordinates. This

definition is not the same as that of standard division polynomials. In fact, there appears 𝑥 and 𝑦-coordinates
in the standard division polynomials, while our division polynomials are represented by one-coordinate systems.
However, both our 𝑚-th division polynomials and standard ones are minimal polynomials holding all information
of 𝑚-torsion points. Thus, in this meaning, they are essentially the same.

Before defining the division polynomials, we need the following proposition which can be proven by induction.

Proposition 1. Let Ψ = 4(ℎ2 + 𝛼ℎ + 1) ∈ Z[𝛼, ℎ]. For any 𝑚 ∈ Z≥1, there exist polynomials Φ𝑚,Ψ𝑚 ∈ Z[𝛼, ℎ]
such that, for any elliptic curve 𝐸 and any normalized generalized Montgomery coordinate ℎG,R0 , the following
three properties hold: If 𝑚 is odd,

• It holds that

ℎG,R0 (𝑚𝑃) =
ℎG,R0 (𝑃)Φ2

𝑚 (𝛼ℎG,R0
, ℎG,R0 (𝑃))

Ψ2
𝑚 (𝛼ℎG,R0

, ℎG,R0 (𝑃))
;

• The highest term of Φ𝑚 (𝛼, ℎ) in the variable ℎ is ℎ𝑚2−1
2 ;

• The highest term of Ψ𝑚 (𝛼, ℎ) in the variable ℎ is 𝑚 · ℎ𝑚2−1
2 .

If 𝑚 is even,
• It holds that

ℎG,R0 (𝑚𝑃) =
Φ2

𝑚 (𝛼ℎG,R0
, ℎG,R0 (𝑃))

ℎG,R0 (𝑃)Ψ2
𝑚 (𝛼ℎG,R0

, ℎG,R0 (𝑃)) · Ψ(𝛼ℎG,R0
, ℎG,R0 (𝑃))

;

• The highest term of Φ𝑚 (𝛼, ℎ) in the variable ℎ is ℎ𝑚2
2 ;

• The highest term of Ψ𝑚 (𝛼, ℎ) in the variable ℎ is 𝑚
2 · ℎ𝑚2−4

2 .
Here, 𝛼ℎG,R0

is the generalized Montgomery coefficient of ℎG,R0 .

Proof. We prove this proposition by mathematical induction. In the case of 𝑚 = 1, we have Φ1 (𝛼, ℎ) = 1, and
Ψ1 (𝛼, ℎ) = 1. In the case of 𝑚 = 2, from Theorem 4, we have Φ2 (𝛼, ℎ) = ℎ2 − 1, and Ψ2 (𝛼, ℎ) = 1. Let 𝑠 be an
odd integer greater than or equal to one. Suppose that Proposition 1 holds for 𝑚 = 𝑠 and 𝑚 = 𝑠 + 1. From Theorem
3, it holds that

ℎG,R0 ((2𝑠 + 1)𝑃) =
(ℎG,R0 (𝑠𝑃)ℎG,R0 ((𝑠 + 1)𝑃) − 1)2

ℎG,R0 (𝑃) (ℎG,R0 (𝑠𝑃) − ℎG,R0 ((𝑠 + 1)𝑃))2

=
ℎG,R0 (𝑃) (Φ2

𝑠Φ
2
𝑠+1 − Ψ2

𝑠Ψ
2
𝑠+1Ψ)2

(ℎG,R0 (𝑃)2Φ2
𝑠Ψ

2
𝑠+1Ψ −Φ2

𝑠+1Ψ
2
𝑠 )2

.

In this proof, as in the equation above, we often omit (𝛼ℎG,R0
, ℎG,R0 (𝑃)). We define

Φ2𝑠+1 (𝛼, ℎ) = Φ𝑠 (𝛼, ℎ)2Φ𝑠+1 (𝛼, ℎ)2 − Ψ𝑠 (𝛼, ℎ)2Ψ𝑠+1 (𝛼, ℎ)2Ψ(𝛼, ℎ),
Ψ2𝑠+1 (𝛼, ℎ) = ℎ2Φ𝑠 (𝛼, ℎ)2Ψ𝑠+1 (𝛼, ℎ)2Ψ(𝛼, ℎ) −Φ𝑠+1 (𝛼, ℎ)2Ψ𝑠 (𝛼, ℎ)2.
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It is easy to show that the highest term of Φ2𝑠+1 (𝛼, ℎ) in the variable ℎ is ℎ
(2𝑠+1)2−1

2 , and that of Ψ2𝑠+1 (𝛼, ℎ) in the
variable ℎ is (2𝑠 + 1) · ℎ

(2𝑠+1)2−1
2 . Therefore, Proposition 1 holds for 𝑚 = 2𝑠 + 1 for odd 𝑠. From Theorem 4, it holds

that

ℎG,R0 (2𝑠𝑃) =
ℎG,R0 (2𝑃)Φ2

𝑠 (𝛼ℎG,R0
, ℎG,R0 (2𝑃))

Ψ2
𝑠 (𝛼ℎG,R0

, ℎG,R0 (2𝑃))

=
(ℎG,R0 (𝑃)2 − 1)2

ℎG,R0 (𝑃)Ψ

Φ2
𝑠 (𝛼ℎG,R0

,
(ℎG,R0 (𝑃)2−1)2

ℎG,R0 (𝑃)Ψ ) · (ℎG,R0 (𝑃)Ψ)𝑠2−1

Ψ2
𝑠 (𝛼ℎG,R0

,
(ℎG,R0 (𝑃)2−1)2

ℎG,R0 (𝑃)Ψ ) · (ℎG,R0 (𝑃)Ψ)𝑠2−1
.

We define

Φ2𝑠 (𝛼, ℎ) = (ℎ2 − 1) (Φ𝑠 (𝛼, (ℎ2 − 1)2/(ℎΨ(𝛼, ℎ))) · (ℎΨ(𝛼, ℎ)) 𝑠2−1
2 ),

Ψ2𝑠 (𝛼, ℎ) = Ψ𝑠 (𝛼, (ℎ2 − 1)2/(ℎΨ(𝛼, ℎ))) · (ℎΨ(𝛼, ℎ)) 𝑠2−1
2 .

It is easy to show that the highest term of Φ2𝑠 (𝛼, ℎ) in the variable ℎ is ℎ
(2𝑠)2

2 , and that of Ψ2𝑠 (𝛼, ℎ) in the variable
ℎ is 𝑠 · ℎ

(2𝑠)2−4
2 . Therefore, Proposition 1 holds for 𝑚 = 2𝑠 for odd 𝑠.

Next, we consider the case that 𝑠 is even. Suppose that Proposition 1 holds for 𝑚 = 𝑠 and 𝑚 = 𝑠 + 1. From
Theorem 3, it holds that

ℎG,R0 ((2𝑠 + 1)𝑃) =
ℎG,R0 (𝑃) (Φ2

𝑠Φ
2
𝑠+1 − Ψ2

𝑠Ψ
2
𝑠+1Ψ)2

(ℎG,R0 (𝑃)2Φ2
𝑠+1Ψ

2
𝑠Ψ −Φ2

𝑠Ψ
2
𝑠+1)2

.

We define

Φ2𝑠+1 (𝛼, ℎ) = Φ𝑠 (𝛼, ℎ)2Φ𝑠+1 (𝛼, ℎ)2 − Ψ𝑠 (𝛼, ℎ)2Ψ𝑠+1 (𝛼, ℎ)2Ψ(𝛼, ℎ),
Ψ2𝑠+1 (𝛼, ℎ) = Φ𝑠 (𝛼, ℎ)2Ψ𝑠+1 (𝛼, ℎ)2 − ℎ2Φ𝑠+1 (𝛼, ℎ)2Ψ𝑠 (𝛼, ℎ)2Ψ(𝛼, ℎ).

It is easy to show that the highest term of Φ2𝑠+1 in the variable ℎ is ℎ
(2𝑠+1)2−1

2 , and that of Ψ2𝑠+1 in the variable ℎ is
(2𝑠 + 1) · ℎ

(2𝑠+1)2−1
2 . Therefore, Proposition 1 holds for 𝑚 = 2𝑠 + 1 for even 𝑠. From Theorem 4, it holds that

ℎG,R0 (2𝑠𝑃) =
Φ2

𝑠 (𝛼ℎG,R0
, ℎG,R0 (2𝑃))

ℎG,R0 (2𝑃)Ψ2
𝑠 (𝛼ℎG,R0

, ℎG,R0 (2𝑃))Ψ(𝛼ℎG,R0
, ℎG,R0 (2𝑃))

=

Φ2
𝑠 (𝛼ℎG,R0

,
(ℎG,R0 (𝑃)2−1)2

ℎG,R0 (𝑃)Ψ )
(ℎG,R0 (𝑃)2−1)2

ℎG,R0 (𝑃)Ψ · Ψ2
𝑠 (𝛼ℎG,R0

,
(ℎG,R0 (𝑃)2−1)2

ℎG,R0 (𝑃)Ψ ) · Ψ(𝛼ℎG,R0
,
(ℎG,R0 (𝑃)2−1)2

ℎG,R0 (𝑃)Ψ )
,

Note that

Ψ

(
𝛼,

(ℎ2 − 1)2

ℎΨ

)
· ℎ2Ψ2

= 4 · ((ℎ2 − 1)4 + 𝛼(ℎ2 − 1)2ℎΨ + ℎ2Ψ2)
= 4 · ((ℎ2 − 1)4 + 𝛼(ℎ2 − 1)2ℎ · 4(ℎ2 + 𝛼ℎ + 1) + ℎ2 · 16(ℎ2 + 𝛼ℎ + 1)2)
= 4 · (ℎ4 + 2𝛼ℎ3 + 6ℎ2 + 2𝛼ℎ + 1)2.

Therefore, ℎG,R0 (2𝑠𝑃) is equal to

1
ℎG,R0 (𝑃)Ψ

Φ2
𝑠 (𝛼ℎG,R0

,
(ℎG,R0 (𝑃)2−1)2

ℎG,R0 (𝑃)Ψ ) · (ℎG,R0 (𝑃)Ψ)𝑠2

(ℎG,R0 (𝑃)2 − 1)2Ψ2
𝑠 (𝛼ℎG,R0

,
(ℎG,R0 (𝑃)2−1)2

ℎG,R0 (𝑃)Ψ ) · Ψ̃2 · (ℎG,R0 (𝑃)Ψ)𝑠2−4
,

where Ψ̃(𝛼, ℎ) is a polynomial
Ψ̃(𝛼, ℎ) = 2(ℎ4 + 2𝛼ℎ3 + 6ℎ2 + 2𝛼ℎ + 1).
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We define

Φ2𝑠 (𝛼, ℎ) = Φ𝑠 (𝛼, (ℎ2 − 1)2/(ℎΨ(𝛼, ℎ))) · (ℎΨ(𝛼, ℎ)) 𝑠2
2 ,

Ψ2𝑠 (𝛼, ℎ) = (ℎ2 − 1) · Ψ𝑠 (𝛼, (ℎ2 − 1)2/(ℎΨ(𝛼, ℎ))) · Ψ̃(𝛼, ℎ) · (ℎΨ(𝛼, ℎ)) 𝑠2−4
2 .

It is easy to show that the highest term of Φ2𝑠 (𝛼, ℎ) in the variable ℎ is ℎ
(2𝑠)2

2 , and that of Ψ2𝑠 (𝛼, ℎ) in the variable
ℎ is 𝑠 · ℎ

(2𝑠)2−4
2 . Therefore, Proposition 1 holds for𝑚 = 2𝑠 for even 𝑠. This completes the proof of Proposition 1. □

Now, we define the division polynomials of the generalized Montgomery coordinates.
Definition 4 (Division polynomials of the generalized Montgomery coordinates). Let 𝑚 ∈ Z≥1, and let Ψ𝑚 and Ψ

be polynomials defined in the proof of Proposition 1. We define a polynomial 𝜓′
𝑚 ∈ Z[𝛼, ℎ] as

𝜓′
𝑚 (𝛼, ℎ) =

{
Ψ𝑚 (𝛼, ℎ) (𝑚 is odd),
ℎ · Ψ𝑚 (𝛼, ℎ) · Ψ(𝛼, ℎ) (𝑚 is even).

We define a polynomial 𝜓𝑚 ∈ Z[𝛼, ℎ] as 𝜓𝑚 = 𝜓′
𝑚/𝑑, where 𝑑 is the maximal integer such that 𝜓′

𝑚/𝑑 is in Z[𝛼, ℎ].
That is, 𝜓𝑚 is primitive. We call the polynomial 𝜓𝑚 the 𝑚-th division polynomial of the generalized Montgomery
coordinates.

The following theorem reveals the identity of division polynomials of the generalized Montgomery coordinates.
That is, the 𝑚-th division polynomial of the generalized Montgomery coordinates is the most basic polynomial
that has information on images of all points of order 𝑚 of any elliptic curves under their generalized Montgomery
coordinates. This identity provides the condition for the equality of the computational results of different formulas
(Theorem 10).
Theorem 5. Let 𝑝 be the characteristic of 𝐾 , and let 𝑚 ∈ Z≥1 satisfy 𝑝 ∤ 𝑚 if 𝑝 ≠ 0. We define an ideal 𝐼𝑚 in a
polynomial ring Z[𝛼, ℎ] as follows:

𝐼𝑚 = {𝜓 | 𝜓(𝛼ℎG,R0
, ℎG,R0 (𝑃)) = 0 ∈ 𝐾 for all (𝐸, ℎG,R0 ) and 𝑃 ∈ 𝐸 [𝑚] ∖ G}.

Then, it holds that 𝐼𝑚 is generated by 𝑝 and 𝜓𝑚, where 𝜓𝑚 is the 𝑚-th division polynomial of the generalized
Montgomery coordinates.

Proof. First, we consider the case of 𝑝 > 0. It is clear that 𝑝 ∈ 𝐼𝑚. Therefore, we prove that 𝜓𝑚F𝑝 [𝛼, ℎ] = 𝐼𝑚,
where 𝜓𝑚 is the image of 𝜓𝑚 under the canonical map Z[𝛼, ℎ] → F𝑝 [𝛼, ℎ], and 𝐼𝑚 is the ideal generated by an
image of 𝐼𝑚 under the canonical map Z[𝛼, ℎ] → F𝑝 [𝛼, ℎ]. Because 𝑝 ∤ 𝑚, we have 𝜓𝑚 ≠ 0 from Proposition 1.
We define the ideal 𝐽𝑚 of F𝑝 (𝛼) [ℎ] as{

𝜓 ∈ F𝑝 (𝛼) [ℎ]
���� ∃ 𝑓 ∈ F𝑝 [𝛼] ∖ {0} s.t. ( 𝑓 · 𝜓) (𝛼ℎG,R0

, ℎG,R0 (𝑃)) = 0
for all (𝐸, ℎG,R0 ) and 𝑃 ∈ 𝐸 [𝑚] ∖ G

}
.

Since F𝑝 (𝛼) is a field, 𝐽𝑚 is a principal ideal. We now prove that 𝐽𝑚 = 𝜓𝑚F𝑝 (𝛼) [ℎ]. From the construction
of 𝜓𝑚, it is clear that 𝜓𝑚 ∈ 𝐽𝑚. Suppose that 𝜓𝑚 is not a generator of 𝐽𝑚. Then, there is a polynomial 𝜓0
such that degℎ 𝜓0 < degℎ 𝜓𝑚 and 𝐽𝑚 = 𝜓0F𝑝 (𝛼) [ℎ]. We now find a lower bound of degℎ 𝜓0. Note that it
holds that degℎ 𝜓0 (𝛼ℎG,R0

, ℎ) ≤ degℎ 𝜓0 for any (𝐸, ℎG,R0 ). Let ℎG,R0 be a normalized generalized Montgomery
coordinate with respect to {𝑂𝐸} (e.g., 𝑥-coordinates of Montgomery curves). By the definition of 𝐽𝑚, elements in
ℎG,R0 (𝐸 [𝑚] ∖ {𝑂𝐸}) are the roots of ( 𝑓 ·𝜓0) (𝛼ℎG,R0

, ℎ) for some 𝑓 ∈ F𝑝 [𝛼] ∖ {0}. We redefine 𝜓0 as 𝑓 ·𝜓0. Note
that all elements in 𝐾 ∖ {±2} can be a Montgomery coefficient of some elliptic curve. Changing 𝐸 if necessary, we
may assume that 𝜓0 (𝛼ℎG,R0

, ℎ) ≠ 0. Therefore, we have degℎ 𝜓0 (𝛼ℎG,R0
, ℎ) is larger than #ℎG,R0 (𝐸 [𝑚] ∖ {𝑂𝐸}).

Note that #ℎG,R0 (𝐸 [𝑚] ∖ {𝑂𝐸}) is 𝑚2−1
2 if 𝑚 is odd, and it is 𝑚2−4

2 + #(𝐸 [2] ∖ {𝑂𝐸}) = 𝑚2+2
2 if 𝑚 is even.

Therefore, from Proposition 1, it holds that degℎ 𝜓𝑚 is the number of elements in ℎG,R0 (𝐸 [𝑚] ∖ {𝑂𝐸}). However,
we have degℎ 𝜓0 (𝛼ℎG,R0

, ℎ) ≤ degℎ 𝜓0 < degℎ 𝜓𝑚. This is a contradiction. Hence, it holds that 𝐽𝑚 = 𝜓𝑚F𝑝 (𝛼) [ℎ].
Let 𝜓 be a polynomial in 𝐼𝑚. It is easy to see that 𝜓 ∈ 𝐽𝑚 = 𝜓𝑚F𝑝 (𝛼) [ℎ]. Therefore, 𝜓/𝜓𝑚 is in F𝑝 (𝛼) [ℎ]. We

denote 𝜓/𝜓𝑚 by 𝐹 (𝛼, ℎ). From Proposition 1, we get that the coefficient of the highest term in the variable ℎ of 𝜓𝑚

is in F𝑝 ∖ {0}. Therefore, 𝜓𝑚 is primitive as a polynomial in (F𝑝 [𝛼]) [ℎ]. Note that 𝜓 ∈ F𝑝 [𝛼, ℎ]. From Gauss’s
Lemma, we have 𝐹 (𝛼, ℎ) ∈ F𝑝 [𝛼, ℎ]. Therefore, 𝜓 ∈ 𝜓𝑚F𝑝 [𝛼, ℎ]. In other words, it holds that 𝐼𝑚 ⊂ 𝜓𝑚F𝑝 [𝛼, ℎ].
Because it is clear that 𝜓𝑚 ∈ 𝐼𝑚, we have 𝐼𝑚 = 𝜓𝑚F𝑝 [𝛼, ℎ]. This completes the proof of the case of 𝑝 > 0.

We now consider the case of 𝑝 = 0. We can prove the most part by changing F𝑝 [𝛼, ℎ] to Q[𝛼, ℎ] and having a
similar discussion. The rest is the part that proves 𝐹 (𝛼, ℎ) ∈ Z[𝛼, ℎ], where 𝐹 (𝛼, ℎ) is a polynomial in Q(𝛼) [ℎ]
such that 𝐹 (𝛼, ℎ) = 𝜓/𝜓𝑚 for some 𝜓 ∈ 𝐼𝑚. Remember that 𝜓𝑚 is primitive by its definition. From Gauss’s
Lemma, 𝐹 (𝛼, ℎ) ∈ Z[𝛼, ℎ]. □
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5 ISOGENY COMPUTATION
In this section, we construct formulas to compute isogenies via a generalized Montgomery coordinate. Through-

out this section, we fix an elliptic curve 𝐸 defined over 𝐾 , its subgroup G, a point 𝑅0 such that 𝑅0 ∉ G and 2𝑅0 ∈ G,
and the set R0 = 𝑅0 + G, and we let ℎG,R0 be a normalized generalized Montgomery coordinate with respect to G
and R0.

To compute isogenies, we need two formulas: the formula to compute an image point under the isogeny and
the formula to compute the coefficient of the codomain elliptic curve. In the subsection 5.1, we construct the first
formula, and in the subsection 5.2, we construct one of the second formulas. The second formulas are known to
be of various types. In subsection 5.3, we explain that this difference comes from the division polynomial of the
generalized Montgomery coordinates.

5.1 FORMULA FOR IMAGE POINTS
In this subsection, we explain the formula for computing image points under isogenies using a generalized

Montgomery coordinate.

Theorem 6 (odd degree isogeny). Let 𝐺 be a finite subgroup of 𝐸 satisfying

𝐺 ∩ (G ∪ R0) = {𝑂𝐸}.

Let 𝜙 be a separable isogeny 𝜙 : 𝐸 → 𝐸/𝐺 with ker 𝜙 = 𝐺. Then, there is a normalized generalized Montgomery
coordinate of 𝐸/𝐺 with respect to 𝜙(G) and 𝜙(R0) satisfying

ℎ𝜙 (G) ,𝜙 (R0 ) (𝜙(𝑃)) = ℎG,R0 (𝑃)
∏

𝑄∈𝐺∖{𝑂𝐸 }

(ℎG,R0 (𝑃)ℎG,R0 (𝑄) − 1)
(ℎG,R0 (𝑃) − ℎG,R0 (𝑄))

.

Proof. We define a map ℎ𝜙 (G) ,𝜙 (R0 ) ∈ 𝐾 (𝐸/𝐺) satisfying

div ℎ𝜙 (G) ,𝜙 (R0 ) = 2
∑︁

𝑅∈𝜙 (R0 )
(𝑅) − 2

∑︁
𝑃∈𝜙 (G)

(𝑃).

It is clear that ℎ𝜙 (G) ,𝜙 (R0 ) is a generalized Montgomery coordinate of 𝐸/𝐺 with respect to 𝜙(G) and 𝜙(R0). By
multiplying by a constant value, we can assume that ℎ𝜙 (G) ,𝜙 (R0 ) is normalized. Let �̃�0 be a point of 𝐸 satisfying
ℎG,R0 (�̃�0) = 1. Note that ℎG,R0 (2�̃�0) = 0 from Theorem 1 and Lemma 5. We have ℎ𝜙 (G) ,𝜙 (R0 ) (2𝜙(�̃�0)) = 0.
Therefore, by Lemma 5, ℎ𝜙 (G) ,𝜙 (R0 ) (𝜙(�̃�0)) = ±1. If this value is −1, we multiply ℎ𝜙 (G) ,𝜙 (R0 ) by −1. We define
two maps 𝜙1, 𝜙2 ∈ 𝐾 (𝐸) as

𝜙1 (𝑧) = ℎ𝜙 (G) ,𝜙 (R0 ) (𝜙(𝑧)),

𝜙2 (𝑧) = ℎG,R0 (𝑧)
∏

𝑄∈𝐺∖{𝑂𝐸 }

(ℎG,R0 (𝑧)ℎG,R0 (𝑄) − 1)
(ℎG,R0 (𝑧) − ℎG,R0 (𝑄))

.

It is easy to check that div 𝜙1 = div 𝜙2. Since 𝜙1 (�̃�0) = 𝜙2 (�̃�0) = 1, it holds that 𝜙1 = 𝜙2. This completes the
proof of Theorem 6. □

Theorem 6 gives us the formula for computing an isogeny whose kernel is 𝐺, which satisfies 𝐺 ∩ (G ∪ R0) =
{𝑂𝐸}. If 𝐸 [2] ∖ G ≠ ∅, and 𝑅0 is a point of order 2 with 𝑅0 ∉ G, then we can construct the natural formula of a
2-isogeny whose kernel is ⟨𝑅0⟩.
Theorem 7 (2-isogeny). We assume that 𝐸 [2]∖G ≠ ∅, and 𝑅0 is a point of order 2 with 𝑅0 ∉ G. Let𝐺 = ⟨𝑅0⟩, and
let 𝜙 : 𝐸 → 𝐸/𝐺 be a separable isogeny with ker 𝜙 = 𝐺. Then, there are six normalized generalized Montgomery
coordinates of 𝐸/𝐺 with respect to 𝜙(G) satisfying the following equalities:

ℎ1,± (𝜙(𝑃)) = ± 1

2
√︃
𝛼ℎG,R0

+ 2
·
(ℎG,R0 (𝑃) − 1)2

ℎG,R0 (𝑃)
,

ℎ2,± (𝜙(𝑃)) = ± 1

2
√︃
−𝛼ℎG,R0

+ 2
·
(ℎG,R0 (𝑃) + 1)2

ℎG,R0 (𝑃)
,

ℎ3,± (𝜙(𝑃)) = ± 1√︃
𝛼2
ℎG,R0

− 4
·
ℎG,R0 (𝑃)2 + 𝛼ℎG,R0

ℎG,R0 (𝑃) + 1
ℎG,R0 (𝑃)

,

where 𝛼ℎG,R0
is the generalized Montgomery coefficient of ℎG,R0 .
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Proof. Let R1 be the set defined in Lemma 1, let 𝑅1 be a point in R1, and let �̃�0 be a point satisfying 2�̃�0 = 𝑅0.
One can check that 2𝜙(�̃�0) ∈ 𝜙(G) and 𝜙(�̃�0) ∉ 𝜙(G) ∪ 𝜙(R1). Therefore, from Lemma 1, we have

1
2
𝜙(G) = 𝜙(G) ⊔ 𝜙(R1) ⊔ (𝜙(�̃�0) + 𝜙(G)) ⊔ (𝜙(�̃�0) + 𝜙(R1)).

Hence, we get the following normalized generalized Montgomery coordinates:
• ℎ1,+ and ℎ1,− with respect to 𝜙(G) and 𝜙(�̃�0) + 𝜙(G),
• ℎ2,+ and ℎ2,− with respect to 𝜙(G) and 𝜙(�̃�0) + 𝜙(𝑅1) + 𝜙(G),
• ℎ3,+ and ℎ3,− with respect to 𝜙(G) and 𝜙(𝑅1) + 𝜙(G),

where ℎ𝑖,− = −ℎ𝑖,+ for 𝑖 = 1, 2, 3. Note that ℎG,R0 (�̃�0 + 𝑅1) = −1 from Lemma 5. By considering zero points and
poles, we have

ℎ1,± (𝜙(𝑃)) = ±𝑐1 ·
(ℎG,R0 (𝑃) − 1)2

ℎG,R0 (𝑃)
,

ℎ2,± (𝜙(𝑃)) = ±𝑐2 ·
(ℎG,R0 (𝑃) + 1)2

ℎG,R0 (𝑃)
,

ℎ3,± (𝜙(𝑃)) = ±𝑐3 ·
ℎG,R0 (𝑃)2 + 𝛼ℎG,R0

ℎG,R0 (𝑃) + 1
ℎG,R0 (𝑃)

,

where 𝑐1, 𝑐2, and 𝑐3 are constant values of 𝐾 .
Next, we find these constant values. From Lemma 2, it holds that

ℎ1 (𝜙(�̃�0) + 𝜙(𝑅1)) · ℎ1 (𝜙(𝑅1)) = 1.

Therefore, it holds that

𝑐2
1 · (−4) ·

(ℎG,R0 (𝑅1) − 1)2

ℎG,R0 (𝑅1)
= 1.

Thus, we have 𝑐1 = 1
2
√︃
𝛼ℎG,R0

+2
. It also holds that

ℎ2 (𝜙(�̃�0)) · ℎ2 (𝜙(𝑅1)) = 1.

Therefore, by a similar calculation, we also have 𝑐2 = 1
2
√︃
−𝛼ℎG,R0

+2
. It also holds that

ℎ3 (𝜙(�̃�0) + 𝜙(𝑅1)) · ℎ3 (𝜙(�̃�0)) = 1.

Hence, we also have 𝑐3 = 1√︂
𝛼2
ℎG,R0

−4
. This completes the proof of Theorem 7. □

5.2 FORMULA FOR GENERALIZED MONTGOMERY COEFFICIENTS
In this subsection, we construct a formula to compute generalized Montgomery coefficients of target curves of

isogenies by Theorem 6. The following theorem gives the formula, which corresponds to the formula constructed
from the 2-torsion method proposed in [13].

Theorem 8 (odd degree isogeny). Let R1 be a subset of 𝐸 defined in Lemma 1, let 𝑅1 be a point in R1, and let 𝐺
be a subgroup of 𝐸 satisfying

𝐺 ∩ (G ∪ R0 ∪ R1) = {𝑂𝐸}.

Let 𝜙 be a separable isogeny 𝜙 : 𝐸 → 𝐸/𝐺 with ker 𝜙 = 𝐺, and let ℎ𝜙 (G) ,𝜙 (𝑅0 ) be a normalized generalized
Montgomery coordinate of 𝐸/𝐺 that is defined in Theorem 6. Then, the generalized Montgomery coefficient of
ℎ𝜙 (G) ,𝜙 (R0 ) is

𝛼ℎ𝜙 (G) ,𝜙 (R0 )
= − ℎG,R0 (𝑅1)

∏
𝑄∈𝐺∖{𝑂𝐸 }

(ℎG,R0 (𝑅1)ℎG,R0 (𝑄) − 1)
(ℎG,R0 (𝑅1) − ℎG,R0 (𝑄))

− 1
ℎG,R0 (𝑅1)

∏
𝑄∈𝐺∖{𝑂𝐸 }

(ℎG,R0 (𝑅1) − ℎG,R0 (𝑄))
(ℎG,R0 (𝑅1)ℎG,R0 (𝑄) − 1) .
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Proof. Because 2𝜙(𝑅1) = 𝜙(2𝑅1) ∈ 𝜙(G) and 𝑅1 ∉ 𝐺, the generalized Montgomery coefficient of ℎ𝜙 (G) ,𝜙 (R0 ) is

−ℎ𝜙 (G) ,𝜙 (R0 ) (𝜙(𝑅1)) −
1

ℎ𝜙 (G) ,𝜙 (R0 ) (𝜙(𝑅1))
.

Theorem 6 completes the proof. □

Theorem 9 (2-isogeny). Assume that 𝐸 [2] ∖ G ≠ ∅, and 𝑅0 is a point of order 2 with 𝑅0 ∉ G. Let 𝐺 = ⟨𝑅0⟩,
and let 𝜙 : 𝐸 → 𝐸/𝐺 be a separable isogeny with ker 𝜙 = 𝐺. Let ℎ1,±, ℎ2,±, and ℎ3,± be normalized generalized
Montgomery coordinates in Theorem 7. Then, the generalized Montgomery coefficients of these generalized
Montgomery coordinates are as follows:

𝛼ℎ1,± = ±
𝛼ℎG,R0

+ 6

2
√︃
𝛼ℎG,R0

+ 2
, 𝛼ℎ2,± = ±

𝛼ℎG,R0
− 6

2
√︃
−𝛼ℎG,R0

+ 2
, 𝛼ℎ3,± = ∓

2𝛼ℎG,R0√︃
𝛼2
ℎG,R0

− 4
,

where 𝛼ℎG,R0
is the generalized Montgomery coefficient of ℎG,R0 .

Proof. Most parts of the proof can be shown in the same way as the proof of Theorem 8. The remaining part is that
of 𝛼ℎ3,± . Since ℎ3,± (𝜙(𝑅1)) = 0, we cannot use the same discussion as the previous proofs. It is easy to see that a
point 𝜙(�̃�0) represents the generalized Montgomery coefficients of ℎ3,±, where �̃�0 is a point such that 2�̃�0 = 𝑅0.
From the fact that ℎG,R0 (�̃�0) = 1 or ℎG,R0 (�̃�0) = −1, we get the formulas to compute the generalized Montgomery
coefficients of ℎ3,±. This completes the proof of Theorem 9. □ □

5.3 DIFFERENCE OF SOME FORMULAS FOR GENERALIZED MONTGOMERY COEF-
FICIENTS

Now, we focus on the formulas for odd-degree isogenies. By considering the symmetry of the equality and
formulas of scalar multiplications, we show that formulas in Theorem 8 can be represented by the ratio of two
polynomials in Z[𝛼ℎG,R0

, ℎG,R0 (𝑄)]. These formulas are correct; however, one may know that there are some
different formulas to compute generalized Montgomery coefficients on Montgomery curves (e.g., those proposed
in [13], and those proposed in [33]). Thus, a question arises: Are these formulas generalized by formulas via a
generalized Montgomery coordinate? The answer is yes. The following theorem claims that we can construct these
formulas by considering division polynomials of the generalized Montgomery coordinates (Definition 4).

Theorem 10. Let ℓ be an odd prime, and 𝐾 be a field whose characteristic is neither 2 nor ℓ. Let 𝐸 be an
arbitrary elliptic curve defined over 𝐾 , ℎG,R0 be its arbitrary normalized generalized Montgomery coordinate, 𝑄
be an arbitrary point of order ℓ in 𝐸 , 𝜙 be a separable isogeny with ker 𝜙 = ⟨𝑄⟩, and ℎ𝜙 (G) ,𝜙 (R0 ) be a normalized
generalized Montgomery coordinate of 𝐸/⟨𝑄⟩ defined in Theorem 6. Suppose that 𝜙1, 𝜙2, 𝜙3, 𝜙4 are polynomials
in Z[𝛼, ℎ] always satisfying 𝜙2 (𝛼ℎG,R0

, ℎG,R0 (𝑄)) ≠ 0, 𝜙4 (𝛼ℎG,R0
, ℎG,R0 (𝑄)) ≠ 0, and

𝛼ℎ𝜙 (G) ,𝜙 (R0 )
=
𝜙1 (𝛼ℎG𝐸 ,R0

, ℎG,R0 (𝑄))
𝜙2 (𝛼ℎG,R0

, ℎG,R0 (𝑄))
=
𝜙3 (𝛼ℎG,R0

, ℎG,R0 (𝑄))
𝜙4 (𝛼ℎG,R0

, ℎG,R0 (𝑄))
.

Then, it holds that if the characteristic of 𝐾 is 𝑝 > 0,

𝜙1 (𝛼, ℎ)
𝜙2 (𝛼, ℎ)

− 𝜙3 (𝛼, ℎ)
𝜙4 (𝛼, ℎ)

≡ 𝜓ℓ (𝛼, ℎ) ·
𝜑1 (𝛼, ℎ)
𝜑2 (𝛼, ℎ)

(mod 𝑝),

and if the characteristic of 𝐾 is 0,

𝜙1 (𝛼, ℎ)
𝜙2 (𝛼, ℎ)

− 𝜙3 (𝛼, ℎ)
𝜙4 (𝛼, ℎ)

= 𝜓ℓ (𝛼, ℎ) ·
𝜑1 (𝛼, ℎ)
𝜑2 (𝛼, ℎ)

,

where𝜓ℓ is the ℓ-th division polynomial of the generalized Montgomery coordinates, and 𝜑1 and 𝜑2 are polynomials
in Z[𝛼, ℎ] such that 𝜑2 (𝛼ℎG,R0

, ℎG,R0 (𝑄)) ≠ 0 for all (𝐸, ℎG,R0 ) and 𝑄.

Proof. Suppose that the characteristic of 𝐾 is 𝑝 > 0. We define 𝜙(𝛼, ℎ) ∈ Z[𝛼, ℎ] as

𝜙(𝛼, ℎ) = 𝜙1 (𝛼, ℎ)𝜙4 (𝛼, ℎ) − 𝜙2 (𝛼, ℎ)𝜙3 (𝛼, ℎ).

Then, it holds that 𝜙(𝛼ℎG,R0
, ℎG,R0 (𝑄)) = 0 for all (𝐸, ℎG,R0 ) and 𝑄 ∈ 𝐸 [ℓ] ∖ {𝑂𝐸} because ℓ is a prime number.

Therefore, from Theorem 5, there is a polynomial 𝜑1 in Z[𝛼, ℎ] such that 𝜙(𝛼, ℎ) ≡ 𝜓ℓ (𝛼, ℎ) · 𝜑1 (𝛼, ℎ) (mod 𝑝).
We define 𝜑2 ∈ Z[𝛼, ℎ] as 𝜑2 (𝛼, ℎ) = 𝜙2 (𝛼, ℎ)𝜙4 (𝛼, ℎ). It is clear that 𝜑2 (𝛼ℎG,R0

, ℎG,R0 (𝑄)) ≠ 0 for all (𝐸, ℎG,R0 )
and 𝑄 ∈ 𝐸 [ℓ] ∖ {𝑂𝐸}. This completes the proof in the case that the characteristic of 𝐾 is 𝑝 > 0.

The case that the characteristic of 𝐾 is 0 can be proved similarly. □
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Remark 9. In Theorem 10, we fix that ℓ is a prime number. However, if ℓ is not prime, similar theorems also hold.
In these theorems, the parts of division polynomials of their equalities get slightly complicated.

Example 1. Let ℓ = 3. We now consider the difference of the formula proposed in [38] and that proposed in [33].
The difference satisfies

(−6ℎ3 + 𝛼ℎ2 + 6ℎ) −
(
2((𝛼 + 2)3 (ℎ + 1)8 + (𝛼 − 2)3 (ℎ − 1)8)
(𝛼 + 2)3 (ℎ + 1)8 − (𝛼 − 2)3 (ℎ − 1)8

)
= (3ℎ4 + 4𝛼ℎ3 + 6ℎ2 − 1) · 4(6𝛼2ℎ7 + 8ℎ7 − 𝛼3ℎ6 + · · · − 40ℎ − 𝛼3 − 12𝛼)

(𝛼 + 2)3 (ℎ + 1)8 − (𝛼 − 2)3 (ℎ − 1)8 .

It is easy to see that 3ℎ4+4𝛼ℎ3+6ℎ2−1 is the 3-rd division polynomial of the generalized Montgomery coordinates.

From Theorem 10, the problem of constructing an efficient formula is reduced to the problem of finding a
proper element in an ideal 𝐼𝑚 defined in Theorem 5. As a simple application of this fact, we may find more efficient
formulas by trying to add previous formulas and some elements in 𝐼𝑚. Moreover, we believe that we can use this
consideration to estimate the lower bound of the cost of formulas of isogeny computation. This will be done in our
future works.

6 APPLICATIONS OF A GENERALIZED MONTGOMERY COORDINATE
In this section, we explain two applications of a generalized Montgomery coordinate. The first is the construction

of a new efficient formula to compute isogenies on Montgomery curves. The second is the construction of a new
generalized Montgomery coordinate on Montgomery− curves that can be used to new CSURF algorithm.

6.1 NEW FORMULAS TO COMPUTE ISOGENIES ON MONTGOMERY CURVES
As discussed in subsection 3.3, the inverse of the 𝑤-coordinate on an Edwards curve is a normalized generalized

Montgomery coordinate. Therefore, we know that formulas of Montgomery and Edwards curves are essentially the
same. This insight results in a formula of 𝑥-coordinates from that of 𝑤-coordinates. Kim, Yoon, Park, and Hong
proposed formulas to compute odd degree isogenies [29]. Let ℓ be an odd integer, and let 𝑃 be a point of order
ℓ. Let 𝜙 be an isogeny 𝐸 → 𝐸/⟨𝑃⟩ with ker 𝜙 = ⟨𝑃⟩. Thus, we can compute an Edwards coefficient of 𝐸/⟨𝑃⟩,
denoted by 𝑑′, as follows [29]:

𝑑′ = 𝑑ℓ
𝑠∏

𝑘=1

(𝑤(𝑘𝑃) + 1)8

28 ,

where 𝑑 is the Edwards coefficient of 𝐸 , and 𝑠 is an integer such that ℓ = 2𝑠 + 1. From the doubling formula of
𝑤-coordinates of Edwards curves in [17], we obtain the generalized Montgomery coefficient of 𝑤−1 as 2 − 4/𝑑.
Hence, from Theorem 2, we obtain the isogeny 𝜙 : 𝐸 → 𝐹 of degree 4 such that 𝑥 ◦ 𝜙 = 𝑤−1, where 𝐹 is a
Montgomery curve whose coefficient is 2 − 4/𝑑. Now, we can construct a new formula of Montgomery curves.
Let 𝜙′ be an isogeny 𝐹 → 𝐹/⟨𝑄⟩ with ker 𝜙′ = ⟨𝑄⟩, where 𝑄 is a point in 𝐹 of order ℓ. Since ℓ is odd, we easily
observe that the Montgomery coefficient of 𝐹/⟨𝑄⟩ is 2 − 4/𝑑′. Note that for any 𝛼 ∈ 𝐾 ∖ {±2}, the curve

𝑥2 + 𝑦2 = 1 + 4
2 − 𝛼𝑥

2𝑦2

is an Edwards curve, and its𝑤-coordinate corresponds to the 𝑥-coordinate of the Montgomery curve 𝑦2 = 𝑥3+𝛼𝑥2+𝑥.
Thus, we can compute the Montgomery coefficient of 𝐹/⟨𝑄⟩ denoted by 𝛼′ as follows:

2 − 𝛼′
4

=

(
2 − 𝛼

4

)ℓ 𝑠∏
𝑘=1

(2𝑥(𝑘𝑄))8

(1 + 𝑥(𝑘𝑄))8 ,

where 𝛼 is the Montgomery coefficient of 𝐹. Moreover, by considering the quadratic twist, we can also construct
the following formula:

𝛼′ + 2
4

=

(
𝛼 + 2

4

)ℓ 𝑠∏
𝑘=1

(2𝑥(𝑘𝑄))8

(1 − 𝑥(𝑘𝑄))8 .

One may translate the formula of Edwards curves to Montgomery curves using an isomorphism between
these curves. However, this process is more complicated than the construction using a generalized Montgomery
coordinate. That is, by considering a generalized Montgomery coordinate, we can naturally transplant formulas.
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Figure 2: Ratio of the cost of our new formula to that of the previous formula

This formula is as efficient as that proposed by Meyer and Reith [33] for basic calculations. In addition, as the√
élu’s formula, this formula is more efficient than that proposed in [5]. The

√
élu’s formula is a method of more

efficiently computing large prime degree isogenies. In [5], Bernstein, De Feo, Leroux, and Smith first proposed the√
élu’s formula via 𝑥-coordinates of Montgomery curves. In this method, we calculate resultants of a polynomial

of degree 2⌊
√
ℓ − 1/2⌋ and a polynomial of degree about ⌊

√
ℓ − 1/2⌋ to compute an ℓ-isogeny. In [35], Moriya,

Onuki, and Takagi suggested that the
√

élu’s formula via 𝑤-coordinates of Edwards curves is more efficient than
the original

√
élu’s formula for large degree isogenies. It is because one resultant in the computation on Edwards

curves can be replaced by a resultant of two polynomials of degree about ⌊
√
ℓ − 1/2⌋, which is a half degree in

the computation on Montgomery curves. Since we can adapt the method of [35] to our new formula, this is more
efficient than that proposed in [5] for large degree isogenies.

We implemented our new formula based on the SIBC Python library [2] in [1], and compared its cost to that
obtained by the previous formula implemented by [2] at various prime degrees. The implementation results are in
Figure 2. Here, we use the 4096-bits prime defined in [2] as 𝑝, and measured the number of multiplications and
squarings in F𝑝 as the cost. The vertical line shows the ratio of the cost of our new formula to that of the previous
formula, and the horizontal line shows the degree of isogenies. That is, at the points below the line of 1.00, our
new formula is more efficient than the previous one. Therefore, for large degree isogenies, our proposed formula
is faster in terms of the number of multiplications and squarings in F𝑝 in our implementation. In future study, we
intend to confirm if this formula is faster than previous one when implemented in low-level programming languages
(e.g., C) in practice. Our source code is available from http://tomoriya.work/code.html.

6.2 NEW GENERALIZED MONTGOMERY COORDINATE TO COMPUTE ISOGENIES ON
MONTGOMERY− CURVES

In this subsection, we construct a new normalized generalized Montgomery coordinate on a Montgomery−

curve. Montgomery− curves are primarily used for CSURF [7]. This coordinate enables us to compute isogenies
on Montgomery− curves using the same formulas for Montgomery curves.

Let 𝐸 be a Montgomery− curve 𝑦2 = 𝑥3 + 𝛼𝑥2 − 𝑥, and (𝑎, 0) and (−1/𝑎, 0) be points of order 2 other than
(0, 0). We obtain

div 𝑥 = 2((0, 0)) − 2(𝑂𝐸),
div 𝑦 = ((𝑎, 0)) + ((−1/𝑎, 0)) + ((0, 0)) − 3(𝑂𝐸).

Therefore, it holds that

div (𝑦2/𝑥2) = 2((𝑎, 0)) + 2((−1/𝑎, 0)) − 2((0, 0)) − 2(𝑂𝐸).

A direct calculation results in

𝑦(𝑃)2

𝑥(𝑃)2 · 𝑦(𝑃 + (𝑎, 0))2

𝑥(𝑃 + (𝑎, 0))2 =
(𝑎2 + 1)2

𝑎2 = 𝛼2 + 4.

Therefore, 1√
𝛼2+4

𝑦2/𝑥2 is a normalized generalized Montgomery coordinate on 𝐸 with respect to ⟨(0, 0)⟩ and (𝑎, 0).

Here, we use 𝑝 that satisfies 𝑝 ≡ 3 (mod 4), and fix √· : F𝑝 → F𝑝 such that √·| (F𝑝 )2 : (F𝑝)2 → F𝑝 to
√
𝐴 = 𝐴

𝑝+1
4 .
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We denote 1√
𝛼2+4

𝑦2/𝑥2 as 𝑤. Because the double of (
√
−1,

√︁
−𝛼 − 2

√
−1) is (0, 0), the generalized Montgomery

coefficient of 𝑤 is

𝛼𝑤 = −𝑤(
√
−1,

√︃
−𝛼 − 2

√
−1) − 1

𝑤(
√
−1,

√︁
−𝛼 − 2

√
−1)

= − 2𝛼
√
𝛼2 + 4

.

Remark 10. If a supersingular elliptic curve 𝐸 defined over F𝑝 has the F𝑝-endomorphism ring isomorphic to
Z[

√−𝑝+1
2 ], we say 𝐸 is on the surface, and if a supersingular elliptic curve 𝐸 defined over F𝑝 has the F𝑝-

endomorphism ring isomorphic to Z[√−𝑝], we say 𝐸 is on the floor.
From Theorem 2, the 𝑤-coordinate of the Montgomery− curve can be represented by 𝑤 = 𝑥 ◦ 𝜙, where 𝜙 is an

isogeny with ker 𝜙 = ⟨(0, 0)⟩. This isogeny is the 2-isogeny that maps an elliptic curve on the surface to that on the
floor [7, Lemma 2].

Since #⟨(0, 0)⟩ = 2, we can compute isogenies of odd degrees of Montgomery− curves using the same formulas
as on Montgomery curves via the 𝑤-coordinates. In [8], the authors mentioned that by considering an isogeny from
Montgomery− curves to curves on the floor, the CSURF algorithm becomes more efficient because formulas on
Montgomery curves are used. As Remark 10 indicates, this technique is the same as considering the 𝑤-coordinate
of Montgomery− curves.

However, the calculation of 2-isogenies is not possible via the 𝑤-coordinates. Let 𝜙 : 𝐸 → 𝐸 ′ be a 2-isogeny
between Montgomery− curves with ker 𝜙 = ⟨(𝑎, 0)⟩. We denote the 𝑤-coordinates on 𝐸 and 𝐸 ′ as 𝑤𝐸 and
𝑤𝐸′ , respectively. Let us assume that there is a map 𝑓 : P1 → P1 such that 𝑤𝐸′ (𝜙(𝑃)) = 𝑓 (𝑤𝐸 (𝑃)). As
𝑤𝐸 (𝑃 + (0, 0)) = 𝑤𝐸 (𝑃), it holds that 𝑓 (𝑤𝐸 (𝑃 + (0, 0))) = 𝑓 (𝑤𝐸 (𝑃)). In contrast, because 𝜙(0, 0) is the back
track point of 𝜙 (i.e., ker 𝜙 = ⟨𝜙(0, 0)⟩), it holds that 𝑤𝐸′ (𝜙(𝑃 + (0, 0))) = 1/𝑤𝐸′ (𝜙(𝑃)). This is a contradiction.
Therefore, we cannot compute 𝑤𝐸′ (𝑃) using 𝑤𝐸 (𝑃). However, we can compute the generalized Montgomery
coefficient of 𝑤𝐸′ from that of 𝑤𝐸 using the following theorems.

Theorem 11 (2-isogeny). Let 𝑝 ≡ 7 (mod 8), let 𝐸 and 𝐸 ′ be supersingular Montgomery− curves, and let
𝜙 : 𝐸 → 𝐸 ′ be a 2-isogeny defined over F𝑝 with ker 𝜙 = ⟨𝑃⟩. We denote the 𝑤-coordinates on 𝐸 and 𝐸 ′ as 𝑤𝐸

and 𝑤𝐸′ , respectively. We denote the generalized Montgomery coefficients of these coordinates as 𝛼𝑤𝐸
and 𝛼𝑤𝐸′ ,

respectively. Thus, if the halves of 𝑃 are defined over F𝑝 , it holds that

𝛼𝑤𝐸′ = −2
𝛼𝑤𝐸

+ 6 − 12
√︁
𝛼𝑤𝐸

+ 2
𝛼𝑤𝐸

+ 6 + 4
√︁
𝛼𝑤𝐸

+ 2
= −2 +

32
√︁
𝛼𝑤𝐸

+ 2
(
√︁
𝛼𝑤𝐸

+ 2 + 2)2
, (1)

and if the halves of 𝑃 are in ker (𝜋𝑝 + 1), the formula is obtained by replacing 𝛼𝑤𝐸′ and 𝛼𝑤𝐸
in Equation (1) with

−𝛼𝑤𝐸′ and −𝛼𝑤𝐸
, respectively, where 𝜋𝑝 is the 𝑝-Frobenius map on 𝐸 .

Theorem 12 (4-isogeny). Let 𝑝 ≡ 7 (mod 8), let 𝐸 and 𝐸 ′ be supersingular Montgomery− curves, and let
𝜙 : 𝐸 → 𝐸 ′ be a 4-isogeny defined over F𝑝 with ker 𝜙 = ⟨𝑃⟩ defined over F𝑝 . We denote the 𝑤-coordinates on 𝐸
and 𝐸 ′ as 𝑤𝐸 and 𝑤𝐸′ , respectively. We denote the generalized Montgomery coefficients of these coordinates as
𝛼𝑤𝐸

and 𝛼𝑤𝐸′ , respectively. Thus, if 𝑃 is defined over F𝑝 , it holds that

𝛼𝑤𝐸′ + 2
4

=

8Y 4
√︃

𝛼𝑤𝐸
+2

4

(√︃
𝛼𝑤𝐸

+2
4 + 1

)
(
2 4
√︃

𝛼𝑤𝐸
+2

4 + Y
(√︃

𝛼𝑤𝐸
+2

4 + 1
))2 , (2)

where Y = (−1)
𝑝+1

8 , and if 𝑃 is in ker (𝜋𝑝 + 1), the formula is obtained by replacing 𝛼𝑤𝐸′ and 𝛼𝑤𝐸
in Equation (2)

with −𝛼𝑤𝐸′ and −𝛼𝑤𝐸
, respectively.

To prove these theorems, we first prove the following lemmas.

Lemma 6. Let 𝑝 ≡ 7 (mod 8), and let 𝛼 be the generalized Montgomery coefficient of the 𝑤-coordinate of a
supersingular Montgomery− curve defined over F𝑝 . Therefore, it holds that 𝛼 + 2 ∈ (F𝑝)2 and 2 − 𝛼 ∈ (F𝑝)2.

Proof. Let𝐸 be a Montgomery curve 𝑦2 = 𝑥3+𝛼𝑥2+𝑥. From Remark 10, it holds that End𝑝 (𝐸) � Z[𝜋𝑝]. Therefore,
we obtain 𝐸 [8] ∩ ker (𝜋𝑝 − 1) � Z/8Z and 𝐸 [8] ∩ ker (𝜋𝑝 + 1) � Z/8Z. Since (1,

√
𝛼 + 2) ∈ 𝐸 [4], (1,

√
𝛼 + 2)

belongs to 2(ker (𝜋𝑝 − 1)) or 2(ker (𝜋𝑝 + 1)). From [36, Proposition 1], we have (1,
√
𝛼 + 2) ∈ ker (𝜋𝑝 − 1).

Therefore, 𝛼 + 2 ∈ (F𝑝)2. Note that 𝐸 has only one point of order 2 defined over F𝑝 . Hence, it holds that
𝛼2 − 4 ∉ (F𝑝)2. Since 𝛼 + 2 ∈ (F𝑝)2, it holds that −(𝛼 − 2) ∈ (F𝑝)2. □
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Lemma 7. Let 𝑝 ≡ 7 (mod 8), and let 𝛼 be the generalized Montgomery coefficient of the 𝑤-coordinate of
a supersingular Montgomery− curve defined over F𝑝 . If 𝑝 ≡ 15 (mod 16), then

√
𝛼 + 2 + 2 ∈ (F𝑝)2 and√

2 − 𝛼 + 2 ∈ (F𝑝)2, and if 𝑝 ≡ 7 (mod 16), then
√
𝛼 + 2 + 2 ∉ (F𝑝)2 and

√
2 − 𝛼 + 2 ∉ (F𝑝)2.

Proof. Since −𝛼 is also the generalized Montgomery coefficient of the 𝑤-coordinate of some supersingular
Montgomery− curve, it is sufficient to consider whether

√
𝛼 + 2 + 2 is square. Let 𝐸 be a Montgomery curve

𝑦2 = 𝑥3 + 𝛼𝑥2 + 𝑥. Since 𝐸 is on the floor, it holds that 𝐸 (F𝑝) [8] � Z/8Z. From Lemma 6, we obtain
(1,

√
𝛼 + 2) ∈ 𝐸 (F𝑝) [4]. Therefore, the following equation has the roots in F𝑝:

4(𝑥3 + 𝛼𝑥2 + 𝑥) = (𝑥2 − 1)2.

It is easy to observe that the roots of this equation are − 1
2 (

4√
𝛼 + 2±

√︁√
𝛼 + 2 − 2)2 and 1

2 (
4√
𝛼 + 2±

√︁√
𝛼 + 2 + 2)2.

From Lemma 6, it holds that 4√
𝛼 + 2 ∈ F𝑝 and

(
√
𝛼 + 2 − 2) (

√
𝛼 + 2 + 2) = 𝛼 − 2 ∉ (F𝑝)2.

Therefore, if
√
𝛼 + 2 + 2 is square in F𝑝 , then 1

2 (
4√
𝛼 + 2 ±

√︁√
𝛼 + 2 + 2)2 is a 𝑥-coordinate of a point of order 8

defined over F𝑝 , and if
√
𝛼 + 2+ 2 is not square in F𝑝 , then − 1

2 (
4√
𝛼 + 2±

√︁√
𝛼 + 2 − 2)2 is a 𝑥-coordinate of a point

of order 8 defined over F𝑝 . We let 𝑃 be a point of order 8 defined over F𝑝 . From [36, Proposition 1], if
√
𝛼 + 2 + 2

is square in F𝑝 , then 𝑃 ∈ 2𝐸 (F𝑝). Hence, it holds that 16 | #𝐸 (F𝑝) and 𝑝 ≡ 15 (mod 16). If
√
𝛼 + 2 + 2 is not

square in F𝑝 , then 𝑃 ∉ 2𝐸 (F𝑝). Hence, it holds that 16 ∤ #𝐸 (F𝑝) and 𝑝 ≡ 7 (mod 16). This completes the proof
of Lemma 7. □

Now, we prove Theorems 11 and 12.

Theorem 11. From [7, Lemma 2 and Lemma 5], the halves of 𝑃 are in ker (𝜋𝑝 − 1), or they are in ker (𝜋𝑝 + 1).
We first consider a 4-isogeny from 𝐹 : 𝑦2 = 𝑥3 + 𝛼𝑤𝐸

𝑥2 + 𝑥. From [25, equation (20)] and Lemma 6, it holds that

𝐹1 := 𝐹/⟨(1,
√︁
𝛼𝑤𝐸

+ 2)⟩ : 𝑦2 = 𝑥3 − 2
𝛼𝑤𝐸

+ 6
2 − 𝛼𝑤𝐸

𝑥2 + 𝑥,

𝐹2 := 𝐹/⟨(−1,
√︁
(−1) (2 − 𝛼𝑤𝐸

))⟩ : 𝑦2 = 𝑥3 − 2
𝛼𝑤𝐸

− 6
𝛼𝑤𝐸

+ 2
𝑥2 + 𝑥.

We denote one of the halves of 𝑃 as 𝑄. Let 𝜓 : 𝐸 → 𝐹 be a 2-isogeny satisfying 𝑤𝐸 = 𝑥 ◦ 𝜓. It is clear that if
𝑄 ∈ ker (𝜋𝑝 − 1) (resp. 𝑄 ∈ ker (𝜋𝑝 + 1)), then 𝜓(𝑄) ∈ ker (𝜋𝑝 − 1) (resp. 𝜓(𝑄) ∈ ker (𝜋𝑝 + 1)). Therefore,
if 𝑄 ∈ ker (𝜋𝑝 − 1), then 𝑄 = (1,

√︁
𝛼𝑤𝐸

+ 2), and if 𝑄 ∈ ker (𝜋𝑝 + 1), then 𝑄 = (−1,
√︁
𝛼𝑤𝐸

− 2). Hence, if
𝑄 ∈ ker (𝜋𝑝 − 1), then 𝐸 ′ � 𝐹1, and if 𝑄 ∈ ker (𝜋𝑝 + 1), then 𝐸 ′ � 𝐹2.

We now fix 𝑄 ∈ ker (𝜋𝑝 − 1). From Remark 10, it is sufficient to consider a 2-isogeny from 𝐹1 to an elliptic
curve on the floor. The points of order 2 are (0, 0) and(

𝛼𝑤𝐸
+ 6 ± 4

√︁
𝛼𝑤𝐸

+ 2
2 − 𝛼𝑤𝐸

, 0

)
.

Since (0, 0) is the backtrack point of the isogeny 𝐹 → 𝐹1, the codomain of the isogeny whose kernel is ⟨(0, 0)⟩ is
on the surface. From [7, Lemma 2 and Lemma 5], the generator of the kernel of the isogeny mapping from 𝐹 to an
elliptic curve on the floor satisfies the 𝑥-coordinates of its halves are not in F𝑝 . Let

�̃�± :=
𝛼𝑤𝐸

+ 6 ± 4
√︁
𝛼𝑤𝐸

+ 2
2 − 𝛼𝑤𝐸

,

respectively. The 𝑥-coordinates of the halves of (�̃�±, 0) are the roots of the equation

�̃�± =
(𝑥2 − 1)2

4(𝑥3 − (�̃�± + 1/�̃�±)𝑥2 + 𝑥)
.

The roots of this equation is 𝑥 = �̃�± ±
√︁
�̃�2
± − 1. Therefore, if �̃�2

± − 1 ∉ (F𝑝)2, then (�̃�±, 0) is the generator of the
kernel of the isogeny mapping from 𝐹 to an elliptic curve on the floor. We have

�̃�2
+ − 1 =

8
√︁
𝛼𝑤𝐸

+ 2
(2 − 𝛼𝑤𝐸

)2 (
√︁
𝛼𝑤𝐸

+ 2 + 2)2,

�̃�2
− − 1 = −

8
√︁
𝛼𝑤𝐸

+ 2
(2 − 𝛼𝑤𝐸

)2 (
√︁
𝛼𝑤𝐸

+ 2 − 2)2.
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From Lemma 6, it holds that
√︁
𝛼𝑤𝐸

+ 2
𝑝−1

2 = (𝛼𝑤𝐸
+ 2)

𝑝−1
2

𝑝+1
4 = 1. Therefore,

√︁
𝛼𝑤𝐸

+ 2 ∈ (F𝑝)2. Since 𝑝 ≡ 7
(mod 8), we have 8 ∈ (F𝑝)2. Therefore, �̃�2

+ − 1 ∈ (F𝑝)2 and �̃�2
− − 1 ∉ (F𝑝)2. Hence, the generator of the kernel of

the target isogeny is (�̃�− , 0). Note that �̃�− = (
√︁
𝛼𝑤𝐸

+ 2 − 2)2/(2 − 𝛼𝑤𝐸
) ∈ (F𝑝)2. From [38, Proposition 2], we

obtain 𝐹1/⟨(�̃�− , 0)⟩ as

𝑦2 = 𝑥3 − 2
𝛼𝑤𝐸

+ 6 − 12
√︁
𝛼𝑤𝐸

+ 2
𝛼𝑤𝐸

+ 6 + 4
√︁
𝛼𝑤𝐸

+ 2
𝑥2 + 𝑥.

Since 𝛼𝑤𝐸′ is the Montgomery coefficient of this curve, we have completed the half of the proof.
If 𝑄 ∈ ker (𝜋𝑝 + 1), we have the following equation using the same discussion as above:

𝛼𝑤𝐸′ = 2
𝛼𝑤𝐸

− 6 + 12
√︁

2 − 𝛼𝑤𝐸

𝛼𝑤𝐸
− 6 − 4

√︁
2 − 𝛼𝑤𝐸

.

This completes the proof of Theorem 11. □

Theorem 12. Since Montgomery− curves defined over F𝑝 are on the surface [7, Figure 1 and Figure 2], the given
4-isogeny is the composition of 2-isogenies in Theorem 11. Lemma 7 provides the proof of Theorem 12. □

As [7, Figure 2] and Theorem 2 show, the generalized Montgomery coefficient of the 𝑤-coordinate is unique
for an F𝑝-isomorphism class. Subsequently, using the above theorems, we can construct a new CSURF algorithm
via the 𝑤-coordinate of Montgomery− curves. In the previous CSURF algorithm, we had to move from the elliptic
curves on the surface to those on the floor because of some speed-up techniques (e.g., Radical isogenies [8, 37]).
In contrast, because our proposed algorithm consists only of the arithmetic of curves on the floor, we can use
these speed-up techniques without moving from one curve to another. Thus, this algorithm realizes a simple
implementation using only one coordinate.

By this simplification, we can improve the efficiency of the algorithm of CSURF; however, unfortunately, the
effect is likely be small.

7 CONCLUSION
In this paper, we proposed a novel function of elliptic curves called the generalized Montgomery coordinate.

This is a generalization of some standard coordinates for one-coordinate arithmetics on elliptic curves that have
been studied separately, e.g., the 𝑥-coordinate of Montgomery curves, 𝑥-coordinate of Montgomery− curves,
𝑤-coordinate of Edwards curves, 𝑤-coordinate of Huff’s curves, and 𝜔-coordinates of twisted Jacobi intersections.

Next, we constructed explicit formulas of scalar multiplication including the division polynomial and isogeny
computation via a generalized Montgomery coordinate. We obtained these formulas by considering the divisors of
the functions related to scalar multiplication and isogeny computation. Note that our new formulas are independently
constructed from the forms of elliptic curves that decide the above conventional coordinates. Moreover, two formulas
are available for isogeny computation: one for an image point and the other for a target elliptic curve. The formula
for an image point is unique for any generalized Montgomery coordinate; however, that for a target elliptic curve
has some different forms. We proved that this difference is due to the division polynomial of the generalized
Montgomery coordinates.

We believe the theory of a generalized Montgomery coordinate has many applications. In this paper, we
considered two applications as an initial trial. First, we constructed a new formula for isogeny computation of
Montgomery curves. This formula is based on that of 𝑤-coordinates on Edwards curves and is more efficient
for large degree isogenies than previous formulas of Montgomery curves in our implementation. Furthermore,
we proposed a new generalized Montgomery coordinate of Montgomery− curves. This coordinate enables us to
construct the new CSURF algorithm that provides a simple implementation. An open problem remains to construct
further applications of the generalized Montgomery coordinate.
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