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Abstract 

Background The prediction of bacteriophage sequences in metagenomic datasets has become a topic of consider-
able interest, leading to the development of many novel bioinformatic tools. A comparative analysis of ten state-of-
the-art phage identification tools was performed to inform their usage in microbiome research.

Methods Artificial contigs generated from complete RefSeq genomes representing phages, plasmids, and chro-
mosomes, and a previously sequenced mock community containing four phage species, were used to evaluate the 
precision, recall, and F1 scores of the tools. We also generated a dataset of randomly shuffled sequences to quantify 
false-positive calls. In addition, a set of previously simulated viromes was used to assess diversity bias in each tool’s 
output.

Results VIBRANT and VirSorter2 achieved the highest F1 scores (0.93) in the RefSeq artificial contigs dataset, with 
several other tools also performing well. Kraken2 had the highest F1 score (0.86) in the mock community benchmark 
by a large margin (0.3 higher than DeepVirFinder in second place), mainly due to its high precision (0.96). Generally, 
k-mer-based tools performed better than reference similarity tools and gene-based methods. Several tools, most 
notably PPR-Meta, called a high number of false positives in the randomly shuffled sequences. When analysing the 
diversity of the genomes that each tool predicted from a virome set, most tools produced a viral genome set that had 
similar alpha- and beta-diversity patterns to the original population, with Seeker being a notable exception.

Conclusions This study provides key metrics used to assess performance of phage detection tools, offers a frame-
work for further comparison of additional viral discovery tools, and discusses optimal strategies for using these tools. 
We highlight that the choice of tool for identification of phages in metagenomic datasets, as well as their parameters, 
can bias the results and provide pointers for different use case scenarios. We have also made our benchmarking data-
set available for download in order to facilitate future comparisons of phage identification tools.
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Introduction
Bacteriophages (phages) and archaeal viruses are glob-
ally ubiquitous, diverse, and typically outnumber their 
prokaryotic hosts in most biomes [1]. Phages play a key 
role in microbial communities by shaping and main-
taining microbial ecology by fostering coevolutionary 
relationships [2–4], biogeochemical cycling of essen-
tial nutrients [5–7], and facilitating microbial evolution 
through horizontal gene transfer [8–10]. Despite the 
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abundance and perceived influence phages have on all 
microbial ecosystems, they continue to be one of the least 
studied and understood members of complex microbi-
omes [11]. Phages are obligate parasites which require 
their host’s machinery to replicate and spread via cell 
lysis. They can either be lytic or temperate, and whilst 
the former can only follow the lytic life cycle, temperate 
phages can either follow the lytic or lysogenic cycle [12]. 
During the lytic cycle, phages hijack host cell machinery 
to produce new viral particles. In the lysogenic cycle, 
phages can integrate their genomes into their bacterial or 
archaeal host genome chromosome as linear DNA or as a 
self-replicating autonomous plasmid. In addition, a third 
life cycle called pseudolysogeny has been documented, in 
which either lytic phage infection is halted or there is no 
prophage formation [13].

Traditionally, phage identification and characterisa-
tion relied on isolation and culturing techniques, which 
are time-consuming and often require significant exper-
tise. It is also often impractical as many hosts, and their 
phages, cannot be cultured under laboratory conditions 
[14]. The arrival of high-throughput next-generation 
sequencing has allowed metagenomic data from various 
environments to be generated routinely. Metagenomic 
sequencing allows direct identification and analysis of all 
genetic material in a sample, regardless of cultivability 
[15].

Metagenomic studies can opt to either sequence the 
whole community metagenome and then computation-
ally isolate viral sequences or physically separate the viral 
fraction before library preparation to produce a meta-
virome. The latter approach risks eliminating a large 
proportion of phages owing to their association with 
the cellular fraction. This occurs owing to phages being 
integrated into their hosts’ genome as prophages [16], 
attached to their hosts’ surface [17], or when they are in a 
pseudolysogenic state [18–20]. Purification methods may 
also remove certain types of phage, e.g. chloroform can 
inactivate lipid enveloped and/or filamentous phages [21, 
22], increasing sampling bias. This process also results 
in low DNA yields, leading to some metavirome stud-
ies having to use multiple displacement amplification 
(MDA) to achieve sufficient quantities of DNA for library 
generation [11]. MDA has been shown to produce sig-
nificant bias into virome composition [23, 24], by prefer-
entially amplifying small circular ssDNA phage, such as 
those from the family Microviridae [25]. Despite these 
drawbacks, the purification steps produce a metavirome 
with very little host contamination, although it is very 
difficult to produce a viral fraction that is devoid of any 
cellular material [26]. Metaviromes also have the advan-
tage of being able to identify lower abundance phages 
at the same sequencing depth due to the approximately 

100-fold larger bacterial and archaeal genomes being 
excluded. Alternatively, whole community metagenomic 
sequencing can present insights into the host and viral 
fractions concurrently, allowing host-phage dynamics to 
be analysed. Integrated phages, or prophages which have 
been found to be prevalent in some environments [27], 
can be identified since host genomes are also sequenced 
in this process. In this study, we focus on computation-
ally extracting phage sequences from whole community 
metagenomes, as these generally make up a minority of 
the sequencing data compared to their hosts.

Many tools for identifying viral sequences from mixed 
metagenomic and virome assemblies have been devel-
oped in the last 5  years (Table  1). VirSorter [28] was 
one of the first of these, with previous tools focusing on 
prophage prediction (PhiSpy [29], Phage_Finder [30], 
PHAST/PHASTER [31], ProPhinder [32]) or virome 
analysis (MetaVir2) [33], VIROME [34]). VirSorter iden-
tifies phage sequences by detecting viral hallmark genes 
that have homology to reference databases and by build-
ing probabilistic models based on different metrics (viral-
like genes, Pfam genes, uncharacterised genes, short 
genes, and strand switching) which measure the confi-
dence of each prediction. Since VirSorter’s release, other 
gene-based homology-based tools such as VIBRANT 
[35], and VirSorter2 [36], have been developed. 
VIBRANT uses a multilayer perceptron neural network 
based on protein annotation from Hidden Markov model 
(HMM) hits to several databases to recover a diverse 
array of phages infecting bacteria and archaea including 
integrated prophages. In addition to this, it characterises 
auxiliary metabolic genes and pathways after identifica-
tion. VirSorter2 builds on its predecessor by incorporat-
ing five distinct random forest classifiers for five different 
viral groups into one algorithm to improve the diversity 
of viruses that it can detect accurately. MetaPhinder, 
unlike the tools above, uses BLAST-based homology 
hits to a custom database to calculate average nucleo-
tide identity and the likelihood that a sequence is of viral 
origin.

VirFinder was the first machine learning, viral identi-
fication tool to utilise k-mer signatures [45]. VirFinder 
was shown to have considerably better rates of recov-
ery of viral sequences than VirSorter, especially on 
shorter sequences (< 5 kbp), but had issues of variable 
performance in different environments, perhaps due to 
biases introduced by the reference data used for train-
ing the machine learning model [50]. DeepVirFinder 
[37] improves on VirFinder by applying a convolutional 
neural network that was trained on an enlarged data-
set containing viral sequences from environmental 
metavirome sequencing data. DeepVirFinder boasts 
increased viral identification at all contig lengths over 
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its predecessor VirFinder whilst mitigating the latter’s 
bias towards phages that are easily cultivable in the lab-
oratory. Kraken2 is a k-mer-based metagenomic taxo-
nomic classifier [51] that can be used for viral detection 
[52]. It queries k-mers to a database which associ-
ates it to their lowest common ancestor taxa which is 
then used to assign the taxonomic label. PPR-Meta 
uses three convolutional neural network to identify if 
a sequence is of phage, plasmid, or chromosomal ori-
gin [42]. Sequence features are extracted by the net-
work directly, instead of using pre-selected features 
such as k-mer signatures or genes. The three networks 
are also trained on three groups of different sequence 
lengths to improve its performance on shorter frag-
ments, which some gene-based tools struggle with 
due to the low number of full-length genes available 
for analysis. Seeker also uses a neural network, in this 
case a long short-term memory (LSTM) model, which 
is not based on pre-selected features [43]. Metaviral-
SPAdes [40] uses an entirely different approach by lev-
eraging variations in depth between viral and bacterial 

chromosomes in assembly graphs. The tool is split into 
three separate modules: a specialised assembler based 
on metaSPAdes (viralAssembly); a viral identification 
module that classifies contigs as viral/bacterial/uncer-
tain using a Naive Bayesian classifier (viralVerify); and a 
module which calculates the similarity of a constructed 
viral contig to known viruses (viralComplete).

It is important to note that machine learning tools 
have the potential to identify novel species, which is 
especially important with the enormous diversity of 
phages that is theorised to still be unknown [53]. With 
the development of so many tools using a variety of 
approaches, a comprehensive comparison and bench-
marking are needed to evaluate which tools are most 
applicable to researchers. The performance of each 
method can vary based on sample content, assembly 
method, sequence length, classification thresholds, and 
other custom parameters. To address these issues, we 
have benchmarked ten metagenomic viral identification 
tools using both artificial contigs, mock communities, 
and real samples.

Table 1 Overview of tools to identify and predict phage sequences in microbial ecosystems

Tools in italics were not included in this study as they were either not relevant to this study or technical difficulties were encountered during their use. MARVEL was 
excluded as it currently limited to detecting phages of the Caudovirales order

Software Description Reference

DeepVirFinder Predicts viral sequences via a k-mer-based deep learning method using convolutional neural networks (CNN). Based on 
VirFinder

[37]

MARVEL Machine learning tool for predicting phage sequences in metagenomic bins [38]

MetaPhinder Integrates BLAST hits to multiple phage genomes in a database to identify phage sequences in assembled contigs [39]

viralVerify 
(metaviral-
SPAdes)

ViralVerify is a module of metaviralSPAdes which classifies contigs with a Naïve Bayes classifier based on Hidden Markov 
models protein hits

[40]

PhaMers Identifies phage sequences by a machine learning model based on k-mer frequencies [41]

PPR-Meta Deep learning CNN approach to identify both phages and plasmids [42]

Seeker Deep learning framework that uses long short-term memory model (LSTM) which does not depend on sequence motifs [43]

VIBRANT Deep learning neural network based on protein signatures which also highlights auxiliary metabolic genes and pathways [35]

ViraMiner Extension of DeepVirFinder that is trained to identify any virus that may colonise human samples [44]

VirFinder K-mer-based machine learning method for identification of viral contigs [45]

virMine Iterative pipeline that relies on the abundance of nonviral sequences in databases to strictly filter out unwanted contigs. 
Pipeline accepts both reads or assembled contigs

[46]

VirMiner Web-based pipeline that handles genome assembly, functional annotation using a variety of databases and identification 
of phage contigs via a random forest algorithm

[47]

VirNet Deep learning neural network using an attentional neural model trained on nucleotide viral fragments [48]

VIROME Web-based pipeline that classifies viral sequences based on homology to databases and functionally annotates them. No 
local version

[34]

VirSorter Uses referenced-based and reference-free approaches in unison relying on probabilistic similarity models and referenced-
based protein homology searches to increase novel virus detection

[28]

VirSorter2 Builds on VirSorter by applying machine learning to evaluate “viralness” using genomic features. Works with a wider variety 
of viral groups than its predecessor

[36]

VirusSeeker Made up of two BLAST-based pipelines — virome and discovery. Virome aligns reads to a curated database to identify viral 
sequences and compute their abundance in the sample. Discovery focuses on contig-based analysis to aid novel virus 
discovery

[49]
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Results
Benchmarking with RefSeq phage and nonviral artificial 
contigs
Ten commonly used tools for viral sequence identifi-
cation in metagenomes were selected for evaluation: 
DeepVirFinder, Kraken2, MetaPhinder, PPR-Meta, 
Seeker, VIBRANT, viralVerify, VirFinder, VirSorter, and 
VirSorter2. All of these tools can be run locally without 
relying on a web server, accept metagenomic contigs as 
input, and have been published in the past decade.

We first evaluated all the programmes on the same 
uniform datasets. All complete phage genomes depos-
ited in RefSeq between 1 January 2020 and 12 August 
2021 were downloaded, quality controlled, and uni-
formly fragmented to sizes between 1 and 15 kbp to 
create a true-positive set of artificial contigs. A nega-
tive set was constructed from all RefSeq bacterial and 
archaeal chromosomes and plasmids, submitted in the 
same time period. Multiple steps were taken to ensure 
these datasets did not include false positives or false 
negatives. First, all bacterial, archaeal, and phage Ref-
Seq genomes deposited prior to 2020, and the training 
sets of each machine learning tool were used to derep-
licate the datasets used in this study to remove any 
similar sequences that may cause overfitting of some 
tools. In addition, chromosome and plasmid sequences 
with ≥ 30% of their open reading frames having hits 
to the pVOG database were removed to exclude any 
remaining viral sequences. As the negative dataset 
was considerably larger than the positive dataset, we 
subsampled the negative set by a factor of 14.3, result-
ing in 253 host chromosomes, and 309 host plasmids 
(Table  2). This sampling rate was chosen to produce 
a phage:host ratio (~ 1:19) that was similar to what is 

found in human gut microbiomes [53]. Finally, we 
removed integrated prophages from chromosomal and 
plasmid sequences using two state-of-the-art prophage 
detection tools, Phigaro [54] and PhageBoost [55], to 
prevent their erroneous identification as viral contigs. 
In total, 2088 prophages were removed from the chro-
mosome set and 91 from the plasmid set. The resulting 
sequences were then fragmented into artificial contigs 
and analysed using the different tools (Fig. 1).

All evaluated programmes, except Kraken2, produce 
thresholds or confidence ranges for viral identifica-
tion. For tools (DeepVirFinder, MetaPhinder, PPR Meta, 
Seeker, VirFinder, and VirSorter2) that assign a continu-
ous threshold (score, identity, or probability), a F1 curve 
was plotted, and an optimal threshold was determined 
(Additional file  1). For VirSorter and viralVerify, the 
categories that returned the highest F1 score were used 
(Additional file  2). In most tools, there was a trade-off 
between precision and recall. This is likely due to relaxed 
thresholds allowing for more viral and nonviral sequences 
to be detected, increasing recall, and decreasing precision 
simultaneously. For VIBRANT and VirSorter, the positive 
dataset was additionally run in virome mode and virome 
decontamination mode, respectively, as this improves 
viral recovery in samples composed mainly of viral 
sequences by adjusting the tools sensitivity [28, 35]. The 
tools we benchmarked on this dataset had highly variable 
performance in terms of F1 score (0.44–0.93), precision 
(0.47–1.00), and recall (0.46–0.96) (Fig.  2). VirSorter2, 
VIBRANT, and PPR-Meta achieved the highest F1 scores 
of 0.93, 0.93, and 0.92, respectively. VirSorter2 achieved 
this with high precision (0.92) as well as high recall (0.93), 
VIBRANT had a higher precision (0.97) and lower recall 
(0.89), and PPR-Meta had a slightly lower precision at 

Table 2 Number of sequences at each stage of the RefSeq benchmarking workflow

Columns labelled with (n) contain the number of sequences at each step, and columns with (bp) indicate the number of base pairs at each step. Steps are numbered 
as follows:

1. Sequences downloaded from RefSeq which were deposited between 1 January 2020 and 12 August 2021

2. Sequences from (1) which were then dereplicated with RefSeq sequences deposited before 1.st January 2020 and training sets for DeepVirFinder, Seeker, VIBRANT, 
VirFinder, and VirSorter2

3. Host sequences (chromosome and plasmids) from (2) which were subsampled by a factor of 14.3

4. Host sequences from (3) with prophage removal using Phigaro and PhageBoost. The number in parentheses indicates the number of prophages removed.

5. Host sequences from (4) with sequences that have ≥ 30% of their open reading frames having hits to the pVOG database removed

6. All sequences from (5) randomly and uniformly fragmented to sizes between 1 and 15 kbp for use in the benchmarking study

Dataset Chromosome (n) Plasmid (n) Phage (n) Chromosome (bp) Plasmid (bp) Phage (bp)

1. Post-2020 7400 9960 1849 30,034,515,475 1,009,997,498 128,660,045

2. Post-2020 dereplicated 3546 4453 901 14,845,391,115 480,796,703 62,387,054

3. Subsampled 253 309 901 1,011,740,231 28,782,822 62,387,054

4. Prophage removed 2307 (2088) 400 (91) 901 965,959,872 27,323,488 62,387,054

5. pVOG removed 2065 313 901 848,361,160 24,433,971 62,387,054

6. Fragmented artificial contigs 104,003 2754 6664 830,889,456 21,783,942 53,426,665
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0.88 but higher recall at 0.96. The majority of the remain-
ing tools performed well, with six tools (DeepVirFinder, 
Kraken2, MetaPhinder, VirFinder, and VirSorter) having 
F1 scores of over 0.83. Kraken2 had a precision score of 
almost 1, with only 2 chromosomal fragments and no 
plasmid fragments flagged as viral whilst still correctly 
identifying over 5000 phage fragments. These chromo-
somal fragments were originally part of the complete 
chromosomes of Streptomyces albidoflavus strain J1074/
R2 and Saccharolobus shibatae strain BEU9, and Kraken2 
identified them as Streptomyces phiC31 phage and Sul-
folobus virus 1, respectively. Global alignment of the 
fragments to their references, as identified by Kraken2, 
revealed limited homology between them and suggests 
that these fragments are true- and false-positive predic-
tions (Additional file 3). ViralVerify had a low precision 
score of 0.55, whilst its recall score of 0.88 was compa-
rable to the other tools. Seeker had poor performance in 
both precision (0.48) and recall (0.41) compared to the 
other tools. Generally, k-mer-based tools performed bet-
ter than reference similarity/gene-based tools, although 
the sample size of the investigated tools is too small to 
draw statistically significant conclusions. Across our 

benchmark, only 0.06% (4/6665) of phage contigs from 
our positive set were not detected by any tool, with 
89.7% being identified by over half the tools, and 11.6% 
(775/6665) found by all 10 tools (Additional file 4). There 
was no significant taxonomic bias in the identification of 
bacteriophages between the tools, with the exception of 
Seeker which classifies less Ackermannviridae fragments 
than the other tools (Additional file 5).

The taxonomy of false-positive viral predictions var-
ied between tools and between the chromosomal and 
plasmid dataset. Nearly half (44.7%) of DeepVirFinder’s 
chromosomal false-positive hits (FPHs) belonged to 
the Clostridia despite the class only making up 1.27% 
of the dataset (Additional file 6). False-positive predic-
tions by Seeker on the chromosomal dataset was biased 
towards bacilli (30.0% of FPHs versus 13.8% of the chro-
mosomal dataset) and Actinomycetes  (29.2% of FPHs 
versus 16.1% in chromosomal dataset). For all other 
tools, except for Kraken2, the false-positive taxonomic 
profiles roughly matched with the overall distribution in 
the dataset. Seeker’s FPHs on the plasmid dataset were 
dominated by fragments belonging to the Halobacte-
ria class (75.6% of FPHs versus 3.63% of the plasmid 

Fig. 1 Overview of RefSeq benchmarking workflow. All bacterial and archaeal chromosomes and plasmids and phage genomes that were 
deposited in the RefSeq database between 1 January 2020 and 12 August 2021 inclusive were downloaded. The phage genomes were used to 
create a positive test set and the chromosomes and plasmids for a negative set. The sequences were dereplicated with the training sets for each 
machine/deep learning tool that was benchmarked (highlighted in red), as well as any RefSeq sequences deposited prior to 2020. The negative 
set was down sampled to produce a positive:negative ratio of approximately 1:19 to replicate a typical gut microbiome. Prophages were identified 
and removed with Phigaro and PhageBoost. Any host sequences with greater than 30% of open read frames having hits to the Prokaryotic Virus 
Orthologous Groups database were then removed. All sequences were then uniformly fragmented into artificial contigs with lengths between 1 
and 15 kbp. All identification tools were then run on the artificial contig sets
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dataset) (Additional file  6). VirFinder also had a bias 
towards Halobacteria plasmid fragments with it mak-
ing up 20.0% of its FPHs. Plasmid fragments of the Mol-
licutes class were overrepresented in the false-positive 
hits of every tool except Kraken2 and ViralVerify (virus), 
which had zero and two false-positive hits, respectively. 
This overrepresentation was particularly pronounced in 
PPR-Meta (10.5% of its FPHs); VIBRANT (5.66% of its 
FPHs); VirSorter all categories (11.4% of its FPHs); Vir-
Sorter categories 1, 2, 4, and 5 (14.2% of its FPHs); and 
VirSorter2 (8.2% of its FPHs), whereas Mollicutes made 
up only 0.36% of the total plasmid fragments. These 
percentages must be taken in the context of each tool’s 
overall performance as the total number of FPHs vary 
greatly between the tools — ranging from 2 to 4331 in 
the chromosomal dataset and between 0 and 313 in the 
plasmid dataset.

Benchmarking tools with randomly shuffled sequences
To serve as a further negative control, the positive RefSeq 
benchmark contigs were randomly shuffled at a nucleo-
tide level to produce sequences that should not be identi-
fied as viral by any of the tools. Of the tools tested, four 
identified zero-shuffled contigs (MetaPhinder, viralVer-
ify, VirSorter, and VirSorter2), Kraken2 classified three 
contigs, DeepVirFinder and VirFinder detecting 742 and 
1070, respectively, and with the rest of the tools identi-
fying over 2500 shuffled contigs as viral, including PPR-
Meta which incorrectly classifying 99.2% (6608/6664) of 
all the shuffled contigs as viral (Table 3).

Artificial RefSeq phage contigs generated in the previ-
ous benchmark were randomly shuffled whilst preserving 
the dinucleotide distribution using esl-shuffle from the 
HMMER3 suite. Phage detection tools were then run on 
the shuffled contigs, and any positive hits were recorded. 

Fig. 2 Comparison of viral identification tools on artificial RefSeq contigs. Contigs were generated by randomly fragmenting complete bacterial/
archaeal/phage genomes and plasmids deposited in the NCBI Reference Sequence Database (RefSeq) between 1 January 2018 and 2 July 2020, 
to a uniform distribution. Each tool was then separately run on the true positive (phage genome fragments) and negative (bacterial/archaeal 
chromosome and plasmid fragments) datasets. For tools which score/probability threshold or categories could be manually adjusted, values/
categories were selected based on optimal F1 scores
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Tools in bold type indicate methods utilising machine/
deep learning models.

Benchmarking tools with mock community shotgun 
metagenomes
We next sought to compare these tools on real commu-
nity shotgun metagenomic contigs. Thus, we obtained 
sequencing data of an uneven mock community created 
by Kleiner et al. [56], containing 32 species from across 
the tree of life, including five bacteriophages, at a large 
range of cell abundances (0.25–21.25%; Additional file 7). 
Integrated prophages were removed with Phigaro and 
PhageBoost to prevent them from being flagged as viral. 
No contigs belonging to the five bacteriophages were 
removed during this process.

This allowed us to assess the performance of our tools 
on real data whilst retaining knowledge of the ground 
truth (sample composition) and determine each tool’s 
detection limit on low abundance species. The opti-
mised parameters found in the RefSeq benchmark were 
used for each tool, with the exception of viralVerify 
and VirSorter. These tools have categorical thresholds 
which drastically change the profile of identified viral 
contigs, and the F1 scores between the thresholds were 
very close, so the parameters were further analysed in 
this benchmark. In general, the tools’ F1 scores were 
considerably lower on this dataset than on the RefSeq 
artificial contigs, with F1 scores dropping by an average 
of 40.6%, compared to the RefSeq benchmark (Fig.  3). 
Kraken2 outperformed all other tools with a F1 score 
of 0.86, 0.3 higher than DeepVirFinder in second place. 
This is due to its high precision of 0.99 whilst identi-
fying 76% of the phage contigs. DeepVirFinder had a 
high recall rate (0.80), but unlike in the RefSeq bench-
mark, had a lower precision of 0.42. Several other tools 
had similar results, with PPR-Meta, MetaPhinder, and 
VirFinder all achieving high precisions of 0.91, 0.98, 

and 0.83, respectively, but having comparatively low 
precision scores (0.24, 0.28, and 0.35, respectively). Vir-
Sorter (categories 1, 2, 4, and 5) and Seeker had compa-
rable performances to the tools above, with them both 
having F1 scores of 0.44. Seeker, along with Kraken2, 
were the only tools to attain similar F1 scores in this 
benchmark to the RefSeq benchmark. VirSorter2, 
which performed best in the RefSeq benchmark, had a 
lower F1 score (0.36) than its predecessor mainly due to 
its high number of false-positive hits. VIBRANT, which 
also performed well in the previous benchmark, again 
had poor precision and middling recall resulting in a 
F1 score of 0.32. viralVerify (NBC database, virus only) 
had both low precision (0.24) and recall (0.22) resulting 
in the lowest F1 score (0.22) in this test. K-mer tools 
on average had a higher F1 score than the reference 
similarity/gene-based tools, but this difference was not 
statistically significant due to the small sample size of 
the number of tools in this study (p = 0.094, one-tailed 
Welch’s t-test).

Out of the four DNA phage species found in the assem-
blies (Phage F2 was not sequenced due to being a ssRNA 
virus), only MetaPhinder was able to detect M13, whilst 
F0, the most abundant phage species, was detected 
by all benchmarked tools in all samples. MetaPhinder 
identified contigs belonging to all four phage species in 
two samples and three in the other sample. PPR-Meta, 
VIBRANT, VirSorter, and VirSorter2 were able to iden-
tify contigs belonging to three species in all three sam-
ples. viralVerify and VirFinder were able to identify the 
three phage species in two out of three samples, missing 
out on contigs belonging to phage ES18. DeepVirFinder 
and Kraken2 classified viral contigs belonging to three 
phage species in one out of three samples and detected 
two species in the other samples. Seeker was only able to 
identify contigs belonging to the most abundant phage 
F0. No correlation was found between F1 score and the 
number of phage strains detected (Rs =  − 0.371, p = 0.29). 
However, a positive, but not statistically significant, cor-
relation, was observed between tools that identified more 
contigs of viral origin (true positives + false positives) 
and the number of phage strains identified (Rs = 0.604, 
p = 0.06).

Impact of tool prediction on diversity metric estimation
To test the impact of these tools on diversity estimations, 
four simulated mock community metaviromes contain-
ing an average of 719 viral genomes were retrieved from 
[57]. Reads were mapped to contigs (> 1 kbp) that were 
identified as viral by each tool, and these mapped reads 
were then mapped to a set of population contigs to esti-
mate their abundance in each sample. Original reads 
were also directly mapped to the population contigs as 

Table 3 Performance of tools on randomly shuffled artificial 
phage contigs

Tool False positives

DeepVirFinder 11.13%

MetaPhinder 0.00%

VIBRANT 58.76%

ViralVerify 0.00%

VirSorter 0.00%

VirSorter2 0.00%

Seeker 38.99%

PPR Meta 99.16%

VirFinder 16.06%

Kraken2 0.05%
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a control. Read counts were then normalised by mapped 
contig lengths and sample library size, which Roux et al. 
[57] found to be reliable normalisation method. Diver-
sity estimation metrics were then calculated using the 
normalised population counts. All tools returned fewer 
genomes per sample compared to the initial population, 
although there was significant variation between tools. 
PPR-Meta, MetaPhinder, and Kraken2 retrieved the 
greatest percentage of genomes with 86.8%, 89.1%, and 
83.7% respectively (Fig. 4A). All other tools were able to 
retrieve more than 50% of the genomes with the excep-
tion of Seeker and viralVerify, which were only able to 
recover 32.4% and 41.3%, respectively, of the population 

genomes. All Shannon’s alpha diversities calculated from 
the count matrices of each tool were within 10% of the 
default population with the exception of Seeker, whose 
H score was on average 27.0% lower (Fig.  4B). Simpson 
alpha-diversity indices showed similar performance, 
with all tools having a diversity score within 1% of the 
initial population, with the exceptions of DeepVirFinder 
and Seeker, who were 1.4% and 5.1% divergent, respec-
tively (Fig. 4C). PPR-Meta was the only tool to estimate 
a comparatively higher alpha diversity than the default 
population. For beta diversity, pairwise Bray–Curtis dis-
similarities within a sample were small between all tools 
except Seeker, whose analysis of similarity (ANOSIM) 

Fig. 3 Comparison of viral identification tools on uneven mock community samples. Mock community reads were retrieved from a previous study 
[56] and assembled with metaSPAdes. Prophages were detected and removed with Phigaro and PhageBoost before running each identification tool 
using optimal thresholds based on previous benchmarks except for viralVerify and VirSorter. F1 score, precision and recall metrics are displayed as 
separate panels. Each sample is plotted as a single point for each tool, with a boxplot indicating the interquartile ranges, extremes and mean of all 
three samples
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showed significant dissimilarity when compared to other 
tools (r = 0.3926, p = 0.0019 with Benjamini–Hoch-
berg correction for multiple comparisons at FDR = 0.05) 
(Fig. 4D; Additional file 8).

Runtime and computational load of each tool
We also recorded the running times of each tool on the 
RefSeq-positive dataset on a high-performance clus-
ter (16 VCPU, 108-Gb RAM) (Fig.  5). Kraken2 and 
VirFinder were the fastest tools finishing in under 5 min. 

DeepVirFinder, MetaPhinder, PPR-Meta, and Seeker fin-
ished in under half an hour with viralVerify finishing just 
over that mark. VirSorter and VirSorter2 took the longest 
time to run on this dataset (2.9 h and 3.8 h to completion, 
respectively).

Discussion
Bacteriophages are crucial members of microbial com-
munities in nearly every ecosystem on Earth, responsi-
ble for controlling host population size as well as having 
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wider impacts on community functions. Tools designed 
to recover viral sequences from mixed community 
metagenomic and virome samples are fundamental to 
studying the role of bacteriophages in the wider context 
of their environment. Advancements in this field have 
produced an extensive suite of viral identification tools 
that each claim to improve on the performance of simi-
lar tools. Selecting which tool among these is ideal for 
a dataset is thus not straightforward, especially as each 
novel tool typically only benchmarks against two or 
three other existing tools. Most tools developed for this 
purpose, especially those released in recent years, have 
utilised machine/deep learning to classify sequences, 
whereas others rely on categorising sequences based on 
their similarity to sequences in databases. Both these 
approaches have potential to improve over time with 
newly discovered viral genomes being added to training 
datasets and databases.

Here, we compare ten methods for identifying viral 
sequences from metagenomes across three datasets. 
We first benchmarked the tools on positive and nega-
tive datasets to evaluate their performance on an ideal 
set of contigs (size between 1 and 15 kbp, without 

misassemblies) and determine approximate optimal 
thresholds. Most tools performed well here, detecting the 
majority of phage sequences, whilst keeping false posi-
tives low. PPR-Meta, VIBRANT, and VirSorter2, which 
all use different machine learning methods, had the best 
performance across the tools. Generally, k-mer tools 
outperformed reference similarity and gene-based tools. 
Whilst the optimal thresholds that we determined may 
not necessarily be ideal for all other datasets, we believe 
they can be used as a basis for further usage of these 
tools as in each case they produced considerably better 
results than the default parameters. We therefore encour-
age researchers to apply these thresholds and parameters 
within the context of their prospective dataset. Phage tax-
onomy did not affect viral prediction of the tools, whilst 
chromosomal and plasmid taxonomy revealed biases in 
several tools. Therefore, when analysing metagenomes, 
it is important to consider what phage hosts can be 
expected to be present in the sampled microbial ecosys-
tem and whether the bias of the selected viral prediction 
tool will affect downstream analyses.

A stark contrast between machine learning and more 
traditional tools can be seen when analysing their 

Fig. 5 Comparison of tool runtimes on the positive RefSeq artificial contig set. Wall runtime of each tool on mock community samples was 
recorded on a 16 VCPU, 108-GB RAM, and Linux high-performance cluster without GPU acceleration. Tools were run with 16 threads where it could 
be set as a parameter (all tools except MetaPhinder, PPR-Meta, and Seeker). The RefSeq-positive set contains approximately 53.4 million bp
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identification of randomly shuffled phage sequences. Of 
the six tools that utilise machine/deep learning methods, 
five identified a significant proportion of the sequences as 
viral, with only VirSorter2 as the only exception, probably 
due to its classifier being trained on a range of sequence 
and gene features. Three of the other four tools returned 
zero false positives, and Kraken2 only returned three. 
This highlights that whilst these machine/deep learning 
algorithms have the capability to detect novel phages, 
their performance may be unpredictable when exposed 
to novel data with features that differ from those in our 
training sets.

When tested on real metagenomic data, most tools 
performed significantly worse than in the RefSeq bench-
mark, with the exceptions of Kraken2 and Seeker. Gener-
ally, k-mer tools had a smaller drop in F1 score from their 
RefSeq benchmark compared to reference similarity/
gene-based tools. This is probably due to the compara-
tively shorter phage sequences that were assembled from 
the metagenomic reads, which provide less genetic con-
text, thereby negatively impacting the algorithms of the 
reference similarity and gene-based tools. MetaPhinder 
was the only tool which was able to detect the one contig 
of phage M13 that was assembled in each sample. Unfor-
tunately, this is likely due to MetaPhinder’s low precision 
in this benchmark resulting in many false-positive calls. 
Most other tools were able to identify contigs belonging 
to the other three phages, with the exception of Seeker 
which could only identify the most abundant phage F0 in 
each sample. This suggests that when analysing metagen-
omic datasets where phage species are likely to be in 
low abundance, k-mer-based tools such as Kraken2 and 
DeepVirFinder are the best choices, the former being the 
favoured option when precision is of particular impor-
tance, whilst the latter’s use is appropriate if the discov-
ery of novel phages is of interest due to its deep learning 
algorithm.

We also gauged any potential biases and impact these 
tools may have on the diversity of its predicted viral pop-
ulation. Most tools performed well with alpha-diversity 
indices within 10% of the default population with the 
exception of Seeker which returned a considerably lower 
value due to the very low number of viral population 
genomes Seeker originally predicted. Some tools such as 
PPR-Meta predicted higher alpha diversity than default 
population. This is due to the tools missing some high 
abundance genomes from their predictions, resulting in 
a more even diversity distribution. When evaluating beta 
diversity, Seeker was the only tool that produced results 
that had significant dissimilarity from the other tools 
and did not cluster with the other programmes, again as 
a result of the low proportion of genomes it recovered 
in this dataset. Hence, beta-diversity trends of the tools 

examined here, with the exception of Seeker, are accu-
rate to the original population, even when only half the 
genomes are recovered.

Runtime and computational load are also important 
factors to examine, since these can become practical 
limitations if large samples take many hours or days to 
be analysed. Most tools were reasonably fast, although 
VirSorter, and its successor VirSorter2, took multiple 
hours to complete their runs. It is important to note that 
VIBRANT, VirSorter, and VirSorter2 annotate the iden-
tified viral genomes and predict prophages which come 
at the expense of runtime, although these can be useful 
for some applications. Kraken2 was by far the fastest tool, 
taking less than a minute to run on our dataset. How-
ever, Kraken2 requires very high RAM use compared to 
the other benchmarked tools so it may not be feasible for 
researchers with limited computing power.

Although these benchmarks comprehensively com-
pared the performance of state-of-the-art tools, there 
are a number of limitations with our study. First, whilst 
we use RefSeq genomes, and a mock metagenomic com-
munity to benchmark these tools, we do not address 
the tools’ ability to identify viral sequences belonging to 
different phage families. Secondly, we used the default 
database(s) or the original trained model(s) that was pro-
vided with each tool. Whilst providing each tool the same 
database, or dataset to be trained on, may have been a 
fairer comparison of the underlying algorithms, this was 
beyond the scope of our study. We note that most rou-
tine users are also unlikely to retrain these tools prior to 
their use. Thirdly, we did not assess the performance of 
combining multiple tools, which could provide mean-
ing insights that would be missed when only one single 
tool is used, as in Marquet et al. [58] where the authors 
combined multiple tools into a single workflow. Fourth, 
many of the tools have additional functionalities, which 
we did not benchmark here but may nevertheless impact 
a researcher’s choice of tool such as prophage prediction 
(VIBRANT, VirSorter, VirSorter2); plasmid prediction 
(PPR-Meta); taxonomic identification (Kraken2); and 
functional annotation (VIBRANT). Finally, a few recently 
developed tools we found during our study were not 
included in our benchmarking either due to (1) requir-
ing the use of its own web server and therefore not being 
scalable (VIROME, VirMiner), (2) lack of clear instal-
lation/running instructions (ViraMiner), or (3) errors 
when attempting to use the tool, which we were unable to 
resolve (PhaMers, VirNet, VirMine).

Conclusion
Our comparative analysis of ten currently available 
metagenomic virus/phage identification tools provides 
valuable metrics and insights for other investigators to 
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use and build on. Using mock communities and artifical 
datasets, precision, recall, and biases of these tools could 
be calculated. By adjusting the filtering thresholds for 
viral identification for each tool and comparing F1 scores, 
we were able to optimise performance in every case. In 
the artificial RefSeq contig benchmark, most tools per-
formed well, with PPR Meta, VIBRANT and VirSorter2 
having the highest F1 scores. In the mock uneven com-
munity dataset, tools generally performed worse with 
the exception of Kraken2, whose performance included 
almost perfect precision with above average recall scores. 
All tools except Seeker were able to produce a diversity 
profile with similar indices to the original virome popula-
tion and are therefore suitable for phage ecology studies. 
We suggest that of the currently available metagenomic 
phage identification tools, Kraken2, should be considered 
when researchers are trying to identify previously charac-
terised phages. When novel phage detection is required, 
Kraken2 should be used in combination with tools such 
as VirSorter2 and DeepVirFinder.

Materials and methods
Benchmarking with RefSeq dataset
Complete bacterial and archaeal chromosome and plas-
mid sequences, and phage genomes deposited in RefSeq 
[59] since 1 January 2020 (inclusive), were downloaded 
on 12 August 2021 to construct a benchmarking set. 
Sequences in this set with ≥ 95% identity to the pre-
2020 RefSeq sequences and training datasets for Deep-
VirFinder, PPR Meta, Seeker, VIBRANT, VirFinder, and 
VirSorter were removed with dedupe.sh [60] to reduce 
any potential overfitting. Chromosome and plasmid 
sequences were then randomly down sampled by a fac-
tor of 14.3, using reformat.sh (from BBTools suite) [60], 
to produce a host:phage ratio of approximately 19:1. 
Phigaro (v2.3.0, default settings) [54] and PhageBoost 
(v0.1.7, default settings) [55] were run in succession on 
the chromosomal and plasmid sequences to remove 
prophage sequences. Host sequences with ≥ 30% open 
reading frames (ORFs) with HMM hits to the pVOG 
database were removed as contamination. All sequences 
were then uniformly fragmented to between 1 and 15 
kbp, using a custom python script (available at https:// 
github. com/ sxh11 36/ Phage_ tools), to create artificial 
contigs. Each viral prediction tool was then run on the 
three sets of contigs (chromosome, plasmid, and phage) 
with default settings except for VIBRANT and VirSorter 
where the phage-derived contig set was additionally run 
using their virome decontamination modes, due to their 
potentially improved performance in datasets consisting 
of mainly viral fragments. Commands used to run each 
tool and their version numbers can be found at https:// 
github. com/ sxh11 36/ Phage_ tools/ blob/ master/ manus 

cript_ tools_ script. md. RefSeq benchmarking datasets are 
available for download and use at https:// figsh are. com/ 
artic les/ datas et/ RefSeq_ Datas ets_ for_ bench marki ng_-_ 
Ho_ et_ al_/ 19739 884.

For tools where score/probability thresholds can be 
manually adjusted (DeepVirFinder, MetaPhinder, PPR 
Meta, Seeker, and VirFinder), F1 curves were plotted (100 
data points), and optimal thresholds were determined by 
maximal F1 score. For viralVerify and VirSorter, which 
have categorical thresholds for phage identification, the 
category sets with the highest F1-score were plotted; for 
VirSorter, two category sets were compared, categories 
1, 2, 4, and 5 and all categories, as these are commonly 
used. ViralVerify was also additionally run using both 
Pfam-A 33.0 and a provided database of virus/chromo-
some-specific HMMs as these are listed on the tool’s 
GitHub usage guide. Kraken2 was run with the pre-built 
kraken2-microbial database, available at https:// loman 
lab. github. io/ mockc ommun ity/ mc_ datab ases. html. The 
reference genomes of the two chromosomal fragments 
which Kraken2 identified as viral were downloaded from 
NCBI RefSeq (NC_CP059254.1, and NZ_CP07771.1). 
The fragments and the reference genomes were anno-
tated with pharokka [61] and globally aligned and visu-
alised with clinker [62]. Taxonomy of tool true-positive 
and false-positive viral predictions was retrieved using 
the R package taxonomizr v 0.10.3 [63].

Run time of each tool on this dataset was recorded using 
a Linux virtual machine provided by Cloud Infrastruc-
ture for Big Data Microbial Bioinformatics (CLIMB-BIG-
DATA), with the following configuration: CPU: Intel® 
Xeon® Processor E3-12xx v2 (8 VCPU), GPU: Cirrus 
Logic GD 5446, and memory: 64-GB multi-bit ECC. Tools 
were run with 16 threads where it could be set as a param-
eter (all tools except MetaPhinder, PPR-Meta, and Seeker).

Benchmarking with randomly shuffled sequences
All artificial phage contigs created in the previous bench-
mark were randomly shuffled whilst preserving dinucle-
otide distribution using esl-shuffle from the HMMER3 
suite (v3.3.2, -d) [64]. Each identification tool was then 
run on the randomly shuffled sequences using the opti-
mised thresholds that were determined in the RefSeq 
benchmark, and false positives were recorded.

Benchmarking with mock community metagenomes
Three shotgun metagenomic sequencing replicates of an 
uneven mock community [56] were retrieved from the 
European Nucleotide Archive (BioProject PRJEB19901). 
These communities contain five phage strains: ES18 (H1), 
F0, F2, M13, and P22 (HT105). The quality of the data 
was checked using FASTQC (v0.11.8, default settings) 

https://github.com/sxh1136/Phage_tools
https://github.com/sxh1136/Phage_tools
https://github.com/sxh1136/Phage_tools/blob/master/manuscript_tools_script.md
https://github.com/sxh1136/Phage_tools/blob/master/manuscript_tools_script.md
https://github.com/sxh1136/Phage_tools/blob/master/manuscript_tools_script.md
https://figshare.com/articles/dataset/RefSeq_Datasets_for_benchmarking_-_Ho_et_al_/19739884
https://figshare.com/articles/dataset/RefSeq_Datasets_for_benchmarking_-_Ho_et_al_/19739884
https://figshare.com/articles/dataset/RefSeq_Datasets_for_benchmarking_-_Ho_et_al_/19739884
https://lomanlab.github.io/mockcommunity/mc_databases.html
https://lomanlab.github.io/mockcommunity/mc_databases.html
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[65], and overrepresented sequences were removed with 
cutadapt (v2.10, –max-n 0) [66]. Cleaned paired-end 
reads were then assembled with MetaSPAdes (v3.14.1, 
default settings) [67], and contigs < 1 kbp were removed. 
Prophages were then removed from the contigs by 
sequentially running Phigaro and then PhageBoost, as 
with the RefSeq chromosomal and plasmid datasets. 
Each tool was then run on the three sets of contigs using 
optimal parameters as determined previously with the 
exception of viralVerify and VirSorter where all categori-
cal thresholds were re-evaluated. MetaQUAST (v5.0.2, 
default settings) [68] was used to map contigs to refer-
ence phage genomes and calculate coverage.

Benchmarking with simulated mock virome communities
Four mock communities (samples 13, 2, 7, and 9) con-
taining between 500 and 1000 viral genomes created by 
Roux et al. [57] were selected for analysis. These sam-
ples belonged to four different beta diversity groups and 
did not share any of their 50 most abundant viruses. 
Each simulation of 10 million paired-end reads were 
quality controlled with Trimmomatic [69] and assem-
bled with MetaSPAdes by Roux et al. [57]. The contigs 
were then downloaded for benchmarking. As before, 
contigs with length < 1 kbp were removed and then 
inputted into each viral identification programme. Posi-
tive viral contig sets for each tool were then extracted, 
and reads were mapped to these with BBMap [60] with 
ambiguous mapped reads assigned to contigs at ran-
dom (ambiguous = random), as in Roux et al. [57]. Pri-
mary mapped reads with pairs mapping to the same 
contig (options -F 0 × 2 0 × 904) were then extracted 
with SAMtools (v1.11) and mapped to a pool of non-
redundant population contigs. This pool was created 
by clustering all four samples with nucmer (v3.1) [70], 
at ≥ 95% ANI (average nucleotide identity) across ≥ 80% 
of their lengths. Abundance matrices for each tool 
were calculated by normalising read counts by con-
tig length and total library size to produce counts per 
million (CPM). These abundance matrices were then 
used to calculate Shannon, Simpson, and Bray–Curtis 
dissimilarity indices using the vegan package (v2.5.7) 
[71]. Nonmetric multidimensional scaling (NMDS) and 
analysis of similarity (ANOSIM) were also computed 
with vegan. ANOSIM p-values were corrected with the 
Benjamini–Hochberg method [72]. Seed and permuta-
tions were set as 123 and 9999, respectively, where pos-
sible. All plots were generated with ggplot2 (v3.3.2) [73] 
and arranged with ggarrange from ggpubr (v0.4.0). [74].
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