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From Setting a New Scientific Agenda for Chemicals Policy: UCSF PRHE Science Response Network In‑Person Meeting 
San Francisco, CA, USA.

Abstract 

A key element of risk assessment is accounting for the full range of variability in response to environmental exposures. 
Default dose‑response methods typically assume a 10‑fold difference in response to chemical exposures between 
average (healthy) and susceptible humans, despite evidence of wider variability. Experts and authoritative bodies 
support using advanced techniques to better account for human variability due to factors such as in utero or early life 
exposure and exposure to multiple environmental, social, and economic stressors.

This review describes: 1) sources of human variability and susceptibility in dose‑response assessment, 2) existing US 
frameworks for addressing response variability in risk assessment; 3) key scientific inadequacies necessitating updated 
methods; 4) improved approaches and opportunities for better use of science; and 5) specific and quantitative recom‑
mendations to address evidence and policy needs.

Current default adjustment factors do not sufficiently capture human variability in dose‑response and thus are inad‑
equate to protect the entire population. Susceptible groups are not appropriately protected under current regula‑
tory guidelines. Emerging tools and data sources that better account for human variability and susceptibility include 
probabilistic methods, genetically diverse in vivo and in vitro models, and the use of human data to capture underly‑
ing risk and/or assess combined effects from chemical and non‑chemical stressors.

We recommend using updated methods and data to improve consideration of human variability and susceptibility 
in risk assessment, including the use of increased default human variability factors and separate adjustment factors 
for capturing age/life stage of development and exposure to multiple chemical and non‑chemical stressors. Updated 
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methods would result in greater transparency and protection for susceptible groups, including children, infants, peo‑
ple who are pregnant or nursing, people with disabilities, and those burdened by additional environmental exposures 
and/or social factors such as poverty and racism.

Keywords: Adjustment factors, Chemicals, Cumulative risk, Environmental justice, EPA, NAMs, Risk assessment, 
Susceptibility, Variability, Vulnerability

Main text
A critical element affecting the accuracy and usefulness of 
chemical risk assessment is accounting for the full range 
of individual and population variability in response to 
environmental chemical exposures. There are four stages 
of risk assessment, including (1) hazard characterization, 
(2) exposure assessment, (3) dose-response modeling, 
and (4) risk characterization. Although it is important to 
characterize variability in exposure, dose-response, and 
risk, this paper focuses on the importance of characteriz-
ing variability in the dose-response relationship between 
a chemical and health outcome as a critical part of pre-
dicting population health risks for both cancer and non-
cancer health risks. Issues regarding the underestimation 
of exposure variation are discussed in more detail by 
Vandenberg et al. in the special topics companion paper. 
Fully describing human variability is a necessary step 
towards ensuring the protection of everyone, including 
those most susceptible and highly exposed. Understand-
ing those who are in the highest exposed group and/or 
who are most affected can help target interventions and 
policies that protect those most at-risk and subsequently 
the whole population. While many intrinsic and extrinsic 
factors, including age/life stage of development, genetics, 
underlying physiological function, and socioeconomic 
status (SES), can either separately or together enhance 
individual susceptibility and affect population variability 
in response to chemical exposures [1–4], current dose-
response assessment methods often do not adequately 
account for these factors [5, 6]. For example, current 
methods often do not account for in utero susceptibility 
to chemical exposures, despite ample scientific literature 
demonstrating increased susceptibility among develop-
ing fetuses and the potential for fetal origins of disease 
[7–11].

Authoritative expert committees have recommended 
increased efforts to account for susceptible and highly 
exposed populations [1, 12–14]. The 2004 National 
Environmental Justice Advisory Council (NEJAC) 
report on cumulative risk assessment emphasized 
that incorporating the full range of stressors to which 
populations are exposed is key to understanding com-
munity risk and community health [14]. This is consist-
ent with recommendations of the National Academy of 

Sciences (NAS) [1, 12, 13] and scientific articles [6, 15, 
16] which conclude that default approaches to treat-
ment of human variability in risk assessments need to 
be updated to better incorporate current knowledge 
regarding human variability and susceptibility factors.

Multiple United States (US) laws also require that 
there be adequate consideration of risks to susceptible 
populations and communities that are marginalized. 
The 2016 Frank Lautenberg Chemical Safety for the 
21st Century Act (Lautenberg TSCA), which amended 
the 1976 Toxic Substances Control Act (TSCA), man-
dates protection of “potentially exposed and susceptible 
subpopulations” [5], and the Clean Air Act requires that 
National Ambient Air Quality Standards (NAAQS) be 
set with an “adequate margin of safety” to protect pub-
lic health [2, 17]. Nevertheless, updates to methods for 
hazard, dose-response, and risk assessment to account 
for these legally required mandates have been limited 
[5, 6, 18], and thus risks are underestimated for suscep-
tible subgroups, such as pregnant people [2], develop-
ing fetuses/neonates, children/adolescents, low SES 
communities, those with preexisting disease or lower 
physiological function, disabilities, genetic susceptibil-
ity, and those burdened by additional occupational and/
or environmental exposures [1, 12, 13].

In this review, we describe the intrinsic and extrinsic 
factors that influence human variability and heighten 
susceptibility to toxic environmental exposures in 
human health risk assessment. We further describe 
current US approaches and existing frameworks for 
addressing variability in dose-response assessment. 
We then discuss key scientific inadequacies necessitat-
ing improved methods, as well as emerging tools and 
opportunities for improvement. We conclude with a 
discussion of specific and quantitative recommenda-
tions for implementing feasible changes to current 
practice that would ultimately advance human health 
risk assessment and ensure the protection of everyone, 
including those most susceptible and highly exposed. 
For this paper, we reviewed and collected evidence 
from authoritative bodies, such as the Environmental 
Protection Agency (EPA) and the NAS, as well litera-
ture searches based on common risk assessment terms.
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Sources of human variability and susceptibility 
in dose‑response assessment
There are multiple factors that can influence disease 
risk and human variability in response to environmental 
exposures, some of which are intrinsic (or biological) host 
susceptibility factors, while others are extrinsic (or exter-
nal) susceptibility factors that are potentially modifiable 
(Fig. 1). Variability refers to the variation in response to 
chemical exposures across the human population, which 
can be influenced by intrinsic and extrinsic risk factors, 
whereas susceptibility refers to the risk difference asso-
ciated with these risk factors [19]. However, it is worth 
noting that not all intrinsic or extrinsic factors enhance 
variability or susceptibility.

Intrinsic factors that heighten individual susceptibility 
to environmental exposures include biological factors, 
such as genetic make-up or DNA, preexisting disease 
status or underlying health conditions, lower physiologi-
cal function, and early life stage of development or aging 
[1] (Fig. 1). Age or life stage of development play a criti-
cal role in biological susceptibility because chemicals 
that are biologically active, such as endocrine disrupt-
ing chemicals (EDCs), can interfere with physiological 
processes at low levels of exposure that can influence 
human reproduction, development, and function [7]. For 
example, humans are more susceptible to endocrine-dis-
rupting effects during critical stages of biological change 
and development, such as in utero, during puberty, and 
during pregnancy [11, 20]. Human variability in the 
absorption, distribution, metabolism, and elimination 
of chemicals can also influence disease risk, and age-
dependent biological changes associated with various 
developmental stages can increase health risks associated 
with chemical exposures across the life course. For exam-
ple, in utero changes are intrinsic susceptibility factors 

that are most relevant for fetal growth and development 
as well as prenatal programming of future health risks 
and susceptibility to chemical exposures [1, 21]. Other 
notable developmental stages include early childhood 
and adolescence, which are susceptible times of hor-
mone-regulated growth that include the onset of puberty 
[21, 22]; pregnancy, a period of rapid biological changes 
that can impact lifelong health risks [20]; and the physi-
ological changes associated with aging which can also 
increase health risks associated with chemical exposures 
[23, 24].

Extrinsic factors, such as nutritional status and expo-
sure to multiple chemicals or pollutants (through addi-
tional exposure pathways, for example, from diet, housing 
or the built environment, and ambient air pollution) and/
or non-chemical stressors (including psychosocial stress-
ors and social or economic factors such as poverty) [1, 6], 
can also enhance susceptibility to environmental chemi-
cal exposures [25] (Fig. 1). Current risk assessment prac-
tice does not typically factor in these enhanced risks or 
seek to quantify interactions. Since these external risk 
factors affect communities that have been historically 
marginalized, ensuring that risk assessments capture 
extra susceptibilities is important for environmental jus-
tice. Communities of color, low-wealth communities, and 
Indigenous communities face greater exposure to envi-
ronmental and health hazards compared to communities 
with more white or affluent people. For example, these 
communities are burdened by disproportionate numbers 
of toxic “legacy” sites (e.g., former industrial areas, mili-
tary facilities, closed or abandoned contaminated sites) 
[26, 27]; large numbers and concentrations of chemical 
storage and industrial facilities that release toxic sub-
stances into the air, water, or soil and may present an 
ongoing risk or potentially a chemical disaster [28, 29]; 

Fig. 1 Sources of human variability and susceptibility to disease risk from exposure to environmental chemicals and pollutants
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increased rates of drinking water violations [30]; air pol-
lution from heavy traffic or ports [26, 29, 31–34]; and, 
exposure to toxic chemicals and other contamination in 
consumer products, pesticides, food, and air [35–38]. 
These toxic exposures are often patterned on racial seg-
regation and discrimination, economic inequities, and 
political barriers [18, 27, 31, 33, 34, 39, 40], with these 
exposure disparities further discussed in the companion 
paper on exposure by Vandenberg et al. in this issue. They 
can result in physiological changes (for example, changes 
to the immune, neuroendocrine, and cardiovascular sys-
tems) [41], and are linked to social disadvantage and del-
eterious health outcomes including lower life expectancy 
[42], higher preterm birth rates [43], low birthweight [18, 
42, 44–46], cardiovascular disease and hypertension [47, 
48], autoimmune diseases [49–55], asthma [56, 57], dia-
betes [58, 59], cancer [60, 61], and infectious diseases [62, 
63]. Thus, improving regulatory risk assessments to suffi-
ciently account for the full extent of human variability is a 
critical step towards improved environmental conditions 
and health in communities that have been disproportion-
ately exposed and marginalized.

Extrinsic and intrinsic factors can interact to enhance 
health risks among susceptible populations. Life stage 

and health status (for example, infancy, pregnancy, older 
age, underlying health conditions) can heighten biologi-
cal sensitivity [11, 64], while socially patterned factors 
(e.g., poverty, racism) can also deprive groups of access 
to mitigating factors in a systematic manner (e.g., access 
to health care) [65–67]. These multiple health, social, and 
environmental hazards create interconnected, cumula-
tive impacts in historically and currently disadvantaged 
populations, which adversely impact health and thus 
limit the ability to grow and thrive [68, 69], and which 
are not adequately accounted for in standard default risk 
assessment methods.

These intrinsic and extrinsic factors can also either 
separately or together shift the human population (or 
susceptible subpopulations) of a physiological parameter 
in the direction of illness or disease (Fig.  2). For exam-
ple, pregnancy is a critical period of maternal health 
that is accompanied by extreme changes to maternal 
physiology to accommodate the developing fetus. These 
changes can increase biological susceptibility to gesta-
tional diabetes by increasing maternal insulin resistance 
and moving pregnant people into a prediabetic border-
line disease state, closer to the clinically-defined adverse 
health outcome threshold, which increases risk from 

Fig. 2 How intrinsic and extrinsic factors can influence risk of an adverse outcome

In this illustration, a physiological parameter value greater than the clinically‑defined threshold results in an adverse outcome or diagnosed disease 
in the general population (baseline risk). With intrinsic factors alone, some additional proportion of the population may have a parameter value 
above the clinically‑defined threshold and experience an adverse outcome (baseline risk + intrinsic factors). With the addition of extrinsic factors, 
such as exposure to hazardous chemicals and/or non‑chemical stressors, values of the physiological parameter in the population increase, resulting 
in an increased proportion of the population above the clinically‑defined threshold and thus experiencing the adverse outcome
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subsequent chemical exposures [20]. Chemicals (such as 
metabolic disruptors) can further influence disease risk 
by shifting the population closer to the level of function 
indicating an adverse effect (e.g., by disrupting maternal 
insulin production in the pancreas) [20]. This heightened 
susceptibility combined with additional non-chemical 
co-exposures, such as psychosocial stress or economic/
food insecurity, can further shift the risk distribution in 
the direction of clinical disease, effectively increasing the 
percent of the population with the clinical or apical out-
come, which is explored in more detail by Nielsen et al. in 
the companion paper on probabilistic methods for esti-
mating non-cancer risks and in the summary manuscript 
within this special topic series. Thus, the NAS concluded 
that while many individuals in the population may not 
have an observable outcome, the overall effect of a chem-
ical exposure combined with other risk factors which 
vary across the population is that there is no expected 
threshold among the population for health risks from the 
chemical exposure [1]. Indeed, studies have shown these 
factors can interact to increase susceptibility to chemical 
exposures [1, 6]. Several have demonstrated additive and/
or synergistic effects from exposure to multiple chemi-
cals (e.g., anti-androgenic phthalates, thyroid-disrupting 
pesticides) [13, 70] and other (both intrinsic and extrin-
sic) factors (e.g., genetic predisposition, age/life stage, 
occupational exposure, poverty & malnutrition), which 
can increase risk among some susceptible subgroups.

Existing US frameworks for addressing response variability 
in risk assessment
Characterizing the dose-response relationship between a 
chemical and health outcome is a critical part of predict-
ing population health risks for both cancer and non-can-
cer health risks [1]. We begin by describing approaches to 
dose-response assessment for both cancer and non-can-
cer endpoints, then describing customary approaches to 
treatment of human variability in non-cancer risk assess-
ments, including the default adjustment factor, as well 
as chemical-specific adjustment factor (CSAF) or data-
derived extrapolation factor (DDEF), approaches.

Characterization of the dose‑response relationship for cancer 
endpoints
Cancer endpoints have typically been characterized 
by a linear dose-response relationship, based on the 
assumption that any exposure level of the chemical is 
associated with some cancer risk that linearly increases 
with increasing exposure level–the slope of the line 
describes the potency or strength of the cancer risk 
[71, 72]. These linear dose-response curves facilitate 
extrapolation of cancer risk across a distribution of 
exposures, including at lower exposures that may be 

below the observable range of data. However, the dose-
response for cancer is typically based on studies con-
ducted in mature laboratory animals or human adults 
and otherwise lacks variability [1].

Characterization of the dose‑response relationship 
for non‑cancer endpoints
In contrast, the current chemical risk assessment 
approach by the US EPA and other federal agencies 
to evaluate non-cancer endpoints, such as reproduc-
tive and developmental problems, typically involves 
determining a reference value, e.g., the oral reference 
dose (RfD) or the inhalation reference concentration 
(RfC), which are defined by the US EPA as estimates of 
“daily oral exposure and continuous inhalation expo-
sure, respectively, to the human population (includ-
ing susceptible subgroups) that are likely to be without 
appreciable lifetime risk of deleterious effects” [71]. The 
RfD and RfC are typically used as ‘bright line’ values 
in which it is assumed that exposure above the RfD or 
RfC poses some unspecified degree of risk (not a prob-
ability of risk like in cancer risk assessment) and expo-
sure below it poses zero risk. Both the RfD and RfC 
are typically derived from a point of departure (POD) 
representing the low end of the observable exposure-
response relationship (e.g., 1% or 10%), with adjustment 
factors (AFs) generally applied to reflect data limita-
tions and the inherent variation in susceptibility to 
chemical exposures between experimental animals and 
humans (inter-species variability) and among humans 
(intra-species variability) [71] (Fig. 3).

The traditional RfD/RfD does not provide a quantita-
tive estimate of risk because it is defined in non-quanti-
tative terms and has no scale which relates back to the 
probability of adverse outcome [71]. The assumption of 
a non-linear dose-response relationship has historically 
been used to justify no extrapolation of dose-response 
relationships to lower doses for non-cancer outcomes, 
due to uncertainty about the shape of the dose-response 
curve at doses below the observable range of data. Thus, 
the prevailing characterization of non-cancer risk has 
been a threshold effect [1, 71]. However, more contem-
porary science indicates that non-cancer endpoints 
(e.g., infertility, pregnancy complications, birth defects, 
neurodevelopmental delays, metabolic disorders, and 
cardiovascular disease) should be assumed to have non-
threshold dose response relationships due to population 
variability in response [1, 6, 72]. Probabilistic methods 
for dose-response assessment of non-cancer effects, in 
place of current reference value approaches that establish 
a threshold, are addressed in more detail by the Nielsen 
et al. companion paper within this special issue.

2023, 21(Suppl 1):1332023, 21(Suppl 1):133
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Default adjustment factor approach
In the traditional RfD/RfC approach, inter- and intra-
species variability are captured or represented by default 
uncertainty or AFs which are assumed to be default point 
estimates of 10X each for inter- and intra-species varia-
bility (Table 1). These 10X factors account for the default 
assumption that humans are more susceptible than ani-
mals by up to a factor of 10 (inter-species variability), and 
that susceptible humans are as much as 10 times more 
susceptible than average humans (intra-species variabil-
ity). This 10-fold default adjustment factor was originated 
by Lehman and Fitzhugh, who in 1954 recommended 
deriving an acceptable margin of safety for humans using 
the maximum dose at which no effects were observed 
in animal experiments and dividing by 100 [74]. The 
100X default factor was rationalized as a product of two 
10-fold assessment factors, the first accounting for inter-
species differences and the second for human variabil-
ity. The resultant equation is thus: RfD (or RfC) = POD / 

(AFA* AFH) = POD / (10 * 10) = POD / 100. In the RfD/
RfC approach, additional adjustment factors may be 
applied as appropriate for data limitations such as use 
of a subchronic study, use of a lowest observed adverse 
effect level (LOAEL) as POD, or an incomplete database. 
For example, while reference values derived from animal 
studies typically apply an adjustment factor of 10X for 
interspecies differences and an adjustment factor of 10X 
for human variation, a database uncertainty factor of 3X 
or 10X may also be applied when studies of important 
endpoints, such as developmental effects, are missing 
[71].

Default adjustment subfactor approach
The default 10-fold adjustment factors for inter- and 
intra-species variability are often divided into two sub-
factors ranging from 2-fold to 10-fold (e.g., ≤10 = 3.16 
rounded down to 3X) in order to represent the assumed 
different contributions of toxicokinetic (TK) and 

Fig. 3 Depiction of US construct for deriving oral reference dose (RfD) and inhalation reference concentration (RfC)

RfD and RfC defined as exposure estimates that are “likely to be without an appreciable risk of deleterious effects during a lifetime” for non‑cancer 
endpoints in the human population (including susceptible subgroups), when using experimental animal data. The RfD or RfC is derived from 
an experimental animal point of departure (POD), such as the statistical lower limit on a benchmark dose (BMDL) that is associated with a 
pre‑determined change in response. Adjustment factors (AFs) to account for inter‑species (experimental animal‑to‑human) differences and 
intra‑species (healthy humans to susceptible subgroups) variability are then applied to the experimental animal POD. The POD is divided by the 
animal‑to‑human AF (AFA) to extrapolate from animals to humans and by the human variability AF (AFH) to account for within‑human population 
variability [73]

Table 1 US approaches to account for human variability in derivation of reference values for risk assessment

AFH Intra-species human variability adjustment factor, AFH-TK Intra-species human variability adjustment subfactor for variation in kinetic chemical metabolism, AFH-TD 
Intra-species human variability adjustment subfactor for variation in target tissue response

Approach Intended Use Method

Default adjustment factor (AF) Adjust for total intra‑species variability. AFH = 10.

Default subfactor approach Adjust for intra‑species variability in metabolism (TK) and tissue 
response (TD).

AFH ≤ 10
(usually 3X each for  AFH‑TK and  AFH‑TD).

Chemical‑specific adjustment factor (CSAF) 
or data‑derived extrapolation factor (DDEF)

Adjust for chemical‑specific intra‑species differences in metabo‑
lism (TK) and tissue response (TD).

AFH‑TK and  AFH‑TD based on case‑by‑
case TK/TD data.

2023, 21(Suppl 1):1332023, 21(Suppl 1):133



Page 7 of 20Varshavsky et al. Environmental Health  

toxicodynamic (TD) variability to the combined AFs [16] 
(Table  1). The  AFH-TK (toxicokinetic variation) is meant 
to account for intra-species differences in human absorp-
tion, distribution, metabolism, and elimination of toxic 
chemicals (i.e., the way the body processes the chemical) 
while the  AFH-TD (toxicodynamic variation) is meant to 
account for response differences independent of the dose 
level at the target organ (i.e., the way the body responds 
to a given internal dose of the chemical at the target tis-
sue), which can vary across the population by genetics, 
underlying physiological function, illness, age, and other 
factors.

Chemical‑specific or data‑derived approaches
CSAF or DDEF approaches allow risk assessors to devi-
ate from using default adjustment values when chemical-
specific TD/TK data are available which support different 
values for human variability [73, 75] (Table  1). These 
approaches encourage the integration of TK/TD data 
for individual chemicals to determine  AFH on a case-by-
case basis. Importantly, there is overlap in the biological 
processes that contribute to TK and TD variability. For 
example, environmental exposures can alter tissues and 
hormones (i.e., toxicodynamics) that in turn change the 
distributions (or toxicokinetics) of chemical metabolism. 
Therefore, the split between TK and TD variability is 
somewhat arbitrary.

Key scientific inadequacies necessitating improved 
methods
While adjustments to risk assessment practice have been 
made over time, each of the above risk assessment meth-
ods (summarized in Table  1) have limitations and com-
monly do not incorporate available data demonstrating a 
wider range of human variability in response to chemical 
exposures. While each approach is based on Toxicoki-
netic (TK)/Toxicodynamic (TD) data (biological variabil-
ity), none of the current methods explicitly account for 
data demonstrating increased biological susceptibility 
and population variability due to social factors. Addition-
ally, CSAF or DDEF approaches are highly dependent on 
robust data for individual chemicals assessed in order 
to develop appropriate chemical-specific factors [73, 
75], and chemical-specific data are available in only rare 
cases.

Established and growing scientific evidence indi-
cates that default adjustment factors of 10X or less are 
not adequate for protecting human health from chemi-
cal exposures. The NAS presented several examples of 
the inadequacy of the approach in the 2009 Science and 
Decisions report, showing how factors like genetic sus-
ceptibility, preexisting disease, and interacting chemi-
cal exposures can increase susceptibility by more than 

10-fold compared to controls (Table  2). For example, 
smokers have been shown to be 20 times more suscep-
tible to arsenic-induced lung cancer than non-smokers 
[76], and women who smoke and have low iodide levels 
were up to 100 times more susceptible to perchlorate-
induced thyroid hormone disruption than their control 
counterparts [77]. Increased susceptibility to copper 
exposure has also been documented among children with 
a rare genetic condition called Wilson’s disease, which 
prevents the excretion of excess copper in those with het-
erozygous alleles [78].

Additionally, data not included in the NAS report 
from the scientific literature show that human variabil-
ity across chemicals often exceeds 10X, including exam-
ples such as greater susceptibility to chemical exposures 
among young infants/children, the elderly, and people 
with underlying disease or obesity (Table 2). Further evi-
dence supporting wide variability in human responses 
to chemical exposures comes from demonstrated differ-
ences in metabolic capacity and functioning across the 
lifespan. For example, the expression and activity of sev-
eral major enzymes (e.g., cytochrome p450s) critical for 
detoxification of compounds is very limited during early 
life stages (embryo/fetus/infancy) and increases with 
adulthood. Several important cytochrome p450 (CYP) 
enzymes are reduced in the fetus and at birth, only reach-
ing 30–50% of adult levels by 1 year of birth, which can 
decrease the ability to metabolize toxic chemicals such 
as benzene, trichlorethylene, and toluene [90]. A recent 
study which used in silico and molecular-based methods 
for quantifying the variability in expression or activity of 
CYPs reported significant differences between adult and 
fetal livers [88]. Major xenobiotic metabolizing enzymes 
such as CYP1A1, −1A2, −2B6, −3A4, and -2E1 were 
expressed 77X, 1528X, 1224X, 216X, and 12,271X lower 
in 2nd trimester fetal livers versus adult livers, respec-
tively [88]. Thus, deficiencies in metabolic capacity at 
early points in human life can directly impact toxicoki-
netics leading to differences in circulating toxicant con-
centrations and downstream effects. In addition, certain 
physiological parameters of homeostasis that are specific 
to age can make individuals more or less susceptible to 
environmental exposures [93]. For example, the ratio 
of liver size to body mass is higher in early life, which 
increases metabolic clearance among children compared 
to adults [90]. Additionally, young infants (less than 
three months old) have lower lipid content with respect 
to adults (reducing their relative retention of lipophilic 
chemicals) while older infants have higher lipid content 
with respect to adults (increasing their relative retention 
of lipophilic chemicals such as polychlorinated biphe-
nyls [PCBs] and dioxins) [90]. Likewise, elderly popula-
tions can have greater susceptibility to chemicals such 

2023, 21(Suppl 1):1332023, 21(Suppl 1):133



Page 8 of 20Varshavsky et al. Environmental Health 

as pharmaceuticals due to decreased metabolic capacity 
and ability to respond and repair physiological damage 
with older age [90]. Indeed, researchers have observed 
increased half-lives of pharmaceuticals by 60% and 
decreased drug clearance by 50% in elderly populations 
compared to other adults [94].

Two examples of improvements upon standard prac-
tice at the federal level have been demonstrated by the 
California EPA’s Office of Environmental Health Hazard 
Assessment (OEHHA). First, a comprehensive review of 
this literature (i.e., age-dependent toxicokinetic summa-
ries) and in-house physiologically based pharmacokinetic 
data modeled by OEHHA found an approximately 10-fold 
difference between children or young infants and adults 
exposed to several hazardous air pollutants in kinetic 

variation alone [90]. A point estimate adjustment fac-
tor of 10X for TK variability  (AFH-TK = 10) multiplied by 
3X for tissue response variability  (AFH-TD = √10 = 3.16) 
would translate to an adjustment factor of about 30-fold 
for intra-species variability  (AFH ~ 30) [90]. Second, 
OEHHA set a reference exposure limit for benzene using 
a chemical-specific human variability adjustment fac-
tor of 60X based on literature showing a wide range of 
TK variability in response to benzene exposure among 
Chinese workers, with differences largely due to three 
genetic polymorphisms that increased susceptibility 
up to 20-fold [90]. This resulted in a California chronic 
reference exposure level (REL) that was 70% lower than 
the US EPA RfC for the same critical effect of decreased 
peripheral blood cells in chronically-exposed workers 

Table 2 Examples of increased susceptibility in the human population

a  Examples adapted from the NRC Science and Decisions 2009 report [1] and peer-reviewed literature. Increased susceptibility determined based on susceptible case 
to “normal” ratio as listed in Table 4–1 of 2009 NRC report [1]

Factor Example Susceptibilitya Reference

Examples from Science and Decisions 2009 report

 Genetic Increased copper susceptibility among Wilson’s heterozygotes 
(~  1% population).

> 10:1 NRC 2000 [78]

 Predisposing exposure Increased susceptibility among smokers to arsenic‑induced 
lung cancer.

20:1 CDHS 1990 [76]

Increased susceptibility among smokers to radon‑associated 
lung cancer.

10–20:1 ATSDR 1992 [79]

Increased susceptibility among low‑iodide female smokers to 
perchlorate‑induced thyroid hormone disruption.

20–100:1 Blount et al. 2006 [77]

 Preexisting disease Increased susceptibility among people with hepatitis to liver 
cancer from aflatoxin.

10–30:1 Wu‑Williams et al. 1992 [80]

 Physiologic and Pharmacokinetic Difference in susceptibility to 4‑aminobiphenyl (median vs 
upper 2 percentile) due to physiologic and pharmacokinetic 
differences (modeled).

> 10:1 Bois et al. 1995 [81]

 Overall Increased heterogeneity in lung and colorectal cancer risk (95th 
percentile vs median) from age‑specific incidence curves.

50:1 Finkel 1995, 2002 [82, 83]

Additional examples identified from peer‑reviewed literature

 Age/life stage Analysis of kinetic data from pharmaceutical studies in popula‑
tions of adult white, non‑white, children, and those with meta‑
bolic polymorphisms which found 10‑fold variation (99.9% 
protective) too low for very young.

> 10:1 Renwick and Lazarus 1998 [84]

Greater susceptibility among elderly populations compared to 
adults.

> 10:1 Abdel‑Megeed 2001 [85],
Skowronski et al. 2001 [86]

Under‑protective of children. > 10:1 Hattis et al. 2002 [87]

Decreased expression or activity of xenobiotic metabolizing 
enzymes (e.g., cytochrome p450) in 2nd trimester fetal livers 
compared to adult livers.

77–12,271:1 Robinson et al. 2020 [88]

 Age/life stage and genetic Not protective of neonates, elderly, or people with polymor‑
phisms.

> 10:1 Dorne et al. 2007 [89]

Increased TK susceptibility among children/infants and occupa‑
tional groups with genetic susceptibility.

1 to 30–60:1 OEHHA 2008 [90]

 Toxicokinetic Increased variation in metabolic clearance of trichloroethylene 
(TCE).

10–100:1 Chiu et al. 2014 [91]

 Toxicodynamic Increased variation in cytotoxic response to specific chemicals 
in population‑based human in vitro models (95th percentile vs 
median) using 1000 Genomes Project.

1 to 10–100:1 Abdo et al. 2015a [92]
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[95]. Another chemical-specific example is for trichlo-
roethylene (TCE) where Chiu et al. demonstrated 2-fold 
to 7-fold variation (upper confidence limit of 31-fold) 
(depending on metabolic pathway) in the metabolic 
clearance of TCE and underlying disease risk by account-
ing for multiple sources of population variability and data 
streams (both human and animal) [91, 96]. The authors 
demonstrated up to 31-fold variability in the ratio of met-
abolic flux through oxidation compared with glutathione 
conjugation across 17 diverse mouse strains [91].

While there is less quantitative data on TD variability 
compared to TK variability (in terms of whether the 3X 
factor for TD variability is sufficient to be protective of 
susceptible subgroups within the population), data on 
physiological processes of development show that fetuses 
and young children are more susceptible to chemical 
exposures than adults. For example, developing fetuses 
are more susceptible to the neurodevelopmental effects 
of heavy metals and the reproductive effects of exposure 
to endocrine disrupting compounds (e.g., diethylstil-
bestrol [DES]) [90]. This increased susceptibility occurs 
because the embryonic/fetal brain undergoes rapid 
growth and is highly susceptible to chemicals (e.g., heavy 
metals) that alter cell proliferation during gestation, while 
hormone disrupting chemicals like DES are hypothesized 
to disrupt active periods of human reproductive devel-
opment (e.g., fetal development, adolescent puberty) 
due to their ability to mimic endogenous hormones and 
alter pathways critical for growth and differentiation [97]. 
Children can also be more susceptible to chemicals that 
cause or exacerbate asthma, as identified in OEHHA’s 
hot spots report [90]. The utility of cell-based assays has 
been demonstrated by Abdo et  al. through the use of 
population-based human in  vitro models [92, 98]. The 
authors used 1086 lymphoblastoid cell lines from the 
1000 Genomes Project (representing nine populations 
from five continents) to estimate inter-individual varia-
tion in cytotoxic response for 179 chemicals. The cyto-
toxic response in the 1% most susceptible cells occurred 
at concentrations at factors of greater than ≤10 (~ 3X) 
from the median response for about half of the chemicals 
tested, and up to 100-fold for some chemicals tested [92], 
further indicating from in  vitro studies that the 10-fold 
default adjustment factor is not reflective of chemical 
response variability in the human population.

Additionally, the World Health Organization’s Inter-
national Programme on Chemical Safety (IPCS) found 
up to a 42-fold range of human variability in response to 
chemical exposures when human TK and TD was com-
bined probabilistically using data primarily from healthy 
adults [16]. For this analysis, the IPCS used separate TK 
and TD data sets compiled by Hattis et  al. (each with 
separate sets of roughly 30 chemicals tested, mostly in 

controlled studies of pharmaceuticals in healthy human 
adults) to generate generic human TK and TD probabil-
ity distributions that can be applied to represent TK or 
TD variability for chemicals lacking chemical-specific 
TK or TD variability data [16, 87, 99]. The 42-fold varia-
tion was specific to a target population disease incidence 
of 1% (with 95% confidence to capture the upper end of 
the distribution of variability across chemicals), while a 
14-fold variation was estimated with respect to a 5% tar-
get incidence (with 95% confidence). These findings fur-
ther suggest that (based on human data) a 10-fold factor 
is insufficient to protect the population from chemical 
exposures.

Improved approaches and opportunities for better use 
of science
Risk assessors and authoritative bodies have recom-
mended the use of probabilistic approaches that account 
for human variability and adjustment factor distributions 
[15, 73, 87, 99–102]. As noted, in 2002 Hattis et al. pro-
posed a widely cited probabilistic approach to account 
for human variability in chemical risk assessment using a 
distribution of values instead of a point estimate (default 
adjustment factor) to represent the range of human 
response to chemical exposures at varying doses [16, 
87]. The human variability distribution approach pro-
vided a quantitative method to predict the probability of 
human response to chemical exposure based on a range 
of TK and TD values, rather than assuming that 10X is 
sufficient to protect the entire population for all chemi-
cals. This advance also allowed for extrapolation from 
high to low response rate doses which improved the use 
of animal data for human toxicity prediction [16, 87]. A 
probabilistic method that evolved from the Hattis et  al. 
2002 study has been developed by the IPCS to adjust for 
population differences in susceptibility to chemical expo-
sures using the generic human variability distributions 
described above [16, 87, 102]. These probabilistic meth-
ods allow for the AF to be represented by a distribution 
rather than point value, which is useful because it ena-
bles estimation of risk instead of an RfD or other simi-
lar value that does not represent a quantified risk (this is 
further discussed in the companion paper on probabilis-
tic approaches to estimating risks for non-cancer health 
effects by Nielsen et al. in this issue). The IPCS methods 
and adjustment factor distributions generated by the 
IPCS using the Hattis TK/TD data sets have since been 
applied to ~ 600 chemicals by Chiu et al. [101].

Probabilistic data to characterize human variability
The method presented by Hattis et  al., and further 
extended by IPCS and Chiu et al., is important for future 
consideration of human variability in risk assessment 
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for two reasons. First, it makes use of available data (pri-
marily from pharmaceuticals) to develop the concept of 
human variability as a distribution of susceptibility in the 
population that varies across chemicals. Second, it pro-
vides a method for using human variability distributions 
to derive probabilistic estimates of non-cancer risk, in 
place of the traditional RfD. However, the human TK and 
TD variability distributions derived from datasets com-
piled by Hattis et  al. have several important limitations 
which can underestimate human variability. Namely, 
the information is based primarily on data from healthy 
adults and does not capture the range of endpoints or 
the full range of factors that influence variability includ-
ing life stage, chronic conditions, and other intrinsic 
and extrinsic factors that influence susceptibility. The 
approach is presented as a proof of concept rather than as 
a definitive distribution of human variability. While this 
method was recommended and further advanced by the 
NRC in 2009 and the IPCS in 2014 [1, 75], both reports 
emphasized the importance of updating the approach 
with new data, such as newly-available chemical-specific 
dose-response data, as they become available.

Several examples in the literature demonstrate how to 
integrate multiple emerging data sources and advanced 
statistical techniques to better approximate human pop-
ulation variability for specific chemicals. An approach 
which uses population-level data on background dis-
ease risk combined with epidemiologic data on chemical 

exposures that is more representative of endpoint-spe-
cific variability in the population has been illustrated 
by Ginsberg [103]. The authors demonstrated a clinical 
variability approach to account for underlying chronic 
condition and disease risk by combining population-
level data on age-adjusted chronic kidney disease (CKD) 
risk and glomerular filtration rate (GFR), a continu-
ous biological measure of kidney function and indica-
tor of age-related decline that is also a clinical predictor 
of CKD. The combination of the disease risk distribu-
tion with data on the effect of cadmium (Cd) exposure 
on GFR enabled the estimation of the impact of Cd on 
CKD [103]. The method was able to capture the age-
dependent baseline (underlying) population distribution 
(normally) and then quantify the expected shift in the 
baseline distribution (for each age group) based on the 
expected association between Cd exposure and GFR, and 
the relationship between GFR and risk of CKD (Fig.  4). 
The analysis found that a 0.1 μg/kg/day intake of Cd leads 
to three additional cases of CKD per 1000 adults exposed 
due to the link with GFR. The advantage of this method is 
that it can interface the breadth of human variability for 
a key underlying predictor of disease risk with the dose 
response for chemical effect on that disease risk factor, 
but it requires the adverse effect of the chemical expo-
sure (Cd) and the clinical outcome (CKD) be defined and 
linked by the same continuous measure (GFR) and is thus 
highly dependent on data availability.

Fig. 4 Additive risk of chronic kidney disease (CKD) due to cadmium exposure

Cadmium risk assessed in relation to background risk (blue curve) of CKD for a single age group (47.8‑year‑old women). CKD is diagnosed with a 
glomerular filtration rate (GFR) of less than 60 ml/min/1.73m2. A reduction in the GFR distribution (red curve) from a chronic cadmium exposure of 
1 µg/kg/d increases the population risk of CKD (red box represents increased portion of the population with GFR below the diagnostic threshold) 
by 3.7%. Reproduced with permission from Ginsberg 2012
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Epidemiologic data to characterize human variability
Epidemiologic studies also have the potential to capture 
human variability and susceptibility if the study popula-
tion is representative of the general population and/or 
includes susceptible subgroups. For example, data from 
the National Health and Nutrition Examination Survey 
(NHANES) and large cohort studies, such as the Nurses’ 
Health Study, Framingham Heart Study, and the Environ-
mental influences on Child Health Outcomes (ECHO) 
Program, could be leveraged for use in cumulative risk 
assessment if the populations examined include a reason-
ably representative sample of the population (for human 
variability estimation on a specific endpoint) or a sus-
ceptible subpopulation (such as an age-specific or racial/
ethnic subgroup). New methods have also emerged from 
social epidemiology for assessing the combined effect of 
exposure to chemical and non-chemical stressors (e.g., 
psychosocial stress, air pollution, and asthma; and stud-
ies investigating allostatic load with exposure to lead), 
with advanced statistical techniques that include latent 
variable modeling and structural equation modeling 
which facilitate multilevel modeling of complex data 
[104]. These epidemiologic analyses can be used to quan-
tify variability in susceptible subgroups if the populations 
examined include biologically susceptible and/or socially 
disadvantaged subgroups. Additionally, susceptibility 
factors can be estimated from survey research (e.g., US 
Census “American Community Survey” [105], the Behav-
ioral Risk Factor Surveillance System (BRFSS), special 
studies) [106], and geographic information system (GIS) 
techniques and principal component analyses have been 
used to develop indices and characterize the geospatial 
location or cumulative exposure of susceptible and highly 
exposed groups (e.g., EPA’s EJScreen [64, 107], CalEnviro-
Screen [108, 109], MI-Environment [for heat, but social 
factors are combined [110]], Community Approaches to 
Promoting Healthy Environments (CAPHE) [for air pol-
lution in Detroit [111]], and others [2, 112]).

Alternative test methods to characterize human variability
The use of new approach methods (NAMs), including 
high-throughput screening (HTS) technologies to evalu-
ate human health risks from chemical exposures, is gain-
ing momentum globally, due to a focus on decreasing use 
of in  vivo versus animal-free toxicity testing, the rela-
tively low cost of these methods, and the ability to assess 
multiple experimental conditions and endpoints in a 
rapid manner [113, 114]. These large-scale, diverse efforts 
include the development of 1) relevant in vitro tests for 
toxicity screening; 2) public “big data” repositories rel-
evant for environmental health and toxicology; 3) com-
putational models that use in vitro test results to predict 
biological response to chemical exposures; and 4) in silico 

frameworks which guide in vitro to in vivo extrapolation 
analyses. For example, the National Toxicology Program-
sponsored Developmental NeuroToxicity Data Integra-
tion and Visualization Enabling Resource (DNT-DIVER) 
project has enabled the development and coordination of 
diverse in vitro models to identify environmental chemi-
cals with potential to cause developmental neurotoxicity 
[115]. The US EPA ToxCast repository includes data for 
approximately 1800 chemicals (though mostly pharma-
ceuticals) in over 700 unique endpoints, broadly covering 
a diverse range of bioactivities in high-throughput assays 
[116]. Computational tools such as EPA’s Virtual Embryo 
(v-Embryo™) project which integrate in  vivo, in  vitro 
and in silico data, are used to simulate critical aspects 
of embryonic/fetal development (e.g., vascular develop-
ment [117], blood-brain barrier formation [118]) and 
predict chemical toxicity in silico during sensitive points 
in gestation.

While relatively unexplored, NAMs may be utilized 
to predict human variability in chemical response. As 
discussed above, research by Abdo et  al. using diverse 
human lymphoblastoid cell lines of worldwide repre-
sentation demonstrated a wide range of variability in 
cytotoxic response to 179 specific chemicals [92] and 
suggested that comparisons between the 99th percen-
tile and the median may be useful as an AF for human 
TD variability in chemical risk assessment, illustrating 
an approach for using high-throughput in  vitro data to 
derive a human toxicodynamic variability distribution. 
In a similar manner, Burnett et al. applied a panel of 43 
unique human stem cell lines to test for the variability 
in cardiotoxicity response of 134 chemicals, evaluat-
ing nine different phenotypes critical for cardiomyocyte 
performance, and discovered chemical-specific variabil-
ity in potency and degree of population variability, with 
higher relative potency associated with higher popula-
tion variability [119]. As these types of studies expand to 
other models and endpoints, including those of higher 
relevancy to human physiology, exposure and response, 
these in vitro approaches to quickly assess large numbers 
of chemicals in panels of diverse human cell lines may 
serve as an improved proxy for human toxicodynamic 
variability as compared to standard default AFs. Inter-
estingly, observations of variability in chemical response 
in select NAMs (e.g., cell lines [119], zebrafish [120]) are 
already being leveraged to pinpoint specific genotypes 
linked with susceptibility to particular environmental 
chemicals and pharmaceuticals due to the ease and value 
in performing these studies as compared to large-scale 
population-based human studies.

Investigations leveraging genetically diverse rodents 
(e.g., the Hybrid Mouse Diversity Panel, the Collabora-
tive Cross (CC), or the Diversity Outbred (DO) models 
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[93, 121]) have also provided tremendous insight in 
terms of toxicological response and methods for quan-
tifying variability. For example, as discussed above, 
Chiu et  al.’s Bayesian statistical approach to estimate 
the range of variability in response to TCE in geneti-
cally diverse strains of mice [91] may be applied in mod-
els assessing human response variability. Furthermore, 
as scientists establish more representative models (e.g., 
tissue/organ bioengineered models) of human devel-
opment for toxicological investigations as well as more 
sophisticated statistical approaches to model these data 
more accurately [122], we expect that NAMs will prove 
to be more useful at predicting the genetic component 
of human variability.

More research is needed to define the ability of in vitro 
and in silico models in predicting human toxicity and var-
iability in response. Some current limitations of in vitro 
studies include limited consideration of metabolism and 
over-emphasis on acute toxicity, leaving gaps in knowl-
edge regarding more/less reactive chemical metabolites 
and the effects of chronic exposures, areas that have yet 
to be addressed. Another limitation of emerging proba-
bilistic methods is that while they may better capture 
variability with respect to biological susceptibility, they 
do not capture external social factors, like exposure to 
non-chemical stressors related to, for example, systemic 
racism and lower socioeconomic status. Due to these 
and other limitations, the EPA Children’s Health Protec-
tion Advisory Committee emphasized in a recent report 
to EPA that its use of mechanistic and high throughout 
data should be used to strengthen evidence and upgrade 
an evaluation, but not to weaken or downgrade evalua-
tions [123].

A path forward: recommendations to address evidence 
and policy needs
In summary, new data and current science should be 
used to improve accounting for human variability and 
susceptibility in hazard and risk assessment. We recom-
mend three overlapping approaches for how to imple-
ment the recommendations below, including the use of 
1) computational tools and methods such as probabilistic 
approaches to quantify generic probability distributions; 
2) data from genetically diverse in vivo and in vitro ani-
mal models and human observational studies or clinical 
trials to inform human variability; and 3) epidemiologic 
data and cumulative impact assessment tools to capture 
extrinsic factors for characterizing human variability. 
Further, we recommend the following improvements to 
incorporate human variability into chemical risk assess-
ment with more specific recommendations outlined 
below:

• Increase the default human variability factor to better 
account for intra-species variability

• Incorporate additional categories into human intra-
species variability adjustment factors

• Use the clinical variability approach when sufficient 
data are available

• Apply probabilistic approaches that integrate multi-
ple heterogeneous data sources

The first two recommendations are both related to the 
current default 10X factor approach that uses a single 
value adjustment factor to account for human variability, 
as typically applied in current US EPA risk assessments 
for non-cancer effects (i.e., reference values). In contrast 
to this point estimate approach, probabilistic approaches 
such as those captured by the second two recommenda-
tions are preferred to advance chemical risk assessment 
going forward. Additionally, while there is ample data to 
improve how we characterize human variability, there are 
still limitations in the available data, as noted above. As 
such, we also emphasize that these approaches, includ-
ing mechanistic and high throughput data (such as the 
use of sensitive study designs that capture early life expo-
sure and/or use diverse human cell and/or outbred ani-
mal models), should be used as a minimum level default 
to upgrade (but not downgrade) consideration of these 
factors.

Recommendations related to the current default 10X factor 
for human variability
As discussed, OEHHA’s alternate default adjustment fac-
tor (which increased the current default factor from 10X 
to 30X) is based on evidence of increased TK suscepti-
bility to benzo [a] pyrene, TCE, and other air toxicants 
among susceptible age groups (i.e., young infants and 
children) [90]. Additionally, as noted, an approach used 
by the IPCS in 2014 demonstrated that an adjustment 
factor of about 42X is needed to address human variabil-
ity for a target population incidence of 1% (i.e., a value 
protective of the 99th percentile) with 95% confidence, 
based on human variability data sets reported by Hattis 
et  al. in 2002 [16, 87, 99]. Table  3 summarizes existing 
approaches to chemical risk assessment and their limita-
tions (Table 3).

Increase the default human variability factor to better 
account for intra‑species variability Due to the signifi-
cant body of scientific evidence supporting the need for 
greater public health protection among susceptible and 
highly exposed populations, we recommend that as a first 
step, the default adjustment factor for intra-species vari-
ability used by the US EPA should be increased to a mini-
mum of 42X, unless there are robust chemical-specific 

2023, 21(Suppl 1):1332023, 21(Suppl 1):133



Page 13 of 20Varshavsky et al. Environmental Health  

data to the contrary. This is supported by the 42X IPCS 
estimate of human variability, which relied on high-
quality TK and TD data, with the limitation of primar-
ily focusing on healthy adults [16, 99]. It is also critical 
to account for human variability in cancer dose-response 
analysis, a recommendation of the NAS in Science and 
Decisions [1, 124, 125]. The NAS recommended a default 
assumption of a 25-fold difference in cancer risk between 
the 95th percentile and the median human response; cur-
rent cancer dose-response methods incorporate only the 
estimated response at the median of the population [1, 
125].

Incorporate additional categories into human intra‑spe‑
cies variability adjustment factors Based on the scien-
tific literature [6, 15, 16] and authoritative bodies [1, 5, 
12, 13, 126], such as the National Research Council and 
the US EPA, we recommend the following categories, 
though not exhaustive, should be included in human 
variability adjustment factors to improve their scientific 
basis.

Separate adjustment factor to address age-related 
susceptibility

We further recommend adoption of a separate adjust-
ment factor for age/life-stage differences, which is sup-
ported by the IPCS and OEHHA analyses described 
above [16, 90]. Although some overlap exists between the 
42X recommendation above and the 30X default factor 
adopted by OEHHA, the IPCS analysis found 42X human 
variability considering only (to a large extent) data from 
healthy adults and very little data for other life stages [16], 
while OEHHA’s adoption of an increased default adjust-
ment factor of 30X was primarily based on age-specific 
differences in chemical metabolism (between children 
and adults) [90]. Thus, the 42X recommendation above 
reflects differences among adults and not differences 
across age/life stage of development, while OEHHA’s 
30X factor does not account for human variability from 
every susceptible life stage (i.e., in utero development, 

pregnancy, etc.), further indicating that separating these 
adjustment factors is warranted. A separate adjustment 
factor for age-related susceptibility has already been 
required by Congress for food-use pesticides where 
an additional factor, usually 3X or 10X, called the Food 
Quality Protection Act (FQPA) safety factor, is incorpo-
rated into risk assessments for addressing additional sus-
ceptibility for pregnant women and children exposed to 
pesticides [127]. This approach is supported by evidence 
demonstrating that the current default approach does 
not protect the human population across life stages of 
development when considering age-specific differences, 
such as decreased metabolic clearance of pharmaceutical 
chemicals among developing fetuses and young infants 
compared to adults [128] (with additional examples out-
lined in Table  2 above). Moreover, a separate category 
for life-stage adjustment could better incorporate TD 
differences that the default OEHHA 30X factor, which 
is based on TK differences, does not address. Finally, we 
also recommend harmonization and adjustment for age-
related susceptibilities in both cancer and non-cancer 
risk assessment. The US EPA Cancer Guidelines cur-
rently recommend an additional adjustment factor where 
children may be exposed to mutagenic carcinogens [129]. 
However, it’s important to note that there is no early life 
adjustment factor for carcinogens with other or unknown 
modes of action [129].

Separate adjustment factor to address multiple 
chemical and non-chemical stressors

We recommend development of a separate default 
extrinsic variability factor (in addition to the 42X and 
age-related factors above) that would account for expo-
sure to multiple chemical and non-chemical stressors 
[66, 67]. This factor could account for human variability 
in susceptible subgroups, potentially leveraging data on 
allostatic load and ubiquitous population-level chemical 
exposures like lead [130, 131]. If the populations stud-
ied are representative of the general population and/
or include susceptible subgroups, large epidemiologic 

Table 3 Default and probabilistic approaches to intra‑species adjustment for human variability and consideration of susceptible 
subgroups

Intra-species adjustment (sub) factors representing human metabolism (TK) and tissue response (TD) TK/TD variability
a  IPCS ranges include median and 95th percentile estimates for target population incidence ranging from 1 to 10% [16]

Agency TK Subfactor TD Subfactor Total Intra‑species AF Type Subgroup Consideration

US EPA √10 ≈ 3 √10 ≈ 3 10‑fold Default Does not explicitly account for sensitive subgroups.

Cal EPA (OEHHA) 10 √10 ≈ 3 30‑fold Default Children/infants and genetic TK susceptibility 
(though does not cover fetal period nor all identi‑
fied variabilities).

IPCS/WHO 2–4.5a 2.5–10a 3.5–42‑folda Probabilistic Does not explicitly account for sensitive subgroups; 
data based primarily on studies in healthy adults.

2023, 21(Suppl 1):1332023, 21(Suppl 1):133



Page 14 of 20Varshavsky et al. Environmental Health 

cohort studies, such as the Nurses’ Health Study, the 
Framingham Heart Study, and the ECHO Program, 
could be mined for endpoint-specific variability in sus-
ceptible subgroups, which could be used to inform both 
chemical-specific and generic estimates of response vari-
ability in susceptible subgroups. New methodologies for 
combining chemicals in a potency-based, data-driven, 
or hybrid mixture modeling framework should also be 
prioritized to advance consideration of susceptibility in 
human health risk assessment, while risk assessments 
should routinely include explicit descriptions of suscep-
tible subgroups and analysis of current data on multiple 
sources of variability within those groups. If data suggest, 
for example, interactive effects associated with low birth 
weight (LBW) are much stronger among Black women 
compared to other groups, an additional adjustment 
factor (one that is separate from the 30X default fac-
tor recommended above) should be applied (e.g., when 
LBW is an effect of the chemical being assessed). Ulti-
mately, we recommend science-based tools that address 
human variability and susceptibility in cumulative risk 
assessment frameworks. Examples include health impact 
assessments, public health tracking and biomonitoring 
like NHANES, geospatial tools like CalEnviroScreen, and 
the Environmental Justice Screening Method (EJSM) [4, 
5, 18, 132, 133]. These tools can be used to identify sus-
ceptible populations for prioritization in risk assessment 
and human variability estimation, which may be particu-
larly appropriate for addressing requirements under mul-
tiple statutes, including ongoing risk evaluations under 
TSCA [134], maximum contaminant levels (MCLs) and 
the Drinking Water Contaminant Candidate List (CCL) 
under the Safe Drinking Water Act (SDWA) [135, 136], 
and risk determinations for air toxics under the Clean Air 
Act (CAA) [137].

Recommendations to incorporate new approaches 
to account for human variability in EPA risk assessment 
research and practice (replacing the approach of applying 
a single‑value adjustment factor)

Use clinical vulnerability approach to address underlying 
chronic condition or disease risk When sufficient data 
are available, estimating disease risk in a population that 
is representative of the general population and/or sus-
ceptible subgroups can better account for variability in 
a specific response. The method of Ginsberg 2012 [103] 
can help address underlying susceptibility in baseline 
chronic conditions and disease risk, and the cadmium-
GFR example could be extended to susceptible popula-
tions (e.g., examining adjusted GFR among pregnant 
people and/or racial/ethnic or low SES subgroups) [103, 
138]. Options for applying this method to cardiovascular 

disease could include examining the increased effect of 
mercury on the fatty streak of the carotid artery (using 
data from carotid artery imaging) [138], as has been 
demonstrated for mercury and other cardiovascular 
endpoints [139]. Similar applications could examine the 
additive effect of air pollution, lead, or dioxin on heart 
rate or blood pressure in susceptible populations; neuro-
toxic effects; or TCE-induced autoimmunity [138].

Apply probabilistic approaches that integrate multiple 
heterogeneous data sources We recommend that agen-
cies adopt probabilistic approaches that integrate multi-
ple heterogeneous data sources (human, animal, in vitro, 
in silico) to quantify overall and category-specific human 
population variability in chemical risk assessment. The 
incorporation of new data could serve to update generic 
default probability distributions for TK and TD vari-
ability that were established by the IPCS in 2014 [99] as 
described by Axelrad et  al. 2019 [16]. For example, the 
generic probability distribution created from the Hattis 
et al. distributions on pharmaceuticals could be updated 
with chemical-specific TK information on environmen-
tal chemicals as the data become available. Integrating 
diverse data sets could also improve the use of probabil-
istic distributions for specific sources of variability and 
inform adjustment factors used in chemical risk assess-
ment [16], advancing specific areas that are currently 
lacking. For example, in vitro data such as the approach 
used in the 1000 Genomes study by Abdo et  al. may 
be the most efficient way forward to expand (but not 
decrease) health protections by more fully character-
izing the genetic component of human TD variability, 
with cell types other than lymphoblastoid cells and assays 
that reflect a broader range of endpoints than cytotoxic-
ity, while heterogeneous animal strain populations can 
inform efforts to better characterize TK variability in 
the human population. Emerging high-throughput and 
data-rich models (i.e., heterogeneous human in vitro and 
animal in  vivo) have the potential to rapidly generate a 
large amount of data that is relevant for human health 
chemical risk assessment. Thus, combining diverse data 
sources and data types (human epidemiological, human 
controlled, animal and human in vitro, etc.) would more 
comprehensively capture total population genetic and 
non-genetic variability.
We therefore recommend integrating these diverse 
updated data sources (including controlled and epide-
miologic human studies, animal models, and expanded 
sets of in  vitro cell lines/endpoints) to update overall 
(i.e., genetic and non-genetic) and/or category-spe-
cific (e.g., susceptible life stages, low SES subgroups) 
human variability, as described by Axelrad et  al. [16]. 
Moreover, we recommend the EPA develop a Bayesian 
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framework for updating human variability distributions 
incorporating different types of data that are informa-
tive about different components of variability (TK vs. 
TD, genetic vs. non-genetic, etc.) as a way to integrate 
the existing Hattis et  al. approach with emerging data 
from epidemiologic, in  vitro, and genetically diverse 
animal data sets as new data become available, as exem-
plified by Chiu et al. and others [101]. Updated meth-
ods should make use of the best available science, but 
these methods should never be employed to weaken 
risk estimate or exposure limits. Similar recommenda-
tions have been made in the past for combining multi-
ple data streams into a holistic framework that allows 
for the examination of intrinsic and extrinsic factors in 
combination [3, 4, 140] and that provides risk assessors 
with a tool chest of options for addressing variability in 
chemical risk assessment that is more protective of sus-
ceptible subgroups [93, 100].

Use evidence‑based systematic review for adjustment 
factor refinement Previous publications assessing the 
default factor of 10X have provided useful perspectives 
on the sufficiency of a 10-fold adjustment as well as 
methods to evaluate the extent of human variability. To 
ensure greater transparency in assessments of human 
variability, we recommend the formal use of the Univer-
sity of California San Francisco’s (UCSF’s) Navigation 
Guide systematic review framework [141], or another 
which meets similar standards such as the National Toxi-
cology Program’s Office of Health Assessment and Trans-
lation (OHAT) approach [142, 143], in human health 
chemical risk assessment to better incorporate current 
data on variability and susceptibility in a methodical, 
standardized, and reproducible framework. For example, 
using a pre-published protocol, a systematic review could 
be performed on the body of epidemiologic literature 
that has emerged from seven research projects funded 
by the US EPA over the past decade to examine the com-
bined effects of environmental chemical exposures (e.g., 
air pollution, lead, mercury) and non-chemical stressors 
(i.e., psychosocial stressors) on various health endpoints 
(e.g., asthma and neurological outcomes) using diverse 
modeling techniques (e.g., latent variable and structural 
equation modeling) [104]. This systematic approach 
could also be used to identify data sources for probabilis-
tic modeling, which is highly dependent on the quality of 
data-rich sources.

In summary, current data (such as the data presented 
in this paper from OEHHA, the IPCS, and the scientific 
literature) show that the approaches used to incorporate 
human variability in hazard and risk assessment need to 
be updated to reflect current science. The US EPA should 

improve its risk assessment practice by adopting a higher 
and more accurate default point estimate adjustment 
factor for inter-human variability and potential separate 
adjustment factors for age-related and external sources 
of variability. The agency should also advance risk assess-
ment research and practice by implementing probabilis-
tic approaches that integrate information across multiple 
complex data sets. Updated approaches that integrate 
multiple data sources would improve estimates of human 
variability and provide more adequate protection for sus-
ceptible subgroups, such as pregnant people, developing 
fetuses/neonates, children/adolescents, low-wealth pop-
ulations, and those burdened by additional occupational 
and/or environmental exposures. Protective approaches 
for susceptible groups (e.g., pregnant people, lactating 
people, people with disabilities, and other susceptible 
subgroups) would ultimately achieve overall population 
benefits for all.
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