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A B S T R A C T   

Snowfall in elevated areas of the mid-latitudes has a strong impact on infrastructure, freshwater availability, and 
the climate system. The Cantabrian Mountains of the northwestern Iberian Peninsula are very vulnerable to 
climate change because of their moderate altitudes, which limits their snowfall. Monitoring snow events is 
essential for the evaluation of weather and climate prediction models. However, measurement networks are 
scarce in mountainous areas and have great uncertainties because of blizzards. In this study, a multiphysics 
ensemble of the Weather Research and Forecasting (WRF) model was designed using three microphysics and two 
planetary boundary layer (PBL) schemes to simulate nine snowfall events in the Cantabrian Mountains during 
autumn and winter 2021–2022. The WRF was validated using several snow characteristics, such as liquid water 
equivalent, snow cover, and snow depth. Liquid water equivalent was evaluated using snow-gauge networks and 
satellite products in an assessment of snow cover. In addition, a monitoring network of webcams and snow poles 
was implemented, improving the low density of snow observations in the mountains. The results showed good 
model performance for detection of snow cover and slight overestimation of liquid water equivalent and snow 
thickness, which may have been caused by under-catchment that is generally an effect of wind on the mea
surement systems and by snow compaction, respectively. Morrison microphysics and Mellor-Yamada-Nakanishi- 
Niino (MYNN PBL) yielded better results for liquid water equivalent at higher altitudes and output greater snow 
cover. The results help determine the best configurations for snow modelling in the study area to develop future 
studies of the spatiotemporal patterns of snow distribution.   

1. Introduction 

Snowfall is one of the most frequent natural hazards at mid and high 
latitudes, having important effects on transportation and infrastructure 
(Scherrer et al., 2013). However, snow is also a major freshwater 
resource (Mankin et al., 2015; Pulliainen et al., 2020), accumulating 
during winter at high altitudes, to be used during summer for food 
production (Viviroli et al., 2020). In the current context of global 
warming, substantial reductions in snowmelt and ensuing runoff are 
expected, with shifts from snowfall to rainfall at increasingly higher 
elevations (Musselman et al., 2018). Snow cover also has important 
implications in the climate system, namely, the surface energy balance 
through its effect on land surface albedo, the partitioning of sensible and 

latent heat fluxes, near-surface atmospheric stability, and horizontal 
energy transport (Rudisill et al., 2021). 

Monitoring and forecasting of snowfall events are of vital importance 
to minimize the associated risks and manage water resources. In terms of 
monitoring, surface measurement networks are usually sparse and 
irregularly distributed and, at mid-latitudes, snowfall tends to occur in 
mountainous areas. Snow measuring systems based on the quantifica
tion of precipitation must have heated systems, producing evaporation 
losses when precipitation is weak. In addition, strong winds decrease the 
snow collected in snow gauges when wind shields are not installed, 
causing losses of ~20%–50% (Grossi et al., 2017; Masuda et al., 2019; 
Rasmussen et al., 2012). Similar values have been found in the Canta
brian Mountains, where the underestimation of snow precipitation using 
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the Spanish Meteorological Agency (AEMET) network is similar to that 
in the Pyrenees, but less than those in other areas of the Iberian 
Peninsula (Buisán et al., 2017, 2022). The importance of location and 
wind exposure of precipitation measuring instruments has been high
lighted in the Solid Precipitation Intercomparison Experiment of the 
World Meteorological Organization (Nitu et al., 2019). 

There are major uncertainties in forecasting snow events. Snow and 
liquid precipitation are discontinuous variables that depend on complex 
microphysical processes at small scale that cannot be explicitly 
described, so we rely on parameterization. Moreover, in snow predic
tion, variations in melting level and multiple influences on deposition on 
the surface make prediction even more complex. The microphysics 
schemes include different ways to simulate hydrometeor classes and 
microphysical processes, and various assumptions are made regarding 
the size distribution (Molthan and Colle, 2012). The inclusion and 
treatment of ice hydrometeors improves the representation of convec
tive events (Liu and Moncrieff, 2007; Adams-Selin et al., 2013) and 
differences in the parameterization of ice behaviour influence the ac
curacy of surface precipitation forecasts (Thompson et al., 2004). Also, 
surface heat fluxes parameterized by PBL schemes are important for 
severe weather events (Fernández-González et al., 2016). Therefore, the 
choice of parameterization scheme has a strong impact on simulations of 
phenomena such as snowfall and orographic and convective precipita
tion (Fernández-González et al., 2016; Miglietta et al., 2015; Bryan and 
Morrison, 2012). 

The WRF model has been extensively used for snowfall event fore
casting (Lee et al., 2022; Liu et al., 2018; Gerber et al., 2018). Addi
tionally, WRF outputs have been implemented to force initial conditions 
in snow energy-balance models (Corripio and López-Moreno, 2017; 
Alonso-González et al., 2018, 2021; Raparelli et al., 2023). 

Several studies have assessed the sensitivity of WRF to parameteri
zation schemes for snowfall events. Results have varied with the study 
area, validation databases, and variables used for the evaluation. Comin 
et al. (2018) observed a strong variability among WRF results, 
evidencing the critical role of microphysics in extreme snowfall events of 
the Southern Andes. Similar conclusions were reached by simulating 
snowfall events over Antarctica (Vignon Besic et al., 2019). McMillen 
and James Steenburgh (2015) used WRF to examine the sensitivity of 
simulations for the Great Salt Lake lake–effect snowstorm to the 
microphysics parameterization. The results showed better estimation of 
precipitation with Thompson scheme and overprediction with Goddard 
and Morrison for the estimation of radar-based liquid equivalent pre
cipitation. Fernández-González et al. (2015) evaluated WRF for snowfall 
episodes on the northwestern Iberian Peninsula based on snow water 
equivalent. The results showed an overestimation of all schemes, with 
the Thompson microphysics and Mellor-Yamada-Janjic (MYJ) PBL pa
rameterizations providing the best results. Ghafarian (2021) also high
lighted the overestimation of snow liquid equivalent by WRF, although 
he disagreed with the microphysics scheme selected by Fernández- 
González et al. (2015). Agreement on the overestimation of snow water 
equivalent by WRF and discrepancies among the microphysics schemes 
may be attributed to the data. Thus, studying an extraordinary snowfall 
event on the Iberian Peninsula, Buisán et al. (2022) found that mea
surements from the AEMET operational rain-gauge network under
estimated solid precipitation by 20%–30%. The fundamental reason was 
a combination of heavy precipitation, cold temperatures and winds, 
phenomena that usually occur at high altitudes. The present study 
highlights the difficulty of evaluating prediction models for snowfall 
events based exclusively on snow liquid equivalent. For this reason, it is 
advisable to focus on model evaluations using other snow characteristics 
such as snow cover and depth. However, the lack of available databases 
on these variables has made the number of studies scarce. 

Snow cover and depth are valuable data on snow properties. The 
main methods for monitoring these are in situ measurements and sat
ellite remote sensing (Portenier et al., 2020). Ground-based monitoring 
networks are often integrated with webcam networks (Piazzi et al., 

2019; Tanis et al., 2020; Arslan et al., 2017). The analysis of webcam 
images allows detailed monitoring of snow properties, such as snow 
cover fraction, thickness, and snow cover redistribution at very high 
temporal resolution, which is one of its main advantages (Bongio et al., 
2021). Additionally, remote sensing data from satellites provide infor
mation on a regional scale. To solve limitations caused by clouds, 
products combining reflective, passive, and active microwave data are 
considered the best choice for snow monitoring (Dietz et al., 2012). 
Moreover, the use of satellites facilitates the study of snow in inacces
sible areas. 

The Cantabrian Mountains on the northwestern Iberian Peninsula 
(Fig. 1) receive frequent snowfall during winter. However, in recent 
decades, they have had negative trends in winter precipitation and 
positive trends in average temperatures. These trends are expected to 
continue in the coming decades, which could spell significant reductions 
in snowfall and thus a reduced duration of snow cover because of an 
increase in melting level (Merino et al., 2014). Furthermore, several 
studies agree that the Cantabrian Mountains will be the Iberian Penin
sula mountain system most affected by climate change regarding de
clines in snow resources (Merino et al., 2014; Alonso-González et al., 
2020; Pons et al., 2010; Lastrada et al., 2021), affecting the number of 
snow days, duration of snow reserves, and volume of precipitation. This 
would thereby affect water resources in the Cantabrian Mountains, 
owing to the regulating effect of snow resources on river flows and 
floods (Pisabarro et al., 2019). Shorter durations and less snow accu
mulation are expected, which could reduce average flows in the coming 
decades, combined with increases in peak snowmelt flows because of 
rising temperatures (Lastrada et al., 2021). Although exceptional 
snowfalls are infrequent, such events cause severe damage. Heavy or 
long-lasting snowfalls are usually aggravated by strong winds, which 
accumulate several metres of snow in inhabited areas, generating long- 
lasting snow patches (Santos-González et al., 2010b). As a result, there 
are frequent communication difficulties, infrastructure damage, or av
alanches. These have caused fatalities in recent years, indicating a nat
ural hazard (Beato-Bergua et al., 2019; García-Hernández et al., 2018; 
González Trueba and Serrano Cañadas, 2010; Santos-González et al., 
2010a). These also damage forests during early, late, or extraordinary 
snowfalls (Nykänen et al., 1997). Snow also has implications for 
geomorphological processes and the surface thermal regime (Gallinar- 
Cañedo et al., 2022; Pisabarro et al., 2017; Melón-Nava et al., 2022), and 
so is of great geo-ecological relevance. 

The main objective of the present work is to evaluate a multiphysics 
ensemble of the WRF model for snowfall events. For this purpose, we 
examined nine snowfall events in the Cantabrian Mountains during the 
2021/2022 cold season (November–February) plus three microphysics 
and two PBL parameterizations. Validation was performed based on 
snow water equivalent, snow cover and depth, using observational 
networks and satellite products. 

The paper is structured as follows: the study area and databases are 
described in section 2; Section 3 presents the methodology; principal 
results are given in section 4; a discussion and conclusions are provided 
in section 5. 

2. Study area and database 

The Cantabrian Mountains of the northwestern Iberian Peninsula 
extend from west to east for about 300 km. The highest areas are above 
2000 m a.s.l., with the greatest altitudes in the Picos de Europa, where 
several peaks exceed 2600 m a.s.l. It is an area with marked asymmetry 
between slopes and sectors, which creates a variety of climates (Serrano 
et al., 2015). The range is characterised by a longitudinal arrangement 
of the highest altitudes, forming a divide nearly parallel to the Canta
brian coastline. This generates great differences in snowfall between 
mountain sectors, strongly influenced by altitude or orographic barriers 
(Allende Alvarez, 2008; Ortega-Villazán and Morales-Rodríguez, 2015). 

The average annual temperature over 1981–2010 varied between 5 
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and 10 ◦C, although the average temperature during winter was nega
tive in a large part of the study area. Mean annual precipitation varied 
between 800 and > 2000 mm (AEMET, 2011) with marked asymmetry, 
including heavier amounts on the northern slope and at the eastern and 
western ends. The mean number of snow days has been estimated at 15 
to >60 days (Ortega-Villazán and Morales-Rodríguez, 2015), with larger 
numbers at the higher altitudes of the main divide. The study area is 
classified in Köppen-Geigen as Cfb, Dsc, and Dfc (Chazarra-Bernabé 
et al., 2022). 

Precipitation during snowfall episodes has been evaluated using 
snow gauges (Fig. 1) from AEMET, water management agencies, and the 

Global Change Monitoring Network in national parks. These agencies 
use different snow-gauge sensors with variable temporal resolutions 
(Table 1). Quality control and homogeneity has been checked and 
hourly aggregates have been calculated for all station data. 

Snow cover and thickness were validated using a monitoring 
network consisting of webcams and snow poles. Fifteen Wi-Fi webcams 
and four time-lapse cameras were installed, which, together with other 
public webcams, made a total of 105 snow-cover observations in an 
altitudinal range of 200–2100 m a.s.l. (Fig. 1). For snow thickness ob
servations, 27 sites were used. For this purpose, cameras were com
plemented by snow poles (Fig. 2), consisting of vertical stakes with 

Fig. 1. Topographic map of Cantabrian Mountains. Points form the rain and snow station network.  
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graduated reflective marks every 10 cm. This allows the recording of 
thicknesses up to 2 m for monitoring snow cover, even at night. 

A massive semi-automatic download of screenshots was done every 
6 h, yielding 4 observations per day of both snow cover and thickness. 
Subsequently, the images were manually recorded in a database. The 
maximum daily value of cover and thickness was recorded. There were 
sites with light snowfalls, covering the ground for only a few hours, 
followed by rapid melt periods. The main advantage of this method is 
the ability to acquire simultaneous data, even at remote locations, as 
evaluated in Bongio et al. (2021). This allows the creation of time series 
of snow cover and thickness, which were used as validation data in our 
work as an alternative to a non-existent network for monitoring snow in 
the Cantabrian Mountains. These data have sufficient temporal resolu
tion to detect rapid changes and provide detailed information on snow 
dynamics at the sampling locations. However, they have some limita
tions, notably an intermittent loss of connection at some sites, which can 
last several days. Another common problem is blinding of the camera 
lens due to compaction of snowflakes on it, leading to missing data 
during blizzards. 

Satellite observations were obtained from the “IMS Daily Northern 
Hemisphere Snow and Ice Analysis, 1 km”. This product is derived from 
the Interactive Multisensor Snow and Ice Mapping System (IMS) and is 
now available from the third version from the National Oceanic and 
Atmospheric Administration / National Environmental Satellite, Data, 
and Information Service (Ramsay, 1998; Helfrich et al., 2007). There has 
been improvement of the IMS-NOAA product since 1997 (Helfrich et al., 
2007), with a reduction in pixel resolution from 24 to 1 km. This has 
allowed a daily product to be derived from satellite (POES/GOES) and 
microwave products (DMSP and AMSR-E) and synthetic aperture radar 
imagery. The product distinguishes snow cover using active microwave 
data, which facilitates data collection even during cloud cover and 
nighttime, strongly differentiating it from passive satellite products. IMS 
provides daily layers classified into four values: open water, snow-free 

land, sea or lake ice, and snow-covered land. The last was of interest 
in our study. IMS has been compared to other satellite platforms such as 
MODIS (Brubaker et al., 2005; Li et al., 2019), obtaining seasonally 
variable results. There was better accuracy during winter than autumn 
and spring. Other studies have highlighted that the largest differences in 
snow detection between IMS and MODIS are in the snow ablation season 
(Frei and Lee, 2010). In the present study, we did not use MODIS as a 
validation tool for snow cover because of substantial cloud cover during 
the nine snowfall events analysed. IMS has been compared with rean
alysis products, which tend to overestimate snow depth and cover 
(Orsolini et al., 2019). The latter authors showed that accuracies of snow 
detection between in-situ observations and IMS reached 90% in their 
study of the Tibetan Plateau, values similar to those from a comparison 
of IMS-NOAA with ground-based measurements over the continental 
USA (Chen et al., 2012). 

3. Methodology 

Nine study cases during autumn and winter 2021/2022 (Fig. 4) were 
selected, based on snow depth and cover recorded by the observation 
network described in Section 2. Once the case studies were chosen, a 
multiphysics ensemble was developed using the non-hydrostatic 
Advanced Research WRF model version 4.1 (Skamarock and Klemp, 
2008). Simulations were run using the National Centers for Environ
mental Prediction Global Forecast System analyses with 0.25◦ horizon
tal grid spacing as initial and boundary conditions. Thus, using a two- 
way nesting strategy, two nested domains with spatial resolutions 9 
and 3 km were created (Fig. 3). Vertical resolution was set to 54 levels 
for both domains. For each case study, 30-h simulations were executed, 
leaving six hours of the previous day as the spin-up period. 

Physical parameterizations are an essential part of numerical 
weather prediction models because there are processes, such as turbu
lence, convection and microphysics, that occur at subgrid scale. To test 
the influence of parameterizations on several snow precipitation char
acteristics of WRF, a multiphysics ensemble was constructed from three 
microphysics and two PBL schemes (Table 2). The selected microphysics 
schemes were: (I) Goddard one-moment bulk microphysical (Tao et al., 
2016); (II) new Thompson (Thompson et al., 2008); (III) new bulk 
microphysics Morrison and Milbrandt (Milbrandt and Morrison, 2016). 

The Goddard scheme includes the resolution of four ice classes: cloud 
ice, snow, graupel, and frozen drops/hail. The scheme has substantial 
modifications over the earlier three ice classes (Tao et al., 2009), 
including allowances for supersaturations >20%, mitigation of spurious 
evaporation/sublimation, a bin microphysics following the specifica
tions of Li et al. (2009a, 2009b, 2010), rain evaporation correction but 
with physical raindrop size constraints, and a vapor diffusivity factor. 
The snow/graupel size-mapping schemes were adjusted to obtain 
greater stability at larger mixing ratios and increase the aggregation 
effect for snow. A snow density map was also added (Brandes et al., 
2007). 

The Thompson scheme assumes that the size distribution of snow 
particles is dependent on both liquid water content and temperature. In 
addition, the scheme incorporates realistic characteristics of snow par
ticles, such as their nonspherical shape and a bulk density that varies 

Table 1 
Snow gauge characteristics.  

Data source Number of gauges Resolution (minutes) Altitudinal range (m) 

AEMET 92 10 0–1700 
Cantábrico Water Management Agency 17 60 100–900 
Duero Water Management Agency 70 10 700–1500 
Ebro Water Management Agency 20 15 500–1700 
Miño-Sil Water Management Agency 15 60 400–1200 
National Parks Autonomous Agency (OAPN) 8 10 700–2400 
Total 222  0–2400  

Fig. 2. Snow-depth measurement at Santa María de Redondo - Palencia 
(42.9903◦N, − 4.4374◦W, 1204 m a.s.l.) on 5 and 25 December 2021. 
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inversely with diameter (Heymsfield et al., 2007). Another important 
new feature of the scheme pertains to snow accreting cloud droplets, or 
riming. Instead of considering a constant collection efficiency of 100%, 
the efficiency is calculated based on the average volume diameter of 
snow and cloud water according to Wang and Ji (2000). 

The new Morrison and Milbrandt scheme advances a modified 
version of predicted particle properties, including multiple free ice- 
phase categories. This is in contrast to the previous scheme that 
included a single ice-phase category with four prognostic mixing ratio 
variables, i.e., total ice mass, ice number, ice mass from rime growth, 
and bulk rime volume (Morrison and Milbrandt, 2015). This modifica
tion removes the limitation that only allowed for populations of one type 
of ice particle to exist at a given point in time and space. 

The selected PBL schemes were (I) Yonsei University (YSU; Hong 
et al., 2006) and (II) Mellor–Yamada Nakanishi Niino (MYNN; Naka
nishi and Niino, 2006; Olson et al., 2019). 

The YSU PBL improves on previous versions proposed by Noh et al. 
(2003) by including an explicit treatment of entrainment processes at 
the PBL top. The scheme was incorporated into WRF, producing a 
realistic structure of the PBL, improving representation of the mixing 
layer in convective and frontal situations. 

MYNN introduces a new turbulent kinetic energy PBL. The new 
scheme has been shown superior to preceding Mellor-Yamada-type PBL 
schemes (Mellor and Yamada, 1974, 1982) in simulating the PBL 
convective layer. In addition, it introduces improvements in the repre
sentation of nonlocal mixing, interaction with clouds, and coupling with 
other model components in WRF. 

Based on the results of other studies, the following schemes were 

selected: Dudhia (1989) for shortwave radiation; Rapid Radiative 
Transfer Model (Mlawer et al., 1997) for longwave radiation; Eta surface 
layer described by Janjić (1994) and Noah Land Surface Model (Chen 
and Dudhia, 2001); Kain-Fritsch cumulus scheme (Kain, 2004) with 
explicit resolution of cumulus in the inner domain. 

Once the WRF simulation ensemble was designed, we developed a 
method for the validation of snow precipitation. The ensemble members 
were initialised with the same atmospheric conditions and thus had the 
same probability of producing the most accurate result (Schwartz et al., 
2010). The validation was done using density plots and statistical 
goodness-of-fit measures, focusing on three event characteristics, 
namely, 24-h accumulated liquid water equivalent (LWE), maximum 
snow cover, and maximum snow depth. LWE was chosen because 
measurement systems do not discriminate precipitation type and vari
ations of melting level throughout an event cause recorded precipitation 
to be a mixture of rain and snow at some stations. The ensemble was 
validated pixel-to-point to avoid interpolations of precipitation, which 
has strong spatial variability, and LWE was evaluated by elevation 
range. 

A density plot is a smoothed version of the histogram that allows 
global comparison of recorded and modelled precipitation amounts 
(Fig. 4). Visual comparison of the distribution is complemented by 
adding the D statistic from the Kolmogorov-Smirnov (K–S) test as a 
measure of deviation between the two distributions. That test measures 
the maximum difference between observed and modelled cumulative 
distributions. The K–S distance statistic and its p-value were computed. 
The null hypothesis assumes that both samples come from a population 
with the same distribution. When that hypothesis can be rejected with 

Fig. 3. WRF Domains.  

Table 2 
WRF multiphysics ensemble.  

Physical parametrization Reference Ensemble number 

WRF1 WRF2 WRF3 WRF4 WRF5 WRF6 

Multiphysics 
Goddard one-moment bulk microphysical scheme Tao et al. (2016) X X     
New Thompson scheme Thompson et al. (2008)   X X   
New bulk microphysics Morrison and Milbrandt scheme Milbrandt and Morrison (2016)     X X 

PBL 
YSU: Yonsei University Scheme Hong et al. (2006) X  X  X  

MYNN: Mellor–Yamada Nakanishi Niino 
Nakanishi and Niino (2006);  
Olson et al. (2019)  X  X  X  
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significance, there is a significant difference between the distribution of 
the two samples. 

Scatter plots were used for pairwise comparison of modelled and 
observed data (Fig. 5). The data fit was evaluated using the modified 
Kling-Gupta efficiency (KGE; Gupta et al., 2009, Kling et al., 2012). This 
index compares observed and modelled precipitation based on three 
components, linear correlation (r), bias ratio (β), and variability ratio 
(γ). r is the Pearson product-moment correlation coefficient, β reflects 

total precipitation compared to ground-based observations, indicating 
the average tendency of the gridded precipitation to underestimate (β <
1) or overestimate (β > 1), and γ measures relative dispersion between 
the gridded and ground-based measurements. The optimal value for KGE 
and all its components is one. This index has been widely used to eval
uate model performance for precipitation (e.g., Somos-Valenzuela and 
Manquehual-Cheuque, 2020; Merino et al., 2021). 

Snow cover was first validated as binary, i.e., absence or presence. 

Fig. 4. Selected study cases. First column: sea level pressure (hPa, lines) and geopotential height at 500 hPa (gpm, shadow). Second column: 24-h accumulated snow 
water equivalent (mm). Third column: maximum snow cover (%). Fourth column: maximum snow depth (m). 
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The results were presented based on various skill scores such as proba
bility of detection (POD), false alarm rate (FAR), and critical success 
index (CSI). In contrast, the IMS data were re-gridded to the WRF 
domain to grid and the number of pixels of coincidence or discrepancy 
with WRF snow cover was calculated. 

Finally, snow depth was evaluated using the snow-pole network, 
extracting maximum daily thickness. Average BIAS, MAE and RMSE 
were calculated for each case study and ensemble member. The indexes 
were each standardized by dividing by daily averages. 

4. Results 

This section first analyses the characteristics of the case studies and 
then describes the results of the validations of the ensemble designed 
with WRF. The model was validated based on characteristics of the 
snowfall events, namely, total accumulated precipitation (rain and 
snow), snow cover, and snow depth. 

4.1. Snow event features 

First, the synoptic environments of the snowfall events of winter 
2021/2022 were described and the ensemble means for snow water 
equivalent, snow cover and depth were extracted (Fig. 4). Synoptic 
settings of the snow days in the Cantabrian Mountains included north
erly advection (2021-11-04; 2021-11-27; 2021-11-28; 2021-12-02), 
prevailing shifts to northwesterly (2022-02-14; 2021-12-08) or north
easterly (2021− 11− 22). At mid-levels, there were troughs to the 
northeast of the Iberian Peninsula, with the Cantabrian Mountains to the 
east of the trough, producing meridional flows. These events are 
representative of the favourable conditions for snowfall in the moun
tains. These conditions are: a moist northerly flow (owing to its 

interaction with the Cantabrian Sea) that impacts the mountains 
perpendicularly; a strong isobaric gradient in mid and low layers, which 
favours the displacement of precipitation to southern slopes; cold air in 
mid-layers, which creates thermal instability. Thus, in the study cases 
with the strongest isobaric gradient (2021-11-27; 2021-11-28; 2021-12- 
02), maximum precipitation and snow depth was observed on southern 
slopes. In contrast, in the cases with a weaker isobaric gradient (2021- 
11-22; 2022-01-21), precipitation concentrated on the north faces, with 
the most intense snowfalls near the watershed. Other synoptic situations 
favourable for snowfall in the Cantabrian Mountains, such as air mass 
collisions, were not observed during the 2021–2022 study period. 

Eight of the nine winter snowfall events affected the entire mountain 
range. One (2022-01-21) affected only the eastern part of the range, 
since it occurred in an environment of high sea-level pressure and weak 
northeast flow at upper levels. 

4.2. Liquid water equivalent validation 

Liquid water equivalent is the main variable to assess the perfor
mance of model precipitation, without distinction between solid and 
liquid phase. Fig. 5 shows a density plot with the simulated and observed 
accumulated precipitation as a function of WRF configuration and sta
tion elevation. Thus, altitude is an important factor in the results 
because the melting level was ~500 m a.s.l. during the events. A simi
larity of simulated and observed precipitation distributions for stations 
with altitudes <500 m a.s.l. should be highlighted. For all models, there 
were no significant differences between the distributions (p-value 
>0.05). However, the differences increased with station elevation, with 
greater discrepancies for stations >1500 m a.s.l., with a significant un
derestimation of precipitation. Regarding the WRF configurations, 
WRF5 gave better results for all elevations (smaller D statistic), except 

Fig. 5. Density plots for observed daily precipitation distribution (red line) vs. WRF precipitation (black line). Rows show different altitude ranges and columns the 
WRF combinations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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<500 m a.s.l., where WRF4 showed better performance. YSU PBL ob
tained better results for higher elevations and microphysics and Morri
son microphysics was superior at elevations above 500 m a.s.l. where the 
precipitation was solid. 

Similar results are seen in Fig. 6, where scatter plots show predicted 
and observed accumulated precipitation as a function of WRF configu
ration and station elevation. Elevation remained the main factor, with 
poorer performance by all models in terms of correlation (r), bias (β) and 
variability (γ) as altitude increased. The overestimation of precipitation 
by the model increased with elevation (β > 0). Surprisingly, PBL pa
rameterizations were just as important as microphysics for precipitation 
performance. The best performance of the KGE and parameters is seen 
for WRF3 and WRF5, concurring again with Morrison and YSU PBL. 
MYNN PBL gave superior results only for stations >1500 m a.s.l. Liquid 
water equivalent verification was completed using a Taylor diagram 
(Fig. 7). The results show tiny differences between ensemble members 
for stations at similar elevations in terms of the correlation coefficient, 
with greater differences in standard deviation and root-mean-square 
difference (RMSD). The largest differences again appear to be a func
tion of station altitude. The correlation coefficients decrease smoothly 
for high-altitude stations, with marked declines at >1500 m a.s.l. 
However, RMSE and standard deviation are similar for all altitudes, 
except for stations 1000–1500 m a.s.l. Thompson microphysics pro
duced the smallest RMSD, whereas Goddard had the worst performance. 
However, the PBL parameterization had a prominent role, with YSU PBL 
clearly superior to MYNN PBL for all microphysics parameterizations 
and altitudes. 

4.3. Snow cover validation 

Depending on surface temperature, snow particles can melt on con
tact with surfaces or accumulate in the solid phase. Snow accumulation 
on surfaces can cause major problems for human activities. For this 
reason, a snow-cover forecast provides valuable information beyond 
snow precipitation. Good model performance for snow cover depended 
not only on the precipitation forecast but on surface temperature and the 
precipitation phase. Fig. 8 shows CSI, FAR and POD verification scores 
by day and WRF combination. As expected, days with very extensive 
snowfall (i.e., 2021-11-27) had the best results in terms of high POD, low 
FAR, and therefore high CSI. On these days, most stations monitoring 
snow cover reported 100% cover and all WRF members effectively 
simulated this. On the contrary, on the days when snow cover was 
limited to the highest stations (i.e., 2022-02-14) the members producing 
a higher POD (WRF2 and WRF4) also gave a higher FAR. This behaviour 
is typical in binary validations. In the validation for all events, there 
were no substantial differences between ensemble members. The WRF4 
yielded the highest CSI and POD but also the highest FAR. In contrast, 
the WRF5 output the smallest values for all verification scores. Thus, 
Morrison microphysics and YSU PBL posted the best performance, as in 
the liquid water equivalent validation. 

Given the limited number of stations with snow-cover monitoring, it 
was decided to use products derived from meteorological satellites. 
Cloudiness was nearly continuous during the snow events in the Can
tabrian Mountains, so visible and infrared sensors could not detect 
surface characteristics. Consequently, the choice of sensors with the 
ability for surface monitoring under cloudiness is critical. Fig. 9 shows 
the maximum snow-covered area in the IMS satellite product vs. that 

Fig. 6. Scatter plots of observed daily precipitation vs. WRF precipitation. Rows show altitude ranges and columns WRF combinations. Perfect fit shown by red 
dashed line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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predicted by the model for each event. The green colour represents areas 
where the WRF and satellite data agree on snow cover. Yellow areas 
show where only the model forecast snow cover and orange where only 
the satellite detected it. The results show strong variability. There were 
events with greater snow cover predicted by the model relative to that 
observed by satellite (i.e., 2021-11-27 and 2022-02-14), and the reverse 
(i.e., 2021-11-22 and 2021-12-08). Regarding the WRF configurations, 
MYNN PBL tended toward greater snow cover compared to YSU PBL, 
because the former forecast a slightly lower melting level. Regarding the 
microphysics schemes, the same behaviour was observed in all cases. 
Goddard microphysics (WRF1 and WRF2) predicted a smaller snow 
cover extent, whereas Morrison microphysics (WRF5 and WRF6) gave 
the greatest snow cover. Thus, for events in which the WRF predicted a 
higher melting level than observed (i.e., 2021-11-22), Morrison yielded 
better overall results. However, when the WRF underestimated the 
melting level (i.e., 2021-11-04 and 2022-02-14), Goddard was superior. 
These results can be related to atmospheric conditions during the events 
(Fig. 3). For days with northerly advection (i.e., 2021-11-28 and 2021- 
12-02), the models were very consistent with the observations. With 
northwesterly advection (i.e., 2021-11-27 and 2021-12-08), the model 
tended to overestimate snow cover, and with northeasterly advection (i. 
e., 2021-11-22 and 2022-01-21), there was underestimation. 

Finally, snow cover detection was evaluated for WRF configurations 
and snowfall events based on 2628 webcam images. This resulted in 
78.12% hits in terms of presence or absence of snow cover, 19.02% false 
negatives (snow cover detected by the camera images but not by WRF), 

and 2.86% false positives (snow cover overestimated by WRF). The same 
analysis for observed snow depth revealed slight differences between 
WRF configuration. Overall, hit rates for snow cover ~70% were 
calculated in areas with thicknesses 0–10 cm, with ~80% for thicknesses 
10–30 cm and ~ 100% for thicknesses >30 cm, a threshold at which the 
false negatives disappeared. 

4.4. Snow depth validation 

Snow depth is perhaps the best indicator of snowfall intensity, but its 
monitoring presents major challenges. The depth depends not only on 
the amount of snow precipitation but also on compaction or wind 
transport, which can greatly modulate thickness of the snow layer. Snow 
depth is therefore one of the most complex variables to simulate, and 
validation results were strongly dependent on wind exposure in the 
measurement area. For this reason, the location of measurement is 
critical to be representative of the surrounding area. In our study, the 
measurements were taken in flat areas, avoiding locations exposed to 
wind or gust. The selected events showed strong variability of snow 
depth measured with the snow-pole network. The greatest snow depth 
was recorded on 2021-11-28, with a maximum thickness of 130 cm and 
average 45 cm. Conversely, on 2021-11-04 and 2022-01-21, thicknesses 
barely exceeded 10 cm and very few sampling points were affected. 

Figure 10 shows results of the quantitative snow depth validation in 
terms of BIAS, MAE and RMSE. There was general overestimation of 
snow depth in all cases and WRF configurations, although the models 

Fig. 7. Taylor diagram showing correlation coefficient, RMSD, and standard deviation resulting from different settings of WRF model and altitude ranges.  
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effectively captured the observed thickness variability between events. 
The good fit of the models on 2021-11-28 is noteworthy because it was 
the event with the greatest recorded snow thicknesses. Events with small 
snow depths yielded more uneven results. Regarding the WRF configu
rations, Goddard microphysics showed the best behaviour for all indices, 
whereas Thompson microphysics had the greatest overestimation. 
Despite the importance of PBL parameterizations for liquid water 
equivalent and snow cover forecasts, the PBL settings had less impact on 
model thickness. 

5. Discussion and conclusions 

Snowfall prediction is a principal management tool in various fields 
like road safety, winter sport activities, avalanche risk assessment, and 
hydrology (Blanchet and Davison, 2011; Scherrer et al., 2013). In recent 
years, works have determined the models that can improve such pre
diction (Fernández-González et al., 2015; Hammer, 2018; He et al., 
2016). This makes it essential to validate the models using observations. 
However, one of the main handicaps in validation is the availability of 
observational databases. On the Iberian Peninsula, snow falls mainly in 
the mountains, where precipitation measurement networks are scarce 
and there is greater spatial variability of precipitation. Moreover, 
because of demographic, geomorphological and economic reasons, 
measurements of snow precipitation have been especially scarce in the 
Cantabrian Mountains. This is even though the mountains have the 
heaviest winter precipitation on the peninsula (Lastrada et al., 2021). 
Moreover, owing to its altitude range, winter precipitation can occur as 
rain or snow, depending on the dominant atmospheric pattern. 

Furthermore, traditional measurement networks using automatic 
snow gauges have uncertainties that can be ~20%–50%, mainly with 
low temperatures and strong winds (Buisán et al., 2017, 2019). To 
reduce the uncertainties, we did not validate snow water equivalent 
using only a network of snow gauges. We also used the snow-pole 

network as monitored by webcams and time-lapse cameras, giving 
105 observation points of snow cover. Among these, 27 sites furnished 
snow-depth data. This has proven a valuable tool for validation of 
modelled snowfall events, providing a local-scale record of snow-cover 
evolution at the sampling points. Good fits were obtained between the 
modelled, webcam and snow-pole data, demonstrating that these ob
servations have less bias than rain gauges at high altitudes (Fig. 4). Snow 
depth can be uneven during blizzards. To minimize this effect, we chose 
flat areas, sheltered from prevailing winds with no substantial vegeta
tion cover (López-Moreno and Nogués-Bravo, 2005). The dataset im
proves the temporal resolution with respect to satellite products, which 
are frequently limited by cloud cover (Marti et al., 2016), and can reflect 
rapid changes in snow cover or rapid melt (Chen et al., 2012). Also, 
satellite platforms for snow-cover monitoring provide regional-scale 
data, which are very useful for analysing spatiotemporal patterns. 
Several studies have used passive microwave brightness temperatures to 
retrieve snow depth (Kilic et al., 2019; Braakmann-Folgmann and 
Donlon, 2019). However, the Cantabrian Mountains have frequent cloud 
cover, which makes continuous monitoring of the land surface impos
sible, especially during snowfall episodes. Combining surface observa
tions with optical, infrared and microwave satellite data can reduce the 
uncertainties of each component system. Thus, in the present work, the 
IMS satellite product was used. This made it possible to obtain daily 
snow-cover data during the snowfall episodes, during which cloud cover 
precluded the use of other satellite platforms. The performance of IMS 
has been widely evaluated, especially over regions with complex 
topography (Li et al., 2022a; Orsolini et al., 2019). However, the grid 
size of WRF and IMS-NOAA does not show in detail the snow distribu
tion in mountainous areas, where it has strong local variability caused in 
particular by topography and snow redistribution by wind. 

The precipitation resolution of numerical weather forecast models is 
very sensitive to the choice of physical parameterization, especially the 
microphysics and PBL schemes (Miglietta et al., 2015; Patel et al., 2019). 

Fig. 8. Snow cover verification scores by day and WRF combination.  
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Thus, nine snowfall episodes in the Cantabrian mountains were simu
lated using WRF to test the performance of three microphysics and two 
PBL schemes. The model was therefore validated using several obser
vational data sources, namely, snow gauges, snow-poles monitored by 
webcams, time-lapse cameras, and satellite platforms. This was done to 
minimize the uncertainties of each individual observational system. 
Once the validation databases were selected, the WRF ensemble was 
assessed based on three variables, liquid water equivalent, snow cover 
and depth. 

The model performance with respect to liquid water equivalent 
highlights the tendency to overestimate precipitation amount with YSU 
PBL relative to MYNN, regardless of the microphysics used. This is 
consistent with previous results (Fernández-González et al., 2015; Kio
utsioukis et al., 2016). One possible reason is that YSU tends to form a 

deeper PBL, rapidly removing inversions and increasing the convective 
component of precipitation, even in winter (Weisman et al., 2008; Evans 
et al., 2012). 

Regarding microphysics, Thompson delivered better results for low 
altitudes and Morrison for high altitudes. Different results were found in 
the literature depending on the study area, the events analysed, and the 
validation databases used. Ghafarian (2021) evaluated a WRF multi
physics ensemble for lake-effect snow events, observing better perfor
mance with Morrison microphysics versus Thompson and Goddard. 
Nonetheless, in their study of a Great Salt Lake lake–effect snowstorm, 
McMillen and James Steenburgh (2015) found better estimation with 
the Thompson scheme and overprediction with Goddard and Morrison 
in terms of radar-based liquid equivalent precipitation. Conversely, 
Fernández-González et al. (2015) found that the Thompson 

Fig. 9. Snow cover, satellite vs. WRF. Rows show study cases and columns WRF combinations. Upper numbers show number of pixels of each colour. Green (top left): 
WRF and satellite agree; yellow (top middle): snow cover only from WRF; orange (top right): snow cover only from satellite. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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microphysics and MYJ PBL schemes better captured snow water 
equivalent in snowfall events over the Iberian Peninsula. However, 
caution is needed because of the potential loss of precipitation in the 
measurement systems because of blizzards (Buisán et al., 2022). Thus, 
the results indicated elevation as the main factor. This is a result of the 
underestimation of observed precipitation at altitudes >500 m a.s.l. In 
the selected events, precipitation collected below this level was 
completely liquid, but there was solid precipitation with the colder 
temperatures at higher altitudes. There, snow particles were readily 
transported by wind, especially given the isobaric gradient during most 
events. This caused the snow particles to impact the snow gauges hori
zontally rather than falling into them vertically, reducing capture. For 
this reason, model validation based only on liquid water equivalent may 
be incomplete and other variables with less uncertainty should be ana
lysed. Furthermore, it is advisable to focus on model evaluations using 
other snow characteristics such as snow cover and depth. Nevertheless, 
most studies have concentrated on the validation of liquid water 
equivalent because of a lack of databases for these variables, and studies 
have been consequently scarce. 

For snow cover validation, the models showed good performance as 
compared with direct observations, with CSI > 60% on most study days, 
although again Morrison microphysics and YSU PBL yielded the best 
performance. Comparisons with IMS revealed greater snow cover with 
Morrison microphysics and MYNN PBL and less with Goddard and YSU. 
Therefore, the performance of each parameterization was strongly 
dependent on the characteristics of each event. Thus, in the 2021-11-22 
case study, there was considerable overestimation of snow cover by the 
IMS, in line with the results of Orsolini et al. (2019). Nevertheless, in the 
other case studies, the WRF output greater snow cover than the satellite 
product. This divergence in outcome can be related to the different at
mospheric conditions of the events. The model tended to enhance 
moisture content for a maritime air mass and minimize it for a conti
nental one. This is one of the potential causes of overestimation for 
events with northwesterly flow and underestimation with northeasterly 
flow. The hit rates for snow cover detection tended to increase with 
snow depth, providing acceptable results even in areas of small thickness 
(< 10 cm), where the hit rate was ~70%. This was despite being the 
most conflictive areas regarding correct detection of the threshold be
tween snow cover and non-cover areas. 

Finally, regarding the snow depth validation, there was substantial 
overestimation for all case studies and WRF configurations. Goddard 
microphysics produced the best outcome for all indices, whereas 

Thompson microphysics had the greatest overestimation. This is oppo
site the findings of the liquid water equivalent and snow depth valida
tions. Opposite results were found using the WRF model coupled with 
the Noah land surface model (Li et al., 2022b). One of the main reasons 
could be the wind, which is typically strong in snowfalls of the Canta
brian Mountains because of an intense isobaric gradient. This makes 
observed data smaller than modelled because of compaction. 

More detailed work is needed to study the behaviour of snowfall 
events in the Cantabrian Mountains, with augmentation of the moni
toring network. In addition, global warming will substantially modify 
snowfall patterns in mountain ranges with low altitudes, substantially 
affecting the availability of water resources and the planning of winter 
sports. 
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2010a. Avalanches in the Alto Sil (Western Cantabrian Mountain, Spain). Cuader. 
Investig. Geogr. 36, 7–26. https://doi.org/10.18172/CIG.1224. 
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