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A general insertion theorem due to Preiss and Vilimovský is extended to the category 
of locales. More precisely, given a preuniform structure on a locale we provide 
necessary and sufficient conditions for a pair f ≥ g of localic real functions to 
admit a uniformly continuous real function in-between. As corollaries, separation 
and extension results for uniform locales are proved. The proof of the main theorem 
relies heavily on (pre-)diameters in locales as a substitute for classical pseudometrics. 
On the way, several general properties concerning these (pre-)diameters are also 
shown.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In classical point-set topology, one finds in the literature a large number of insertion-type results that 
provide conditions under which two comparable real-valued functions belonging to given classes admit a 
continuous function in-between (see the different variants in [5,12,15,18,25,26]). However, besides the paper 
by Preiss and Vilimovský [22], the literature on insertion results for uniform structures is scarce. The main 
insertion theorem from [22] can be stated as follows:

Topological insertion theorem for uniform spaces. Let X be a uniform space and f, g : X → R two maps 
with f ≥ g. Then the following are equivalent.
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(i) There is a uniformly continuous h : X → R such that f ≥ h ≥ g;
(ii) For every δ > 0 there is a uniform cover U of X such that for all n ∈ N the subspaces f−1(−∞, r]

and g−1[s, +∞) are Stn(U)-far whenever s − r > (n + 1)δ.

The main goal of the present paper is to extend this result to the category of locales. Even more generally, 
we prove the result for preuniform locales (i.e., locales equipped with uniformities but no compatibility 
condition between them) so that, in particular, complete regularity of the underlying locale is not required.

Throughout the paper, we make use of the theory of general localic real functions launched in [9], because 
it provides a useful representation of arbitrary — i.e., not necessarily continuous — real functions on locales. 
As is well known, this representation allows one to phrase and prove point-free counterparts of the Katětov-
Tong theorem for normal spaces [9], of the general insertion result of Blair and Lane [8], and many others 
(see e.g. [1,6,10]).

In this paper we show that the notion of uniform continuity can be recasted via these general maps 
of locales in such a way that one obtains a convenient setting to phrase and prove the uniform insertion, 
extension and separation results for uniform locales.

In certain aspects, the localic approach diverges significantly from the classical one. For example, as a 
substitute of classical pseudometrics, we make use of the notion of localic diameter, which was introduced 
by Pultr in the eighties for extending metric structures to the category of locales. In particular, we partially 
improve some results from [24].

This paper is organized as follows. In Section 2 we provide specific preliminaries concerning real functions 
and uniform locales. Section 3 concerns (pre-)diameters and contains the proof of the main technical lemma 
for the uniform insertion theorem. In Section 4 we discuss the notion of farness for sublocales, and we 
introduce uniform continuity in the setting of arbitrary localic real functions. In particular, we prove that 
this notion coincides with the usual notion of a uniform homomorphism. Section 5 is devoted to proving 
the main result of the paper — the uniform insertion theorem for locales. We also outline an easier proof 
of the insertion theorem for the bounded case by using a technique due to Katětov. In Section 6, we prove 
a separation result for sublocales and an extension result as consequences of the insertion theorem.

2. Preliminaries

Our notation and terminology regarding the categories of frames and locales will be that of [19]. The 
Heyting operator in a frame L, right adjoint to the meet operator, will be denoted by →; for each a ∈ L, 
a∗ = a → 0 is the pseudocomplement of a. Furthermore, an element b is rather below a (written b ≺ a) if 
b∗ ∨ a = 1. A sublocale of a locale L is a subset S ⊆ L closed under arbitrary meets such that

∀a ∈ L, ∀s ∈ S, a → s ∈ S.

These are precisely the subsets of L for which the embedding jS : S ↪→ L is a morphism of locales.
The system S(L) of all sublocales of L, partially ordered by inclusion, is a coframe [19, Theorem III.3.2.1], 

that is, its dual lattice is a frame. Infima and suprema are given by

∧
i∈I

Si =
⋂
i∈I

Si,
∨
i∈I

Si = {
∧
M | M ⊆

⋃
i∈I

Si}.

The least element is the sublocale O = {1} and the greatest element is the entire locale L.
Since S(L) is a coframe, every sublocale S of L has a supplement denoted by S#L (or simply S# if there 

is no risk of confusion) which can be characterized as the smallest sublocale of L whose join with S is the 
entire L. We note that if S is a complemented sublocale of L and T is a sublocale of S, then
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T#S = S ∩ T# (2.1)

(see [7, Proposition 4.1 (7)]).
For any a ∈ L, the sublocales

cL(a) = ↑a = {x ∈ L | x ≥ a} and oL(a) = {a → b | b ∈ L}

are the closed and open sublocales of L, respectively (that we shall denote simply by c(a) and o(a) when 
there is no danger of confusion). For each a ∈ L, c(a) and o(a) are complements of each other in S(L) and 
satisfy the identities

⋂
i∈I

c(ai) = c(
∨
i∈I

ai), c(a) ∨ c(b) = c(a ∧ b), (2.2)
∨
i∈I

o(ai) = o(
∨
i∈I

ai) and o(a) ∩ o(b) = o(a ∧ b).

For any sublocale S of L, the closed (resp. open) sublocales cS(a) (resp. oS(a)) of S are precisely the 
intersections c(a) ∩S (resp. o(a) ∩S) and we have, for any a ∈ L, c(a) ∩S = cS(j∗S(a)) and o(a) ∩S = oS(j∗S(a)), 
where j∗S : L � S denotes the left adjoint of the sublocale embedding jS : S ↪→ L.

2.1. The frame of reals

Recall the frame of reals L(R) from [3]. Here we define it, equivalently, as the frame presented by 
generators (r, —) and (—, r) for all r ∈ Q, and relations

(r1) (p, —) ∧ (—, q) = 0 if q ≤ p;
(r2) (p, —) ∨ (—, q) = 1 if p < q;
(r3) (p, —) =

∨
r>p(r, —);

(r4) (—, q) =
∨

s<q(—, s);
(r5)

∨
p∈Q(p, —) = 1;

(r6)
∨

q∈Q(—, q) = 1.

Further, for rationals r, s ∈ Q we denote (r, s) = (r, —) ∧ (—, s).
A continuous real-valued function [3] on a frame L is a frame homomorphism h : L(R) → L. We denote 

by R(L) the collection of all continuous real-valued functions on L — i.e.,

R(L) := Frm(L(R), L).

The collection R(L) is an �-ring partially ordered by

f ≤ g ⇐⇒ g(—, r) ≤ f(—, r) for all r ∈ Q ⇐⇒ f(r,—) ≤ g(r,—) for all r ∈ Q.

There is a useful way of specifying continuous real-valued functions with the help of scales ([9, Section 4]). 
A descending scale (resp. ascending scale) in L is a family {br}r∈Q ⊆ L such that b∗s ∨ br = 1 (b∗r ∨ bs = 1) 
whenever r < s and such that 

∨
r∈Q br = 1 =

∨
r∈Q b∗r . For each descending (resp. ascending) scale {br}r∈Q

in L, the formulas

h(p,—) =
∨
p<r

br and h(—, q) =
∨
q>s

b∗s

(resp. h(p,—) =
∨

b∗r and h(—, q) =
∨

bs)

p<r q>s
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determine an h ∈ R(L).
Let S(L)op = (S(L), ≤), with ≤≡⊇, be the dual lattice of S(L). Now, a real-valued function on L is 

a frame homomorphism h : L(R) → S(L)op (see [9]). We denote by F(L) the collection of all real-valued 
functions on L — i.e.,

F(L) := Frm(L(R),S(L)op).

By the identities (2.2), the set cL of all closed sublocales of L is a subframe of S(L)op isomorphic to the 
given L. Using this isomorphism L � cL, the collection R(L) of continuous real-valued functions on L can 
be identified with the set of all f ∈ F(L) such that f(r, —) and f(—, r) are closed for every r ∈ Q; since we 
want to distinguish notationally both collections, the latter will be denoted by C(L) — i.e.,

C(L) = { f ∈ F(L) | f(r,—) and f(—, r) are closed for all r ∈ Q }.

In other words, if f ∈ F(L) then one has that f ∈ C(L) if and only if f factors through c : L → S(L)op (the 
frame homomorphism that sends a to c(a)).

The �-ring F(L) is an extension of R(L), and so it is partially ordered by

f ≤ g ⇐⇒ f(—, r) ⊆ g(—, r) for all r ∈ Q ⇐⇒ g(r,—) ⊆ f(r,—) for all r ∈ Q. (2.3)

Remarks 2.1. The following properties are easy to check:

(1) If f ∈ R(L), then

f(s,—) ≤ f(—, s)∗ ≤ f(s′,—) for any s′ < s, and

f(—, r) ≤ f(r,—)∗ ≤ f(—, r′) for any r′ > r

(2) If f ∈ F(L), then

f(s′,—) ⊆ f(—, s)# ⊆ f(s,—) for any s′ < s, and

f(—, r′) ⊆ f(r,—)# ⊆ f(—, r) for any r′ > r.

Examples 2.2.

(1) For every p ∈ Q we have the constant function p ∈ F(L) given by

p(r,—) =
{

O if r < p,

L if r ≥ p,
and p(—, r) =

{
L if r ≤ p,

O if r > p.

Notice that p ∈ C(L) for every p ∈ Q.
(2) For each complemented sublocale S of L we define the characteristic function χS ∈ F(L) of S given by

χS(r,—) =

⎧⎪⎪⎨
⎪⎪⎩

O if r < 0,
S# if 0 ≤ r < 1,
L if r ≥ 1,

and χS(—, r) =

⎧⎪⎪⎨
⎪⎪⎩
L if r ≤ 0,
S if 0 < r ≤ 1,
O if r > 1.

Notice that 0 ≤ χS ≤ 1.
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We say that an f ∈ F(L) is bounded if there are α, β ∈ Q such that α ≤ f ≤ β. By (2.3) it is easy to 
check that α ≤ f ≤ β holds if and only if for every r, s ∈ Q with r < α and s > β we have

f(r,—) = O and f(—, s) = O, (2.4)

or equivalently if for every r, s ∈ Q with r ≤ α and s ≥ β we have

f(s,—) = L and f(—, r) = L. (2.5)

2.2. Uniform locales via covers

Some general references for uniformities in locale theory are [4,23,24] and Chapters VIII–XII in [19]. In 
this paper, we adopt the “Tukey-style” approach via open covers (cf. also [13,14]), and the preliminaries 
contained in [2] will be enough for our purposes. In what follows, we recall briefly some of the basic notions 
needed.

2.2.1. Basic properties of covers
A cover of a frame L is a subset U ⊆ L such that 

∨
U = 1. A cover U refines (or is a refinement of) a 

cover V , written, U ≤ V , if for any u ∈ U there is some v ∈ V such that u ≤ v. For covers U, V we have 
the largest common refinement U ∧ V = { u ∧ v | u ∈ U, v ∈ V }.

For any U ⊆ L and any a ∈ L the star of a in U is the element

U · a =
∨
{u ∈ U | u ∧ a �= 0 }.

For any U, V ⊆ L, set

U · V = {U · v | v ∈ V }.

One usually denotes Ua and UV instead of U · a and U · V . Since this operation is neither associative nor 
commutative, we will also use parentheses when needed.

Proposition 2.3. For any covers U, V ⊆ L and any frame homomorphism h : L → M , we have:

(1) UV is a cover of L;
(2) a ≤ Ua;
(3) Ua ≤ b implies a ≺ b;
(4) U ≤ UU ;
(5) U ≤ V and a ≤ b imply Ua ≤ V b;
(6) U(V a) ≤ (UV )a = U(V (Ua));
(7) U

(∨
i∈I ai

)
=

∨
i∈I Uai;

(8) h[U ] h(a) ≤ h(Ua).

For a cover U , define a cover Un for n ≥ 1 inductively by setting

U1 = U and Un+1 = U · Un.

Following [2], given a cover U of L we define a map SU : L → L given by SU (a) = Ua for each a ∈ L. We 
denote by Sn

U the result of composing SU with itself n times. Notice that, in general, SUn �= Sn
U . We shall 

need the following technical properties:
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Lemma 2.4. Let L be a locale, U a cover of L and n, m ∈ N. Then:

(1) If n > 1, then a ∈ Un if and only if there is a u ∈ U such that a = Sn−1
U (u);

(2) SUn = S2n−1
U ;

(3) UnU = U2n;
(4) Unm ≤ (Un)m.

Proof. (1) and (2) are proved in [2, Fact 5.1] and [2, Eq. 5.1.2] respectively.

(3) By definition a ∈ UnU if and only if there is a u ∈ U with a = SUn(u) = S2n−1
U (u) but by (1) the latter 

is equivalent to a ∈ U2n.

(4) We may assume n, m > 1. By an application of (1) one has a ∈ Unm if and only if a = Snm−1
U (u) for some 

u ∈ U . Further, by (1), b ∈ (Un)m if and only if b = Sm−1
Un (v) for some v ∈ Un. By another application of (1), 

the latter is equivalent to the existence of a w ∈ U such that b = Sm−1
Un (Sn−1

U (w)) = S(m−1)(2n−1)
U (Sn−1

U (w)) =
S(m−1)(2n−1)+n−1
U (w). The result thus follows from the obvious fact that nm ≤ (m − 1)(2n − 1) + n. �

2.2.2. Stronger notions of refinements
We shall be interested in certain strengthenings of the notion of refinement of covers (see e.g., [13]). Let 

U, V be covers. We say that

(1) U is a star refinement of V , denoted by U ≤∗ V , if U2 ≤ V ;
(2) U is a barycentric refinement of V , denoted by U ≤∗

1 V , if there is a cover W of L with UW ≤ V ;
(3) U is a connected refinement of V , denoted by U ≤∗

2 V , if for all S ⊆ U such that a ∧ b �= 0 for all 
a, b ∈ S, there is a v ∈ V with 

∨
S ≤ v;

(4) U is a regular refinement, denoted by U ≤∗
3 V , of V if for all a, b ∈ U with a ∧ b �= 0, there is a v ∈ V

with a ∨ b ≤ v.

Note that star refinement is the strongest relation, and regular refinement is the weakest and it implies 
ordinary refinement. Further, conditions (2) and (3) are generally unrelated, even classically, as displayed 
in the following diagram.

U ≤∗ V

U ≤∗
1 V U ≤∗

2 V

U ≤∗
3 V

U ≤ V

2.2.3. Farness
If U is a cover of L, elements a, b ∈ L are said to be U -far if

∀u ∈ U, u ∧ a �= 0 =⇒ u ∧ b = 0.

For a general view of the importance of the farness relation in the uniform context, we refer the reader to 
[2]. We note that if a and b are U -far and V ≤ U , then a and b are also V -far. Further, if a and b are U -far 
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and a′ ≤ a and b′ ≤ b, then a′ and b′ are also U -far. The following proposition summarizes a number of 
other useful characterizations:

Proposition 2.5. Let L be a locale, U a cover of L and a, b ∈ L. Then the following are equivalent:

(i) The elements a and b are U -far ;
(ii) For every u ∈ U , either u ≤ a∗ or u ≤ b∗;
(iii) Ua ∧ b = 0;
(iv) a ∧ Ub = 0;
(v) a∗∗ and b∗∗ are U -far.

2.2.4. Covering uniformities
From now on we shall always assume that 1 �= 0 in L (that is, |L| ≥ 2). A (covering) uniformity on L is 

a nonempty system U of covers of L such that

(U1) U ∈ U and U ≤ V implies V ∈ U,
(U2) U, V ∈ U implies U ∧ V ∈ U,
(U3) for every U ∈ U there is a V ∈ U such that V V ≤ U , and
(U4) for every a ∈ L, a =

∨
{b | b �U a}

where we write b �U a if Ub ≤ a for some U ∈ U.
Without (U4) one speaks of a preuniformity, without (U1) one speaks of a basis of a (pre)uniformity (in 

the latter case one obtains, of course, a (pre)uniformity adding all the V with V ≥ U ∈ U).
A uniform frame (resp. preuniform frame) is a pair (L, U) where U is a uniformity (resp. preuniformity) 

on L.

2.2.5. The metric uniformity of L(R)
The frame of reals carries a natural uniformity, its metric uniformity [3], generated by covers

Dn =
{

(r, s) ∈ L(R) | s− r = 1
n

}
, n ∈ N.

We will consider, more generally, the covers

Dδ =
{

(r, s) ∈ L(R) | s− r = 1
δ

}
, δ ∈ Q+

(where Q+ denotes the set of positive rational numbers).

3. Prediameters

Let us recall (cf. [24, 1.2] or [19, XI.3.1]) that a prediameter on a frame L is a function f : L → [0, +∞]
with the following properties:

(PD1) f(0) = 0;
(PD2) a ≤ b implies f(a) ≤ f(b) for all a, b ∈ L;
(PD3) For all ε > 0, the set { a ∈ L | f(a) < ε } is a cover of L.

Consider now the following two properties:

(PD4) If a, b ∈ L are such that a ∧ b �= 0, then f(a ∨ b) ≤ f(a) + f(b);
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(PD5) If a, b ∈ L are such that a ∧ b �= 0, then f(a ∨ b) ≤ 2 max{ f(a), f(b) } (and so, in particular, 
f(a ∨ b) ≤ 2f(a) + 2f(b)).

Clearly, (PD4) implies (PD5). A prediameter satisfying (PD4) is referred to as a diameter. Moreover, a 
prediameter satisfying (PD5) is a weak diameter (cf. [24]). The latter should not be confused with the 
notion of strong prediameter (cf. [19]) — i.e., a prediameter which additionally satisfies

(PD6) If S ⊆ L is such that a ∧ b �= 0 for all a, b ∈ S, then f(
∨
S) ≤ 2 sup { f(s) | s ∈ S }.

Clearly, every strong prediameter is a weak diameter. For our purposes we shall be interested only in weak 
diameters, but in passing we shall also present an application to strong prediameters. The following lemma 
about weak diameters will be crucial in the proof of our uniform insertion theorem.

Lemma 3.1. Let f be a weak diameter on a locale L. Let a1, . . . , ak ∈ L with ai−1∧ai �= 0 for all i = 2, . . . , k. 
Then,

f(
k∨

j=1
aj) ≤ 2f(a1 ∨ a2) + 4

k−1∑
i=3

f(ai−1 ∨ ai) + 2f(ak−1 ∨ ak).

Proof. Obviously we can assume that every summand in the right hand side is finite (and in that case, 
by (PD5), the left hand side is also readily seen to be finite, and so each f(

∨i
j=1 aj) is also finite). We 

proceed by induction over k. If k = 1 or k = 2 there is nothing to prove. If k = 3, we have f(a1 ∨ a2 ∨ a3) ≤
2f(a1∨a2) +2f(a2∨a3) by (PD5). Assume now it holds for all sequences of length < k and let a1, . . . , ak ∈ L

with ai−1 ∧ ai �= 0 for all i = 2, . . . , k. Let

A := { i ∈ { 1, . . . , k } | f(
k∨

j=1
aj) ≤ 2f(

i∨
�=1

a�) }.

One has trivially k ∈ A, so A �= ∅, hence there is a well-defined m = minA. If m = 1 or m = 2, the formula 
in the statement holds trivially so assume m > 2. By minimality (and because m > 1) m − 1 /∈ A — i.e., 
2f(

∨m−1
�=1 a�) < f(

∨k
j=1 aj).

Now, by way of contradiction suppose 2f(
∨k

�=m−1 a�) < f(
∨k

j=1 aj). Then

2max{ f(
m−1∨
�=1

a�), f(
k∨

�=m−1
a� }) < f(

k∨
j=1

aj). (3.1)

But

f(
k∨

j=1
aj) = f(

m−1∨
�=1

a� ∨
k∨

�=m−1
a�)

and (
∨m−1

�=1 a�) ∧ (
∨k

�=m−1 a�) ≥ am−1 �= 0, so by (PD5) it follows that

f(
k∨

j=1
aj) ≤ 2max{ f(

m−1∨
�=1

a�), f(
k∨

�=m−1
a�) }. (3.2)

Combining (3.1) and (3.2) we reach a contradiction. Hence, we have

f(
k∨

aj) ≤ 2f(
k∨

a�). (3.3)

j=1 �=m−1
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Now, if m = k, from (3.3) we see that the desired formula holds, so we may as well assume m < k. Now, 
we have

f(
k∨

j=1
aj) = 1

2f(
k∨

j=1
aj) + 1

2f(
k∨

j=1
aj) ≤ f(

m∨
�=1

a�) + f(
k∨

�=m−1
a�) (3.4)

(because of (3.3) and the fact that m ∈ A). We use induction twice:

f(
m∨
�=1

a�) ≤ 2f(a1 ∨ a2) + 4
m−1∑
i=3

f(ai−1 ∨ ai) + 2f(am−1 ∨ am)

and

f(
k∨

�=m−1
a�) ≤ 2f(am−1 ∨ am) + 4

k−1∑
i=m+1

f(ai−1 ∨ ai) + 2f(ak−1 ∨ ak).

This together with (3.4) gives the desired inequality. �
The combination of the previous lemma with (PD5) yields the following

Corollary 3.2. Let f be a weak diameter on a locale L. Let a1, . . . , ak ∈ L with ai ∧ ai−1 �= 0 for all 
i = 2, . . . , k. Then

f(
k∨

j=1
aj) ≤ 4f(a1) + 12f(a2) + 16

k−2∑
i=3

f(ai) + 12f(ak−1) + 4f(ak).

Remark 3.3. The last corollary is, in a certain sense, an improvement of [24, Lemma 3.9] (cf. also [19, 
Lemma XI.3.2.4]), which shows a similar inequality whenever f satisfies a property stronger than (PD5)
—too strong for our purposes—, namely:

(3W) If a, b, c ∈ L are such that a ∧ b �= 0 �= b ∧ c, then f(a ∨ b ∨ c) ≤ 2 max{ f(a), f(b), f(c) }.

Of course, the price one has to pay for considering (PD5) instead of (3W) is that the inequality in Corol-
lary 3.2 is not as sharp as that in [24, Lemma 3.9].

We close this section with an application of Lemma 3.1 to strong prediameters. For that, we first recall 
the definition of star-additive diameter (see [19, XI.1.2]). It is an important notion, since any such diameter 
immediately induces a uniformity on L, and it can be satisfactorily approximated by a metric diameter (see 
[19, XI.1.3]). Precisely, a diameter f is said to be star-additive if

(DS) If a ∈ L and S ⊆ L are such that a ∧ b �= 0 for all b ∈ S, then f(a ∨
∨
S) ≤ f(a) + sup { f(b) + f(c) |

b, c ∈ S }.

We then have the following (compare with [19, Proposition XI.3.2.5]):

Proposition 3.4. Let L be a locale and f a strong prediameter on L. Then there is a star-additive diameter 
d on L such that

1 f ≤ d ≤ f.
32
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We omit the details of the proof, as it is very similar to [19, Proposition XI.3.2.5] (instead of [19, 
Lemma XI.3.2.4] and property (3W), one uses Lemma 3.1).

In the remainder of this section, we shall specialize the previous results towards proving the uniform 
insertion theorem.

Lemma 3.5. Let L be a locale, {Vn}n∈Z a sequence of covers with Vn−1 ≤∗
3 Vn for all n ∈ Z and set 

f : L → [0, ∞] given by

f(a) = inf { 2n | ∃u ∈ Vn with a ≤ u }.

Then f is a weak diameter on L.

Proof. Note that if f(a) ≤ 2n, then there is a v ∈ Vn such that a ≤ v. Properties (PD1) and (PD2) are 
obvious, and (PD3) follows from the fact that each Vn is a cover and Vn ⊆ { a ∈ L | f(a) < 2n+1 }. Let us 
finally show (PD5) so let a, b ∈ L such that a ∧ b �= 0. If f(a) = +∞ or f(b) = +∞, then there is nothing 
to prove. Now assume without loss of generality that f(a) ≤ f(b) < +∞. If f(b) = 0, then f(a) = 0 — i.e., 
for all n ∈ Z there are un, vn ∈ Vn with a ≤ un and b ≤ vn. Now, let n ∈ Z. Then un−1 ∧ vn−1 ≥ a ∧ b �= 0, 
and since Vn−1 ≤∗

3 Vn, there is a v ∈ Vn with un−1 ∨ vn−1 ≤ v. Consequently a ∨ b ≤ v and so f(a ∨ b) = 0. 
Assume f(b) = 2n, then there are u, v ∈ Vn with a ≤ u and b ≤ v. Since u ∧ v �= 0 and Vn ≤∗

3 Vn+1, there is 
a w ∈ Vn+1 such that u, v ≤ w. Hence, a ∨ b ≤ w and so f(a ∨ b) ≤ 2n+1 = 2 · 2n, as desired. �
Remarks 3.6.

(1) It is easy to check that the previous lemma also holds when one replaces the relation ≤∗
3 by ≤∗

2 and the 
words “weak diameter” by “strong prediameter”.

(2) The lemma above can be clearly adapted to a sequence {Vn}n∈N with Vn+1 ≤∗
3 Vn in which case 

f : L → [0, ∞] is given by f(a) = inf{ 2−n | ∃u ∈ Vn with a ≤ u }.

We also state the following for future reference:

Corollary 3.7. Let L be a locale, {Vn}n∈Z a sequence of covers with Vn−1 ≤∗
3 Vn for all n ∈ Z. Let a1, . . . , ak ∈

L with ai−1 ∧ ai �= 0 for all i = 2, . . . , k, and suppose that ai ∈ Vni
for all i = 1, . . . , k. Suppose also that

k∑
i=1

2ni+4 < 2n.

Then there is a v ∈ Vn−1 such that a1, ak ≤ v.

Proof. Let f denote the weak diameter given by Lemma 3.5. By the definition of f , we have f(ai) ≤ 2ni

for all i = 1, . . . , k. In particular,

4f(a1) + 12f(a2) + 16
k−2∑
i=3

f(ai) + 12f(ak−1) + 4f(ak) ≤ 16
k∑

i=1
f(ai) ≤

k∑
i=1

2ni+4 < 2n.

By Corollary 3.2, f(a1 ∨ ak) < 2n, so it follows by the definition of f that there is a v ∈ Vn−1 with 
a1 ∨ ak ≤ v. �
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4. Farness for sublocales and characterizations of uniform continuity

4.1. Covers of S(L)

A subset U ⊆ S(L) is a cover of S(L) if 
∨
U = L. In this context, we shall say that a cover U of S(L)

refines a cover V of S(L) if for every S ∈ U there is a T ∈ V such that S ⊆ T . In that case we shall write 
U ≤ V.

We will be particularly interested in open covers of S(L), that is, covers of the form

o[U ] := {o(u) | u ∈ U}

for a cover U of L. Observe that if U and V are covers of L, then U ≤ V in the sense of Subsection 2.2 if 
and only if o[U ] ≤ o[V ].

4.2. Farness for general sublocales

Let U be a cover of S(L). Then, sublocales S and T of L are said to be U-far if

∀D ∈ U, D ∩ S �= O =⇒ D ∩ T = O.

The following observations are trivial:

Remarks 4.1. Let U be a cover of S(L), and let S, T be sublocales of L. Then:

(1) If S and T are U-far and S′ ⊆ S and T ′ ⊆ T , then S′ and T ′ are also U-far;
(2) If U ≤ V and S and T are V-far, then S and T are also U-far.

With only a couple of exceptions, we shall be interested in the case where the cover U is open, say 
U = o[U ] for a cover U of L. In that case, we shall simply say that S and T are U -far when they are 
o[U ]-far. This notion coincides with that of [2] (see Subsection 2.2 above) in the sense that elements a and 
b of L are U -far if and only if o(a) and o(b) are U -far.

Given a cover U of L and a sublocale S ⊆ L, we set

U ∗ S :=
∨
{ o(u) | u ∈ U, o(u) ∩ S �= O }

(see also [13] or [11,20] for this concept in the more general context of nearness structures). Notice that U ∗S
is an open sublocale of L, and that S ⊆ U ∗ S (the latter follows easily because U is a cover and because 
families of open sublocales are distributive — i.e., S ∩

∨
i∈I o(ai) =

∨
i∈I S ∩ o(ai) for every {ai}i∈I ⊆ L, cf. 

[21]). Note also that for every a ∈ L one has U ∗ o(a) = o(Ua). Moreover, if S ⊆ T , then U ∗ S ⊆ U ∗ T .
In the case of open covers, we can give a few more characterizations of farness:

Proposition 4.2. Let L be a locale and U a cover of L. For sublocales S and T of L, the following conditions 
are equivalent:

(i) S and T are U -far ;
(ii) (U ∗ S) ∩ T = O;
(iii) T ⊆ (U ∗ S)#;
(iv) S and T are U -far.
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Moreover, if S and T are U -far, then S ∩ T = O.

Proof. (i) ⇐⇒ (ii): Since families of open covers are distributive, (U∗S) ∩T =
∨
{ o(u) ∩T | u ∈ U, o(u) ∩S �=

O }. Then, (U ∗ S) ∩ T = O iff for each u ∈ U , o(u) ∩ S �= O implies o(u) ∩ T = O — i.e., iff S and T are 
U -far.

(ii) ⇐⇒ (iii): This equivalence follows because U ∗ S is open and hence complemented.

(i) ⇐⇒ (iv): Assume that S and T are U -far; equivalently one has T ⊆ (U ∗ S)# and since (U ∗ S)# is 
closed, it follows that T ⊆ (U ∗ S)#. The latter is in turn equivalent to T and S being U -far. Now, (iv)
follows repeating the argument with S and T . The reverse implication is trivial by Remark 4.1 (1).

For the last assertion, if S and T are U -far, then so are S and T and by (ii) it follows that S ∩ T ⊆
(U ∗ S) ∩ T = O. �

Since being U -far is a symmetric relation, we may exchange the roles of S and T in the conditions of the 
previous proposition. We also have the following:

Corollary 4.3. Let L be a locale and U a cover of L. For sublocales S and T of L, the following conditions 
are equivalent:

(i) U ∗ S ⊆ T ;
(ii) U ∗ S ⊆ intT ;
(iii) S and T# are U -far.

Proof. The equivalence between (i) and (ii) follows since

U ∗ S ⊆ T ⇐⇒ U ∗ S ⊆ intT because U ∗ S is open,

⇐⇒ U ∗ S ∩ (intT )# = O because intT is complemented,

⇐⇒ U ∗ S ∩ (intT )# = O because of Proposition 4.2,

⇐⇒ U ∗ S ⊆ intT because intT is complemented.

Now, U ∗ S ⊆ intT if and only if S and (intT )# = T# are U -far (see [7, Eq. 4.2] for the equality), which 
by Proposition 4.2 holds if and only if S and T# are U -far. Thus the equivalence between (ii) and (iii)
follows. �
4.3. Arbitrary real functions and uniform homomorphisms

Let L and M be frames and let U (resp. V) be a basis for a (pre)uniformity on L (resp. M). Recall 
that a frame homomorphism f : L → M is a uniform homomorphism (L, U) → (M, V) if for every U ∈ U
there is some V ∈ V such that V ≤ h[U ]. We are particularly interested in the uniform homomorphisms 
L(R) → (L, U) where L(R) is endowed with its natural metric uniformity whose basis consists of the covers

Dδ =
{

(r, s) ∈ L(R) | s− r = 1
δ

}
for δ ∈ Q+ (cf. Subsection 2.2.5). In other words, a real-valued function f ∈ R(L) is a uniform homomor-
phism if for every n ∈ N there is a U ∈ U such that U ≤ f [Dn] = { f(r, s) | (r, s) ∈ Dn }. In view of this, 
we introduce the following terminology:
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Definition 4.4. Let (L, U) be a preuniform frame. An f ∈ F(L) is uniformly continuous if for every n ∈ N

there is a U ∈ U such that o[U ] ≤
{
f(r, s)# | (r, s) ∈ Dn

}
.

Remarks 4.5.

(1) The set 
{
f(r, s)# | (r, s) ∈ Dn

}
is a cover of S(L). Indeed, more generally let f, g ∈ F(L) with f ≥ g

and let δ ∈ Q+. Consider the following subset of S(L):

Df,g
δ :=

{
(f(r,—) ∨ g(—, s))# | (r, s) ∈ Dδ

}
.

If f = g we simply denote Df
δ := Df,f

δ =
{
f(r, s)# | (r, s) ∈ Dn

}
. Notice that, since f ≥ g and Dδ is a 

cover of L(R), we have

∨
Df,g

δ =
∨{

(f(r,—) ∨ g(—, s))# | (r, s) ∈ Dδ

}
⊇

∨{
(g(r,—) ∨ g(—, s))# | (r, s) ∈ Dδ

}
=

∨{
g(r, s)# | (r, s) ∈ Dδ

}
= (

⋂
{ g(r, s) | (r, s) ∈ Dδ })# = L

— i.e., Df,g
δ is a cover of S(L).

(2) If f ∈ C(L) (i.e., f : L(R) → S(L)op is of the form f = c ◦ g for a frame homomorphism g : L(R) → L), 
it is clear that f is uniformly continuous (in the sense just defined) if and only if g is a uniform 
homomorphism.

(3) Actually, it is not necessary to require f to be continuous in order to recover the usual notion of uniform 
continuity. Indeed, we shall show in Proposition 4.8 below that uniform continuity (via Definition 4.4) 
implies continuity. Hence, by virtue of (2), uniformly continuous maps in F(L) correspond precisely 
to uniform homomorphisms L(R) → (L, U), thus ensuring that this is the right notion of uniform 
continuity for maps in F(L).

Before proving Proposition 4.8, we need a couple of lemmas.

Lemma 4.6. Let (L, U) be a preuniform frame and f, g ∈ F(L) with f ≥ g. For every δ ∈ Q+ and every 
r, s ∈ Q with s − r > 1

δ the sublocales f(r, —) and g(—, s) are Df,g
δ -far.

Proof. Let δ ∈ Q+. Suppose by contradiction that there are r, s ∈ Q with s − r > 1
δ such that f(r, —) and 

g(—, s) are not Df,g
δ -far. Then there is an (r′, s′) ∈ Df,g

δ such that

f(r,—) ∩ (f(r′,—) ∨ g(—, s′))# �= O and g(—, s) ∩ (f(r′,—) ∨ g(—, s′))# �= O.

Now, by Remarks 2.1 one has that (f(r′,—) ∨ g(—, s′))# ⊆ f(—, r′) ∩ g(s′, —) and so

f(r,—) ∩ f(—, r′) ∩ g(s′,—) �= O and g(—, s) ∩ f(—, r′) ∩ g(s′,—) �= O.

In particular, we have

f(r,—) ∩ f(—, r′) �= O and g(—, s) ∩ g(s′,—) �= O.

Hence, r′ ≤ r and s ≤ s′. This means that 1
δ = s′ − r′ ≥ s − r > 1

δ , a contradiction. �
Lemma 4.7. Let (L, U) be a preuniform frame and f ∈ F(L) be such that for every δ ∈ Q+ there is a U ∈ U
such that the sublocales f(r, —) and f(—, s) are U -far whenever s − r > 1

δ . Then f is continuous (i.e., 
f ∈ C(L)).
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Proof. For each δ ∈ Q+, let Uδ denote the uniform cover such that f(r, —) and f(—, s) are Uδ-far whenever 
s − r > 1

δ . To show that f is continuous we have to prove that for every r, s ∈ Q, the sublocales f(r, —) and 
f(—, s) are closed. For each r ∈ Q, by Proposition 4.2 we obtain

f(r,—) ⊆
(
Uδ ∗ f(—, r + 2

δ )
)#

for every δ ∈ Q+. Thus,

f(r,—) ⊆
⋂

δ∈Q+

(
Uδ ∗ f(—, r + 2

δ )
)#

.

From Remarks 2.1 and the fact that S ⊆ U ∗ S for any sublocale S ∈ S(L), we obtain

⋂
r<t

f(—, t)# ⊆
⋂
r<t

f(t,—) = f(r,—) ⊆
⋂

δ∈Q+

(
Uδ ∗ f(—, r + 2

δ )
)# ⊆

⋂
δ∈Q+

f(—, r + 2
δ )# =

=
⋂
t>r

f(—, t)#.

Since 
⋂

δ∈Q+

(
Uδ ∗ f(—, r + 2

δ )
)# is closed, f(r, —) is a closed sublocale for every r ∈ Q. Similarly, we can 

conclude that f(—, s) is closed for every s ∈ Q. �
Proposition 4.8. Let (L, U) be a preuniform frame and f ∈ F(L) be uniformly continuous. Then f is con-
tinuous (i.e., f ∈ C(L)).

Proof. Let us check that the assumption of Lemma 4.7 is satisfied. Let δ ∈ Q+ and select an n ∈ N with 
1
n ≤ 1

δ . By uniform continuity, there is a uniform cover U ∈ U of L such that o[U ] ≤ Df
n. By Lemma 4.6 it 

follows that f(r, —) and f(—, s) are Df
n-far whenever s − r > 1

n . Therefore, by Remark 4.1 (2), one has that 
f(r, —) and f(—, s) are U -far whenever s − r > 1

δ . �
We are interested in giving a few more characterizations of uniform continuity via farness. Recall that 

the map c : L → S(L)op denotes the canonical frame homomorphism that sends a ∈ L to c(a). We first need 
the following.

Lemma 4.9. Let (L, U) be a preuniform frame and let U be a cover of L. If δ ∈ Q+ and f, g ∈ R(L) are 
such that f ≥ g, then the following are equivalent:

(i) the elements f(—, r) and g(s, —) are U -far whenever s − r > 1
δ ;

(ii) the sublocales cf(r, —) and cg(—, s) are U -far whenever s − r > 1
δ .

Proof. First, notice for any r, s ∈ Q we have the following equivalences:

cf(r,—) and cg(—, s) are U -far ⇐⇒ ∀u ∈ U, cf(r,—) ∩ o(u) = O

or cg(—, s) ∩ o(u) = O

⇐⇒ ∀u ∈ U, cf(r,—) ⊆ c(u) or cg(—, s) ⊆ c(u)

⇐⇒ ∀u ∈ U, u ≤ f(r,—) or u ≤ g(—, s).

Now, assume (i) holds and let r, s ∈ Q with s − r > 1
δ . Select p, q ∈ Q such that r < p < q < s with 

q − p > 1
δ . Then, f(—, p) and g(q, —) are U -far — i.e., for all u ∈ U , one has u ≤ f(—, p)∗ or u ≤ g(q, —)∗

(cf. Proposition 2.5). By Remarks 2.1, it follows that for all u ∈ U either u ≤ f(r, —) or u ≤ g(—, s). By the 
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equivalences above, cf(r, —) and cg(—, s) are U -far. The converse is even easier (it follows at once from the 
equivalences above and Remarks 2.1). �
Proposition 4.10. Let (L, U) be a preuniform frame and f ∈ R(L). Then the following are equivalent:

(i) cf is uniformly continuous;
(ii) f is a uniform homomorphism;
(iii) For every δ ∈ Q+ there is a U ∈ U such that the elements f(—, r) and f(s, —) are U -far whenever 

s − r > 1
δ ;

(iv) For every δ ∈ Q+ there is a U ∈ U such that for every n ∈ N the elements f(—, r) and f(s, —) are 
Un-far whenever s − r > n

δ ;
(v) For every δ ∈ Q+ there is a U ∈ U such that the sublocales cf(r, —) and cf(—, s) are U -far whenever 

s − r > 1
δ ;

(vi) For every δ ∈ Q+ there is a U ∈ U such that for every n ∈ N the sublocales cf(r, —) and cf(—, s) are 
Un-far whenever s − r > n

δ .

Proof. The equivalence between (ii), (iii) and (iv) is proved in [2, Theorem 3.1]. Moreover, (iii) and (v)
are equivalent by Lemma 4.9, and so are (iv) and (vi). Finally, (i) and (ii) are equivalent as observed in 
Remark 4.5 (2). �

As a consequence, we also have the following characterization of uniform continuity in terms of farness:

Corollary 4.11. Let (L, U) be a preuniform frame. Then f ∈ F(L) is uniformly continuous if and only if for 
every δ ∈ Q+ there is a U ∈ U such that the sublocales f(r, —) and f(—, s) are U -far whenever s − r > 1

δ .

Proof. The “only if” implication follows from Proposition 4.8 and Proposition 4.10 (v) whereas the “if” 
holds because of Lemma 4.7 and Proposition 4.10 (v). �

We end up this section with a useful lemma which deals with uniformly continuous functions in terms of 
scales.

Lemma 4.12. Let (L, U) be a preuniform frame. If a family {Sr}r∈Q ⊆ S(L) satisfies the following conditions:

(1)
⋂

r∈Q Sr = O =
⋂

r∈Q S#
r , and

(2) For every δ ∈ Q+ there is a U ∈ U such that U ∗ Sr ⊆ Ss (resp. U ∗ Ss ⊆ Sr) whenever s − r > 1
δ ,

then the formulas

h(p,—) =
⋂
r>p

Sr and h(—, q) =
⋂
s<q

S#
s

(resp.

h(p,—) =
⋂
r>p

S#
r and h(—, q) =

⋂
s<q

Ss)

define a uniformly continuous h ∈ F(L).

Proof. Let {Sr}r∈Q ⊆ S(L) be a family of sublocales such that (1) holds and for every δ ∈ Q+ there is a 
U ∈ U such that U ∗ Sr ⊆ Ss whenever s − r > 1 . First, we claim {Sr}r∈Q is a descending scale in S(L)op. 
δ
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For every r < s we have that there is a U ∈ U such that U ∗Sr ⊆ Ss. From Corollary 4.3 we get Sr ⊆ intSs

which implies

Sr ∩ S#
s ⊆ Sr ∩ (intSs)# = O.

— i.e., {Sr}r∈Q is a descending scale in S(L)op. Hence, the formulas

h(p,—) =
⋂
r>p

Sr and h(—, q) =
⋂
s<q

S#
s

determine an h ∈ F(L). Now, let δ ∈ Q+ and take the U ∈ U given by (2). Let p, q ∈ Q such that q−p > 1
δ . 

Select r′, s′ ∈ Q such that p < r′ < s′ < q and s′ − r′ > 1
δ , then U ∗ Sr′ ⊆ Ss′ . By Corollary 4.3, we have 

that Sr′ and (intSs′)# are U -far. Now,

h(p,—) =
⋂
r>p

Sr ⊆ Sr′ ⊆ Sr′ and h(—, q) =
⋂
s<q

S#
s ⊆ S#

s′ ⊆ (intSs′)#

so, by Remark 4.1 (1), h(p, —) and h(—, q) are U -far. Thus h is uniformly continuous by Corollary 4.11. 
Similarly, one can prove the statement inside parentheses. �
5. Insertion theorem for uniform locales

Lemma 5.1. Let (L, U) be a preuniform frame and let f, g ∈ F(L) with f ≥ g. Assume that for every δ ∈ Q+

there is a U ∈ U such that for every n ∈ N, the sublocales f(r, —) and g(—, s) are Un-far whenever s −r > n
δ . 

Then, there is a sequence {Vn}n∈Z ⊆ U such that for every n ∈ Z the following properties are satisfied:

(1) Vn ≤∗
1 Vn+1;

(2) For every r, s ∈ Q such that s − r > 2n, the sublocales f(r, —) and g(—, s) are Vn-far.

Proof. Let V0 be the cover given by the assumption by choosing δ = 1. Moreover, for n ≥ 1, set Vn := (V0)2
n . 

Clearly, property (2) is satisfied when n ≥ 0. Now, for n ≥ 0, condition (1) is also satisfied. Indeed, by an 
application of Lemma 2.4 (3), we have that

VnV0 = (V0)2
n

V0 = (V0)2
n+1

= Vn+1,

hence Vn ≤∗
1 Vn+1. Now we recursively define Vn for n < 0. First, for each n < 0, let Un denote the cover 

given by the assumption for δ = 1
2n . For n = −1, pick a V−1 ∈ U such that V 2

−1 ≤ V0 ∧ U−1 (recall the 
axiom (U3)). Clearly, conditions (1) and (2) are satisfied (the refinement V−1 ≤ V0 is a star-refinement, so a 
fortiori it is barycentric). Suppose now that for an n < 0 we have constructed Vn, Vn+1, . . . , V−1 satisfying
(1) and (2). Then we choose a Vn−1 ∈ U such that V 2

n−1 ≤ Vn ∧ Un−1. The sequence {Vn}n∈Z clearly 
satisfies the required conditions. �

We are now ready to prove the main result of this paper.

Theorem 5.2 (Uniform insertion theorem). Let (L, U) be a preuniform frame and f, g ∈ F(L) with f ≥ g. 
Then the following are equivalent:

(i) There exists a uniformly continuous h ∈ F(L) such that f ≥ h ≥ g;
(ii) For every δ ∈ Q+ there is a U ∈ U such that for every n ∈ N the sublocales f(r, —) and g(—, s) are 

Un-far whenever s − r > n .
δ
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Proof. (i) =⇒ (ii): This implication follows at once from Proposition 4.10 (vi), the definition of the partial 
order in F(L) (recall (2.3)) and Remark 4.1 (1).

(ii) =⇒ (i): Let {Vn}n∈Z ⊆ U denote the sequence of uniform covers given by Lemma 5.1. We define a 
family {br}r∈Q ⊆ L as follows

br :=
∨

n∈Z

∨
An

r ,

where

An
r :=

{
a ∈ Vn | ∃k ∈ N, ∃n1, . . . , nk ∈ Z,

∃ai ∈ Vni
for all i = 1, . . . , k such that a1 = a, n1 = n,

ai−1 ∧ ai �= 0 (i = 2, . . . , k), and o(ak) ∩ f(r −
k∑

i=1
2ni+5,—) �= O

}
.

Set also Br := o(br) for every r ∈ Q. Clearly, Br =
∨
{ o(a) | ∃n ∈ Z with a ∈ An

r }.
First we will show that

f(—, r)# ⊆ Br ⊆ g(—, r)# (5.1)

for every r ∈ Q. For the first inclusion, note that for each n ∈ Z one clearly has Vn ∗ f(r − 2n+5, —) =∨
{ o(a) | a ∈ Vn, o(a) ∩ f(r − 2n+5, —) �= O } ⊆ Br. Consequently,

Br ⊇
∨

n∈Z
Vn ∗ f(r − 2n+5,—) ⊇

∨
n∈Z

f(r − 2n+5,—) =
∨
s<r

f(s,—) ⊇
∨
s<r

f(—, s)#

=
( ⋂
s<r

f(—, s)
)# = f(—, r)#.

Let us now show the inclusion Br ⊆ g(—, r)#. Let a ∈ An
r ; our goal is to show that o(a) ⊆ g(—, r)#. Since 

a ∈ An
r , there is a k ∈ N and there are ni ∈ Z and ai ∈ Vni

for all i = 1, . . . , k satisfying n1 = n, a1 = a, 
ai−1 ∧ ai �= 0 for every i = 2, . . . , k, and o(ak) ∩ f(r −

∑k
i=1 2ni+5, —) �= O. Take an m ∈ Z such that

2m−1 ≤
k∑

i=1
2ni+4 < 2m.

By Corollary 3.7 (recall that barycentric refinement implies regular refinement), there is a v ∈ Vm−1 such 
that a1, ak ≤ v. We have that

r − (r −
k∑

i=1
2ni+5) =

k∑
i=1

2ni+5 >
k∑

i=1
2ni+4 ≥ 2m−1

so by Lemma 5.1 (2), f(r −
∑k

i=1 2ni+5, —) and g(—, r) are Vm−1-far. Consequently,

o(a) = o(a1) ⊆ o(v) ⊆ Vm−1 ∗ f(r −
k∑

i=1
2ni+5,—) ⊆ g(—, r)#

where the second inclusion holds because v ∈ Vm−1 and

O �= o(ak) ∩ f(r −
k∑

2ni+5,—) ⊆ o(v) ∩ f(r −
k∑

2ni+5,—).

i=1 i=1
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Hence, (5.1) holds. Now, we will show that the conditions of Lemma 4.12 hold for the family {Br}r∈Q. 
First, notice that by (5.1) one has

⋂
r∈Q

Br ⊆
⋂

r∈Q
g(—, r)# ⊆

⋂
r∈Q

g(r,—) = O

and similarly

⋂
r∈Q

B#
r ⊆

⋂
r∈Q

f(—, r)## ⊆
⋂

r∈Q
f(—, r) = O.

Let δ ∈ Q+ and select an n ∈ Z such that 1
δ > 2n+5. Let s − r > 1

δ ; we will show that

Vnbr ≤ bs, (5.2)

which is clearly equivalent to Vn ∗Br ⊆ Bs. Now, since br =
∨

m∈Z
∨

Am
r , by virtue of Proposition 2.3 (7), 

proving (5.2) is further equivalent to show that if a ∈ Am
r and v ∈ Vn is such that v ∧ a �= 0, then v ≤ bs. 

If a ∈ Am
r , there is a k ∈ N such that for every i = 1, . . . , k there is an ai ∈ Vni

with a1 = a, n1 = m, 
ai−1 ∧ ai �= 0 for every i = 2, . . . , k and o(ak) ∩ f(r−

∑k
i=1 2ni+5, —) �= O. But since s − 2n+5 > r it follows 

that f(r −
∑k

i=1 2ni+5, —) ⊆ f(s − 2n+5 −
∑k

i=1 2ni+5, —) and so

o(ak) ∩ f(s− 2n+5 −
k∑

i=1
2ni+5,—) �= O.

Hence, if v ∈ Vn is such that v ∧ a �= 0, it follows that v ∈ An
s , which yields v ≤ bs, as required.

By Lemma 4.12, the function h ∈ F(L) given by

h(p,—) =
⋂
r>p

Br and h(—, q) =
⋂
s<q

B#
s

is uniformly continuous. Finally, f ≥ h ≥ g because, from (5.1) and Remarks 2.1, we have

h(p,—) =
⋂
r>p

Br ⊆
⋂
r>p

g(—, r)# ⊆
⋂
r>p

g(r,—) = g(p,—)

and

h(—, q) =
⋂
s<q

B#
s ⊆

⋂
s<q

f(—, s)## ⊆
⋂
s<q

f(—, s) = f(—, q)

for every p, q ∈ Q (see (2.3)). �
5.1. The bounded case

Specializing Theorem 5.2 one can easily obtain the Uniform Insertion Theorem for bounded functions 
— i.e., what is stated in Theorem 5.4 below. However, in this subsection, we present an alternative (and 
easier) proof of this special case by using a different technique; namely the so-called Katětov’s Lemma (see 
[15] for the original formulation for power sets). For that purpose, we recall that a binary relation � on a 
lattice L is a Katětov relation if it satisfies the following conditions for all a, b, a′, b′ ∈ L:

(K1) a � b =⇒ a ≤ b;
(K2) a′ ≤ a � b ≤ b′ =⇒ a′ � b′;
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(K3) a � b and a′ � b =⇒ (a ∨ a′) � b;
(K4) a � b and a � b′ =⇒ a � (b ∧ b′);
(K5) a � b =⇒ ∃c ∈ L, a � c � b.

The following extends the original idea of Katětov from power sets to complete lattices (cf. [16,17]).

Lemma 5.3 (Katětov’s Lemma). Let L be a complete lattice, � a Katětov relation on L and � a transitive 
and irreflexive relation on a countable set D. Further, let {ad}d∈D and {bd}d∈D be two families of elements 
of L such that

d1 � d2 implies ad2 ≤ ad1 , bd2 ≤ bd1 and ad2 � bd1 .

Then there exists a family {cd}d∈D ⊆ L such that

d1 � d2 implies cd2 � cd1 , ad2 � cd1 and cd2 � bd1 .

Let now (L, U) be a (pre)uniform frame. Then it is readily verified that the relation �U in S(L) defined 
by

S �U T ⇐⇒ there is a U ∈ U such that U ∗ S ⊆ T

is a Katětov relation on S(L).

Theorem 5.4 (Uniform insertion theorem for bounded functions). Let (L, U) be a preuniform frame and let 
f, g ∈ F(L) be bounded functions with f ≥ g. Then the following are equivalent:

(i) There exists a uniformly continuous h ∈ F(L) such that f ≥ h ≥ g;
(ii) For every δ ∈ Q+ there is a U ∈ U such that the sublocales f(r, —) and g(—, s) are U -far whenever 

s − r > 1
δ .

Proof. (i) =⇒ (ii): This implication follows at once from Proposition 4.10 (v), the definition of the partial 
order in F(L) (recall (2.3)) and Remark 4.1 (1).

(ii) =⇒ (i): Since f and g are bounded, by (2.5) take α, β ∈ Q with α < β such that

f(β,—) = L, f(—, α) = L, g(β,—) = L and g(—, α) = L. (5.3)

By assumption, one has in particular that g(—, s) �U f(r, —)# for every s > r. Since �U is a Katětov 
relation, by Lemma 5.3 there is a family {Cp}p∈Q ⊆ S(L) such that

g(—, s) �U Cq �U Cp �U f(r,—)# (5.4)

whenever r < p < q < s. We will use Lemma 4.12 to show that {Cp}p∈Q determines a uniformly continuous 
function. First, from (5.4) it is easy to see that 

⋂
p∈Q Cp = O =

⋂
p∈Q C#

p . We only have to show that

∀δ ∈ Q+, there is some U ∈ U such that U ∗ Cs ⊆ Cr for every s− r > 1
δ . (5.5)

Let δ ∈ Q+. Notice that if β < s or α > r, from (5.3) and (5.4) one obtains Cs ⊆ f(β, —)# = O or 
L = g(—, α) ⊆ Cr which clearly yields U ∗ Cs ⊆ Cr for any U ∈ U. Thus, it suffices to show (5.5) for every 
s − r > 1 with α ≤ r < s ≤ β. Select an n ∈ N and t0, t1, . . . , tn+1 ∈ Q such that they satisfy
δ



20 I. Arrieta, A.B. Avilez / Journal of Pure and Applied Algebra 227 (2023) 107320
t0 = α < t1 < t2 < · · · < tn < β = tn+1

and tk+1 − tk < 1
2δ for all k = 0, . . . , n. Set U := U0 ∧ U1 · · · ∧ Un, where Uk is the cover that witnesses the 

relation Ctk+1 �U Ctk for k = 0, . . . , n. Thus U ∗ Ctk+1 ⊆ Ctk for every k = 0, . . . , n. Let s − r > 1
δ with 

α ≤ r < s ≤ β and pick a k ∈ {0, . . . , n} such that r ≤ tk < tk+1 ≤ s. Hence,

U ∗ Cs ⊆ U ∗ Ctk+1 ⊆ Ctk ⊆ Cr

as required. In conclusion, {Cp}p∈Q determines a uniformly continuous h ∈ F(L) given by h(r, —) =
⋂

r<p C
#
p

and h(—, s) =
⋂

q<s Cq. Furthermore, by (5.4) one may easily check that g ≤ h ≤ f . �
Condition (ii) in Theorem 5.2 is formally stronger than condition (ii) in Theorem 5.4. The following 

proposition and the remark afterwards explain the reason behind this discrepancy:

Proposition 5.5. Let (L, U) be a preuniform frame and f, g ∈ F(L) with f ≥ g. Fix a δ0 ∈ Q+. Then the 
following are equivalent:

(i) For every δ ∈ Q+ there is a U ∈ U such that for every n ∈ N the sublocales f(r, —) and g(—, s) are 
Un-far whenever s − r > n

δ ;
(ii) The following two conditions hold:

(a) There is a U0 ∈ U such that for every n ∈ N the sublocales f(r, —) and g(—, s) are Un
0 -far 

whenever s − r > n
δ0

;
(b) For every δ ∈ Q+ there is a U ∈ U such that the sublocales f(r, —) and g(—, s) are U -far 

whenever s − r > 1
δ .

Proof. (i) =⇒ (ii) is trivial.

(ii) =⇒ (i): Let δ ∈ Q+ and select an m ∈ N such that δ < δ02m. For each n ∈ { 1, . . . , 2m − 1 } let Un be 
the cover given by (b) by choosing the rational δ02

m

n ∈ Q+. Then

f(r,—) and g(—, s) are Un-far whenever s− r > n
δ02m (5.6)

for each n ∈ { 1, . . . , 2m − 1 }. Now (recall the axiom (U3)) choose a cover W with the property that

W 2m+1 ≤ U0 ∧
2m−1∧
n=1

Un.

We claim that for any n ∈ N, the sublocales

f(r,—) and g(—, s) are Wn-far whenever s− r > n
δ02m . (5.7)

Indeed, let n ∈ N and s − r > n
δ02m . We distinguish two cases:

(1) If n ∈ { 1, . . . , 2m }, then f(r, —) and g(—, s) are Un-far if n < 2m (by (5.6)) and U0-far if n = 2m (by
(a)). In either case they are W 2m+1-far by Remark 4.1 (2). But n ≤ 2m ≤ 2m+1 and so Wn ≤ W 2m+1 , 
hence they are also Wn-far.

(2) If n > 2m. Since n2−m > 1, select an � ∈ N with � < n2−m ≤ � + 1. Then one can write n = �2m + j

for a suitable j ∈ { 1, . . . , 2m }, namely j = n − �2m. Since s − r > n
δ02m = �2m+j

δ02m > �
δ0

, it follows from
(a) that f(r, —) and g(—, s) are U �

0-far. By Lemma 2.4 (4) we conclude that



I. Arrieta, A.B. Avilez / Journal of Pure and Applied Algebra 227 (2023) 107320 21
Wn = W �2m+j ≤ W �2m+2m ≤ W �2m+1 ≤ (W 2m+1
)� ≤ U �

0 ,

so f(r, —) and g(—, s) are Wn-far, as required.

Hence, (5.7) is proved. Finally, if s − r > n
δ , by the choice of m one has s − r > n

δ02m so f(r, —) and g(—, s)
are Wn-far. �
Remark 5.6. Let α ≤ g ≤ f ≤ β be bounded. Then by choosing δ0 = 1

β−α , property (a) in the last 
proposition is trivially satisfied. Indeed, if s − r > n(β − α), then s − r > β − α and so either r < α or 
s > β. By (2.4), one has f(r, —) = O or g(—, s) = O, thus f(r, —) and g(—, s) are U -far for any cover U . 
This explains why condition (ii) in Theorem 5.4 is precisely (b).

6. Uniform separation and extension theorems

As usual, a Katětov-type insertion theorem yields the corresponding Urysohn-type separation result and 
Tietze-type extension result as simple corollaries. In this final section, we prove the uniform versions of 
these theorems.

Theorem 6.1 (Uniform separation theorem). Let (L, U) be a preuniform frame, and let S and T be sublocales 
of L. Then the following are equivalent:

(i) S and T are U -far for some U ∈ U;
(ii) There is a uniformly continuous h ∈ F(L) with 0 ≤ h ≤ 1 such that T ⊆ h(0, —) and S ⊆ h(—, 1).

Proof. (i) =⇒ (ii): Assume that S and T are U -far for some U ∈ U. By Proposition 4.2 we have that S
and T are U -far. Consider the characteristic functions of S and T

# from Example 2.2 (2), namely the maps 
χS , χT

# ∈ F(L) given by

χS(p,—) =

⎧⎪⎪⎨
⎪⎪⎩

O if p < 0,
S

# if 0 ≤ p < 1,
L if p ≥ 1,

χS(—, q) =

⎧⎪⎪⎨
⎪⎪⎩
L if q ≤ 0,
S if 0 < q ≤ 1,
O if q > 1,

and

χ
T

#(p,—) =

⎧⎪⎪⎨
⎪⎪⎩

O if p < 0,
T if 0 ≤ p < 1,
L if p ≥ 1,

χ
T

#(—, q) =

⎧⎪⎪⎨
⎪⎪⎩
L if q ≤ 0,
T

# if 0 < q ≤ 1,
O if q > 1.

Note that, since S and T are U -far, one has S ⊆ T
#, and therefore it follows that 0 ≤ χS ≤ χ

T
# ≤ 1. 

Furthermore, we claim that for every δ ∈ Q+ the sublocales χ
T

#(r, —) and χS(—, s) are U -far whenever 
s − r > 1

δ . Indeed, if r < 0 or 1 < s, one clearly has that χ
T

#(r, —) and χS(—, s) are U -far. If 0 ≤ r < s ≤ 1, 
then χ

T
#(r, —) = T and χS(—, s) = S which by assumption are U -far. Consequently, by Theorem 5.4, there 

is a uniformly continuous h ∈ F(L) such that 0 ≤ χS ≤ h ≤ χ
T

# ≤ 1. Moreover, (recall (2.3)), we have

S ⊆ S = χS(—, 1) ⊆ h(—, 1) and T ⊆ T = χ
T

#(0,—) ⊆ h(0,—)

as required.
(ii) =⇒ (i): Since h is uniformly continuous, by Corollary 4.11 there is a U ∈ U such that h(0, —) and 
h(—, 1) are U -far. In particular, S and T are U -far. �
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Let (L, U) be a (pre)uniform frame and S a sublocale of L with jS : S ↪→ L the localic embedding of S
in L. We denote by j∗S the associated frame surjection. It is shown in [4, Lemma 2.2] that the system

UL
S := {j∗S [U ] | U ∈ U}

is a (pre)uniformity in S.

Remark 6.2. Let S be a sublocale of L and T be a sublocale of S.
It is then easy to see that UL

T =
(
UL

S

)S
T
.

Let h ∈ F(S) be uniformly continuous with respect to UL
S . We say that an h ∈ F(L) is a uniformly 

continuous extension of h if it is uniformly continuous with respect to U and the diagram

L(R) h

h

S(L)op

(jS)−1[−]

S(S)op

commutes, where (jS)−1[T ] = T ∩S for each T ∈ S(L) (for more information about the localic preimage we 
refer to [19, III.4.2]).

Now, we can prove the uniform extension theorem as a corollary of Theorem 5.4 and of the extension 
result for dense sublocales proved in [2]:

Theorem 6.3 (Uniform extension theorem). Let (L, U) be a preuniform frame and S a sublocale of L. Then 
every bounded uniformly continuous h ∈ F(S) (with respect to UL

S ) has a bounded uniformly continuous 
extension h ∈ F(L) (with respect to U).

Proof. First, it was shown in [2, Theorem 7.3] (cf. also the remark after its proof) that every bounded 
uniformly continuous function on a dense sublocale of L has a bounded uniformly continuous extension to 
L. Since every sublocale is dense in its closure (cf. [19, Proposition III.8.5]), by Remark 6.2 it suffices to 
show the statement for closed sublocales. More generally, we shall show it for complemented sublocales.

Let S be a complemented sublocale of L, denote by jS : S ↪→ L its localic embedding and let h ∈ F(S)
be bounded and uniformly continuous with respect to UL

S . Select α, β ∈ Q such that α ≤ h ≤ β and for 
each r ∈ Q set

Sr :=

⎧⎪⎪⎨
⎪⎪⎩

O if r < α,

h(r,—) if α ≤ r < β,

L if r ≥ β,

and Tr :=

⎧⎪⎪⎨
⎪⎪⎩
L if r ≤ α,

h(—, r) if α < r ≤ β,

O if r > β.

For each r < s one has S#
s ∩Sr = O. Indeed, if r < α or s ≥ β it is trivial because either S#

s = O or Sr = O. 
If α ≤ r < s < β then

S#
s ∩ Sr = h(s,—)# ∩ h(r,—) = h(s,—)# ∩ S ∩ h(r,—)

= h(s,—)#S ∩ h(r,—) ⊆ h(—, s) ∩ h(r,—) = O

by (2.1). Hence {Sr}r∈Q is a descending scale in S(L)op and similarly {Tr}r∈Q is an ascending scale in 
S(L)op. Let f, g ∈ F(L) be the functions they generate. From the equalities
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f(—, r) =
⋂
p<r

S#
p and g(—, r) =

⋂
q<r

Tq,

it follows that for each r ∈ Q one has g(—, r) ⊆ f(—, r) — i.e., f ≥ g. Indeed, let r ∈ Q and p < r. 
We have to check that 

⋂
q<r Tq ⊆ S#

p . If p < α or r > β one has either S#
p = L or 

⋂
q<r Tq = O, so 

the inclusion follows. Suppose now that α ≤ p < r ≤ β and pick a q′ ∈ Q with p < q′ < r. Then ⋂
q<r Tq ⊆ Tq′ = h(—, q′) ⊆ h(p, —)# = S#

p , as desired.
Further, the maps f and g satisfy condition (ii) in Theorem 5.4. Indeed, let δ ∈ Q+. Since h is uniformly 

continuous there is a U ∈ U such that h(r, —) and h(—, s) are j∗S [U ]-far (as sublocales of S) whenever 
s − r > 1

δ . Since oS(j∗S(u)) = S ∩ oL(u) for any u ∈ L, then h(r, —) and h(—, s) are U -far (as sublocales of 
L). We claim that f(r, —) and g(—, s) are U -far whenever s − r > 1

δ . Clearly it suffices to show the case 
where α ≤ r < s ≤ β (as otherwise f(r, —) = O or g(—, s) = O). Pick r′, s′ ∈ Q with r < r′ < s′ < s and 
s′ − r′ > 1

δ . Then f(r, —) =
⋂

r<p Sp ⊆ Sr′ = h(r′, —) and g(—, s) ⊆ Ts′ = h(—, s′). The claim thus follows 
from Remark 4.1 (1).

Moreover, f and g are bounded by (2.4). By Theorem 5.4 there is a uniformly continuous h ∈ F(L) with 
f ≥ h ≥ g. Now it follows trivially from (2.4) and (2.5) that Sr ∩ S = h(r, —) and Tr ∩ S = h(—, r) for 
each r ∈ Q. Hence (jS)−1[−] ◦ f = h = (js)−1[−] ◦ g, and so h ≥ (jS)−1[−] ◦ h ≥ h — i.e., h is the desired 
extension of h. �
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