
 
 

University of Birmingham

Improving circumbinary planet detections by fitting their
binary’s apsidal precession
Baycroft, Thomas A; Triaud, Amaury H M J; Faria, João; Correia, Alexandre C M; Standing,
Matthew R
DOI:
10.1093/mnras/stad607

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Baycroft, TA, Triaud, AHMJ, Faria, J, Correia, ACM & Standing, MR 2023, 'Improving circumbinary planet
detections by fitting their binary’s apsidal precession', Monthly Notices of the Royal Astronomical Society, vol.
521, no. 2, pp. 1871-1879. https://doi.org/10.1093/mnras/stad607

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 29. May. 2023

https://doi.org/10.1093/mnras/stad607
https://doi.org/10.1093/mnras/stad607
https://birmingham.elsevierpure.com/en/publications/ae02459b-e8d7-47ff-bbad-4c312a14999f


MNRAS 521, 1871–1879 (2023) https://doi.org/10.1093/mnras/stad607 
Advance Access publication 2023 February 27 

Impr oving cir cumbinary planet detections by fitting their binary’s apsidal 
precession 

Thomas A. Baycroft , 1 ‹ Amaury H. M. J. Triaud , 1 Jo ̃  ao F aria , 2 , 3 Ale xandre C. M. Correia 

4 , 5 and 

Matthew R. Standing 

6 

1 School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK 

2 Instituto de Astrof ́ısica e Ci ̂ encias do Espa c ¸o, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal 
3 Departamento de F ́ısica e Astronomia, Faculdade de Ci ̂ encias, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal 
4 CFisUC, Departamento de F ́ısica, Universidade de Coimbra, 3004-516 Coimbra, Portugal 
5 IMCCE, UMR8028 CNRS, Observatoire de Paris, PSL Universit ́e, 77 avenue Denfert-Rochereau, 75014 Paris, France 
6 School of Physical Sciences, The Open University, Milton Keynes, MK7 6AA, UK 

Accepted 2023 February 22. Received 2023 January 26; in original form 2022 November 21 

A B S T R A C T 

Apsidal precession in stellar binaries is the main non-Keplerian dynamical effect impacting the radial-velocities of a binary star 
system. Its presence can notably hide the presence of orbiting circumbinary planets because many fitting algorithms assume 
perfectly Keplerian motion. To first order, apsidal precession ( ̇ω ) can be accounted for by adding a linear term to the usual 
Keplerian model. We include apsidal precession in the kima package, an orbital fitter designed to detect and characterize 
planets from radial velocity data. In this paper, we detail this and other additions to kima that impro v e fitting for stellar binaries 
and circumbinary planets including corrections from general relativity. We then demonstrate that fitting for ω̇ can impro v e the 
detection sensitivity to circumbinary exoplanets by up to an order of magnitude in some circumstances, particularly in the case 
of multiplanetary systems. In addition, we apply the algorithm to several real systems, producing a new measurement of aspidal 
precession in KOI-126 (a tight triple system), and a detection of ω̇ in the Kepler-16 circumbinary system. Although apsidal 
precession is detected for Kepler-16, it does not have a large effect on the detection limit or the planetary parameters. We also 

deriv e an e xpression for the precession an outer planet would induce on the inner binary and compare the value this predicts 
with the one we detect. 

Key words: binaries: general – planets and satellites: dynamical evolution and stability – techniques: radial velocities – methods: 
data analysis. 
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 I N T RO D U C T I O N  

xoplanets exhibit a range of configurations much vaster than is 
resent within the Solar system. Nearly three decades of disco v eries
av e rev ealed that most known e xoplanets are not analogous to any
olar system planets (e.g. Winn & F abryck y 2015 ). This applies to

ndividual planets being different such as hot Jupiters (e.g. Dawson & 

ohnson 2018 ) or planets with extreme eccentricities (e.g. Angelo 
t al. 2022 ), but this can also apply to entire planetary systems having
ore exotic configurations, such as TRAPPIST-1 a multiplanetary 

esonant chain orbiting a late M-dwarf (Gillon et al. 2016 , 2017 ). One
uch type of exotic planetary systems are the circumbinary exoplanets 
hat orbit about both stars of a tight stellar binary (Schneider 1994 ;
oyle et al. 2011 ). 
To date there have been only 15 fully confirmed circumbinary 

lanets. 1 All but one have transited at least one of the two stars,
 E-mail: txb187@bham.ac.uk 
 Circumbinary planets orbiting stellar remnants are claimed using eclipse 
imings, ho we ver, there are doubts about their existence and as such we do 
ot consider them as fully confirmed. 
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2023 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. Th
ommons Attribution License ( https://cr eativecommons.or g/licenses/by/4.0/), whi
rovided the original work is properly cited. 
nd were first detected from space with Kepler (e.g. Doyle et al.
011 ; Orosz et al. 2012 ; Kostov et al. 2016 ) and with TESS (Kostov
t al. 2020 , 2021 ). The pace of detections is slow, since the two
ost common exoplanet detection techniques (transit and radial 
 elocity) hav e so far both been hamstrung, each with their own
ssues. Circumbinary planets will generally have longer periods than 
lanets around single stars because they need to orbit outside of
n instability region produced by the binary stars’ motion (Dvorak, 
roeschle & Froeschle 1989 ; Holman & Wiegert 1999 ; Doolin &
lundell 2011 ). Because of this extra distance, circumbinary planets 
re geometrically less likely to produce transits than planets orbiting 
ingle stars. Ho we ver, for similarly distant planets, nodal precession
akes circumbinary planets more likely to create transits (Martin & 

riaud 2015 ), even if transits do not happen at every planetary orbit
e.g. Schneider 1994 ; Martin & Triaud 2014 ). 

For the radial velocity method, interference between the spectra 
f both components of the binary star makes it harder to obtain
recise radial velocity measurements (e.g. Konacki et al. 2009 ). The
atter issue can be circumvented by observing single-lined binaries 
Konacki et al. 2010 ; Martin et al. 2019 ). This is the observing
trategy employed by the Binaries Escorted By Orbiting Planets 
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2 We neglect terms that are order O( t − t 0 ) 2 
3 This nomenclature is often used to refer to the time between two consecutive 
pericentre passages in precessing systems (e.g. Rosu et al. 2020 ; Borkovits 
et al. 2021 ). 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/521/2/1871/7059214 by guest on 17 M
arch 2023
BEBOP) surv e y. BEBOP has been collecting radial velocities on
clipsing single-lined binaries for o v er four years and has demon-
trated that it can detect circumbinary planets, notably by having
ndependently detected Kepler-16b (Triaud et al. 2022 ). There is also
he first circumbinary planet disco v ered in radial v elocities BEBOP-
c (Standing et al. submitted). 
One significant advantage of the radial velocity method o v er the

ransit method is that radial velocities probe the full orbit, instead
f just the inferior conjunction. This leads to good precision on
he eccentricity e (sometimes down to 10 −4 ; Triaud et al. 2017 )
nd the argument of periastron ω of the binary orbit. An issue this
aises is that variation in e and ω will cause problems when fitting
 static Keplerian orbit, a point raised in Konacki et al. ( 2010 );
ybilski et al. ( 2013 ). One such variation is apsidal precession of

he binary: an evolution of ω with time, denoted by ω̇ . This can
e caused by relativistic effects, tidal effects, or – most excitingly
o exoplanet hunters – planetary perturbations (Correia et al. 2013 ).
ecause the BEBOP surv e y has collected data o v er sev eral years,

he scatter caused by this precession is slowly starting to exceed
he rms scatter of the residuals on some systems (Standing et al.
022 ). Accounting for this effect would impro v e the accurac y of
he fits for the binary orbit, and in turn impro v e our ability to detect
lanets, and the precision on their physical and orbital parameters. As
xplored in Standing et al. ( 2022 ), in most cases the radial-velocity
ignal of a single planet would be detected well before a non-zero
˙  is significantly detected. In this paper we show that, in some

ultiplanetary configurations, low-amplitude planetary signals can
e hidden by the precession induced by another, heavier planet. 
In addition, measuring the apsidal precession rate adds new

nformation to our knowledge of the system. Usually, it is not possible
o measure orbital inclinations from radial velocities alone. Ho we ver,
he binary’s precession rate due to an external perturber is dependent
n the mutual inclination between the binary’s orbital plane and
he perturber’s (e.g. Correia et al. 2013 ; Correia, Bou ́e & Laskar
016 ). In this work, we derive an equation to calculate the apsidal
recession that a third body induces on an inner binary pair which
an be used to calculate the mutual inclination, this can be found in
ppendix ( A ). In the case of BEBOP, where all binaries are known to

clipse, an upper bound on the mutual inclination directly translates
nto an upper bound on the orbital inclination of the planet, meaning
hose radial velocity data can be used to obtain not just a minimum

ass m p sin i p , but also a maximum mass. Finally, for close binaries,
easuring the precession rate also provides information on the stars’

nternal structure (Claret & Gim ́enez 2010 ). 
In this paper, we first we describe a binaries-specific radial velocity
odel applied in the kima package in Section 2 . This new model

which we will occasionally refer to as kima-binaries when
omparing it with the old model) mo v es be yond fitting pure Keplerian
rbits (as done in Faria et al. 2018 ), by including an apsidal precession
arameter to the fitted model. The section details those changes and
escribes the inclusion of other tidal and relati vistic ef fects that are
no wn to af fect orbital solutions. In Section 3 , the new model is
sed on both simulated and observed data. The ability to accurately
eco v er the apsidal precession rate is demonstrated, and we show
ow fitting for apsidal precession can impro v e a surv e y’s sensitivity
o circumbinary planets by producing Bayesian detection limits.
inally, in Section 4 we present a detection of the precession rate
or Kepler-16, and conclude in Section 5 . 

 A  BINARY  UPDATE  TO  KIMA 

n this section we present an update to kima , developing a binary-
pecific radial velocity model. This model accounts for various
NRAS 521, 1871–1879 (2023) 
actors that are generally ignored when looking at radial velocities for
 single star, but recommended when seeking to detect circumbinary
lanet signals (Konacki et al. 2009 ; Sybilski et al. 2013 ). The new
odel includes tidal and relativistic effects as well as, most notably,

psidal precession of the binary’s orbit. The new model is also given
he capability to fit double-lined binary data. 
kima is an orbital fitting algorithm which makes use of dif fusi ve

ested sampling (DNest; Brewer, P ́artay & Cs ́anyi 2011 ) to sample
he posterior distribution for the model parameters. It allows for
he number of Keplerian signals being fit to vary freely which is
dvantageous for Bayesian model comparison. There is a so called
known-object’ mode where separate priors can be defined for certain
lready known signals while allowing to search for further signals
reely; this model is ideal to apply to circumbinary systems. As will
e discussed further, this method of sampling allows for an efficient
ethod of calculating detection limits. 

.1 Adding precession to kima 

.1.1 A linear approximation 

s a first order approximation, we add a linear precession parameter,
˙  to kima . This parameter is free during a fit and its posterior is
stimated. We take the usual equation for the radial velocity of a
eplerian orbit (e.g Murray & Correia 2010 ): 

 = K( cos ( f + ω) + e cos ( ω)) + γ, (1) 

ith ω now being time dependent: 2 

( t) = ω 0 + ω̇ ( t − t 0 ) . (2) 

 is the semi-amplitude of the radial velocity signal, f the true
nomaly, e and ω the eccentricity and argument of pericentre for
he orbit, t 0 is some reference time, and γ is the mean velocity of
he system (which can be affected by the zero-point calibration of an
nstrument, but does not impact other parameters). In our case, we
se the mean of the times of observation for t 0 . 

.1.2 Period correction 

he period of an orbit as a single value is, in any realistic scenario,
ot completely well defined. Various angles associated with an orbit
ill vary in time, such as the argument of pericentre ω or the mean

nomaly M . Different combinations of these variations could all be
alled periods. We consider two of these defined as in the equations
 3 ) and ( 4 ). We denote these as observational period , P obs which is
he time taken peak-to-peak in radial velocity, and the anomalistic
eriod , 3 P ano , which is the time between consecutive pericentre
assages. 

2 π

P obs 
≈ ω̇ + Ṁ , (3) 

2 π

P ano 
≈ Ṁ . (4) 

 obs is the period that is usually referred to by observational
stronomers and can be precisely measured from time between
ransits or eclipses. In this work, we set priors on the binary period
ased on eclipses so want to use P obs for this. When including ω̇ into
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adial velocity fits we want to use P ano as the period parameter to
 v oid the expected correlation between P obs and ω̇ . Hence we need
o be able to convert from one to the other. To do this we combine
he two equations to get 

2 π

P obs 
= ω̇ + 

2 π

P ano 
, (5) 

nd hence, neglecting terms of order O( ̇ω P ) 2 , 

 ano = 

P obs (
1 − ω̇ P obs 

2 π

) ≈ P obs 

(
1 + 

ω̇ P obs 

2 π

)
, (6) 

 obs = 

P ano (
1 + 

ω̇ P ano 
2 π

) ≈ P ano 

(
1 − ω̇ P ano 

2 π

)
. (7) 

ur model fits for P obs as a parameter (i.e. the period prior is for
 obs as is the output posterior distrib ution), b ut the model internally
onverts this to P ano . 

.2 Other additions to the binaries model 

ere, we describe the other additions made to the binary model 
n top of the apsidal precession described earlier, namely, we add 
elativistic and tidal corrections, and give the ability to fit the radial
elocities for a double-lined binary. 

.2.1 Relativistic and tidal corrections 

e include relativistic corrections for binary orbits, the main ones 
eing light-travel time and transverse doppler (LT, TD; Sybilski et al. 
013 ) and gravitational redshift (GR; Zucker & Alexander 2007 ): 4 

V LT = 

K 

2 
1 

c 
sin 2 ( f + ω)(1 + e cos f ) , (8) 

V TD = 

K 

2 
1 

c sin 2 i 

(
1 + e cos f − 1 − e 2 

2 

)
, (9) 

V GR = 

K 1 ( K 1 + K 2 ) 

c sin 2 i 
(1 + e cos f ) , (10) 

here e , f , ω, and i are respectively the eccentricity, true anomaly,
rgument of pericentre, and inclination of the binary orbit relative 
o the plane of the sky; K 1 and K 2 are the semi-amplitudes of the
rimary and secondary, respectively, and c is the speed of light. 
The tidal effect is calculated as in Arras et al. ( 2012 ), assuming

 circular orbit. The equation for the tidally induced radial velocity 
ignal is as follows: 

 tide = 1184 
M 2 R 

4 
1 

M 1 ( M 1 + M 2 ) 
P 

−3 sin 2 i sin [2( f − φ0 )] m s −1 , (11) 

here M 1 , M 2 , and R 1 are the mass and radius of the primary and
econdary (in solar units), P the orbital period (in days) (we use P ano ),
 the true anomaly, and φ0 = π /2 − ω is the observer’s reference
osition. 
These equations are incorporated as an optional feature into the 
odel such that when a binary model is fit, these contributions to the

adial velocities can be naturally accounted for. We do not include 
hese effects for the general planet search objects as their effects will
e much smaller (by orders of magnitude since these corrections 
cale with M 

2 ) and so does not warrant the increase in computation

ime. 

 Sybilski et al. ( 2013 ) also have an equation for the gravitational redshift, 
ut it contains errors, hence we use the equation from Zucker & Alexander 
 2007 ) 

M  

5

t

.2.2 Adding in a double-lined binary model 

he vast majority of spectroscopic binaries are double-lined (e.g. 
ov ale v a et al. 2016 ), and although the detection of circumbinary
lanets in double-lined system is problematic (as in Konacki et al.
009 , 2010 ), new methods to disentangle both spectral components
ccurately enough to detect circumbinary planets are being developed 
e.g. Lalitha et al. in prep). To prepare for the time when circumbinary
lanets can be searched for, and be detected in double-lined binaries,
e add a feature to kima to model such a configuration. As an

nput, the software requires files containing radial-velocities for each 
omponent of the binary. The sets of data are fit simultaneously, each
ith an independent γ parameter to account for differing zero-point 

alibrations. 5 In addition, each set has its own jitter term, added
n quadrature to the RV uncertainties to account for any additional
ources of white noise. Only one extra common parameter is fit, the
ass ratio q . 
An y giv en solution consists of a binary orbit, some number of

lanetary orbits, and polynomial trends up to cubic order. The binary
rbit is fit to each data set with the secondary having the semi-
mplitude K scaled by q, and its argument of periastron reversed
 2 = ω 1 − π . The planetary orbits are then fit in the same way to
ach data set just as kima usually does. 

.3 Using the model 

he additions in the new binary model can be used in various
ombinations. The tidal correction and relativistic correction can 
ach be turned on or off, they will then apply to any known objects
ncluded. A priori on ω̇ will need to be given for each known object
s well as for general signals. 

One important thing to note is that equation ( 11 ) assumes a circular
rbit. We therefore recommend not using the tidal correction for 
ccentric binaries. We currently assume an inclination of 90 ◦, and
herefore we only consider eclipsing systems in this paper. A future
pdate may include the inclination as a free parameter to either
ttempt to constrain or at the very least marginalize over. 

The use of double lined binaries is also included in the options.
his requires a data set (or multiple) with five columns: date; RV
f primary; uncertainty on primary RV; RV of secondary; and un-
ertainty on secondary RV. The primary will therefore automatically 
e the signal placed in the second column. The mass ratio q can be
arger than 1 (at which point the ‘secondary’ is actually the more

assive star), so for example in an almost equal mass case a priori
an straddle q = 1. 

 PERFORMANCES  O F  KIMA-BINAIRES 

e now show tests and applications of the binaries model using data
rom simulations as well as from real systems. We first show that the
odel is able to reco v er consistent values of apsidal precession, and

emonstrate the impro v ement in the fit that ensues. We illustrate this
mpro v ement by computing detection limits. 

The standard way to perform detection limits is to inject a fine grid
f simulated Keplerian signals (often assuming e = 0) into the data
here any planetary signal has been remo v ed, and to measure which

ignals are reco v ered by the algorithm (e.g. Konacki et al. 2009 , 2010 ;
ayor et al. 2011 ; Bonfils et al. 2013 ; Rosenthal et al. 2021 ). Here,
MNRAS 521, 1871–1879 (2023) 

 Even though one would expect the same γ for components observed with 
he same instrument, this may not be the case (Southworth 2013 ). 
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nstead, we use the posterior distribution of the undetected Keplerian
ignals to measure the amplitudes which can still be present in the
ata, as described in Standing et al. ( 2022 ). 
Briefly, if the analysis indicates there are no planets in a system

circumstellar or circumbinary), we then apply a strict prior on the
umber of planets by fixing N p = 1. One Keplerian signal is assumed
o be present and the algorithm is thus forced to return all solutions
hat are compatible with the data, but not formally detected. We then
nalyse the posterior samples and compute a limit of K as a function
f P that envelops the lower 99 per cent of the samples. Practically
peaking, the limit is produced by creating log-linear bins along the P
xis. It is best to ensure there are at least at least 1000 samples in each
in. Should a system have a formally detected planet (Bayes factor
xceeding 150), that planet is subtracted from the data (the maximum
ikelihood parameters are used for this), and the detection limit is then
omputed as given earlier using the residual radial velocities. 

The advantage of using such a method o v er traditional methods
s the ability to sample o v er all orbital parameters as finely as the
lgorithm allows (indeed also, all γ variables and jitters , as well
s e , ω, ω̇ , and φ0 which are sometimes a v oided by the traditional
ethods). While a traditional insertion/reco v ery asks the question

an these exact signals be r ecover ed? our method instead asks what
s compatible with the data? A planet below the detection threshold is
onsistent with the data, and thus, is not formally detected, whereas a
lanet abo v e the line is inconsistent with the data and would therefore
ave been detected had it been there. 

.1 Analytic equation for precession 

n Appendix A we derive an analytic equation for the expected
recession rate due to an outer perturber (equation ( A11 )), and due
o rotational and relativistic effects (equation A17 ). This is done in
 similar way to in Correia et al. ( 2013 ) but where that was done in
he invariant plane, we do the calculation in the sky plane, which is
irectly applicable to observations results. 
The precession due to a perturber (equation A11 ) is under the

ssumption of both an eclipsing and transiting system, such as
epler-16. If applying this to a system that does not conform to

hese assumptions, then equation ( A5 ) should be used. 

.2 Testing kima-binaries with simulated data 

e begin by testing our ability to reco v er the apsidal precession using
imulated data, showing that we can reco v er a good measurement
f the apsidal precession rate ω̇ , and that including it can greatly
mpro v e the fit. 

We perform two simulations, both with a primary star of mass M =
 M �, a secondary with M = 0 . 37M �, P = 21.08 d, and e = 0.16
nd a (roughly Jupiter mass) planet with M = 0.001 M �, P = 134.5 d,
nd e = 0.01. The first simulation, SIM1, has just these 3 bodies,
hereas the second simulation, SIM2, has an additional planet with
 pl = 0 . 00015M �, P = 911.2 d, and e = 0, corresponding to about

 times the mass of Neptune. We chose these parameters to emulate
 typical circumbinary planet: the binary is similar to Kepler-16
n mass-ratio and eccentricity, with a shorter period to increase the
mount of precession that will have happened across the time that we
observe’. Planet 1 was placed between the 6:1 and 7:1 mean-motion
esonances with the binary and Planet 2 at a similar period ratio again.
hree different masses of Planet 2 were tried and we report here the
ne that had the right mass to be missed without using precession
ut detected when including it. The decimal places for the periods
NRAS 521, 1871–1879 (2023) 
ere chosen randomly to try and a v oid integer numbers of days and
otential accidental resonances. 
Simulations are made using the rebound package (Rein & Liu

012 ), the integrations used the IAS15 integrator (Rein & Spiegel
015 ). Radial velocity simulations are taken as the velocity along
he line of sight within the simulation. The simulation uses the same
bservational cadence as for Kepler-16 (Triaud et al. 2022 ), thus
roducing a simulated data set including all Newtonian perturbations.
oth simulated data sets are given a Gaussian white noise. 

.2.1 Improving scatter and derived parameters 

irst, we consider SIM1. From the values of ω at each point in
he rebound simulation, we obtain ω̇ = 308 . 4 ± 3 . 7 arcsec yr −1 

or the binary. Using equation ( A11 ) we get a theoretical value of
˙  = 301 . 1 + 0 . 8 

−1 . 5 arcsec yr −1 A fit using the binaries model results in a
osteriori estimate of ω̇ = 304 ± 16 arcsec/yr, which is in agreement
ith both the simulated and theoretical values. This run is done
ith the apsidal precession of the binary fit for, but without the

elativistic or tidal corrections. The uncertainty in the rebound
alue comes from ‘sampling’ ω at various times, calculating ω̇ from
hese and then taking its mean and variance. The uncertainty on
he theoretical value is propagated in a Monte Carlo way from the
osterior uncertainty on the binary and planetary parameters. The
ima-binaries value’s uncertainty is defined from 16 to 84 per
ent of the posterior distribution. 

Table 1 lists the parameters of the binary and planet taken from
ebound and fit with precession ( kima-binaries ) and without
recession ( kima ). The 1 σ uncertainty in each measurement is
hown in brackets as the last few significant figures, to make
omparison easier these are all scaled so that each value on a row
s shown to the same number of decimal places. The parameters for
ebound are read out as the osculating parameters at the times of
ach data point and then the mean and standard deviation of the
alues are calculated. 

We note that in many cases the fitted values are inconsistent
ith the rebound values, and give a word of warning for using

he Keplerian parameters from an N -body fitter such as this. When
aking the Keplerian orbital parameters of a body from a rebound
imulation at a given time, these are taken from the osculating
eplerian orbit which may not be representative of the average orbit.
onsider the planet’s orbital period, rebound ef fecti vely gi ves us
n anomalistic period as defined in Section 2.1.2 . Because of the
erturbed motion this is not the time it will take to actually complete
ne orbit and we get an observed period a few days shorter. This
ffect cannot be fit as an apsidal precession of the planet as the orbit
s not detectably eccentric. 

So a Keplerian (or quasi-Keplerian) fit does not reproduce the
sculating Keplerian parameters from a N -body simulation, but it
oes (to a reasonable accuracy) reproduce the mass. We see in Table
 that the mass of the binary is accurate to 3 decimal places (which
s more than the precision we usually get on the mass of the primary
tar anyway) and the mass of the planet is accurately characterized
more so when apsidal precession is take into account). 

We can also compare the precision of the two fits, in the sense of
ow tight a posteriori distribution we get for each parameter. In most
ases we can see an impro v ement in precision by about a factor of
wo. 

The reduction in residual scatter can be seen in Fig. 1 where the
ms impro v es from rms = 6 . 61m s −1 to 3 . 15m s −1 . When apsidal
recession is not accounted for, if we mo v e further from the reference
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Table 1. For SIM1 we show the parameters from rebound (Rein & Liu 2012 ) (note these are keplerian 
parameters taken from a Newtonian simulation) alongside the fitted parameters both with precession ( kima- 
binaries ) and without ( kima ). For the planet we state the upper bound on the eccentricity and omit the 
angle parameters as these are not resolved (close to circular orbit). The 1 σ uncertainties are shown as the 
last few significant digits, all of which are on the same scale as the smallest uncertainty to allow for easy 
comparison. Goodness-of-fit parameters are also shown to compare the two fits. 

rebound kima kima-binaries Units 

P B 21.0805330(8492) 21.0810474(52) 21.0810395(21) days 
M B 0.37 0.3700886(153) 0.3700981(57) M �
K B 23415.30(45) 23419.67(80) 23420.11(31) ms −1 

e B 0.160106(53) 0.160114(34) 0.160096(15) 
ω B 4.50018(236) 4.50061(24) 4.50016(20) rad 
φ0 , B 6.27400(23628) 6.28256(24) 6.28288(26) rad 
ω̇ B 308.4(3.7) 0 304.0(15.8) arcsec yr −1 

P pl 135.084(1.147) 131.373(120) 131.392(57) days 
M pl 1.0476 1.076(27) 1.046(14) M J 

K pl 33.62(09) 34.81(90) 33.82(43) ms −1 

e pl 0.0161(79) < 0.050 < 0.033 
rms 6.61 3.15 ms −1 

Jitter 6.27 2.04 ms −1 

χ2 
ν 12.35 3.15 

Figure 1. A comparison of radial velocity residuals, after removing the 
binary’s orbital solution, for SIM1 where apsidal precession is included in 
the kima-binaries model (in red) and not included in kima (in blue). 
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Figure 2. Detection limits for additional Keplerian signals using SIM1. The 
hexbins represent the density of posterior samples in each run. The purple- 
dashed line and solid-blue line are the 99 per cent detection limits. The black- 
dashed lines show where bodies of various masses would sit on this plot. 
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ime T 0 (near the centre of the figure), the fit worsens, giving a
haracteristic bow-tie shape, but if precession is accounted for, the 
pread in the residuals is reduced. 

The detection limits both with and without precession can be seen 
n Fig. 2 . The impro v ement in detection limit is slightly larger at high
eriods where the radial-velocity signature of apsidal precession can 
e confused for a long-term trend. This impro v ement means the data
ould allow the detection of another planet signal within this system,

lmost an order of magnitude lower in mass at orbital periods between
000 and 2 , 000d. Whilst this sounds impressive, this simulation only
ad a very small amount of extra white noise added to maximize the
ffect of apsidal precision in order to reveal its importance. In other
ystems we may expect more marginal impro v ements (see Section 
 ). 

.2.2 Detecting a hidden planet 

ere, we consider SIM2 and test how many planets are formally 
etected. To register as an n -planet detection, the Bayes Factor 
or the n -planet solution compared to the ( n − 1)-planet solution
eeds to be greater than 150. The sampling in kima is trans-
imensional, meaning that solutions with different numbers of 
lanets are all searched simultaneously. Therefore, the Bayes Factor 
F i + 1, i comparing the model with i + 1 planets to that with i planets,

s the ratio of the number of posterior samples with i + 1 planets
 i + 1 to the number with i planets N i 

F i+ 1 ,i = 

N i+ 1 

N i 

(12) 

here N i = 0, the Bayes Factor in equation ( 12 ) becomes infinite.
his can happen if the BF is larger than the number of ef fecti ve
osterior samples, and would be solved eventually had the sampling 
ontinued. In this case we therefore choose to report BF i + 1, i = N i + 1 ,
f fecti vely setting N i = 1. More information can be found in Faria
t al. ( 2018 ); Standing et al. ( 2022 ); Triaud et al. ( 2022 ). 

Running kima on the data from SIM2 without including preces- 
ion, the outer planet is not formally detected but visible within the
osterior as an o v er-density. With BF 2, 1 = 12.5 < 150, it would be
MNRAS 521, 1871–1879 (2023) 
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M

Table 2. The Bayes Factors for SIM2 (containing two circumbinary planets) 
comparing models with increasing numbers of planets both for the standard 
version of kima and the new kima-binaries version, which includes 
apsidal precession. 

kima kima-binaries 

BF 1, 0 538 0 
BF 2, 1 12.5 6086 
BF 3, 2 0.9 0.8 

c  

t  

p  

F

3
s

I  

r  

s  

p
 

s  

w  

T  

v  

t  

p  

2  

e  

v  

E
 

S  

c  

m  

e  

6  

t  

t  

o  

l  

T  

i  

m  

n  

m
 

K  

o
 

b  

N  

m

4
K

T  

d  

Figure 3. Detection limits for additional signals around KOI-126. The 
hexbins show the density of posterior samples with the red being those when 
precession is included in the fit, blue when it is not included. The dashed- 
purple line and solid-blue line show the 99 per cent confidence detection 
limits. The dashed lines show where bodies of various masses, and where the 
Deuterium and Hydrogen fusing limits would sit on this plot. 

Figure 4. Kepler-16: red: histogram of the density of posterior samples for 
fitted value of ω̇ with the median and 1 σ v alues sho wn in grey. Blue: histogram 

of the density of posterior samples for the theoretically calculated value of ω̇ 

with the median v alue sho wn in grey. (Note that ω̇ is not cut at zero, there are 
in fact posteriors below zero.). 
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lassified as a candidate planet. We can attribute this non-detection
o the apsidal precession since when we do fit for the precession, the
lanet is formally detected with BF 2, 1 > 6086 > 150. The Bayes
actors for each attempted fit are found in Table 2 . 

.3 Testing kima-binaries on data from the KOI-126 
ystem 

n this section, we test the ability to reco v er a value for the precession
ate consistent with a previous solution from literature, as well as
how the impro v ement in sensitivity to planets that accounting for
recession could bring in a highly precessing system. 
KOI-126 is a compact triply-eclipsing hierarchical triple star

ystem. It contains a roughly circular, low-mass, and tight binary
hich is in an eccentric orbit about a more massive tertiary star.
he system was first reported in Carter et al. ( 2011 ). There are radial
elocity data as well as photometry during multiple eclipses. As such,
he apsidal precession rate of the tertiary orbit is well measured with a
eriod of 21 850 d (Yenawine et al. 2022 ) which corresponds to ω̇ =
1 650 arcsec yr −1 . We used 29 radial velocity data from Yenawine
t al. ( 2022 ). Our fit with the new binaries model reco v ers a consistent
alue for the apsidal precession, with ω̇ = 21 800 ± 600 arcsec yr −1 .
qui v alently this is ω̇ = 0 . 56 ± 0 . 009 ◦ per cycle. 
We run the analysis with apsidal precession fit for, as described in

ection 2 , but do not include either the general relativity or the tidal
orrections. A more complete analysis would be to use a Newtonian
odel, rather than Keplerian with added precession, as in Yenawine

t al. ( 2022 ), ho we ver including the precession impro v es the χ2 
ν from

40.9 to 1.5. This amply justifies adding an extra parameter, ω̇ , to
he fit and suggests that a full dynamical model is not necessary with
he current precision of the data, hence illustrating the importance
f ω̇ , since even in this dynamically complex triple system, the
inear apsidal precession remo v es the majority of the excess noise.
he detection limits are shown in Fig. 3 for reference. Here too,

ncluding precession impro v es the detection limit by an order of
agnitude in semi-amplitude and remo v es much of the long-period

oise where, as with the simulated data, the precession may be being
ildly confused for a long term trend. 
We do not use the analytic equation derived in Appendix ( A ) as

OI-126 is in a different orbital configuration where the precessing
rbit is the outer (rather than inner) one. 
As an interesting note, the orbital periods shown in Fig. 3 would

e for putative circumtertiary planets , of which none are known in
ature. We can nonetheless state there are no stellar or brown dwarf
ass companions within ∼ 10 4 d of the inner tertiary. 
We show the parameters from our fit of KOI-126 in Table B1 

 APPLICATION  O F  KIMA-BINARIES TO  

E PLER-16  

he announcement of Kepler-16b marked the first unambiguous
etection of a circumbinary planet (Doyle et al. 2011 ), made thanks
NRAS 521, 1871–1879 (2023) 
o the Kepler spacecraft (Borucki et al. 2010 ). This system is unique
n also being the only circumbinary planet independently detected
ith radial velocity (Triaud et al. 2022 ). We re-analyse these radial-
elocity data with with our new model, and successfully detect an
psidal precession rate of ω̇ 1 = 283 + 87 

−85 arcsec yr −1 , which is 3.3 σ
rom 0. Using equations ( A11 ) and ( A17 ) we obtain a value of
˙  1 = 92 . 4 + 14 . 3 

−13 . 8 arcsec yr −1 , which is 2.2 σ away from the observed
alue. This theoretical value takes into account the planetary-induced
nd relativistic precessions (we do not include the rotational and
idal contributions as they would be very small in comparison
nd parameters like the Lo v e numbers are not very well known).
he posterior distributions for both the measured and theoretical
recession rates are shown in Fig. 4 . 
The theoretical ω̇ is lower than the value that we measure; more

ata are required to determine how significant this discrepancy is.
he difference is likely too important to be accounted for entirely by
utual inclination. An alternative (or additional) explanation could

e further undetected planets contributing to the precession rate. 
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Table 3. Various binary periods for Kepler-16AB. The first two values 
denoted by asterisk ( ∗) are taken from Triaud et al. ( 2022 ) using their two 
different algorithms, the other two are obtained using kima-binaries 1 σ
uncertainties are shown in brackets as the last 2 significant figures ( 3 in the 
last case for easy comparison with the others). 

Type of period and algorithm used Value 

P ( yorbit ) ∗ 41.077779(54) 
P ( kima ) ∗ 41.077772(51) 
P obs ( kima-binaries ) 41.077716(55) 
P ano ( kima-binaries ) 41.078737(305) 

Figure 5. Detection limits for Kepler-16 with and without accounting for 
precession. The posterior sample for each of these are plotted in the hexbins 
with the version including precession plotted in red and in front. Since there 
is no impro v ement the density plot for the model without precession is hard to 
see. The dashed-purple and solid-blue lines show the 99 per cent confidence 
detection limits with and without including precession. 
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We explore the difference between P obs and P ano . These values 
or Kepler-16 are presented in Table 3 alongside values published 
n Triaud et al. ( 2022 ). The value we get for P obs is in statistical
greement with the previous publication, however P ano is 3.3 σ above 
his. P ano is the time between consecutive pericentre passages, the 
eriod that should in theory be used to compute physical parameters 
uch as semimajor axis and planet mass, in a Keplerian context. 
n practice the difference is negligible due to there being a small
ifference between P ano and P obs , as well as the uncertainty in
he mass of the primary often being dominant. For Kepler-16 the 
ifference in mass using the two periods is ≈ 2 × 10 −6 M �. It would
ake a case with very precise mass and a very high precession rate
or this difference to be significant, even for KOI-126 (B + C), the
ifference is ≈ 2 × 10 −4 M � which is about a fifth of the currently
easured uncertainty. 
In addition, we produce a detection limit for Kepler-16, comparing 

he results with and without including ω̇ . The detection limits, plotted 
n the same way as the previous ones, are shown in Fig. 5 . In this
ase, as we only get a marginal detection of apsidal precession there
s no real impro v ement in the detection limits. 

We show the parameters from our fit of Kepler-16 in Table B2 . 

 C O N C L U S I O N S  

e have shown that fitting for the apsidal precession of a binary’s
rbital parameters impro v es the radial velocity sensitivity to cir-
umbinary planets. Our conclusions are in line with previous work 
uch as Konacki et al. ( 2010 ) and Sybilski et al. ( 2013 ), but extend
heirs to a fully Bayesian framework. The impro v ement in the
etection limits can be of up to an order of magnitude in some
onfigurations, but in most cases, impro v ements are expected to be
arginal as in the case of Kepler-16. Accounting for precession can

lso give improvements in the precision of the parameters recovered 
rom a fit, as well as the potential to unco v er planets that were hidden
y precession (or instead require less data to detect the same planet).
We hav e deriv ed a formula for calculating the theoretical pre-

ession induced in a binary (equation A11 ) and have discussed the
otential use of a measurement of the apsidal precession rate as a
ay to constrain the mutual inclination of the planetary and binary
rbital planes using this formula. 
The theoretical and observed values of precession for Kepler-16 

re in slight tension, this may be because of undetected planets or
ome other unknown mechanism. 

The longer the baseline of radial velocity observations, the more 
mportant it is to account for apsidal precession. As the field
rogresses, and the number of data from surv e ys like BEBOP
ncreases, fitting the apsidal precession of the binaries will become 
ital. To prepare for that time, we have presented an updated version
f the kima package which is more adapted to fitting radial velocities
or single and double-lined binaries. The code is made public on
ithub. 
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 DATA  AVAI LABI LI TY  

he radial velocity data for Kepler-16 can be found in Triaud
t al. ( 2022 ).The radial velocity data for KOI-126 can be found
n Yenawine et al. ( 2022 ). 

The code used for the analysis in this paper can be obtained at
ttps://github.com/j-faria/kima 
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PPENDIX  A :  D E R I VAT I O N  O F  T H E  

L ANETA RY  I N D U C E D  PRECESSION  R AT E  

n this section, we derive the equation for the apsidal precession of
n inner orbit (Binary or planet) due to an outer perturber. 

The dominating term for the apsidal precession is the planet–
inary gravitational interactions. We take the secular quadrupole
amiltonian after averaging over the mean anomaly of both orbits is
iven by (e.g. Farago & Laskar 2010 ; Morais & Correia 2012 ) 

 = C 2 

[
2 − 12 e 2 1 − 6(1 − e 2 1 ) cos 2 i + 30 e 2 1 cos 2 α

]
, (A1) 

here 

 2 = 

G 

16 

m 0 m 1 

m 0 + m 1 

m 2 

(1 − e 2 2 ) 3 / 2 
a 2 1 

a 3 2 

, (A2) 

nd 

cos i = sin I 1 sin I 2 cos ( �1 − �2 ) + cos I 1 cos I 2 , (A3) 

cos α = sin I 1 sin ω 1 cos I 2 − sin I 2 cos ω 1 sin ( �1 − �2 ) 

− sin I 2 cos I 1 sin ω 1 cos ( �1 − �2 ) . (A4) 

n these equations, a , e , I , ω, and � refer to the semimajor axis,
ccentricity, orbital inclination, argument of pericentre, and longitude
f ascending node of an orbit, with subscripts 1 and 2 referring to
NRAS 521, 1871–1879 (2023) 
he inner and outer orbits, respectively. G refers to the gravitational
onstant, while m 0 , m 1 and m 2 are the masses of the star A, B, and
lanet, respectively. Cos i and cos α are direction cosines, where the
ngle i corresponds to the true mutual inclination between the two
rbital planes. 
Then, we can compute the precession of the pericentre of the

nner orbit using the Lagrange Planetary Equations (e.g. Murray &
ermott 1999 ) as 

dω 1 

dt 
= − (1 − e 2 1 ) 

e 1 G 1 

∂ H 

∂ e 1 
+ 

cot I 1 
G 1 

∂ H 

∂ I 1 
, (A5) 

here G 1 is the norm of the orbital angular momentum 

 1 = 

m 0 m 1 

m 0 + m 1 

√ 

G( m 0 + m 1 ) a 1 (1 − e 2 1 ) , (A6) 

∂ H 

∂ e 1 
= C 2 

[−24 e 1 + 12 e 1 cos 2 i + 60 e 1 cos 2 α
]
, (A7) 

∂ H 

∂ I 1 
= C 2 

[
−12(1 − e1 2 ) cos i 

∂ cos i 

∂ I 1 
+ 60 e 2 1 cos α

∂ cos α

∂ I 1 

]
, 

(A8) 

nd 
∂ cos i 

∂ I 1 
= cos I 1 sin I 2 cos ( �1 − �2 ) − sin I 1 cos I 2 , (A9) 

∂ cos α

∂ I 1 
= cos I 1 sin ω 1 cos I 2 + sin I 2 sin I 1 sin ω 1 cos ( �1 − �2 ) . 

(A10) 

In the case of an eclipsing binary and a transiting planet, such as
epler-16 we can take I 1 ≈ I 2 ≈ 90 ◦, which allow us to simplify

xpression ( A5 ) as 

dω 1 

dt 
≈ 12 C 2 

G 1 
(1 − e 2 1 ) 

[
2 − cos 2 i − 5 cos 2 α

]

≈ 12 C 2 

G 1 
(1 − e 2 1 ) 

[
1 + (1 − 5 cos 2 ω 1 ) sin 2 i 

]
. (A11) 

Therefore, for an eclipsing and transiting system, a constraint on
he precession rate can be used to measure the mutual inclination. 

For close-in binaries, additional sources of apsidal precession may
ecome rele v ant, such as general relati vity, rotational flattening,
nd tidal deformation. These effects, can also be modelled using
 Hamiltonian formalism as 6 (e.g. Correia et al. 2013 ; Correia et al.
016 ) 

 

′ = − C g 

(1 − e 2 1 ) 1 / 2 
− C r, 0 + C r, 1 

(1 − e 2 1 ) 3 / 2 

− C t, 0 + C t, 1 

(1 − e 2 1 ) 9 / 2 
(
1 + 3 e 2 1 + 

3 
8 e 

4 
1 

)
, (A12) 

here 

 g = 

3 G 

2 m 0 m 1 ( m 0 + m 1 ) 

a 2 1 c 
2 

(A13) 

orresponds to the general relativity correction ( c is the speed-of-
ight), 

 r,i = 

Gm 0 m 1 J 2 ,i R 

2 
i 

2 a 3 1 

(A14) 

ccounts for the rotational flattening, and 

 t,i = k 2 ,i 
Gm 

2 
1 −i R 

5 
i 

2 a 6 1 

(A15) 
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Here, we show the parameters for KOI-126 in Table B1 and for 
Kepler-16 in Table B2 from the fits using the binaries model. The 
parameters for KOI-16 are of the outer orbit of the triple, modelling 
the short period binary as a single massive body. 

Table B2. The fitted and derived and assumed parameters for Kepler-16 
subscripts B refer to the binary orbit and b to the planetary orbit. The quality of 
fit indicators (rms, Jitter, and χ2 

ν ) are taken for the best fitting model. Excepting 
parameters with highly asymmetric distributions, the 1 σ uncertainties are 
shown as the last few significant digits. 

kima-binaries Units 

Assumed parameters 
M A 0.654(20) M �

Fitted parameters 
P B, obs 41.077716(55) days 
P B, ano 41.07874(31) days 
K B 13678.9(1.4) m s −1 

e B 0.159925(88) 
ω B 4.60203(79) rad 
φ0, B 1.63340(76) rad 
ω̇ B 284(86) arcsec yr −1 

P b 225.8(1.7) days 
K b 11.7(1.6) m s −1 

e b <0.29 
ω b 3.90(92) rad 
φ0, b 2.32(87) rad 
γ −33811 . 5 + 3 . 1 −0 . 2 m s −1 

Derived parameters 
M B 0.1965(32) M �
T 0, B 58498.4796(52) BJD – 2 400 000 
M b 0.308(42) M Jup 

T 0, b 58 388(33) BJD – 2 400 000 

Fit indicators 
rms 11.01 m s −1 

Jitter 0.91 m s −1 

χ2 
ν 0.92 
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or the tidal contribution. 

 2 ,i = k 2 ,i 
�2 

i R 

3 
i 

3 Gm i 

, (A16) 

 2, i is the second Lo v e number for potential, �i is the rotation rate,
nd R i is the radius of the star with mass m i . 

Then, according to expression ( A5 ), the correction in the apsidal
recession is given by 

dω 1 

dt 
= 

C g 

G 1 (1 − e 2 1 ) 1 / 2 
+ 

3( C r, 0 + C r, 1 ) 

G 1 (1 − e 2 1 ) 3 / 2 

+ 

15( C t, 0 + C t, 1 ) 

G 1 (1 − e 2 1 ) 9 / 2 
(
1 + 

3 
2 e 

2 + 

1 
8 e 

4 
)
. (A17) 

he first term is the relativistic contribution, the middle one is the
otational contribution, and the last term is the tidal contribution. 
hese can be taken separately as we do in Section ( 4 ) 

PPENDIX  B:  TA BLES  O F  PA R A M E T E R S  

able B1. The fitted and derived and assumed parameters for KOI-126 for
he orbit of the binary B + C around star A. ∗ since we only fit a single
rbit in the radial velocity data the mass here is the combined masses of
tars B and C. The quality of fit indicators (rms, Jitter, and χ2 

ν ) are taken
or the best fitting model. The mass M A is obtained from Yenawine et al.
 2022 ). Excepting parameters with highly asymmetric distributions, the 1 σ
ncertainties are shown as the last few significant digits. 

kima-binaries Units 

ssumed parameters 
 A 1.2713(47) M �

itted parameters 
 obs 33.77943(33) days 
 ano 33.83207(69) days 
 21 395(25) m s −1 

 0.3113(13) 
 1.1794(50) rad 

0 1.0210(40) rad 
˙  21 800(370) arcsec yr −1 

−27852 + 193 
−76 m s −1 

erived parameters 
 

∗
B + C 0.4424(11) M �
 0 51047.4547(27) BJD – 2 400 000 

it indicators 
ms Tull 207 m s −1 

ms Tres 84.2 m s −1 

itter Tull 0.36 m s −1 

itter Tres 49.3 m s −1 

2 
ν 3.07 
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