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Abstract: The wall-to-wall prediction of fuel structural characteristics conducive to high fire severity
is essential to provide integrated insights for implementing pre-fire management strategies designed
to mitigate the most harmful ecological effects of fire in fire-prone plant communities. Here, we
evaluate the potential of high point cloud density LiDAR data from the Portuguese áGiLTerFoRus
project to characterize pre-fire surface and canopy fuel structure and predict wildfire severity. The
study area corresponds to a pilot LiDAR flight area of around 21,000 ha in central Portugal intersected
by a mixed-severity wildfire that occurred one month after the LiDAR survey. Fire severity was
assessed through the differenced Normalized Burn Ratio (dNBR) index computed from pre- and post-
fire Sentinel-2A Level 2A scenes. In addition to continuous data, fire severity was also categorized
(low or high) using appropriate dNBR thresholds for the plant communities in the study area. We
computed several metrics related to the pre-fire distribution of surface and canopy fuels strata with
a point cloud mean density of 10.9 m−2. The Random Forest (RF) algorithm was used to evaluate
the capacity of the set of pre-fire LiDAR metrics to predict continuous and categorized fire severity.
The accuracy of RF regression and classification model for continuous and categorized fire severity
data, respectively, was remarkably high (pseudo-R2 = 0.57 and overall accuracy = 81%) considering
that we only focused on variables related to fuel structure and loading. The pre-fire fuel metrics with
the highest contribution to RF models were proxies for horizontal fuel continuity (fractional cover
metric) and the distribution of fuel loads and canopy openness up to a 10 m height (density metrics),
indicating increased fire severity with higher surface fuel load and higher horizontal and vertical fuel
continuity. Results evidence that the technical specifications of LiDAR acquisitions framed within
the áGiLTerFoRus project enable accurate fire severity predictions through point cloud data with
high density.

Keywords: density metrics; fractional cover; fuel load; laser scanning; wildfire

1. Introduction

Fire is a recurrent disturbance process in the terrestrial ecosystems of many Mediterranean-
type climate regions of the world [1,2], including the Mediterranean Basin. In this region,
wildfires are considered a natural disturbance [3] that has not only shaped the histori-
cal mosaic-like patterns of regeneration [4–8], but also the species fitness of fire-prone
ecosystems for millennia [5,9–11]. Under historical fire regimes, plant species fitness favors
the resilience of vegetation communities after recurrent disturbances [3,12,13]. However,
wildfires are perceived as disasters in the Mediterranean Basin when natural and cultural
values, infrastructures and human lives are lost [14], which happens particularly under
altered fire disturbance regimes [15]. Flammable vegetation has and is building up in the
landscapes of the western Mediterranean Basin because of the land use and land cover
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changes experienced in the last decades [16–18], such as the abandonment of traditional
agriculture and livestock farming in rural areas and human-made afforestation [7]. In
this context, the quantity and connectivity of flammable fuels have promoted a significant
increase in fire frequency [16,19]. Together with fuel build-up, extreme climate events
(e.g., droughts and heat waves), related to anthropogenic climate warming [20], have
increased the probability of extreme wildfire events characterized by large burned areas
and a significant proportion of the surface burned at high severity [17,21].

Fire severity, defined as the ecological changes experienced in a burned area with
respect to the pre-fire scenarios [22], and operationally measured in the field as the loss of
aboveground and belowground organic matter [23,24], is one of the fire regime attributes
with the most important implications to post-fire ecosystem response [25,26], together
with fire frequency [27,28]. Severe wildfires may not only negatively impact the resilience
of Mediterranean vegetation communities [11,29], promoting transitions to alternate sta-
ble states [30] and increasing the reburning potential of vegetation legacies [16], but also
promote post-fire soil erosion processes [31] and unprecedented impacts on ecosystem func-
tioning and service provisioning [32]. In this context, the assessment of fire severity spatial
variability within extreme wildfire events is of utmost importance. Conventionally, fire
severity is assessed in the field by measuring individual indicators such as forest floor [33]
or canopy consumption [34], percent change in basal area [35], minimum tip diameter of
burned branches [36], or using indices that integrate several attributes such as the Compos-
ite Burn Index (CBI) [23] or the Geometrically structured CBI (GeoCBI) [37]. However, fire
severity assessments exclusively based on field measurements are not functional to obtain
wall-to-wall (i.e., spatially explicit) fire severity estimates in large burned landscapes [38,39].
Remote sensing-based techniques are nowadays a reliable approach to assess fire severity
over extensive areas with high spatial thoroughness and representativeness [40]. Most of
the studies in the remote sensing literature use for this purpose spectral indices computed
from passive optical data, such as the differenced Normalized Burn Ratio (dNBR) [41], the
Relative dNBR (RdNBR) [35] or the Relativized Burn Ratio (RBR) [42]. The computation
of the dNBR index is the most widely used approach and a methodological reference for
the fire severity initial assessment [43]. Moreover, strong relationships have been found
between the dNBR and field-based fire severity data worldwide [43–46], and the dNBR is
more consistent among different passive optical sensors [47].

Wall-to-wall fire severity assessments through remote sensing techniques allow the
development of predictive models of landscape susceptibility to severe wildfires [14,48,49].
These models align with forest management needs for identifying not only priority areas
for pre-fire management [50], but also the most feasible actions to reduce high fire severity
likelihood based on model outputs [49,51]. Fire severity is controlled by a combination
of bottom-up (fuel type, fuel structure and landscape configuration) and top-down (fire
weather) environmental drivers [52–54]. However, fuel characteristics play an essential
role in the severity pattern at fine spatial scales [49], particularly in heterogeneous land-
scapes [55], and of all those influences are the only ones that can be managed to reduce fire
severity [56].

Remote sensing techniques are the most feasible choices to estimate pre-fire fuel load
and structural characteristics related to the likelihood of high fire severity as compared to
field sampling campaigns [57]. For this purpose, pre-fire field data from national forest
inventories are constrained by availability with enough spatial coverage [49,56], and passive
optical data by the reflectance occlusion of lower strata under a dense canopy [58,59]. In
this sense, active remote sensing data acquired by airborne Light Detection and Ranging
(LiDAR) sensors are usually the preferred option for describing pre-fire fuel structure at
plot and stand levels [39,48,49,60,61] because of their high sensitivity to the distribution and
quantity of vegetation leaves and branches throughout the vertical profile of the canopy to
the forest floor [62].

Nationwide LiDAR programs are the only pre-fire LiDAR data source available to
estimate ab initio the potential contribution of pre-fire fuel load to fire severity and develop
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predictive models of extreme wildfire behavior. However, national LiDAR datasets typically
offer low point cloud density that may be inadequate to accurately assess fuel structure
throughout the entire vegetation profile [57]. For instance, Spanish nationwide LiDAR
data acquired by the Spanish National Plan for Aerial Orthophotography (PNOA) have
a mean point density of 0.5 m−2 and 0.5–4 m−2 in the first and second national coverage,
respectively.

The Portuguese Permanent Forest Fund through the Institute for the Conservation of
Nature and Forests (ICNF) funded a pilot LiDAR project (áGiLTerFoRus) from April 2020 to
June 2021 for seven territories in Portugal, covering a total of 45,000 ha. The project aimed
to evaluate the feasibility of a national airborne LiDAR coverage with balanced economic
and technical specifications to provide a high enough point density (around 10 m−2) to
support fuel and forest management needs. Accordingly, this study explores, for the first
time, the potential of LiDAR data from the áGiLTerFoRus project to predict wildfire severity
from the characterization of pre-fire fuel structure within the perimeter of a mixed-severity
wildfire occurred one month after the LiDAR flight in a pilot area dominated by pine and
eucalypt forest and shrubland. We considered continuous and categorized fire severity data
that align with land management needs. Aside from the novelty related to the evaluation
of LiDAR data from a project related to the potential development of a nationwide airborne
LiDAR program, there are few studies in the literature [48,49,63] identifying fuel drivers
of fire severity by using specific fuel structure metrics with ecological sense, rather than
coarse vegetation type maps [64] or a battery of strong intercorrelated LiDAR metrics which
prevent the development of robust models [65]. Also, this is one of the few studies in which
pre-fire LiDAR data are collected close to the fire alarm date [48], so the assessment of the
potential performance of LiDAR data from the áGiLTerFoRus project to predict fire severity
is expected to be realistic.

We expect that the specifications of the áGiLTerFoRus LiDAR dataset, particularly
the high point cloud density, will allow for effective characterization of the quantity and
distribution of pre-fire fuel in several strata [66–68] and predict satisfactorily wildfire
severity. We also expect that the benefits of high point cloud density will be leveraged by
ecologically relevant LiDAR metrics, such as fuel density by height bins [57], to reduce
estimation uncertainty in the lower vegetation strata [69].

2. Material and Methods
2.1. Study Site

The study site corresponds to a pilot LiDAR flight area (20,759 ha) of the áGiLTerFoRus
project located in Proença-a-Nova and Oleiros municipalities within the central region
of mainland Portugal (Figure 1). The fire regime of the region is characterized by low
ignition density and large wildfires. A mixed-severity wildfire burned 5592 ha of forest and
shrubland communities within the site between 25 and 29 July 2020, one month after the
LiDAR survey. About 92% of the burned area lies within the pilot site (Figure 1). The study
site is thus a perfect laboratory to evaluate the potential of pre-fire LiDAR data to support
pre-fire management. Orography is characterized by mild slopes and undulated terrain at
298–1082 m above sea level. The climate is Mediterranean, with a mean annual temperature
and precipitation of 12–15 ◦C and 1000–1300 mm for a 50-year period, respectively [70]. The
wildfire developed under extreme fire weather conditions (FWI = 53), attaining a maximum
hourly spread rate of 2.2 km h−1 and affected three main vegetation types: Pinus pinaster
Ait. (maritime pine) stands, shrublands dominated by Cistus ladanifer L., Erica australis L. or
Cytisus multiflorus (L’Hér.) Sweet, and Eucalyptus globulus Labill. (blue gum) plantations,
respectively, accounting for 50.4, 23.5, and 21.1% of the burned area. Forest was relatively
dense and low prior to the 2020 wildfire, reflecting natural regeneration after the 2000 and
2003 wildfires that burned the area in its entirety. None of the areas within the wildfire scar
is under a conservation status and corresponds entirely to private land.
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Figure 1. Location of the study site within the LiDAR flight site of the áGiLTerFoRus project in central
Portugal. The background image is a Sentinel-2 false color composite (R = band 12; G = band 8A;
B = band 4) that allows us to highlight the wildfire scar that occurred one month after the LiDAR
survey.

2.2. Fire Severity Assessment

Sentinel-2 is the multispectral mission from the Copernicus program of the Euro-
pean Space Agency (ESA) and comprises two twin satellites: Sentinel-2A and Sentinel-2B,
launched on 23 June 2015 and 7 March 2017, respectively. The multispectral instrument
(MSI) onboard Sentinel-2 constellation is a push-broom sensor that provides thirteen bands
with varying spatial resolution over the visible (VIS), near-infrared (NIR) and short-wave
infrared (SWIR) regions: four bands at 10 m, six bands at 20 m and three bands at 60 m [71].

Sentinel-2A Level 2A scenes covering the study site were downloaded from the
Copernicus Open Access Hub (https://scihub.copernicus.eu/ (accessed on 25 October
2022)) for immediately pre (8 July 2020) and post-fire (27 August 2020) conditions for
assessing fire severity within the intersection of the wildfire scar and the LiDAR flight.
Acquisition dates were selected on the basis of cloud-free Sentinel-2 scene availability as
close as possible to that of the wildfire. Level 2A is a surface reflectance (i.e., bottom-of-
atmosphere) product already atmospherically corrected and orthorectified by the image
provider [71]. The bands 8A (NIR) and 12 (SWIR) at 20 m spatial resolution were used to
compute the dNBR index (Equations (1) and (2)) from pre- and post-fire Sentinel-2 scenes
(Figure 2).

NBR = (Band 8A − Band 12)/(Band 8A + Band 12) (1)

dNBR = 1000
(

NBRpre − NBRpost
)
− o f f set (2)

We considered an offset term in Equation (2) that represents the mean dNBR value of
homogeneous, unchanged areas outside the wildfire scar [42].

Fire severity was also categorized using dNBR thresholds based on an initial assess-
ment of fire severity conducted by [44] in Mediterranean plant communities similar to that
of the present study using the CBI [23]. Considering the CBI thresholds suggested by [72],
used in many previous research [73,74] (low–moderate severity, hereafter low: CBI ≤ 2.25;
and high severity: CBI > 2.25), and the linear models proposed by [74], we identified
two dNBR-based fire severity categories (low: dNBR ≤ 732.6; and high: dNBR > 732.6).
Although the dNBR thresholding approach used in this study was based on external
field-based fire severity data, the CBI allows consistent temporal and spatial fire severity
extrapolations across territories with comparable plant communities and environmental
conditions [13,75].

https://scihub.copernicus.eu/
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Figure 2. Fire severity within the wildfire scar assessed through the differenced Normalized Burn
Ratio (dNBR) index computed from pre- and post-fire Sentinel-2 scenes.

2.3. LiDAR Data Acquisition and Processing

The LiDAR survey of the áGiLTerFoRus project within the study site was conducted
by SPASA S.A. on 19 July 2020 using a Teledyne Optech Galaxy sensor (Teledyne Optech
Inc., Vaughan, ON, Canada) onboard fixed-wing aircraft. The survey had a flight altitude
of 1250 m above sea level and an average flight speed of 160 knots. The mean density
of the point cloud was 10.90 m−2 (nominal pulse spacing of 0.30 m), with up to five
returns per pulse. The scanning field of view was 17.5◦. The RMSEZ (vertical accuracy)
was lower than 0.2 m. LiDAR data were retrieved from the ICNF geocatalog (https:
//geocatalogo.icnf.pt/geovisualizador/agil.html (accessed on 25 October 2022)).

We used the multiscale curvature classification (MCC) algorithm [76] to classify the
LiDAR point cloud into ground and non-ground returns. The MCC algorithm, designed for
high-biomass forest ecosystems [76], maximizes the number of classified ground returns
and increases the detail in the bare-earth surface model even in ecosystems dominated
by dense, low vegetation types [77,78]. A digital terrain model (DTM) with a grid size
of 1 m was computed from the classified ground returns. The LiDAR point cloud was
normalized to heights relative to the ground surface through DTM subtraction. We com-
puted several pre-fire metrics at the plot level (see Section 2.4 for plot definition) from
the height-normalized LiDAR returns. A height threshold of 0.5 m was considered to
remove the noise from misclassified ground returns and non-interest ground covers such
as rocks or woody debris typical of Mediterranean forests [79,80]. Most forestry studies
have used a height threshold of at least 0.5 m to avoid the influence of non-interest ground
materials [81]. The metrics, highly related to fuel arrangement in the overstory and under-

https://geocatalogo.icnf.pt/geovisualizador/agil.html
https://geocatalogo.icnf.pt/geovisualizador/agil.html
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story strata, comprised (Table 1): (i) average height of LiDAR returns (Havg); (ii) standard
deviation of LiDAR returns (Hsd); (iii) skewness of LiDAR returns (Hskew); (iv) 25th (Hp25)
and 95th (Hp95) height percentile values of LiDAR returns; (v) canopy density by height
bins (D0.5–2m, D2–4m, D4–10m, D10–50m); and (vi) canopy cover (FCOVER). The considered
height bins (0.5–2 m, 2–4 m, 4–10 m and >10 m) were selected to discriminate the fuel
density in the near-surface and elevated layers, which can act as ladder fuels, as well as in
intermediate and overstory layers, respectively [63].

Table 1. Description of the LiDAR metrics considered in this study.

LiDAR Metric Abbreviation Ecological Meaning

Average height of LiDAR
returns Havg Mean canopy height

Standard deviation of LiDAR
returns Hsd

Canopy vertical complexity
and continuity

Skewness of LiDAR returns Hskew
Distribution of vegetation

heights in the canopy
25th height percentile Hp25 Canopy base height

95th height percentile Hp95
Height of dominant

vegetation in the canopy

Canopy density by height bins D0.5–2m, D2–4m, D4–10m,
D10–50m

Distribution of the fuel load
per canopy strata

Canopy cover FCOVER Horizontal continuity of the
canopy

The MCC-LIDAR version 2.1 [76] and US Forest Service’s FUSION version 4.40 [82]
software were used to process LiDAR data.

2.4. Data Analyses

The center of one thousand dNBR pixels separated by at least 100 m were randomly
sampled within the LiDAR pilot site, which were considered as plots of 10 m × 10 m to
extract pre-fire LiDAR metrics and continuous/categorized fire severity data. We assume
that the points are evenly distributed among plant community types. We tested for potential
multicollinearity among LiDAR metrics computing bivariate Pearson correlations. A high
correlation between them was dismissed (rPearson R < |0.7|).

The Random Forest (RF) [83] regression algorithm was used to disentangle the rela-
tionship between continuous fire severity, i.e., dNBR (dependent variable), and the set of
LiDAR metrics at the plot level (predictors). RF is an ensemble machine learning algorithm
based on the fitting of multiple classification and regression trees (CART) [84] through
bootstrap aggregating techniques, which help to improve the stability and accuracy of the
algorithm [85]. We chose the RF algorithm because it can properly handle potential spatial
autocorrelation [85] and disclose complex, non-linear relationships between the dependent
variable and predictors, as well as complex interactions among predictors [86,87]. We
tuned the model parameter mtry, whereas ntree parameter was set to 2000 for ensuring
stable model outcomes [88]. The RF out-of-bag error rate was used to compute the variance
explained by the model (pseudo-R2) without the need to use an independent validation
dataset [85,86]. The relative importance of each pre-fire LiDAR metric in the model was
assessed through the increase in mean square error (%IncMSE) RF attribute. The error
between observed and predicted dNBR values was evaluated using the root mean square
error (RMSE). The univariate relationships between the dNBR and LiDAR metrics were
examined through scatterplots and the fit of linear or quadratic models to assess their
ecological significance.

Categorized fire severity data from dNBR thresholds were modeled from pre-fire Li-
DAR metrics through the RF algorithm adapted to supervised classification problems [83].
Model parameters of the RF classification algorithm were similar to RF regression. We eval-
uated variable importance using the Gini index. Classification performance was evaluated
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through the average confusion matrix calculated across 10-fold cross-validation resamples
using the overall accuracy (OA), Kappa index, user’s accuracy (UA) and producer’s accu-
racy (PA) of each fire severity class. We generated partial dependence plots of high fire
severity probability in a centered logit scale for each LiDAR metric.

All analyses were conducted in R [89] using the “RandomForest” [90], “caret” [91], and
“pdp” [92] packages.

3. Results

Pre-fire fuel structure metrics computed from LiDAR data of the áGiLTerFoRus project
revealed a satisfactory capacity to predict fire severity on a continuous scale using the RF
regression algorithm (pseudo-R2 = 0.57 and RMSE = 143.05 in the dNBR scale) (Figure 3).
Remarkably, the RMSE normalized from the minimum and maximum observed dNBR
value was lower than 13%. LiDAR metrics describing fuel density up to 4 m in height
(D0.5–2m, D2–4m) and FCOVER were the most important variables in the RF regression
model (%IncMSE > 50) fitted to explain fire severity (Figure 4). In particular, D0.5–2m had a
distinctively higher influence.
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regression algorithm.

RF variable importance was generally consistent with the strength of the univariate
linear or quadratic relationships between pre-fire LiDAR metrics and dNBR (Figure 5).
All variables were significantly related to fire severity (p-value < 0.001), except for the
D4–10m metric (p-value = 0.36). Surprisingly, this variable was ranked in the RF model as
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the fifth most important. The R2 of the univariate model fits ranged from 0 to 0.25, with
the strongest relationships observed for FCOVER (R2 = 0.19), D0.5–2m (R2 = 0.25) and D2–4m
(R2 = 0.23). FCOVER, Hskew, D0.5–2m, and D2–4m metrics featured a direct relationship with
fire severity. Most of the relationships were non-linear (Figure 5).
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The classification in low and high fire severity categories using pre-fire LiDAR-derived
fuel metrics achieved an OA of 81% and a Kappa index of 0.61 (Table 2). PA and UA values
for each fire severity category were balanced and consistent with OA (>75%), but the highest
values were reached for the high fire severity class. The five most important variables in the
RF classification model (Figure 6) were the same as in RF regression model with continuous
fire severity data.

Table 2. Random Forest (RF) classification performance evaluated through the average confusion
matrix computed across 10-fold cross-validation resamples. We calculated the overall accuracy (OA),
Kappa index, and user’s (UA) and producer’s (PA) accuracy (%).

Reference Fire Severity
Low High

Classified fire severity Low 29.7 9.1
High 9.5 51.7

PA (%) 75.34 85.25
UA (%) 76.92 83.87

OA (%) Kappa
81.19 0.61
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classification algorithm of fire severity.

Based on the logit contribution of pre-fire LiDAR metrics to the high fire severity
class likelihood (Figure 7), the existence of critical thresholds for most of the variables
can be determined. In this sense, the following pre-fire fuel structural characteristics in
the plant communities led to an increased probability of high fire severity: (i) FCOVER
values higher than 0.5; (ii) fuel densities greater than 20–30% in strata up to 10 m in height
(D0.5–2m, D2–4m, D4–10m); (iii) Hp25 and Hp95 height percentile values lower than 5 m and
15 m, respectively; (iv) positive height skewness (Hskew); (v) Havg and Hsd lower than 10 m
and 5 m, respectively; and (vi) fuel density close to zero in the higher strata (D10–50m).
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4. Discussion

Wall-to-wall prediction of pre-fire fuel structural characteristics conducive to high fire
severity is essential to provide integrated insights for implementing pre-fire management
strategies designed to mitigate fire severity in fire-prone plant communities [14,48,49,93].
In this context, we evaluated, for the first time, the potential of high point cloud density
LiDAR data from the áGiLTerFoRus project to characterize the quantity and distribution of
pre-fire fuel and predict wildfire severity. Our results confirm, as we initially hypothesized,
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that the computed LiDAR metrics from this dataset, related to the fuel distribution in
several strata, were able to predict fire severity satisfactorily.

The accuracy of the RF regression model for continuous fire severity data is remarkably
high (pseudo-R2 = 0.57) considering that only fuel-related variables are included as fire
severity predictors, i.e., we focused only on vegetation characteristics that can be handled
by pre-fire management. Fuel structure is only one of the many drivers (e.g., fire weather,
fuel type and availability, landscape configuration) that potentially contribute to variation
in fire severity [53,54,94–97]. This suggests that LiDAR data from the áGiLTerFoRus project
are reliably measuring the fuel structural attributes that shape fire behavior [98].

LiDAR-derived fuel metrics computed from the Spanish national dataset with low
point cloud density were used to predict fire severity with the RF algorithm in a maritime
pine community of western Spain similar to that of the present study [63]. Although the
authors also considered topography, fire history and weather variables, with a well-known,
high contribution to fire severity in these communities [48,55], they achieved a pseudo-R2

of 0.42. Using the same approach in Aleppo pine communities (Pinus halepensis Mill.)
in eastern Spain, [86] attained a pseudo-R2 of 0.47. [48] found that pre-fire fuel variables
computed from low-density LiDAR metrics were important fire severity predictors even
under extreme fire weather in eastern Spain, with pseudo-R2 values around 0.4; when
including pre-fire vegetation composition and burning conditions in boosted regression
tree models, the pseudo-R2 raised to around 0.7. Using LiDAR data with a moderate point
cloud density (4 m−2), [99] computed pre-fire fuel-related metrics, together with landscape
configuration, fire history and weather variables, to predict fire severity in eucalypt forests
of southeastern Australia, achieving pseudo-R2 values lower than 0.4. Canopy bulk density
estimates computed from LiDAR returns in several height bins were used to predict
fire severity in Pinus rigida Mill. and Quercus spp. forests of the northwestern United
States, achieving a R2 of 0.42 [100]. Alternatives to airborne LiDAR such as terrestrial
laser scanning (TLS) may improve the accuracy of predictive fire severity models based
on pre-fire vegetation structure. TLS typically offers a much higher point density and
thus more detailed information than airborne LiDAR collections about fuel structure
in the lower strata [101], precisely where low- to moderate-severity fire effects tend to
concentrate [102]. However, compared to airborne LiDAR, the area coverage of TLS is
small [103]. Although methods have been developed to use TLS as an operational fuel
hazard observation technology [104], wall-to-wall assessments over large areas are not
feasible. In this sense, future research in fire severity behavior should address the use of
mobile laser scanning (MLS), a new remote sensing technique that has not much been
considered in forestry applications [105] and wildfire science [106].

The high prediction accuracy of fire severity achieved in our study relying exclusively
on pre-fire fuel structural characteristics may be associated with the inclusion of LiDAR
density metrics by height bins in the modeling scheme, often disregarded in remote sensing-
based fire research despite their ecological relevance [107], together with the high density
of the LiDAR point cloud as compared to previous national airborne LiDAR datasets. First,
aggregating LiDAR returns into height bins reveals more valuable information about fuel
distribution underneath the canopy than discrete metrics [69]. Second, high point cloud
density data are mandatory to reduce the estimation uncertainty of the forest floor and
understory fuel loadings through density metrics by leveraging the increased proportion
of laser pulses penetrating the canopy strata [57].

Our results highlight the synergies between different LiDAR metrics for predicting
fire severity on a continuous scale. This can be inferred from the relatively low, but
homogeneous accuracies (R2 = 0.17 ± 0.04) of the univariate linear model fits and the
considerably higher accuracy (pseudo-R2 = 0.57) of the RF regression model, capable of
capturing complex interactions within the range of variation of different predictors, and
complex relationships with the dependent variable [87]. The latter can also explain the
ranking of the D4–10m metric as the fifth most important variable in the RF model and its
lack of significance in the univariate model. In addition, D4–10m metric should not be as
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important as surface (D0.5–2m) fuel load and structure and ladder fuels (D2–4m) since these
are the ones that determine surface fire intensity and play a major role in the transition to
crown fire [108]. This is particularly relevant in the case of low stands, which dominate the
study area, with a low distance between the surface fuels and canopy fuel strata [109].

In line with continuous fire severity, categorized data obtained from the dNBR thresh-
olding approach were also successfully predicted from LiDAR-based fuel metrics using the
RF algorithm, not only with consistent OA (81%) and PA/UA (>75%) values for low and
high fire severity classes, but also with the same importance pattern of predictors as in the
continuous fire severity model. Higher PA and UA values were obtained for the high fire
severity class than for the low class, which is common in the literature using passive optical
data [110,111]. Although, to the best of our knowledge, there are no studies predicting
categorized fire severity data from pre-fire LiDAR fuel metrics, this may be attributed to the
low and high magnitude of fire effects that define the inherently complex nature of areas
burned at moderate severity [35], considered here within the low-moderate fire severity
category. Nonetheless, attaining low classification errors for the high fire severity class is a
priority in identifying target pre-fire management areas [50].

The contributions of the most important pre-fire fuel metrics in RF models calibrated
from continuous and categorized fire severity data (FCOVER, D0.5–2m, D2–4m, Havg) are
ecologically coherent regarding how fire severity is shaped in forest and shrubland, and it
illustrates the need to understand the fuel distribution in the stand, not just the total amount
of fuels [100]. FCOVER metric is strongly associated with horizontal fuel continuity [112],
density metrics closely resemble the distribution of fuel loads and canopy openness per
strata [57,113], and Havg is related to the mean canopy height/stand-age [49,114]. Younger
forest stands with very high fuel cover and vertical connectivity, as indicated by FCOVER
and canopy density per strata up to 4 m in height, respectively, were associated with high
fire severity, consistent with ecological expectations. Indeed, dense surface fuels and low
canopy base induce high crowning potential as a combined outcome of high surface fire
intensity and sufficiently high vertical continuity [109], resulting in high fire severity [115],
while denser canopies increase the likelihood of active crowning and rate of spread [116].
Horizontal fuel continuity contributes to an increase in the size of patches burned at high
fire severity [117]. Additionally, trees in young stands are usually less fire-resistant [48,118]
and their low canopy height (and low canopy base height as measured by Hp25 metric) [57]
are precisely related with low fuel strata gap and ground to canopy wildfire transitions [56].
In shrublands, increased cover and vertical connectivity have also been shown to promote
high-severity fires [49], particularly with fine dead fuel accumulation close to the ground as
a consequence of high canopy density and lower light availability [119]. Collectively, our
results suggest that surface fuel treatments are more relevant than canopy fuel treatments to
reduce fire severity, consistent with pyrosilviculture recommendations in forest stands [120].
The reduction of fuel continuity and the increase of landscape heterogeneity by creating
age mosaics should be a priority in shrublands [121,122].

The predictive capacity and non-linear relationships evidenced in this study between
LiDAR-based fuel metrics and fire severity in RF models, supported by ecological expecta-
tions, have profound implications for defining potential fuel treatment thresholds in pre-fire
decision-making processes. Thus, LIDAR data with national coverage at a high point cloud
density can then be used by land managers to identify high fuel hazard locations and
prioritize adequate fuel reduction treatments. The evidenced non-linear relationships, also
found by [63], could be attributed to the small variation in canopy consumption (i.e., fire
severity) beyond a certain threshold of pre-fire fuel metrics [57,123]. For instance, canopy
density higher than 20% in the strata up to 4 m in height and canopy base lower than 5 m
may already induce a transition to crown fire where the highest potential fire severity is
reached [124,125].
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5. Conclusions

We evaluated, for the first time, the feasibility of airborne LiDAR data with high
point density from the Portuguese áGiLTerFoRus pilot project to predict fire severity in
fire-prone landscapes. This evaluation is thus essential for the potential development of a
nationwide airborne LiDAR program to support pre-fire management needs. Contrary to
most studies, pre-fire LiDAR data used in this study was acquired close to the fire date, so
the assessment is as realistic as possible. The technical specifications of the LiDAR data
acquisitions framed within the project enable remarkably accurate fire severity predictions
through characterization of the pre-fire fuel quantity and distribution from point cloud
data at high density. Considering that fuel structure is only one of the many drivers that
potentially contribute to variation in fire severity, LiDAR data from the áGiLTerFoRus
project are reliably measuring the fuel structural attributes that shape fire behavior. Our
results suggest that the deployment of LIDAR programs with national coverage at high
point cloud density may provide added value regarding fire severity prediction at the plot
scale to support pre-fire management needs.
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