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1   Introduction 

Lower-limb Amputations (LLA) are among today's most common amputations 

associated with high mortality rates and lower quality of life (Robbins et al., 2008). 

While research has identified risk factors and demonstrated interventions to prevent the 

need for amputations in the first place (Rathinam et al., 2021), there continues to be a 

relatively high incidence today, with nearly 185,000 new amputations in the United 

States each year (Kozak et al., 1995). Consequently, various prostheses have been 

developed to improve the mobility of individuals living with LLA.  

Within the non-activity-specific prostheses, there exist passive and active models. 

Passive models may include a hydraulic system and an endoskeleton torsion unit to 

dampen impact forces and bear weight while twisting. Active models, in addition, may 

contain microprocessor-controlled ankle/foot systems and knee systems that provide 

active propulsion to lower the amount of effort people may need to use while walking 

(Stokosa, 2021).  

Another element that may considerably influence the quality of life is the fit and 

quality of prostheses. Less-than-ideal fitting and poorly made prostheses have 

introduced issues, such as restricted movement, pain with continued use, and a general 

risk of falling (Bryant, 2019). More recent advances have allowed prostheses that focus 

on providing solutions to these issues. Medical ultrasonography has been most recently 

explored as a possible solution to compensate for limb motion in prosthetic sockets 

(Ranger et al., 2015). Another recent alternative, with considerably less accessibility 

but high efficacy, is MIT's FitSocket. This tool accounts for leg tissue properties via 

multiple linear actuators to detect areas of softness and stiffness in a patient's residual 

limb (Petron, 2016). But even with these advances, further tuning is warranted to 

improve functionality and quality of life. A dearth of research focuses on user feedback 

and satisfaction (Eshraghi et al., 2013). Thus, improvements in prostheses should 

consider qualitative outcomes in conjunction with any quantitative findings.  

The current literature on advanced prosthetics functionality has largely explored the 

use of interfaces to control prostheses—either via neural or muscular implementation. 

However, the advances in microprocessor technology have facilitated the application 

of machine learning models to aid active prostheses. Implementing this technology 

could potentially supplement or even circumvent the invasive elements involved with 

the use of interfaces. 

This study aims to apply machine learning techniques to improve comfort and 

mobility for individuals using active lower extremity prostheses. The various ways this 

objective has been explored in the literature are detailed below. The current state of 

development for active prostheses has been fruitful but remains in its nascent stages by 

its limited accessibility and functionality.  

One primary area of focus is improving action recognition (i.e., classification of 

actions). Among the most used machine learning methods for this objective are 

Random Forest (RF), Neural Networks (NN), k-Nearest Neighbors (k-NN), Support 

Vector Machines (SVM), and Decision Trees (DT). To this end, the most relevant 

1

Dominguez et al.: The Role of Machine Learning in Prostheses

Published by SMU Scholar,



   

 

   

 

metric to evaluate is the accuracy of action classification, for which the best method is 

highly contingent on the data set.  

This study was limited to publicly available data sets. Among those that provided 

relevant information about the topic at hand, the Human Gait Database (HuGaDB) 

contained the most comprehensive documentation and sensory inputs. It uniquely 

employs inputs from an accelerometer, gyroscope, and EMG-- each placed on the thigh, 

shin, and foot of each leg, amounting to 6 total positions of the body. The data was 

collected from 18 participants and had classifications for 12 activities, ranging from 

'walking' to [going] 'up by elevator' (Chereshnev et al., 2018).   

The current benchmark model for this dataset holds a classification accuracy of 

98.6% by using a Random Forest algorithm in conjunction with specific data processing 

and segmentation methods (Badawi et al., 2018). While the accuracy is 98.6%, the 

nature of the algorithm is limited in scalability for this application. Random Forest 

requires renewed training of a model to incorporate novel data, essentially creating an 

entirely new model. An adaptive prosthesis must be able to augment its model without 

needing the computing resources required to retrain a new/altered data set due to the 

limited capabilities of an integrated microprocessor. Thus, it is recommended to 

increase the metric performance score and find an alternative method of modeling that 

would allow for adaptability for the individualization of functionality. This study 

examines the possibility of using a neural network framework to tackle this problem, 

capitalizing on its layering approach, as well as a Vowpal Wabbit (VW) model, which 

is widely used for its efficiency with extensive data. VW models can be understood as 

highly optimized linear regressions with the advantage of streaming data.  

 

 

2   Literature Review 

2.1   Quality of Life with Prostheses 

Several studies have looked at the quality-of-life aspect of prosthetics. At the same 

time, much of the literature pertains to functionality, such as accurate detection of 

motion and recognition of intent. There is a need to address research conducted with a 

primary interest in the comfort and well-being of the user.  

One study administered various questionnaires to lower limb amputees that 

measured their prostheses' quality of life, functional performance, and body image 

(Burcak et al., 2021). Results supported higher overall satisfaction, functional 

performance, and better body image with high-tech prostheses over mechanically 

controlled prostheses. Although this study specifically used microprocessor-controlled 

knee prostheses (MPK) and transtibial vacuum-assisted suspension system (VASS) 

prostheses, these findings still support the advantages of applying more advanced 

prosthetics and the need to make them more accessible to amputees.  

Of course, even before prosthesis usage, the preliminary step of fitting prostheses is 

a critical step that may determine the user's comfort. Jamaludin and colleagues (2019) 

investigated this topic by attempting to estimate pressure distribution profiles. 

Understanding this component can aid in determining a user's level of comfort before 
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fabricating the prosthetic socket. The researchers demonstrated the potential for three-

dimensional models using magnetic resonance (MR) images (Jamaludin et al., 2019). 

These 3D models provided pressure measurement and mapping within the socket, 

allowing for adjustments tailored to each user. 

 

2.2   Non-Machine Learning Techniques 

Most studies investigating functionality in lower-limb prosthetics used some form of 

machine learning or explored various methods to use alongside machine learning. 

However, many studies have investigated the feasibility of using non-machine learning 

techniques. Many machine learning models are run on data collected from sensors, and 

while this works well in practice, studies have underlined the difficulty of retrieving 

clean data in the real world (Afzal et al., 2016; Dyson et al., 2020). Consequently, this 

invariably leads to decreased performance scores. Optimal results would then require 

retraining the model every several days, if not daily, which would be costly and 

realistically impractical. Although this problem applies to both machine and non-

machine learning techniques, non-machine learning approaches may be 

computationally and financially less expensive.  

With this goal in mind, Dyson and colleagues (2020) developed a paradigm that 

relies on motor learning instead of a machine learning algorithm. Although this study 

focused on upper limb prostheses, it offers a novel approach to circumvent a common 

issue with machine learning algorithms, generalizability. Machine learning models 

must train on EMG data that reflects people's daily encounters. If a new desired output 

exists, the model must be retrained to account for this new classification. The study 

initially looked at how human learning may serve as a viable alternative to machine 

learning. People, both limb-intact and limb-deficient, using human-machine interfaces, 

could control myoelectric interfaces using muscles in their arms. By training the 

muscles directly, this approach allows for more flexibility with its application to the 

real world.  

Stepping beyond applicability advantages alone, another study demonstrated a non-

machine learning method with improved performance over machine learning (Afzal et 

al., 2016). In their study, researchers highlighted the potential advantages of using 

muscle synergy over standard machine learning techniques, such as neural networks 

and linear discriminant analysis. The differences in performance varied depending on 

the type of machine learning technique applied and the same locomotive task. However, 

the results still support the argument that there are viable alternatives to machine 

learning.  

Unfortunately, the non-machine learning approaches stated concerns regarding the 

quality of EMG signals, which is also a common concern for machine learning models. 

Data collected from poor EMG readings were generally excluded or accounted for 

before analysis. This points to a fundamental problem with the practicality of high-tech 

prostheses outside a controlled environment. The shortcomings of any advanced model 

appear to come not from the limitations of the technique employed but rather from the 

data to which the model is being applied. While this discussion reaches beyond the 
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scope of the current study, it is important to note that the results of any classification 

technique will be contingent upon the quality of the data. 

2.3   Machine Learning Techniques 

In most studies employing machine learning techniques, classification appears to be the 

predominant objective. The schematic process generally consists of identifying 

movements of the person using the prosthesis or identifying surroundings via sensors–

presumably, with the intent of having the respective classification be followed by a 

corresponding assisted movement. To this end, Griffiths et al. (2021) used data from an 

accelerometer placed at the shank level to classify and predict postures using a Random 

Forest algorithm with an accuracy of 93%. In another study, Lee et al. (2021) attempted 

to predict the gait phase by taking the angular positions and velocities of the thigh, 

torso, and heel force as input. As a caveat, however, it is important to consider how a 

model can be built while minimizing the additional hardware imposed on amputees. In 

the case of Lee, although highly effective concerning classification metrics, it appears 

unfeasible to apply multiple Inertial Measurement Units (IMUs) outside of the 

prosthesis as part of a quotidian application.  

Apart from using sensory inputs, another approach explored using a Brain-Computer 

Interface (i.e., neural inputs) to classify and interact with prostheses (Dillen et al., 

2022). Dillen and colleagues decoded EEG data with an accuracy of 84% to 

discriminate different lower extremity movements. With further development and more 

elaborate machine learning modeling, this approach can be effective in isolation or 

supplemental to sensory inputs. It must be noted that adding a BCI can prove invasive 

or financially unfeasible. A practical use case for this approach can be found in patients 

with Spinal Cord Injury (SPI), whereby the condition leaves them unable to ambulate. 

Wang et al. (2012) similarly used EEG and ML methods to decode said EEG input for 

eight patients with SPI–of note. However, in contrast to Dillen and colleagues (2022), 

Wang and colleagues built a Virtual Reality Environment after a 10-minute training to 

allow control over the ambulation of an avatar in real-time, essentially replicating the 

real-world output if a prosthetic responded immediately to neural inputs. This begets 

the possibility of integrating an autonomous element into prostheses' active-assistance 

movement. 

The use of neural networks (NN) algorithms, specifically in the application of active 

prostheses, is relatively sparse in the literature, partly due to its recent popularity in the 

data science field and complexity in structure and interpretability. Still, as Nayak & 

Das (2020) emphasized, its application may have "a huge impact in achieving 

independent mobility and enhances the quality of life in Persons with Disabilities" (p. 

17). There have been some notable publications, however, such as Karlik et al. (2003) 

's seminal work applying a NN architecture to classify myoelectric signals. Since then, 

the technology (both in computing and robotics/prosthetics) has allowed for the 

refinement and application of their methods, as proposed in their original paper. 

Another study outlines the use of NN to determine EMG sensor requirements from gait 

analysis data. Of particular interest is the nature of the data used for modeling, which 

is highly applicable to LLA cases, and their objective to minimize the use of inputs to 

have a possible use case for integration in active prostheses (Keres, 2017). 
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Outside of these cases, studies have used other ML techniques, such as Random 

Forest (RF), XGBoost, and Logistic Regression, to identify relationships between 

amputations and medical comorbidities. Bolourani et al. (2020) combined Logistic 

Regression with sampling algorithms to identify patients with traumatic arterial injuries 

at elevated risk for amputation with an 88% accuracy. Alternatively, Anderson et al. 

(2021) used a neighbors-based approach to predict an individual patient's future 

mobility after a lower-leg amputation. Though not directly related to the prosthesis, this 

approach can still be implemented as a supplemental overview of the patient's case and 

may provide utility for deriving a patient's best course of action.  

2.4   Supplemental Methods for Machine Learning 

A body of literature demonstrates methods that can work in conjunction with machine 

learning techniques. While some of these methods will not be directly applicable to our 

course of research, it is useful to contextualize how ML methodology has been used to 

study different facets of this field. For those studies that used machine learning models 

to decode EMG signals, it must be noted that said models and systems are prone to 

suffer from issues with robustness and stability of accuracy over time (Schulte et al., 

2022). This effect, called concept drift, is primarily due to a changing input signal and 

was found to affect pattern recognition by 20%-30% throughout the day or between 

days. The feasibility of this technology for long-term use is contingent on frequent 

retraining of myoelectric pattern recognition systems, which makes its application in 

prostheses impractical, at least in its current state. Another example of varying 

applications within an ML framework can be seen with Lee et al. (2021), wherein a 

different combination of sensors–concerning body placement–was tested and 

compared. In the first set (S1), sensors were able to pick up the velocity and angular 

position of the thigh and torso, and in the second set (S2), the heel force sensor was 

added to the previous two. S1 allows for greater ease of use and thus facilitates training 

and testing, compared to S2; however, as previously mentioned, the use of additional 

sensors outside of the prosthesis limits its practical application outside of a controlled 

study.  

To address the issue of external sensors, Griffiths et al. (2021) created an ML model 

using a sensor at the shank-level, with the implication that said sensor could be 

integrated into the active-prosthesis system. This method creates its own set of 

limitations, given the capacity a sensor has in that position to gather relevant data. Such 

determination may only be made considering the patient's needs–to wit, if the type of 

active assistance in a prosthesis (and its respective model) does not require additional 

data to perform efficaciously, then the number and locations of sensors will suffice in 

this form. 

Another parameter that may be implemented in developing ML models, as conveyed 

by Lecomte et al. (2020), is the comparison of a functional joint center (FJC) and a 

conventional ankle joint. The FJC can help characterize and differentiate between 

various prosthetic foot designs. This could allow for a better fitting for amputees, which 

has been a significant source of discomfort.  

It is hypothesized the neural network model will yield the best overall performance 

metrics, leading with the highest accuracy and higher precision and recall for most 
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activities. Moreover, its implementation in deployment would allow edge computing to 

individualize the classification model by adding an extra hidden layer of training data 

derived from the end user's specific movements. A secondary hypothesis is that the VW 

model will train the data fastest and achieve results comparable to or better than the 

random forest classifier. This study aims to add to the literature by: 

1) Replicating the current benchmark model for this dataset in the literature 

(Badawi et al., 2018). 

2) Exploring model metric scores of a neural network framework and VW model 

for individualization of functionality. 

3) Assessing each model as a viable method to implement in active prostheses, 

considering their ability to adapt to each potential user. 

 

3   Methods 

The HuGaDB dataset was collected from 18 participants, four females and 14 males. 

Participants were identified as healthy adults with an average age of 23.67 (+/- 3.69σ) 

years and an average weight of 73.44 (+/-16.67σ) kg. Data was gathered using inertial 

sensors that acted as accelerometers and gyroscopes, tools used to collect information 

on linear acceleration and rate of rotation. Sensors were placed on each leg's thigh, shin, 

and foot for a total of six sensors. Each sensor collected acceleration and gyroscope 

data along the x, y, and z axes, yielding 36 features across all six sensors. Muscle 

activity was captured using two EMG sensors on the quadriceps.  

After adding the participant ID, the complete data set comprised 38 explanatory 

features across 2,111,869 samples. The target variable was a classification of the 

activity being performed when the data was recorded. The activities ranged from basic 

actions, such as 'walking,' to more unique, activity-specific actions, like 'sitting in a car,' 

giving twelve unique responses. Across all participants, data were acquired over a 

collective total of 10 hours of activity. It is important to note that Chereshnev and 

colleagues state in their original paper for this data set that some corrupt data had to be 

discarded. They also state that the raw data were filtered with moving averages to 

"remove the bias drift of [their] inertial sensors." No further data cleaning or 

transformations were conducted beyond retrieving the data from the public GitHub 

repository.  

Using the moment-to-moment sensor data, data were trained and tested using three 

different types of machine learning models to classify these actions: a random forest 

classifier, a VW algorithm, and a neural network model. Each model's performance was 

evaluated using their overall accuracy score first, as a general comparative metric and 

then for precision, for each class. Keeping in mind the end-user's functionality and 

safety, this model needs to maximize the degree to which it correctly identifies a given 

movement, as it is necessary to minimize the proportions of which a given class is 

incorrectly classified. Although our primary goal in assessing these models is to 

identify the one with the highest accuracy, given that these models are intended to 

optimize daily movement with prosthesis use, they are also crucial to yield low Type I 
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and Type II errors. Neglecting these error rates in our model selection could bring 

unintended results upon implementation, such as improvement with specific activities 

at the cost of added discomfort in others. As such, accuracy scores were supplemented 

by recall and precision scores. These additional metrics could then help us identify if 

there are any preferences in actions between models; models may have different 

tendencies to identify one action over another.  

Lastly, the performance speed was monitored when training for each model. In 

practice, users will need to train a classifier for each fitted with a prosthesis, possibly 

using more than 10 hours of data per person. With the added possibility of retraining 

the data over continued use, the practicality and financial viability of these models may 

rely heavily on the speed of performance. While the exact method of implementation 

and dissemination is beyond the scope of this study, assessing the performance speed 

serves as a gauge for what should and should not be a realistic expectation for each 

model.  

 

3.1 EDA 

 

The raw data comprised 2,111,869 observations across 40 features and 1 target 

variable. The target variable was the type of physical activity being performed, such as 

'walking'. Explanatory features were accelerometer, gyroscope, and EMG data. The 

output values of the 18 accelerometer and 18 gyroscope features mostly ranged between 

–32,768 and 32,767. Six observations contained accelerometer or gyroscope values far 

outside this range and were excluded as outliers. The left and right EMG features had 

values ranging from 0 to 254. The id feature had values 1 through 18, each number 

representing one of the eighteen participants for the study. The target variable was a 

multiclass feature with 12 unique physical activities.  

The modified data set used for analyses comprised 2,111,863 observations across 40 

features and 1 target variable. Groups within the target variable were imbalanced; over 

30% of observations were classified as 'walking', while other classifications like 'down 

by elevator' and 'sitting in car' only composed around 1% of the data. This imbalance 

was not addressed during data preprocessing but will be important to note when 

interpreting the results.  

 

   Table 1.    Number of samples per activity in the complete dataset 

Activity Observations 

Walking 679,073 

Running 328,655 

Going up 241,756 

Going down 180,573 

Sitting 156,560 

Sitting down 131,604 
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Standing up 116,637 

Standing 89,144 

Bicycling 71,653 

Up by elevator 69,729 

Down by elevator 24,112 

Sitting in car 22,373 

 

 

3.2 Random Forest 

 

The Random Forest algorithm was chosen due to its efficacy in classification 

modeling within the data science field, in addition to its lack of complexity in modeling 

and interpretability. It also serves to replicate the benchmark accuracy achieved by 

Badawi et al. (2018). Both machine learning models were prepared by and through 

Python's scikit-learn packages and trained with an 85-15 train-test split, with a stratified 

split to reflect the class distribution of the target variable. As outlined in Badawi (2018), 

the number of estimators was set to 256, and the split criterion was based on Gini 

impurity.  

 

3.3 Neural Networks 

 

Given its current widespread application in the data science field, a neural network 

model was also trained to identify its advantages, if any, in recognizing locomotive 

intentions. The neural network was developed using Python's tensorflow sequential 

model, creating a linear stack of five layers. The five layers had 300, 400, 500, 300, and 

13 (output) neurons. The model utilized 'categorical_crossentropy' as the loss function 

and 'adam' as the optimizer with a learning_rate of 0.0001. A Dropout layer was added 

as the last hidden layer with a rate of 0.2 in order to prevent overfitting. Early stopping 

was implemented with patience set at 4 and mode set at 'max' to monitor 'val_accuracy.' 

A description of the model architecture is found in the table below: 

 

Table 2.    Architecture of Neural Network Model 

Layer Neurons Activation 

Input 39 N/A 

Dense 400 Sigmoid 

Dense 400 Sigmoid 

Dense 400 Sigmoid 

Dense (Output) 13 Softmax 

 

 

3.4 Vowpal Wabbit 
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Finally, a VW model was trained, a system well-known for its advantage in speed 

by streaming data and using what is known as the hashing trick. The model was 

developed using the vowpal package in Python. The model was trained with 1000 

‘passes’ using the ‘hinge’ loss function and ‘oaa’ (One Against All) comparisons. The 

‘l1’ and 'l2’ regularizations were set to 0, and quadratic and cubic functions were 

created using ‘-q::’ and ‘--cubic:::’, respectively. It is important to note that VW is 

likely faster to train and optimize using the command line. The model created for this 

study used the vowpal package in Python to keep conditions consistent across all 

models for ease of comparison. 

4   Results 

The performance of the three models was compared using three common evaluation 

metrics: accuracy, precision, and recall. The neural network model achieved an 

accuracy of 94%, a precision of 95%, and a recall of 93%. The random forest model, 

on the other hand, achieved an accuracy of 96%, a precision of 97%, and a recall of 

94%. Lastly, the VW model had an accuracy of 56%, a precision of 80%, and a recall 

of 91.5%. 

 

 
Fig. 1. A chart comparing the three models by Accuracy, Precision, and Recall 

 

As shown in Figure 1, the results of this study favored the neural network and 

random forest models, with the random forest model having slightly better 

performance than the neural network model. The high accuracy and precision values 

suggest that the models were able to correctly classify almost all the instances in the 

test set. The recall values indicate that the models were able to identify a significant 

proportion of the positive instances in the test set. 

 

   Table 3.    Accuracy, precision, recall, and training speed of each model 
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Model Accuracy Precision Recall Speed 

Random Forest 96% 97% 94% 40 minutes 

 Neural Network 94% 95% 93% 8 minutes 

Vowpal Wabbit 56% 80% 91.5% 16 minutes 

 

Models were also evaluated on speed of training. This was accomplished by 

running all models in a standard GPU runtime Google Colab environment. The neural 

network model took 8 minutes, the random forest model 40 minutes, and the VW 

model 16 minutes. The reason for the random forest’s significant training time can be 

attributed to the sheer number of estimators that was included in the model. Using 

GridSearch, the random forest model was optimized for performance, which resulted 

in a total of 256 estimators. This could be a significant factor to consider when 

choosing a model for practical applications, particularly when working with large 

datasets. In the predicted use case for our study, training time and resources are of 

high importance, since the model would be fine-tuned to each user’s specific gait in 

order to improve performance.  

 

   Table 4.    Random Forest Precision and Recall Scores by Class_id 

Class_id Precision Recall 

1 (Walking) 0.984 0.978 

2 (Bicycling) 0.976 0.980 

3 (Sitting Down) 0.947 0.963 

4 (Standing Up) 0.934 0.958 

5 (Going Up) 0.989 0.996 

6 (Down by Elevator) 0.967 0.910 

7 (Sitting in Car) 0.954 0.887 

8 (Running) 0.897 0.947 

9 (Sitting) 1.000 0.999 

10 (Standing) 0.796 0.763 

11 (Up by Elevator) 0.850 0.673 

12 (Going Down) 1.000 1.000 

 

   Table 5.    Neural Network Precision and Recall Scores by Class_id 

Class_id Precision Recall 

1 (Walking) 0.981 0.976 

2 (Bicycling) 0.957 0.976 

3 (Sitting Down) 0.946 0.956 

4 (Standing Up) 0.931 0.941 
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5 (Going Up) 0.986 0.994 

6 (Down by Elevator) 0.942 0.885 

7 (Sitting in Car) 0.921 0.899 

8 (Running) 0.897 0.895 

9 (Sitting) 0.999 0.998 

10 (Standing) 0.772 0.565 

11 (Up by Elevator) 0.712 0.638 

12 (Going Down) 0.999 1.000 

 

Additionally, all models were most accurate when identifying 'walking', their 

precision and recall scores ranging between 97% and 100%. The neural network model 

achieved a precision of 97.3% and a recall of 98.2% for ‘walking”. These results were 

not surprising, given that 'walking' comprised nearly one-third of the true responses in 

the entire data set. Precision and recall scores for the random forest and neural network 

model are presented in Table 4 and Table 5, respectively. Overall precision and recall 

score comparisons are shown in Figure 2. 

 

 
Fig. 2. Neural Network Precision and Recall Scores by Class_id 

 

In conclusion, both the neural network and random forest models proved to be 

effective in this classification task, substantively above the VW model. Between the 

top performing models, the random forest showed slightly better performance and the 

neural network was faster to train. Further analysis and experimentation may be 

necessary to determine the best model for the specific data and problem at hand. 
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5   Discussion 

The main objective of this study was to investigate the most effective way for a user 

of a prosthesis, specifically a lower-leg amputee, to benefit from a machine learning 

application through their prosthesis. Specifically, we aimed to assess and compare three 

machine learning classification methods: a random forest, a neural network, and a VW 

model across multiple criteria. To compare the three models, we assessed their 

effectiveness based on the evaluative metrics, accuracy, precision, and recall. We also 

compared the training time to determine ease of model customization and feasibility of 

using these models to fit prostheses for individuals.  

The evaluative metrics used in this study—accuracy, precision, and recall—

provided confidence in how well the models would perform when applied to prostheses 

in the real world. The results suggest that the neural network and random forest models 

are capable of accurately classifying human gait based on the inputs provided, yielding 

scores in the mid- to upper- 90% range. While these models fell short compared to the 

benchmark model in the original paper, both models performed much better than the 

VW model, which yielded an accuracy of 56%. These results indicate that VW may not 

be appropriate for the sensory data used in this study or that further fine-tuning is 

necessary. It is also possible that this model may see improvements after applying other 

methods, such as feature engineering.  

We also examined the training time, taking into consideration the feasibility of 

training these models as part of the process of fitting a prosthesis. The neural network 

model had the fastest training speed at 8 minutes, VW trained in 16 minutes, and the 

random forest yielded the longest training time at 40 minutes. The considerable 

difference in training time is important to note, given that the additional time it takes to 

train a model on each user becomes a gauge of how expensive this process could 

become. At five times the speed of the random forest, the neural network model appears 

to be most feasible in implementation. This also implies that the random forest model, 

while competitive in its evaluative performance metrics, may not be a viable option in 

practice.  

Taking all these results into consideration, the tuned neural-network model proved 

to be most useful for this problem. In making this determination, we considered and 

prioritized autonomy of the user by upholding precision with a higher weight in our 

evaluation and used training time as a measure of feasibility in practice. We further 

clarify that this selection is specific to the application outlined in this study and not a 

blanket assessment of the efficacy of the algorithms used for this dataset and/or datasets 

of this nature. Further experiments and analysis may be necessary to determine the best 

algorithm for a specific dataset and problem.  

The results of this study indicate that the models are effective in the classification 

and prediction of movements but have yet to be applied to the movements of a lower-

leg amputee using a prosthesis. We expect there to be a small difference in gait and thus 

in performance of the models; with this in mind, the use of layer architecture inherent 

in the neural network algorithm allows for an extra layer with data specific to the user 

to be integrated into the model, thereby fine-tuning it to its specific application. 

Furthermore, the findings of this study have important implications for the development 

of technology for people with physical disabilities, such as lower-leg amputees, who 

may benefit from the improved mobility and quality of life provided by these models. 
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The limitations of this study include the inability to conduct proof-of-concept due to 

time and funding constraints. Although the models achieved a high accuracy in 

detecting gait activities, these models were not tested on actual prostheses. The 

available data was also gathered from non-disabled subjects; thus, these results being 

generalized to individuals with lower-limb amputations should be interpreted with 

caution. It is also important to note that it may be impractical to require the end-user to 

integrate 6 different sensors in 6 different areas of the body, as was done to create the 

dataset used in this study. The use of external sensors (with respect to the prostheses) 

may, generally, not be recommended, as this would require additional elements to be 

created, integrated, and maintained. For lower-leg amputees, we surmise that two 

internal sensors may be plausibly used as an input mechanism for the model with 

satisfactory results. Further investigation would be required to fine-tune the sensors and 

model to this end. Given that these models were trained on publicly available data, there 

is also a restriction in terms of which variables can be included in building the model. 

While the results of this study favor the neural network model, future research should 

aim to overcome these limitations before fully integrating the models into a device for 

practical use. 

The ethical considerations of this study are important to ensure that the technology 

discussed in this study is used in a responsible and appropriate manner. Although the 

machine learning models are intended to improve the mobility and quality of life for 

individuals with lower-extremity prostheses, there is a need to address multiple factors 

that have historically affected those who are disabled--specifically, in matters of 

autonomy, privacy, and fairness. 

In recent decades, there have been significant advances in the rights of people with 

disabilities, such as with the passing of the Americans with Disabilities Act 

(ADA)(1990) and the Convention on the Rights of Persons with Disabilities 

(CRPD)(2006). Such developments have helped promote greater accessibility and 

inclusion for people with disabilities and have given them a stronger voice in shaping 

the policies and technologies that affect their lives.  

At the same time, advances in assistive technology, such as active prostheses, have 

improved the mobility and independence of people with physical disabilities. These 

technologies have also helped to break down barriers to full participation in society, 

allowing people with disabilities a greater opportunity to live, work, and participate in 

their communities. However, there have been numerous cases where technological 

advances and implementations have discriminated against people with disabilities.  

It is, thus, essential that novel technological advances and implementations respect 

the autonomy and dignity of the intended users. Said principle holds an even higher 

burden of consideration when the use-case is intended for a marginalized group, such 

as people with disabilities. For the case highlighted in this study, the end goal of 

developing these machine learning models is to adjust contact points between the 

prosthesis and the individual’s leg. It is important that the collected sensory inputs and 

the adjustments made to those contact points do not infringe on the privacy of the user. 

It is also crucial that the model is trained in a way that respects the autonomy of the 

user and allows them to control their own movement and actions. 

The models’ functions are also centered around collecting sensory input data, 

measures of individual gaits. Training these models requires a lot of data directly related 

to the user’s gait. The model’s usage is completely dependent on continuously 
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obtaining gait information, namely sensory input, to classify their activities at every 

moment of their daily lives. Given that gait is unique to each individual and noting its 

close connection to each user’s identification, this information should be handled with 

caution. Any attempts to use this data as personal identifying information should be 

accounted for and prevented.  

Additionally, it is important that the implementation and application of these models 

and prostheses are not biased or unfair with respect to the end users. There is a need to 

recognize that tailoring each model to each user can lead to discrimination, either with 

respect to that individual or groups of people. Each model should be trained and 

optimized for each user without bias. Use of these models must ensure that there is no 

discrimination against individuals or people of different backgrounds and that this 

technology is not used to promote discrimination of any kind. The collected data, 

trained model, and tailored prosthesis should only be used to improve the mobility and 

well-being of the end-user.  

This study provides important insights into the development of ML models for the 

control of active prostheses for lower-leg amputees. The results suggest that both the 

neural network and random forest models are effective in the classification of human 

gaits and have important implications for the development of technology for people 

with physical disabilities. Further research is necessary to fully realize the potential of 

these models and make them available and accessible to those who can benefit from 

them. 

6   Conclusion 

Despite lower-limb amputations being one of the most common forms of amputations 

today, they remain one of the most negatively influential on quality of life for amputees. 

Multiple factors contribute to this effect, including the fitting and quality of the 

prosthesis, as well as its functionality. With regards to functionality, prostheses today 

are found in either passive or active models, with active models being powered in some 

form via a microprocessor. While the use of interfaces and sensors to operate active 

prostheses has been largely explored in the literature, machine learning methods and 

the advancement of microprocessors offers an opportunity to integrate 

adaptive/learning functions into these units. 

Using the HuGaDB dataset, which provides comprehensive data about human gait 

for activity recognition, we explored several models well known for yielding high 

accuracy, including the random forest, neural network, and VW model with the ability 

to be adaptive to an individual amputee's specific movements. The objective of training 

these models is to aid mobility and individualized functionality. Findings from this 

study provide support for the practical applicability of machine learning in facilitating 

movement using prostheses. 
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