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Article

Synthesis, Structural, Magnetic and Computational Studies of a
One-Dimensional Ferromagnetic Cu(II) Chain Assembled from
a New Schiff Base Ligand
Anne Worrell 1, Gabriele Delle Monache 1, Mark M. Turnbull 2 , Jeremy M. Rawson 3, Theocharis C. Stamatatos 4,*
and Melanie Pilkington 1,*

1 Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
2 Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA
3 Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave,

Windsor, ON N9B 3P4, Canada
4 Department of Chemistry, University of Patras, 26504 Patras, Greece
* Correspondence: thstama@upatras.gr (T.C.S.); mpilkington@brocku.ca (M.P.)

Abstract: A new asymmetrically substituted ONOO Schiff base ligand N-(2′-hydroxy-1′-naphthylidene)-
3-amino-2-naphthoic acid (nancH2) was prepared from the condensation of 2–hydroxy–1–naphthaldehyde
and 3–amino–2–naphthoic acid. nancH2 reacts with Cu2(O2CMe)4·2H2O in the presence of
Gd(O2CMe)3·6H2O to afford a uniform one-dimensional homometallic chain, [CuII(nanc)]n (1).
The structure of 1 was elucidated via single crystal X-ray diffraction studies, which revealed that
the Cu(II) ions adopt distorted square planar geometries and are coordinated in a tridentate manner
by an [ONO] donor set from one nanc2− ligand and an O− of a bridging carboxylate group from
a second ligand. The bridging carboxylato group of the nanc2− ligand adopts a syn, anti-η1:η1:µ
conformation linking neighboring Cu(II) ions, forming a 1D chain. The magnetic susceptibility of 1
follows Curie–Weiss law in the range 45–300 K (C = 0.474(1) emu K mol-1, θ = +7.9(3) K), consistent
with ferromagnetic interactions between S = 1

2 Cu(II) ions with g = 2.248. Subsequently, the data
fit well to the 1D quantum Heisenberg ferromagnetic (QHFM) chain model with g = 2.271, and
J = +12.3 K. DFT calculations, implementing the broken symmetry approach, were also carried out on
a model dimeric unit extracted from the polymeric chain structure. The calculated exchange coupling
via the carboxylate bridge (J = +13.8 K) is consistent with the observed ferromagnetic exchange
between neighbouring Cu(II) centres.

Keywords: Cu(II); Schiff base; aromatic ligands; ferromagnetic interactions; one-dimensional uniform
chain; coordination polymer; DFT studies

1. Introduction

Coordination polymers have garnered significant interest due to their potential for
displaying fascinating magnetic behaviour [1–8], and have found applications in various
fields, including catalysis [9] and medicinal chemistry [10], among others [11–13]. There
has been considerable attention paid towards low-dimensional materials which can exhibit
unusual forms of magnetic response, depending on the dimensionality of the exchange
pathway and the type of spin system. These can lead to examples of spin frustration [14,15],
Koesterlitz–Thouless transitions in two-dimensional systems [16,17], and the emergence
of Haldane gaps in one-dimensional chains [18,19]. One-dimensional materials comprise
examples of both regular chains (a single exchange term), or alternating chains (comprising
two magnetic exchange terms which may be ferromagnetic, antiferromagnetic, or a mixture
of both ferro- and antiferromagnetic) [20,21]. When Ising-like spins are involved, such
systems can lead to ‘single chain magnets’ in which there is a gapped state with slow
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relaxation [22,23]. Some of the most well-studied low-dimensional models comprise one-
dimensional (1D) Heisenberg S = 1

2 magnetic compounds [24–26]. In this respect, the
magnetic insulator copper pyrazine dinitrate has provided a unique opportunity for a
quantitative comparison between theory and experiment [26]. For such isotropic spins,
a unique expression for their susceptibility is not possible, but expressions in the case
of both antiferromagnetic and ferromagnetic exchange have been put forward. In the
case of ferromagnetic exchange, such regular 1D chains can be well-described by the 1D
quantum Heisenberg ferromagnet (1D QHFM) equation (Equation (1)), defined by the
Hamiltonian in Equation (2) [27–29]. The values of the numerator (Ni) and denominator
(Di) in Equation (1) are tabulated elsewhere [30]. Cu(II)-based polymers provide good
models for exploring such behaviour [31–33], and comprise one of the most well-studied
1D systems to date [26,34–37].

χmol(1− D QHFM) =
Cmol

T

1 + ∑3
i=1 Ni

(
J

kBT

)i

1 + ∑4
i=1 Di

(
J

kBT

)i

 (1)

H = −JSi·Sj (2)

Molecular self-assembly of 3d metal ion complexes with polydentate ligands has
been shown to be an effective method of generating coordination polymers [38–42]. Schiff
bases are particularly appealing as they have been reported to exhibit valuable properties,
lending themselves to the formation of compounds with a broad range of industrial and
biological applications [43–50]. Thus, this class of ligands are attractive and can be readily
synthesized from the condensation reaction between an amine and a carbonyl compound.
The incorporation of one or more donor atoms into the Schiff base backbone affords
polydentate ligands which can stabilize complexes with various transition metals due to
the chelate effect [51–57]. Moreover, including hydroxy or carboxylate functional groups
provides bridging ligands to construct coordination clusters or polymers and has proven
to be an effective approach [58–61], exemplified by Schiff bases with a naphthalene-based
organic scaffold which have been successfully used to isolate 1-D magnetic chains [62–65].
In the current study, we utilized the new tetradentate chelating/bridging Schiff base
ligand N-(2′-hydroxy-1′-naphthylidene)-3-amino-2-naphthoic acid (nancH2), (Scheme 1) in
Cu(II) coordination chemistry, through utilizing the serendipitous assembly approach. As
mentioned previously, these systems provide excellent models for studying fundamental
magnetic behaviour in 1D systems that are strongly correlated to the magnetic exchange
pathway and the type of spin system. To expand our fundamental understanding of such
systems, we report herein the synthesis, magnetostructural, and DFT studies of a new,
one-dimensional chain, [CuII(nanc)]n (1).
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2. Materials & Methods

General Considerations: All manipulations were performed under aerobic condi-
tions using materials (reagent grade) and solvents as received from Sigma-Aldrich. El-
emental analyses were carried out on a PerkinElmer 2400 Combustion CHN Analyser.
IR spectra were obtained on solid samples using a Bruker Alpha FT-IR spectrometer,
equipped with ALPHA’s Platinum ATR single reflection module. Electrospray ionization
(ESI) mass spectra were acquired from a DCM/MeOH solution of nancH2 by utilizing a
Bruker Avance DPX-400 MHz instrument. The NMR spectra were obtained using a Bruker
AVANCE III HD 400 MHz in DMSO-d6 solvent. The NMR spectra are reported relative to
tetramethylsilane (δ = 0 ppm).

Preparation of N-(2′-hydroxy-1′-naphthylidene)-3-amino-2-naphthoic acid (nancH2):
2–Hydroxy–1–naphthaldehyde (2.58 g, 15 mmol) and 3–amino–2–naphthoic acid (2.78 g,
15 mmol) were added to methanol (40 mL) and refluxed for 2 h. A yellow powder was
isolated by filtration and dried in air. Yield (3.58 g, 70%). Mp 268 ◦C; 1H NMR (ppm,
DMSO-d6) 6.86 (d, 1H), 7.32 (t, 1H), 7.51–7.74 (m, 4H), 7.87 (d, 1H), 8.07 (dd, 2H), 8.44
(t, 2H), 8.62 (s, 1H), 9.51 (s, 1H). 13C NMR (ppm, DMSO-d6) 108.9 (CH-C9H6CO2H),
116.4 (CH-C9H7O), 120.2 (CH-C9H6CO2H), 122.1 (CH-C9H7O), 123.5 (CH-C9H6CO2H),
123.9 (CH-C9H6CO2H), 126.3 (C-C=N), 126.4 (CH-C9H7O), 127.4 (C-C9H8O), 128.2 (C-
C9H7CO2H), 128.8 (C-C9H7CO2H), 129.9 (C-C9H8O), 132.4 (CH-C9H7O), 133.7 (CH-C9H7O),
135.2 (C-OH), 138.0 (C-CO2H), 139.7 (C-N), 167.4 (C=N), 174.7 (C=O). Mass spectrum (m/z,
ESI−): 339.9(M-1). IR data (cm−1): 2995, 1702, 1628, 1604, 1588, 1544, 1491, 1459, 1408, 1370,
1346, 1302, 1246, 1214, 1195, 1142, 1043, 974, 925, 866, 840, 786, 747, 732, 689, 655, 628, 584,
566, 555, 525, 503, 470, 423, 408.

Preparation of [CuII(nanc)]n (1): Cu2(O2CMe)4 ·2H2O (0.04 g, 0.1 mmol) and
Gd(O2CMe)3·6H2O (0.03 g, 0.2 mmol) were simultaneously added to a solution of nancH2
(0.037 g, 0.1 mmol) in MeOH/THF (8 mL, 3:1 mixture). The reaction mixture was left under
magnetic stirring for approximately 1 h, until a dark brown solution was obtained. The
solution was allowed to stand for ca. 16 h, filtered, and the resulting solution was allowed
to undergo slow evaporation at room temperature, affording dark green crystals of 1 after
5 days. Yield 160 mg, 67% (based on the nancH2 ligand). Selected IR data (cm−1): 1614,
1594, 1568, 1532, 1495, 1462, 1445, 1423, 1400, 1375, 1300, 1193, 1175, 1163, 1142, 1095, 1078,
966, 929, 896, 860, 835, 816, 793, 760, 746, 696, 647, 622, 593, 582, 561, 541, 525, 502, 480, 455,
435, 418. Elemental Analysis calc. for [CuII(C22H13NO3)]n (1): C, 65.59; H, 3.25; N, 3.48.
Found: C, 66.02; H, 3.48; N, 3.50%.

Single crystal X-ray diffraction: Suitable single crystals of 1 were mounted on a ny-
lon microloop in perfluoroether oil (Paratone® N). Crystallographic data were collected
on a Bruker APEX-II CCD diffractometer equipped with an Oxford Cryosystems low-
temperature device operating at 150.0(1) K. Generic ϕ andω scans (MoKα, λ = 0.71073 Å)
were used for the data measurement. The diffraction patterns were indexed, and the unit
cells refined with SAINT software in the Bruker APEX-II program [66]. Data reduction,
scaling, and a multi-scan absorption correction were performed with SAINT and SADABS
software [67,68]. Space group determination was based upon analysis of systematic ab-
sences, E statistics, and successful refinement of all structures. The structure was solved
using the intrinsic phasing algorithm ShelXT [69] and refined with the least squares method
by minimization of Σw(Fo

2 − Fc
2)2

. Structure refinement and CIF compilation were carried
out using SHELXL-2018 in the SHELXTL package [70]. All non-hydrogen atoms were
refined anisotropically. The positions of the hydrogen atoms were calculated geometrically
and refined using the riding model. The crystallographic data for 1 was deposited in
the Cambridge Structural Database and assigned the following number CCDC 2222531.
Crystallographic data for 1 are summarized in Table 1.
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Table 1. Selected crystallographic data for 1.

Chemical Formula C22H13CuNO3

Mr 402.87
Crystal system, space group Orthorhombic, P212121

Temperature (K) 152(1)
a, b, c (Å) 7.3981 (5), 12.0652 (10), 18.5949 (13)

V (Å3) 1659.8 (2)
Z 4

Radiation type Mo Kα
µ (mm−1) 1.34

Crystal size (mm) 0.5 × 0.5 × 0.5

Tmin, Tmax 0.561, 0.746
No. of measured, independent, and

observed [I > 2σ(I)] reflections 12654, 4985, 4680

Rint 0.038
(sin θ/λ)max (Å−1) 0.715

R [F2 > 2σ(F2)], wR(F2), S 0.034, 0.076, 1.03
No. of reflections 4985
No. of parameters 245
H-atom treatment H-atom parameters constrained

∆ρmax, ∆ρmin (e Å−3) 0.49, −0.35
Absolute structure Refined as an inversion twin.

Absolute structure parameter 0.081 (15)

Magnetic susceptibility: Variable temperature magnetic data (1.8–300 K) for 1 were
collected using a Quantum Design MPMS-XL SQUID magnetometer, in a magnetic field
strength of 1 kOe. Field-dependent magnetic data between 0 and 50 kOe were collected
at 1.8 K with several data points recollected as the field returned to zero. No evidence for
hysteresis was observed. Corrections for the sample holder assembly, measured indepen-
dently, diamagnetic contributions from the sample, estimated from Pascal’s constants [71],
and the temperature-independent paramagnetism (TIP) of Cu(II) were applied.

Computational Details: All calculations were carried out within the Jaguar 11.4 pro-
gram package [72], using the B3LYP functional (Becke, three parameter, Lee−Yang−Parr
hybrid functional) [73,74]. An a posteriori dispersion correction was applied using the
D3 method of Grimme [75] and the LACV3P+** basis set employed [76], providing an effec-
tive core potential for the transition metal ion. A self-consistent field (1SCF) calculation was
used based on a fragment of the polymer chain, comprising two Cu(II) ions, the bridging
ligands, and the ligands in the immediate coordination sphere of each metal ion (Figure S1,
Supplementary Materials). The strength of the exchange was determined to determine the
energies and expectation values of the open shell spin triplet and broken symmetry singlet
(BSS) configurations using the method of Yamaguchi (Equation (3)):

J =
−(ET − EBSS)

< S2 >T − < S2 >BSS
(3)

The initial guess explicitly stated formal charges on the Cu(II) ions and O atoms of the
nanc2− ligands and the value of the spin state (2S) on each Cu(II) centre (either +1 for both
Cu(II) centres for the triplet state or +1/−1 for the Cu(II) centres for the BSS configuration).

3. Results

Synthesis of nancH2: The Schiff base ligand, nancH2 (Figure 1), was obtained in 70%
yield from the reaction of 2–hydroxy–1–naphthaldehyde and 3–amino–2–naphthoic acid,
Scheme 1. The ligand was subsequently characterized by 1H and 13C NMR, IR, and mass
spectrometry (Figures S2, S3, S7 and S8).
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Synthesis of complex 1: Cu(II)/Ln(III) coordination chemistry has been shown to
provide 3d/4f metal complexes that possess high nuclearity, interesting magnetic proper-
ties, and unique structural topologies [77–79]. Accordingly, following the serendipitous
self-assembly approach, various ligand/metal ratios were explored with nancH2 and
CuCl2/GdCl3, Cu(NO3)2/Gd(NO3)3, Cu(ClO4)2/Gd(CF3SO3)3, and Cu(O2CMe)2/Gd(O2CMe)3
in both the presence and absence of Et3N as the base. The reactions involving the CuCl2/GdCl3
and Cu(NO3)2/Gd(NO3)3 mixtures with nancH2 led to a colour change, but no crystalline
product(s) were isolated from the filtrate. The reactions of nancH2 with Cu(ClO4)2/Gd(CF3SO3)3
provided brown oils and/or yellow powder (attributed to unreacted nancH2 ligand based
on tlc and the 1H NMR data). Numerous different Cu(O2CMe)2/Gd(O2Cme)3/nancH2/Et3N
ratios were investigated, but again deposited nancH2 as a yellow powder, indicating that
the nancH2 ligand was not coordinating to the metal ions. Conversely, in the absence
of Et3N, the room temperature reaction of Cu(O2Cme)2, Gd(O2Cme)3, and nancH2, in a
1:2:1 ratio, afforded dark green crystals of 1 after several days which were found to be
air stable. Although 1 does not contain Gd(III) ions, the presence of Gd(O2CMe)3 during
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the synthesis appeared crucial since attempts to isolate the Cu(II) coordination polymer 1
without the addition of a Gd(III) salt afforded no isolable products, both in the presence
and absence of Et3N. Similarly, the use of Gd(O2Cme)3 in a 1:1 ratio with Cu(O2Cme)2 also
proved unsuccessful, confirming the need for a 1:2 ratio between these two metal salts.
The Gd(III) ions may serve to deprotonate the nancH2 ligand (especially in the absence of
Et3N) and/or abstract acetate from Cu(O2Cme)2, with formation of a [Gd(O2Cme)4]− ‘ate
complex, activating the Cu(II) centre with respect to attack by nancH2.

Crystal structure of 1: Dark green crystals of 1 were obtained from reaction of
Cu(O2Cme)2, Gd(O2Cme)3, and nancH2 by slow evaporation of the mother liquor. Com-
pound 1 crystalizes in the orthorhombic space group P212121 with one Cu(nanc) unit in
the asymmetric unit. The structure of the asymmetric unit, along with a portion of the
polymer chain of 1, are presented in Figure 1. Selected bond distances and angles are
listed in Table 2. In the asymmetric unit, a Cu(II) ion is coordinated by a doubly depro-
tonated nanc2− ligand. A symmetry-related O3 atom completes the fourth coordination
site, leading to a distorted square planar Cu(II) centre, where the sum of the angles (rang-
ing from 87.21(9)–93.17(9)◦, Table 2) is 363.76◦. The distorted square planar geometry is
further confirmed by the τ4 descriptor for 4-coordination, which is 0.22 for 1, i.e., much
closer to 0.00 for idealized square planar geometry than to 1.00 for tetrahedral [80]. The
tetrahedrality calculated for complex 1 gives a dihedral angle of 22.67◦ (for strictly square
planar complexes with D4h symmetry the tetrahedrality is 0◦; for tetrahedral complexes
with D2d symmetry the tetrahedrality equals 90◦), again supporting a distorted square
planar geometry for the basal CuO3N plane [81]. The nanc2− ligand and the Cu(II) centre
are far from co-planar, as evidenced by the dihedral angles of 38.65◦ and 31.18◦ between
the two naphthalene moieties of the nanc2− ligand and the coordination plane of the
Cu(II) ion. The molecule crystallizes in a chiral space group, with the polymer chains
propagating parallel to the crystallographic a-axis. Neighbouring Cu1 ions are bridged
via a carboxylato group that adopts a syn, anti-η1:η1:µ bidentate bridging mode, resulting
in the formation of a 1D chain (Figure 1, bottom). This coordination mode provides a
non-planar Cu1-O2-C22-O3-Cu1 bridge, and a Cu1· · ·Cu1 intrachain distance of 4.902(5)
Å. Detailed analysis of the crystal packing reveals there are no classical H-bonds, but
there are C-H· · ·π interactions involving an aromatic C-H donor of one molecule and
an aromatic π-acceptor of a neighbouring molecule. For example, C-H· · ·π distances for
C-H(18)· · ·Ar(C1C2C3C4C9C10) and C-H(15)· · ·Ar(C12,C13,C14,C19,C20) were found to
be 2.539 Å and 2.199 Å, respectively.

Table 2. Selected geometric parameters (Å, º) for 1.

Cu1—O1 1.890 (2) Cu1—O3i 1.947 (2)
Cu1—N1 1.933 (2) O3—Cu1ii 1.9469 (19)
Cu1—O2 1.943 (2)

O1—Cu1—N1 92.29 (9) O1—Cu1—O3i 87.21 (9)
O1—Cu1—O2 159.44 (10) N1—Cu1—O3i 169.02 (9)
N1—Cu1—O2 93.17 (9) O2—Cu1—O3i 91.09 (9)

Symmetry code(s): (i) x − 1
2 , −y + 1

2 , −z + 1; (ii) x + 1
2 , −y + 1

2 , −z + 1.

Magnetic properties of 1: M(H) measurements for 1 at 1.8 K revealed no hysteresis
(Figure S6), consistent with previous observations that linear S = 1

2 chains do not show
long-range order [82]. The saturation moment of 6300 emu/mol is consistent with an S = 1

2
ion with g-value of 2.2.

The variable temperature dc susceptibility data for 1 reveal the compound displays
Curie–Weiss behaviour (45–300 K) with C = 0.474(1) Oe−1 emu K mol−1 and θ = +7.9(3)
K (Figure 2, inset). The Curie constant is consistent with S = 1

2 and g = 2.248, while the
positive Weiss constant is consistent with the presence of local ferromagnetic exchange.
The value of χmT (Figure 2) at room temperature (0.484 emu K mol−1 Oe−1) is consistent
with the Curie constant and increases upon cooling down to 1.8 K, in agreement with the
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positive nature of the Weiss constant. A first estimate of the exchange coupling can be
derived from the mean field model which relates the microscopic exchange coupling (J) to
the macroscopic Weiss constant (θ) according to Equation (4), where z = number of nearest
neighbours, which is 2 for a linear chain. Based on Equation (4), a first estimate of J/k is
+15.8 K (11 cm−1):

θ = zJS(S + 1)/3k (4)
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A more analytical approach to model the exchange within the polymer is to imple-
ment Equation (1) for the 1D quantum Heisenberg ferromagnetic chain model (1D QHFM),
Equation (1) [30] which implements the H = −JSi·Sj Hamiltonian (Equation (2)). The fit to
the 1D QHFM model is presented in Figure 2 (and Figure S5, Supporting Information). The
best-fit provides an exchange parameter of J/k = +12.3 K and g = 2.271. The sign and magni-
tude of the exchange was also estimated using DFT on a model ‘dimer’ structure (Figure S1),
extracted from the polymer chain which replicated the coordination environment of the
two Cu(II) ions and the geometry of the bridging ligand.

DFT studies of 1: The strength of the exchange was also computationally deter-
mined at the B3LYP-D3/LACV3P*++ level of theory using Yamaguchi’s expression for
the exchange (Equation (3)) [83,84], based on the computed energies and expectation
values for the triplet and broken symmetry singlet configurations [85,86]. This afforded
J/k = +13.8 K good agreement with that determined from fitting the magnetic data to the
1D QHFM model.

The syn, anti bridging mode has been identified to promote either weak ferromagnetic
or antiferromagnetic exchange in carboxylato-bridged Cu(II) complexes [87]. However, as
the Cu-O-C-O-Cu exchange pathway further deviates from planarity, the ferromagnetic
contribution to the exchange parameter J is seen to increase, while the antiferromagnetic
contribution is reduced, owing to the reduction in the overlap between the magnetic orbitals
of the copper atoms via the syn, anti carboxylato group [88–92]. Thus, the non-planar Cu-
O-C-O-Cu exchange pathway of 1 is consistent with the ferromagnetic behaviour revealed
by the magnetic measurements.
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4. Conclusions

A 1D Cu(II) polymer containing the new tetradentate Schiff base ligand, N-(2′-hydroxy-
1′-naphthylidene)-3-amino-2-naphthoic acid (nancH2) has been synthesized and magneto-
structurally characterized. The molecular structure comprises distorted square planar
Cu(II) ions linked via syn, anti- carboxylate bridges of the nanc2− chelate. Analysis of the
dc magnetic data reveals the presence of moderate ferromagnetic exchange interactions
between the S = 1

2 metal centers. In this respect, the magnetic data fit well to a 1D quantum
Heisenberg ferromagnetic (QHFM) chain with a g = 2.271 and J = +12.3 K. The experimental
data are further supported by DFT calculations, where implementing the broken symmetry
approach on a model dimeric unit extracted from the 1D chain, afforded an exchange
coupling J = +13.8 K. These first preliminary results from the study of the coordination
affinity of nanc2− towards both 3d- and 4f -metal ions highlights the binding preference
of nanc2− for Cu(II) over Gd(III) ions. Work in progress is focused on the realization
of this trend by employing different, redox-active, or inert 3d-metal ions and trivalent
lanthanide ions.
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ligand in DMSO-d6; Figure S8. 13C NMR spectrum of the N-naphthalidene-2-amino-naphthoic acid
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