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Summary 

 

Malignant pleural mesothelioma (MPM) is a rare cancer of the mesothelial cells 

of the visceral and parietal pleurae that is heterogeneous in terms of biology, 

prognosis and response to systemic anti-cancer therapy (SACT). The primary 

tumour forms an unusual, complex shape which makes survival prediction and 

response measurement uniquely challenging. Computed tomography (CT) 

imaging is the bedrock of radiological quantification and response assessment, 

but it has major limitations that translate into low sensitivity and high inter-

observer variation when classifying response using Response Evaluation 

Classification In Solid Tumours (mRECIST) criteria. Magnetic resonance imaging 

(MRI) tools have been developed that overcome some of these problems but cost 

and availability of MRI mean that optimisation of CT and better use for data 

acquired by this method are important priorities in the short term. In this thesis, 

I conducted 3 studies focused on, 1) development of a semi-automated 

volumetric segmentation method for CT based on recently positive studies in 

MRI, 2) training and external validation of a deep learning artificial intelligence 

(AI) tool for fully automated volumetric segmentation based on CT data, and, 3) 

use of non-tumour imaging features available from CT related to altered body 

composition for development of new prognostic models, which could assist in 

selection of patients for treatment and improving tolerance to treatment by 

targeting the systemic consequences of MPM. 

 

The aim of Chapter 3 is to develop a semi-automated MPM tumour volume 

segmentation method that would serve as the ground truth for the training of a 

fully automated AI algorithm. A semi-automated approach to pleural tumour 

segmentation has been developed using MRI scans which calculated volumetric 

measurements from seed points - defined by differential tumour enhancement - 

placed within a pre-defined volume of pleural tumour. I extrapolated this MRI 

method using contrast-enhanced CT scans in 23 patients with MPM. Radiodensity 

values – defined by Hounsfield units (HU) - were calculated for the different 

thoracic tissues by placing regions of interest (ROI) on visible areas of pleural 

tumour with similar ROIs placed on other thoracic tissues. Pleural volume 

contours were drawn on axial CT slices and propagated throughout the volume 

by linear interpolation using volumetric software (Myrian Intrasense® software 
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v2.4.3 (Paris, France)). Seed points based on the radiodensity range of pleural 

tumour were placed on representative areas of tumour with regions grown. 

There were similarities in median thoracic tissue HU values: pleural tumour, 52 

[IQR 46 to 60] HU; intercostal muscle, 20.4 [IQR 11.9 to 32.3] HU; diaphragm, 

40.4 [IQR 26.4 to 56.4] HU and pleural fluid, 11.8 [IQR 8.3 to 17.8] HU. There 

was also reduced definition between MPM tumour and neighbouring structures. 

The mean time taken to complete semi-automated volumetric segmentations for 

the 8 CT scans examined was 25 (SD 7) minutes. The semi-automated CT 

volumes were larger than the MRI volumes with a mean difference between MRI 

and CT volumes of -457.6 cm3 (95% limits of agreement -2741 to +1826 cm3). The 

complex shape of MPM tumour and overlapping thoracic tissue HU values 

precluded HU threshold-based region growing and meant that semi-automated 

volumetry using CT was not possible in this thesis. 

 

Chapter 4 describes a multicentre retrospective cohort study that developed and 

validated an automated AI algorithm – termed a deep learning Convolutional 

Neural Network (CNN) - for volumetric MPM tumour segmentation. Due to the 

limitations of the semi-automated approach described in Chapter 3, manually 

annotated tumour volumes were used to train the CNN. The manual 

segmentation method ensured that all the parietal pleural tumour was included 

in the respective volumes. Although the manual CT volumes were consistently 

smaller than semi-automated MRI volumes (average difference between AI and 

human volumes 74.8 cm3), they were moderately correlated (Pearson’s r=0.524, 

p=0.0103). There was strong correlation (external validation set r=0.851, 

p<0.0001) and agreement (external validation set mean AI minus human volume 

difference of +31 cm3 between human and AI tumour volumes). AI segmentation 

errors (4/60 external validation set cases) were associated with complex 

anatomical features. There was agreement between human and AI volumetric 

responses in 20/30 (67%) cases. There was agreement between AI volumetric and 

mRECIST classification responses in 16/30 (55%) cases. Overall survival (OS) was 

shorter in patients with higher AI-defined pre-chemotherapy tumour volumes 

(HR=2.40, 95% CI 1.07 to 5.41, p=0.0114). 
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Survival prediction in MPM is difficult due to the heterogeneity of the disease. 

Previous survival prediction models have not included measures of body 

composition which are prognostic in other solid organ cancers. In Chapter 5, I 

explore the impact of loss of skeletal muscle and adipose tissue at the level of 

the third lumbar vertebra (L3) and the loss of skeletal muscle at the fourth 

thoracic (T4) vertebrae on survival and response to treatment in patients with 

MPM receiving chemotherapy. Skeletal and adipose muscle areas at L3 and T4 

were quantified by manual delineation of relevant muscle and fat groups using 

ImageJ software (U.S. National Institutes of Health, Bethesda, MD) on pre-

chemotherapy and response assessment CT scans, with normalisation for height. 

Sarcopenia at L3 was not associated with shorter OS at the pre-chemotherapy 

(HR 1.49, 95% CI 0.95 to 2.52, p=0.077) or response assessment time points (HR 

1.48, 95% CI 0.97 to 2.26, p=0.0536). A higher visceral adipose tissue index (VFI) 

measured at L3 was associated with shorter OS (HR 1.95, 95% CI 1.05 to 3.62, 

p=0.0067). In multivariate analysis, obesity was associated with improved OS (HR 

0.36, 95% CI 0.20 to 0.65, p<0.001) while interval VFI loss (HR 1.81, 95% CI 1.04 

to 3.13, p=0.035) was associated with reduced OS. Overall loss of skeletal 

muscle index at the fourth thoracic vertebra (T4SMI) during treatment was 

associated with poorer OS (HR 2.79, 95% CI 1.22 to 6.40, p<0.0001). Skeletal 

muscle index on the ipsilateral side of the tumour at the fourth thoracic 

vertebra (Ipsilateral T4SMI) loss was also associated with shorter OS (HR 2.91, 

95% CI 1.28 to 6.59, p<0.0001). In separate multivariate models, overall T4SMI 

muscle loss (HR 2.15, 95% CI 102 to 4.54, p=0.045) and ipsilateral T4SMI muscle 

loss (HR 2.85, 95% CI 1.17 to 6.94, p=0.021) were independent predictors of OS. 

Response to chemotherapy was not associated with decreasing skeletal muscle 

or adipose tissue indices. 
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Chapter 1: Introduction 

 

1.1 General introduction 

 

Malignant pleural mesothelioma (MPM) is a rare and incurable tumour of 

mesothelial cells of the pleurae associated with antecedent asbestos exposure. 

The median survival time is approximately 12-months(1). The first-line 

treatment of MPM in NHS England and Wales is doublet chemotherapy(2) which 

affords an additional 3-month survival advantage(3). In February 2022, the 

Scottish Medicines Consortium (SMC) approved the use of nivolumab and 

ipilimumab immunotherapy as a first-line treatment for adults with unresectable 

MPM in NHS Scotland(4). Nivolumab has been approved in the second-line 

treatment setting in NHS England and Wales(5). 

 

All systemic anti-cancer therapies (SACT) have toxic side effects and it is 

important to have objective measures of response to treatment to justify the 

continuation of treatment. Response assessment in solid organ cancers has 

traditionally been measured using Response Evaluation Criteria for Solid Tumours 

(RECIST) criteria. In MPM, modified Response Evaluation Criteria for Solid 

Tumours (mRECIST) criteria have been developed to provide objectivity when 

assessing treatment response(6), but there are shortcomings with these criteria. 

An automated approach specific to the distinct morphological complexities of 

MPM tumour is imperative. 

 

SACT requires the maintenance of adequate fitness during treatment. Fitness is 

regularly assessed in the clinical setting by means of clinical examination, 

biochemical laboratory tests and anthropometric measurements. Patients 

receiving SACT commonly develop cancer cachexia which is a complex syndrome 

resulting in changes in body weight and composition(7). Sarcopenia – the loss of 

skeletal muscle mass - is a principal component of cancer cachexia and is 

prognostically significant in other solid organ cancers. Adipopenia – the loss of 

adipose tissue – is another feature of the cachexia syndrome. Although 

encountered frequently in the clinical setting, very few research studies have 

determined the significance of altered body composition in patients with MPM. 
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The general aim of my thesis is to develop and examine radiological biomarkers 

to measure treatment response and predict survival in patients with 

chemotherapy-treated MPM. 

 

1.2 Malignant pleural mesothelioma 

 

Malignant pleural mesothelioma (MPM) is an incurable cancer of the mesothelial 

cells of the pleurae(8). MPM is associated with prior exposure to asbestos 

fibres(9). Exposure can be via industrial use of asbestos or through second-hand 

exposure such as spousal contact(10). Exposure to asbestos can occur after 

contact with naturally occurring asbestos deposits and community contamination 

through asbestos mines, processing plants and manufacturing facilities(9). 

Asbestos fibres are broadly classified into serpentine (from serpentinite rocks) 

and amphibole fibres. The former is mostly chrysotile (white) asbestos, and the 

latter is divided into amosite (brown), crocidolite (blue), tremolite, actinolite 

and anthophyllite(8, 9).  

 

Ancient uses of asbestos have been documented as early as 4000 B.C. with 

asbestos fibres being used as lamp wicks(11). The Romans used asbestos fibres in 

tablecloths(12). MPM was first identified in the late 1940s and mid-1950s(13, 

14). During this time, asbestos was being extensively used in industry due to its 

low-cost and fire-retardant properties. The locomotive, boiler-making and 

shipbuilding industries boasted a predominance of asbestos use(15). Importation 

and industrial use of amosite and crocidolite asbestos was banned in 1985 and 

chrysotile asbestos was banned from industrial use in 1999 in the United 

Kingdom(16) and in 2005 by the European Union(17). Following exposure to 

asbestos fibres, MPM can manifest up to 30 to 40 years later. The large increase 

in annual deaths in the UK observed due to MPM over the last fifty years reflect 

this latent period and have been attributed to the peak of imported asbestos to 

the UK up until the 1970s(18). 

 

MPM occurs mostly in males with a median age around 70 years old in high-

income countries(19), with almost 50,000 deaths occurring in Europe between 

1994 and 2016(20). Earlier predictions suggested that after 2020, deaths related 
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to MPM would start to decline(21). In 2019, there were 2,369 mesothelioma-

related deaths in the United Kingdom(22). Data extrapolated on asbestos use in 

59 countries in 2017 estimated the worldwide rate of MPM deaths to be 38,400 

per year(23). In post-industrial nations, the incidence has levelled off through 

asbestos bans. However, despite the ban of the use of asbestos in the United 

Kingdom, residual asbestos remains in households and workplaces today with 

exposure occurring through damaged asbestos cement materials. MPM will 

continue to be a burdensome disease for several decades to come due to the 

continued mining and processing of asbestos in large countries such as Russia and 

China(24, 25). 

 

1.2.1 Histological sub-types of MPM 

 

The three histologic sub-types of MPM are epithelioid, sarcomatoid and biphasic. 

The epithelioid sub-type is the most common, accounting for up to 70% of 

cases(20, 26). It is characterised by oval tumour cell proliferation on 

histopathological examination following tissue biopsy(27). The sarcomatoid sub-

type approximates 20% of all cases of MPM(28, 29). Spindle cell proliferation and 

the formation of oval nuclei are histological characteristics(27). Biphasic MPM 

has features of both the epithelioid and sarcomatoid sub-types(20). 

 

Epithelioid sub-type is associated with a better prognosis compared to the other 

sub-types(30-32). Blyth and Murphy retrospectively assessed 370 patients in the 

West of Scotland and determined that overall survival (OS) was longest in 

epithelioid sub-types compared to sarcomatoid and biphasic sub-types (HR 1.75, 

p=0069 and HR 1.93, p<0.0001, respectively)(32). Sarcomatoid confers the worst 

prognosis with a median survival time of 3.5 to 8 months(33). The European 

Organization for Research and Treatment of Cancer (EORTC)(34) prognostic 

scoring system and subsequent validation studies include sarcomatoid histology 

as an independent predictor of early mortality(35-37). The authors of the Cancer 

and Leukaemia Group B (CALGB) prognostic scoring system also determined non-

epithelioid history to be an independent survival predictor(38). Nowak and 

colleagues assessed 93 patients with MPM and concluded that sarcomatoid 

histology was the most significant determinant of OS(39). In their study of 367 
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patients with MPM, Billè and colleagues reported that sarcomatoid MPM was an 

independent prognostic factor for OS (HR 7.86, p<0.001)(31). 

 

1.3 Detection and staging of MPM 

 

Disease stage is prognostic in patients with MPM(40-44) and is an important 

determinant of prospective treatment strategies. MPM is staged according to the 

tumour, node and metastasis (TNM) classification. The International Association 

for the Study of Lung Cancer (IASLC) published the eighth edition of the staging 

classification in 2018(45). This has been summarised in Table 1.1. 

 

1.3.1 Limitations of CT in detecting MPM 

 

Although CT is the primary imaging modality in assessing ‘T’ stage in MPM, it is 

limited in the assessment of primary tumour. MPM grows as an irregular, 

circumferential rind within the pleural cavity, extending axially in the thoracic 

cage. Distinguishing between atelectasis, pleural fluid, pleural thickening and 

calcified pleural plaques further complicates the accurate assessment of primary 

tumour volume in MPM(46). CT has limited accuracy in distinguishing between 

potentially resectable (T3) and technically unresectable (T4) disease, including 

reliable identification of tumour extension into the diaphragm(47). This is 

important in patients in whom surgery is being considered, as tested recently in 

the randomised Mesothelioma and Radical Surgery 2 (MARS 2) trial which is due 

to read out in 2023(48). There is wide variability in the diagnostic performance 

of CT reported in the pleural malignancy literature with sensitivities and 

specificities ranging from 58% to 93% and 78 to 96%, respectively(49-52). 
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Table 1.1 Eighth edition of the TNM staging system for MPM 

TNM Descriptor 

Tx Primary tumour cannot be assessed 

T0 No evidence of primary tumour 

T1 Tumour involving ipsilateral parietal pleura +/- visceral pleura 

T2 Tumour involving any of the ipsilateral pleural surfaces plus: 

• Confluent visceral pleural tumour, and/or 

• Involvement of diaphragmatic muscle, and/or 

• Invasion of the lung parenchyma 

T3 Tumour involving the ipsilateral pleural surfaces plus: 

• Invasion of the endothoracic fascia, and/or 

• Extension into the mediastinal fat, and/or 

• Solitary soft tissue chest wall invasion, and/or 

• Non-transmural pericardial involvement 

T4 Tumour involving the ipsilateral pleural surfaces plus: 

• Any rib involvement, and/or 

• Peritoneal invasion through the diaphragm, and/or 

• Mediastinal organ invasion, and/or 

• Contralateral pleura extension, and/or 

• Spine or brachial plexus invasion, and/or 

• Transmural pericardial involvement, and/or 

Nx Nodes cannot be assessed 

N0 No evidence of nodal involvement 

N1 Ipsilateral bronchopulmonary, hilar or mediastinal nodes 

N2 Contralateral bronchopulmonary, hilar or mediastinal nodes or 

ipsilateral or contralateral supraclavicular nodes 

Mx Presence of metastases cannot be assessed 

M0 No distant metastases 

M1 Distant metastases 
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1.4 Systemic anti-cancer therapy in MPM 

 

1.4.1 Chemotherapy 

 

Chemotherapy exerts its cytotoxicity directly on cancer cells and has been the 

mainstay of systemic anti-cancer therapy (SACT) following the discovery of the 

marrow-suppressive effects of nitrogen mustards in the First World War(53). In 

patients with MPM, combination chemotherapy with pemetrexed - a folate 

antimetabolite - and cisplatin - a platinum-based alkylating agent - affords a 

three-month survival advantage in patients with MPM (12.1 versus 9.3 months, 

p=0.020)(3). Patients receiving raltitrexed - another folate antimetabolite - and 

cisplatin had a superior survival advantage compared to single agent cisplatin 

(8.8 months versus 11.4 months, p=0.048)(54). The addition of bevacizumab - an 

anti-angiogenesis recombinant humanised monoclonal antibody - to doublet 

chemotherapy offers a modest survival benefit compared to combination 

chemotherapy alone (18.8 months versus 16.1 months, p=0.0167)(55). 

 

The efficacy of second-line treatments in patients previously exposed to 

platinum-based therapy is unproven. Previously studied second-line agents 

include chemotherapies such as histone deacetylase inhibitors, e.g., 

vorinostat(56), tyrosine kinase inhibitors, e.g., sorafenib(57) and dasatinib(58), 

and further single agent chemotherapy, e.g., pemetrexed(59). A recent study 

assessed vinorelbine versus supportive care in the second-line setting, 

demonstrating a median progression free survival of 4.2 months versus 2.8 

months, respectively (p=0.0017)(60). 

 

1.4.2 Immunotherapy 

 

Over recent years, immune checkpoint inhibitors which block inhibitory signals 

of T-cell activation have been increasingly investigated and reported in the 

thoracic malignancy literature. The programmed cell death protein 1 (PD-1) 

inhibitors nivolumab(61) and pembrolizumab(62) and the programmed death 

ligand (PD-L1) inhibitors durvalumab(63) and atezolizumab(64) have been shown 

to improve overall survival (OS) in patients with non-small cell lung cancer 



 43 

(NSCLC). In patients with small cell lung cancer (SCLC), improved survival 

outcomes have been reported with combination treatment with chemotherapy 

and the PD-L1 inhibitor atezolizumab(65). 

 

1.4.2.1 Immunotherapy as first-line treatment in MPM 

 

The Checkmate 743 study assessing ipilimumab – a monoclonal antibody against 

CTLA-4 – in combination with nivolumab – a human monoclonal immunoglobulin 

G4 antibody to PD-1 – in patients with MPM reported a significant survival 

advantage compared to combination chemotherapy alone (18.1 months versus 

14.1 months, p=0.002)(66). There was a very large benefit of immunotherapy 

over chemotherapy in the non-epithelioid group. In the recently published 

Checkmate 743 study update, Peters and colleagues reported a 3-year survival 

benefit with the combination of nivolumab and ipilimumab compared to 

traditional chemotherapy in patients with MPM who are not eligible for 

surgery(67). The Scottish Medicines Consortium recently accepted combination 

nivolumab and ipilumumab as a first-line treatment for unresectable MPM(4). 

 

1.4.2.2 Immunotherapy as second-line treatment in MPM 

 

Second-line nivolumab monotherapy has been investigated in the NivoMis and 

MERIT trials with median OS rates of 11.8 and 17.3 months, respectively(68, 69). 

In the MAPS-2 study, nivolumab monotherapy had a median progression free 

survival (mPFS) of 4.0 months(70). Avelumab, a PD-L1 blocker, was studied in 53 

patients and had a response rate of 9.4% and a mPFS of 3.9 months(71). The 

CONFIRM study recently reported preliminary results demonstrating improved OS 

with nivolumab (9.2 months versus 6.6 months, p=0.018)(72). In NHS England and 

Wales, single agent nivolumab has been licensed under interim treatment 

options published during the COVID-19 pandemic as a second-line treatment 

(rather than second-line chemotherapy)(5). 
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1.5 Tumour response assessment 

 

Assessment of treatment response is important in determining efficacy of toxic 

therapies and suitability to second-line and more novel anti-cancer treatments 

in MPM. 

 

Venous-phase contrast-enhanced computed tomography (CT) is widely used in 

clinical practice for the diagnosis of MPM and assessment of response to 

chemotherapy and other anti-cancer agents(73). Radiological features of MPM 

include parietal and visceral pleural enhancement and chest wall and 

diaphragmatic infiltration. Some of these features are illustrated in Figure 1.1. 

 

 

Figure 1.1 Contrast-enhanced coronal CT image of a patient with MPM. A large 

malignant pleural effusion (red P) and pleural enhancement (white arrows) are 

visible 

 

  

P 
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1.5.1 Response Evaluation Criteria In Solid Tumours 

 

Early objective reporting of treatment response was first standardised in the 

1980s with the recommendation of bidimensional tumour measurements – 

defined as the sum of the longest diameter of the lesion and its perpendicular 

diameter - at pre- and post-treatment time points(74). The World Health 

Organisation (WHO), US National Cancer Institute (NCI) and the European 

Organisation for Research and Treatment of Cancer (EORTC) defined simplified 

response assessment criteria, termed Response Evaluation Criteria in Solid 

Tumours (RECIST) which were based on the sum of the unidimensional 

measurements of the longest diameter of tumours of ‘target lesions’(75). 

According to RECIST criteria, a maximum of ten lesions can be measured with a 

maximum of five measurements in each organ. RECIST 1.0(75) and RECIST 

1.1(76) are the gold standard response assessment tools in patients with solid 

organ cancers. 

 

1.5.2 Modified Response Evaluation Criteria in Solid Tumours 

 

The principal limitation with the RECIST criteria is the assumption of tumour 

sphericity which under-classifies tumour response(77) and does not take into 

account equivalent percentage changes in the three-dimensions of a tumour(78). 

 

Modified Response Evaluation Criteria in Solid Tumours (mRECIST) classification 

was developed in MPM to assuage such assumptions with readers measuring 

tumour thickness perpendicular to the chest wall or mediastinum in two 

positions at three separate levels on thoracic CT scans(6). The summed value of 

these measurements define response assessment with a reduction of ≥30% on 

two occasions four weeks apart defining partial response (PR) and an increase of 

≥20% from the pre-treatment scan defining progressive disease (PD)(6). Those 

who do not fulfil the criteria for PR nor PD are defined as having stable disease. 

Figure 1.2 provides an example of mRECIST measurements. 
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Figure 1.2 Axial contrast-enhanced CT image of a patient with MPM 

demonstrating mRECIST. The blue lines represent measurements taken 

perpendicular to the chest wall and the vertebral column 

 

However, disparities in treatment response have been reported when applying 

the bidimensional WHO criteria and unidimensional mRECIST criteria in the same 

patients with MPM(79). Differences in OS have been observed depending on 

whether tumour volumetry or mRECIST criteria are applied in the same patient 

cohort(80). Additionally, significant inter-observer variability has been reported 

when applying mRECIST criteria in patients with MPM with 95% limits of 

agreement for inter-observer differences spanning a range as high as 30%(81). As 

previously mentioned, mRECIST criteria defines partial response to treatment as 

a 30% volume decrease from the pre-treatment scan and progressive disease as a 

20% increase in tumour volume between interval scans. Inter-observer variation 

may directly translate into different response classification based on the same 

imaging appearances. An important study by Oxnard and colleagues applied 

RECIST response criteria to thickness measurements of MPM models(82). Their 

modelling suggested that more appropriate response thresholds to the non-

spherical shape of MPM would be partial response defined as a 66% volume 

decrease and progressive disease defined as a 73% volume increase, with these 

requiring prospective validation(82). As a result, novel methods that measure 

the volume of primary tumour in patients with MPM have been sought. 
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1.6 Tumour volumetry in other thoracic malignancies 

 

Different tumour volumetric measurement techniques have been reported in 

patients with thoracic malignancy. In patients with NSCLC, mathematical 

modelling(83, 84) and radiodensity correction methods(85) have also been 

described. Volumetric parameters using 18F-fluorodeoxyglucose positron emission 

tomography computed tomography (18F-FDG PET CT) have been reported to be 

significant prognostic indicators in patients with NSCLC(86). Other PET CT 

parameters have included maximum standardized uptake value (SUVmax)(87), 

total metabolic active tumour volume (TMATV) and total tumour burden (TTB) 

measurements(88). 

 

Tumour volume is a predictor of prognosis in patients with thoracic malignancy. 

In patients with NSCLC, metabolic tumour volume has been reported as 

prognostically significant in early(89) and later stage disease(90-92). Similar 

outcomes have been reported in SCLC(93-96). Other studies have reported 

correlation between OS and the sphericity of gross tumour volume (GTV) in 

NSCLC(97) as well as shape and textural analyses(98). 

 

1.7 Previous volumetric techniques in MPM 

 

Higher tumour volume is prognostically significant in patients with MPM(80, 99-

104). In the mesothelioma literature, recent advances in CT tumour volumetry 

have resulted in new approaches to the traditional T staging techniques of the 

7th(105) and 8th(45) versions of the TNM staging systems. These have included 

three-dimensional CT volumetric approaches to response assessment which are 

described as follows. 

 

In their landmark study published in 1998, Pass and colleagues manually 

delineated pleural tumour using a track-and-ball mouse on 48 patients’ pre-

resection and post-resection CT scans with computer software reconstructing the 

tumour in three dimensions to provide volume in cubic centimetres(99). The 

patients had cytoreductive debulking by extra-pleural pneumonectomy (n=25) or 

pleurectomy/decortication (n=23). Patients with pre-operative tumour volume 
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<100cm3 had a longer median OS (22 months versus 11 months, p=0.03)(99). 

Patients with pre-operative tumour volumes >52 cm3 had shorter progression-

free intervals (8 months versus 11 months, p=0.02). 

 

Zhao and colleagues developed a sequential segmentation approach that 

involved dissecting pleural tumour from other anatomical structures in the 

thoracic cage. They reported an accuracy of 80.6% with absolute differences in 

the percentage change between the manual and automated results of 6.7% in 

the 8 patients studied(106). 

 

Three-dimensional interpretation of two-dimensional cross sections by counting 

the number of evenly spaced dots overlying tumour – also termed Cavalieri’s 

geometrical principle of stereology – has been investigated by Ak and colleagues 

(107). They demonstrated that patients with non-progressive disease - defined as 

stable disease or objective response - had a longer median OS compared to 

patients with progressive disease (14 v 16 v 10 months, respectively, p=0.008). 

This technique has since been superseded by digital volumetric approaches to 

tumour segmentation. 

 

Liu and colleagues used a semi-automated computer algorithm. After 

dichotomising tumour volume into crude ‘increase’ and ‘decrease’ change 

groups, volumetric change after two cycles of chemotherapy predicted OS in the 

30 patients investigated(80). 

 

Frauenfelder and colleagues used Myrian® software – originally designed as a 

hepatic volumetric measurement tool – to compare tumour volume 

measurements to mRECIST criteria using pre- and post-chemotherapy CT scans of 

30 patients with MPM(108). Their semi-automated method involved contouring 

the outer part of the pleura every fourth to fifth slice followed by automatic 

linear algorithmic interpolation between the marked slices to provide tumour 

volume. High inter-rater reliability (0.99) and inter-observer agreement (general 

κ 0.9) were reported for absolute tumour volumes. However, low inter-rater 

reliability (ICC=0.55) and low inter-observer agreement for tumour response 

classification (general κ 0.33) was reported when compared to RECIST criteria. 
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A novel method involving computerised delineation of the pleural space through 

automated segmentation of lung parenchyma and the hemi-thoracic cavity 

followed by a semi-automated segmentation method to define the liver 

boundary was reported by Sensakovic and colleagues(109). Three readers 

delineated five axial sections in 31 patients’ CT scans. The median Jaccard 

similarity co-efficient (J-index) was 0.517 between the human readers and 0.484 

between the manual- and computer-defined segmentations. 

 

Labby and colleagues adapted the Sensakovic method by adding an interpolation 

component – defined as a ‘watershed segmentation’ which divided the 

segmented disease into three-dimensional regions based on morphology and 

spatial proximity – to 281 serial CT scans from 81 chemotherapy-treated 

patients, and reported volume change to be an independent predictor of OS 

(104). 

 

Chaisaowong and colleagues segmented pleural thickening from thoracic tissue 

using a 3-D modelling approach(110). However, their method was limited by 

growth pattern assumptions. 

 

Rusch and colleagues conducted a feasibility study assessing the use of CT-

derived volumetric assessment of pleural tumour in MPM, with mean tumour 

volumes of 91.2 cm3, 245.3 cm3 and 511.3 cm3 conferring respective median OS 

rates of 37, 18 and 8 months(102). 

 

Gill and colleagues employed a semi-automated volumetric approach based on 

automated radiodensity-thresholds provided by Vitrea Enterprise suite 6.0® 

(Vital Images®, Minnesota, USA) and human reader manual delineation, with 

absolute volume differences of 173.7cm3 to 860.6 cm3 reported between human 

readers(111). This was blamed on ‘perception errors’ and limited distinction 

between tumour and adjacent tissues(111). 

 

Chen and colleagues reported a Dice coefficient of 0.825 after comparing 

manual segmentation on 45 baseline and follow-up CT scans with a semi-

automated random walk segmentation method involving the placement of seed 

points in areas representative of pleural tumour(112). The Dice coefficient - also 
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known as the Dice score, Sørensen–Dice coefficient or F1 score - is a 

performance metric for image segmentation by deep learning algorithms which 

is widely reported in AI literature and detailed later in Section 1.8.2 of this 

chapter. A higher J-index (0.79) and Dice similarity coefficient (0.88) were 

observed by Brahim and colleagues upon assessing their semi-automated, multi-

stage thoracic cavity segmentation and texture analysis approach(113). 

 

In their study of tumour volume in MPM, calculated by the sum of the maximal 

tumour thickness and tumour extent grade of the pleural circumference which 

was measured at the level of the carina, Paajanen and colleagues divided 

tumour size into tertiles with the median OS in the lowest, middle and highest 

tumour volume groups being 14.0, 11.1 and 5.4 months, respectively 

(p=0.016)(103). 

 

1.8 Artificial Intelligence in imaging 

 

Despite the advent of three-dimensional measurements, accurate and 

reproducible measurements of primary tumour volume in MPM have remained 

problematic. Tumour volume has yet to be incorporated into clinical practice for 

prognostication and staging. As previously highlighted, manual oversight and 

contouring are time-consuming and prone to inter-observer variability. 

Limitations of primary tumour volumetric assessment in MPM has led to the 

development of automated and semi-automated approaches to CT image 

interpretation, including deep learning approaches. 

 

Deep learning is a sub-category of machine learning that forms the basis for 

artificial intelligence (AI) image interpretation(114). AI was first defined as “the 

science and engineering of making intelligent machines” by John McCarthy in 

1955(115). Deep learning is broadly defined as the “simulation of human 

behaviour by machines”(116). Deep learning algorithms are designed to include 

multiple layers of algorithms that are stratified into hierarchies of data 

importance(117). The accumulation of data from real-world inputs ‘trains’, or 

rather, mathematically improve its ‘fit’, as it seeks to match the input 
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provided(118). The network provides outputs that are adaptive as it continues to 

‘learn’ from these inputs(119). 

 

Deep learning algorithms are used in every-day life. Social media platforms 

utilise deep learning to power their virtual assistants(120) and to analyse 

data(121). Other uses include chatbot agents such as those deployed in 

banking(122) and healthcare settings(123). The commercial sector uses deep 

learning to predict customer behaviour(124, 125). Deep learning algorithms can 

extract information from text(126), detect fraud(127) and filter spam messages 

on email communications(128). Deep learning also forms the basis of facial 

recognition technology(129). In the medical setting, deep learning can be 

utilised to extract medical information from electronic health records(130) and 

to facilitate matching of patients to clinical trials(131). 

 

Deep learning has also been applied to medical images(132). Image 

interpretation by expert human readers is required as a first step in this process; 

this human ‘input’ is commonly known as ground truth in the AI literature. In 

intelligent medical imaging, ground truth is determined by clinicians who 

identify anatomical structures such as bone, lung and normal pleurae(133, 134). 

Accurate ground truth enables the artificial algorithm to ‘image label’ each 

tissue to provide appropriate outputs by algorithms(135). 

 

1.8.1 Convolutional neural networks 

 

Advances in deep learning methods have resulted in the development of 

convolutional neural networks (CNN)(136). A CNN is a multi-layered 

convolutional filter that can be trained to identify image features that 

correspond with given image classifications or image labels(137). Deep CNNs 

have been widely utilised in the machine learning community, including Visual 

Geometry Group(138), GoogleNet(139), Residual Net(140) and U-Net(141). CNNs 

have been proven to out-perform humans when trained on very large 

datasets(142). Commercial object detection and recognition datasets are trained 

on millions of images, for example, ImageNET (n=14,197,122)(143), Open Images 

(n=9,178,275)(144), Microsoft Common Objects in Context (n=2,500,000)(145) 

and OpenLORIS-Object (n=1,106,424)(146). Deep learning techniques have been 
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applied in medical imaging(147), including U-net architecture in lung 

segmentation(148) and in patients with thoracic malignancies(149, 150). U-Net 

architecture was first described by Ronneberger and colleagues and is a deep 

learning method that identifies label-specific regions of an image(141). The 

network is shaped like a U-curve and is broadly divided into convolutional 

encoding and decoding units. Convolutional encoding facilitates image analysis 

and feature combination at different scales of the image. The network is also 

coupled with ‘skip connections’ to maintain detailed features. Although similarly 

sized datasets are not available in medicine, U-net architecture can operate 

with limited training images(141, 151). 

 

1.8.2 Artificial Intelligence in MPM 

 

Gudmundsson and colleagues were the first authors to report automated 

segmentation of pleural thickening in patients with MPM utilising U-Net 

architecture(136). Their method involved differentiating between pleural 

thickening and normal thoracic tissue in 131 slices from 43 CT scans. After 

testing the CNN against human-measured segmentations of MPM tumour in two 

separate validation datasets, the CNN demonstrated superior performance (Dice 

coefficient 0.662 to 0.800). The Dice coefficient was described earlier in Section 

1.7.1 of this chapter and equals 1.0 if the two datasets are identical and 0.0 if 

there are no similarities. Dice is more precise in reporting on exact region 

overlap on the image files. One of the limitations of the Gudmundsson paper was 

that the CNN often included pleural effusions in the predicted tumour volumes. 

The authors refined their deep CNN-based method in a subsequent publication, 

with a focus on pleural effusions(152). Another imitation was that requirement 

of a human user having to manually define the side of the MPM tumour. 

 

1.9 Survival prediction in MPM 

 

Survival in MPM is heterogenous with a median survival of 9 to 12 months(20). 

Survival prediction in MPM is made difficult by the heterogeneity of the disease. 

Factors predictive of survival have been reported since the late 1990s and are 

largely based on routinely available clinicopathological data. As described 



 53 

earlier in this chapter, survival in MPM is dependent on the histological sub-

type(30-34, 38, 39), disease stage(38, 153) and tumour volume(80, 99-104). 

Other predictors include older age(38, 154-156), male sex(34, 36, 156), poorer 

performance status(30, 34, 36), low haemoglobin(36, 38) and elevated 

inflammatory indices(34, 36, 38). Performance status and inflammatory indices 

will be discussed in more detail here. 

 

1.9.1 Performance status 

 

Performance status (PS) is universally used as a surrogate metric for patients’ 

fitness to undergo specific treatments, including surgery, radiotherapy and 

systemic anti-cancer therapy (SACT). The Eastern Cooperative Oncology Group 

Performance Status (ECOG PS) grading system is the most commonly used scale 

and ranges from 0 (normal functioning) to 5 (dead)(157). Table 1.2 provides the 

scale-points and descriptions of activity on each scale. The Karnofsky score (KS) 

is another scoring system used and ranges from 0 (dead) to 100 (normal 

functioning)(158). 

 

The British Thoracic Society (BTS) guidelines state that patients with MPM being 

considered for first-line chemotherapy require a PS of 0 or 1(2). The American 

Society of Clinical Oncology (ASCO) MPM treatment guidelines recommend first-

line SACT for patients with a PS ≤2(159). The European Society for Medical 

Oncology (ESMO) MPM guidelines stipulate that patients with PS 0 to 2 should be 

considered for SACT(160). 

 

Patients with a PS of 2 are a heterogenous cohort and are often excluded from 

clinical trials, e.g., Checkmate 743(66). The licensing of nivolumab and 

ipilimumab in Scotland will follow this(4). Only patients with a PS of 1 or 0 are 

directed to nivolumab and ipilimumab in the European Society for Medical 

Oncology (ESMO) MPM guidelines(160). This is reflected in day-to-day clinical 

practice. If patients at risk of losing fitness or already determined to have a PS 

≥2 are targeted, the life prolonging benefits for treatments like nivolumab and 

ipilimumab could be extended to more cases. 
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PS features in all the MPM prediction scores. In the regression tree of the CALGB 

score, PS was the most significant prognostic factor(30). In the Brims decision 

tree model, patients with a PS ≥2 were included in Group 4 (the group with the 

worst survival) and patients with PS 0 or 1 went into Group 3(30). Their data 

demonstrated that PS superseded histology, i.e., sub-type only mattered if PS 

was 0 or 1, with a similar effect for haemoglobin <12 ug/L(30). Cedres and 

colleagues assessed 189 patients with MPM - 85% had been offered first-line 

chemotherapy – and reported median OS of 28.8 months for patients with PS 0, 

18.8 months for those with PS 1 and 2.4 months for those who were PS 2 

(p=0.001)(161). Rahouma and colleagues assessed 114 patients with MPM who 

received platinum chemotherapy and reported superior OS in the PS 0 to 1 group 

compared to the PS ≥2 group (p=0.024)(162). The same authors reported that 

patients with PS 0 or 1 completed 3 or more cycles of chemotherapy. 

 

Table 1.2 WHO/ECOG Performance Status 

Grade Description of activity 

0 Fully active 

Able to carry on all pre-disease performance without restriction 

1 Restricted in physically strenuous activity 

Ambulatory and able to carry out light or sedentary work 

2 Ambulatory and capable of all self-care 

Unable to carry out any work activities 

Up and about >50% of waking hours 

3 Capable of only limited self-care 

Confined to bed or chair >50% of waking hours 

4 Completely disabled 

Cannot carry on any self-care 

Totally confined to bed or chair 

5 Dead 
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1.9.2 Systemic inflammation 

 

Systemic inflammation is prognostic in patients with MPM. Elevated white cell 

count (WCC) is prognostic in the EORTC model(34) and in the external validation 

studies of this model(35, 36). In their study of 33,432 patients with solid organ 

cancers, Templeton and colleagues concluded that the prognostic effect of 

neutrophil:lymphocyte ratio (NLR) was higher in mesothelioma compared to 

other malignancies (HR 2.35, p=0.001)(163). Three studies by Kao and colleagues 

have reported the prognostic significance of NLR in patients with MPM(164), 

including 173 patients receiving systemic treatment(165) and 85 patients who 

had an extra-pleural pneumonectomy(166). Pinato and colleagues examined 171 

patients with MPM and reported that NLR was an independent predictor of OS 

(HR 2.0, p=0.008)(167). The same authors also reported that modified Glasgow 

Prognostic Score (mGPS, a composite of serum albumin and C-reactive protein 

(CRP)) was also an independent predictor of OS (HR 2.6, p<0.001)(167). Low 

serum albumin(168) and lymphocyte-to-monocyte ratio (LMR)(169) are also 

prognostic in separate studies of patients with MPM. Pre-treatment CRP has been 

associated with subsequent clinical benefit from multi-modality treatments 

incorporating surgical resection(170). Elevated NLR and PLR have also been 

shown to affect disease-free survival(171). 

 

1.9.3 Limitations of survival prediction models in MPM 

 

In a study on which I was first author, our research group identified the 

limitations of routinely available clinical data in accurately predicting MPM 

prognosis(172). This was important and directly informed the decision to 

investigate additional predictors of survival, which are explored in Chapter 4 (in 

which tumour volume is related to survival) and in Chapter 5 (regarding altered 

body composition). In this single centre study with a validation set of 100 

patients with MPM, age, PS, pre-chemotherapy WCC and pre-chemotherapy 

albumin were reported to be prognostically significant(172), almost matching 

the predictors reported by Brims and colleagues(30) which is included in the 

British Thoracic Society (BTS) guidelines for the ‘Investigation and Management 

of MPM’(2). However, a validation set DXY - a quantification score numerically 

equivalent to a C-statistic or area under the cure (AUC) score) ranging from 0 to 
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1, with increasing concordance between observed (0) and predicted (1) 

outcomes - was only 0.221 which suggested that our survival prediction model 

only provided a 22% improvement upon what would have been expected by 

chance. This highlighted the inadequacy of survival prediction models based on 

clinical data in accurately predicting outcomes in MPM. Moreover, the 

aforementioned survival prediction scores and studies that have validated these 

scores do not include survival predictors such as tumour genomics, tumour 

volumetry and body composition metrics such as skeletal muscle mass and 

adipose tissue mass which are integral to the cancer cachexia syndrome. I 

therefore focused on body composition measures which I will report in Chapter 5 

in parallel to my work on tumour volumetry methods in Chapters 3 and 4. 

 

1.10 Cancer cachexia 

 

Cancer cachexia was defined by an international panel of experts in 2011 as “a 

multifactorial syndrome defined by ongoing loss of skeletal muscle mass - with or 

without loss of fat mass - that cannot be reversed by conventional nutritional 

support and leads to progressive functional impairment”(7). 

 

Cachexia results in reduced tolerance to chemotherapy(173-176), reduced 

quality of life(177) and shorter survival(173, 178-186). Similarly, sarcopenic 

patients are at risk of treatment-related toxicities(187) and shorter survival(179, 

188, 189). There are few data relating to the significance of cancer cachexia in 

MPM(190). The detection of cachexia is not just important for prognostic models. 

It could be actionable with improved tolerance to therapies, especially in the 

high-risk PS 2 cases who are often not treated. 

 

The prevalence of cancer cachexia in advanced malignancies ranges between 

50% and 80%(191-195). Limited prevalence data exist regarding cancer cachexia 

in patients with MPM. In their study assessing Actin A in patients with MPM(196), 

Paajanen and colleagues used the Fearon definition of ≥5% weight loss over the 

past 6 months, BMI <20 kg/m2 and weight loss >2% or skeletal muscle index (SMI) 

consistent with sarcopenia and weight loss >2%(7). They reported cachexia in 

12/21 (57%) of the patients studied(196). 
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1.11 Principal constituents of cancer cachexia 

 

Cancer cachexia results from a complex interplay between tumour and host and 

is driven by pro-inflammatory and catabolic mediators, or ‘cachexokines’. I have 

provided a visual guide to the multi-system involvement of this syndrome in 

Figure 1.3. This is an amalgam of pathological mechanisms described in detail by 

Fearon and colleagues(7), Baracos and colleagues(197), Porporato(198) and 

Biswas and colleagues(199). 

 

Figure 1.3 Pathophysiology of cancer cachexia 

 

A detailed description of the biochemistry and pathophysiology of the cancer 

cachexia syndrome is beyond the scope of this thesis. However, the principal 

constituents are weight loss, anorexia, systemic inflammation and altered body 

composition. 
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1.11.1 Weight loss 

 

Weight loss is a central tenet of cancer cachexia. In the early 1990s, an 

international clinical research group sponsored by the National Cancer Institute 

defined weight loss in the context of cancer cachexia as “a 5-pound weight loss 

in the preceding 2 months and/or an estimated daily caloric intake of <20 

calories per kg, a desire by the patient to increase his or her appetite and gain 

weight, and the physician’s opinion that weight gain would be beneficial for the 

patient”(200). The importance of weight loss was again emphasised by Loprinzi 

in 1995 who stated that “cancer cachexia is most often defined by criteria based 

on weight loss, i.e., involuntary weight loss greater than 10%”(201). 

 

The current definition of cancer cachexia is based upon the rate of weight loss 

as well as attainment of a low body mass index (BMI)(7). Martin and colleagues 

published a scoring matrix based on weight loss and BMI in patients with locally 

advanced or metastatic cancer that predicted OS independent of cancer type, 

tumour stage, age, sex and PS(186). 

 

Weight loss is common in patients with thoracic malignancies(181, 202, 203) and 

is prognostic in patients with non-small cell lung cancer (NSCLC)(204) and small 

cell lung cancer (SCLC)(205). Weight gain in patients with advanced NSCLC 

receiving chemotherapy has been shown to be beneficial(206). The impact of 

weight loss in patients with MPM has been less conclusive, with previous studies 

reporting an adverse association with prognosis(30, 36, 38, 207) whilst other 

authors concluding that weight loss is not an important determinant of 

survival(34, 208), including the before-mentioned survival prediction study on 

which I was first author(172). The reliance of weight loss on the cachexia 

definition can make retrospective studies difficult since these data may not be 

reliably recorded in routine clinical records. 

 

1.11.2 Anorexia 

 

Another important constituent of the cancer cachexia syndrome is anorexia. 

Anorexia is derived from the Greek: an, meaning ‘without’, and orexia, meaning 

‘appetite’. In the context of cancer cachexia, anorexia has been defined as 
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“food intake insufficient to meet the metabolic needs of the tumour-bearing 

host”(209). It is common in patients with thoracic malignancies, including 

NSCLC(210) and SCLC(211). In patients with MPM, pre-treatment anorexia is 

prognostic of OS(164). The complex biology of anorexia has been described in 

previous studies and is beyond the scope of this thesis(212, 213). A brief 

overview is provided here. 

 

Peripheral signalling provides feedback to the hypothalamus which polices 

metabolic changes in skeletal and adipose tissues(214) as well as behaviours that 

results in energy intake(215). In animal models, arcuate neurons such as pro-

opiomelanocortin (POMC) and agouti-related peptide (AgRP) are central to the 

pathogenesis of anorexia(216). Additionally, altered feedback to the 

hypothalamus from peripheral tissues has also been shown to be 

deleterious(217). Proinflammatory cytokines from tumours and systemic 

inflammation(218) also have an important role in the anorexia syndrome(216, 

219). 

 

Anorexia is poorly understood in the cachexia syndrome as evidenced by enigmas 

such as elevated ghrelin levels (ghrelin is an appetite stimulant) in patients with 

advanced lung cancer and anorexia(220, 221). The enigma is that patients with 

the cachexia syndrome do not experience increased appetite. Clinical trials have 

assessed the impact of anamorelin(222) - a ghrelin receptor agonist - in patients 

with lung malignancy. Nabilone(223) - a tetrahydrocannabinol mimic and 

appetite stimulant via central cannabinoid 1 receptors(224) – has also been 

investigated in this patient population. There is an ongoing study assessing the 

use of anamorelin in patients with MPM (New Zealand Clinical Trials Number: 

U1111-1240-6828)(225). 

 

1.11.3 Systemic inflammation 

 

Systemic inflammation plays an important role in the cancer cachexia syndrome. 

Although there are no human studies which assess systemic inflammation in the 

context of cancer cachexia in patients with MPM, elevated measures of systemic 

inflammation are associated with poor outcomes in patients with MPM and have 

been detailed in Section 1.9.2 earlier in this chapter. Blood tests are almost 
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always collected in chemotherapy-treated patients, including at prior to 

commencement of chemotherapy, which make them suitable datapoints for 

retrospective studies seeking to understand cachexia syndrome in mesothelioma. 

 

There are few studies assessing inflammation in patients with MPM and cachexia. 

Duong and colleagues demonstrated a tumour growth rate reduction by inducing 

macrophage depletion in MPM-bearing mice, thus preventing cachexia induced 

by immunotherapy(226). Tumour-associated macrophages inhibit the activity of 

anti-tumour T cells and confer a poor prognosis(227, 228). Systemic 

inflammation is also subject to recent targeted therapeutic approaches in 

patients with NSCLC and cancer cachexia. Interleukin-6 (IL-6) - a pro-

inflammatory cytokine - is currently subject to ongoing clinical trials 

investigating the role of IL-6 monoclonal antibodies, including clazakizumab 

(NCT00866970) and inflixamab (NCT00040885). 

 

1.11.4 Sarcopenia 

 

Sarcopenia is the loss of skeletal muscle mass. The term sarcopenia is derived 

from the Greek: sarx, meaning ‘flesh’, and penia, ‘poverty’. The complex 

pathophysiology of sarcopenia is described in numerous comprehensive reviews 

and is beyond the scope of this thesis(194, 197, 199, 229, 230). A brief overview 

focused on thoracic malignancy is provided here. 

 

The development of sarcopenia in patients receiving chemotherapy involves the 

deleterious effects of circulating inflammatory mediators such as tumour 

necrosis factor-alpha (TNF-α)(194) and IL-6(231, 232) on muscular biology(229), 

including protein synthesis suppression(233) and protein degradation(234). 

Chemotherapy - including cisplatin(235) which is used as a treatment in MPM - 

also releases proinflammatory cytokines (236, 237) and is associated with 

elevated levels of glucocorticoids(238) as well as promoting mechanisms that 

drive oxidative stress(239). 

 

Myocyte-released myokines – signalling molecules of the transforming growth 

factor (TGF) superfamily, including myostatin and activin A(240, 241) - promote 

catabolism of skeletal muscle(242). Myostatin has been found to be contributory 
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to sarcopenia in murine models(243), including the Lewis lung carcinoma 

model(244). 

 

The prevalence of sarcopenia in the thoracic malignancy literature is widely 

varied. For example, in patients with early-stage NSCLC, sarcopenia measured 

pre-operatively has been reported in 13.9 to 55.8% of cases(245-250). Sarcopenia 

is prognostically significant in patients with thoracic malignancy(251-253). Pre-

operative sarcopenia has been associated with poorer outcomes in most studies 

of patients with radically treatable NSCLC(245, 246, 248, 254). In patients with 

more advanced NSCLC, sarcopenia prior to commencing palliative SACT has been 

shown to have increased mortality compared to patients without sarcopenia(176, 

255). The prevalence of sarcopenia in patients with SCLC is even less well 

defined SCLC(249) but has been associated with poor outcomes(256). 

 

1.11.4.1 Sarcopenia in MPM 

 

There are few studies assessing sarcopenia in MPM(190, 257). There are also no 

data to support the impact of sarcopenia measured at L3 on treatment outcomes 

in patients with MPM. Jeffery and colleagues assessed 18 patients with MPM and 

reported that those patients with dual-energy X-ray absorptiometry (DEXA)-

defined muscle loss had shorter OS compared to those who did not lose muscle 

(7 muscle-losing patients versus 0 non-muscle losing patients died less than 12 

months from the second body composition scan, p=0.002)(257). A group from 

Switzerland assessing sarcopenia and pre-cardial adipose tissue in pre-operative 

CT scans with sarcopenia(190). In the 278 patients with MPM who had surgery, 

those with sarcopenia – defined as skeletal muscle area below the 33rd percentile 

- had a higher three-year mortality compared to those without sarcopenia (23.9 

months versus 31.7 months, p=0.041)(190). 

 

The pathophysiology of sarcopenia in MPM is poorly understood. A recent study 

of 22 patients with MPM concluded that elevated activin A – a glycoprotein which 

regulates muscle growth - correlated with CT-determined baseline tumour size 

(r=0.549, p=0.010) and post-chemotherapy tumour size (r=0.743, 

p=0.0006)(196). The authors postulated that muscle growth is negatively 
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regulated by activins via activin type 2 receptors (ActRII) and are prognostically 

significant in other solid organ cancers, including lung cancer. In the NSCLC 

setting, bimagrumab - an antagonist to activin type II receptors which stimulates 

skeletal muscle growth – was the subject of a Phase II clinical trial(258). Higher 

expression of irisin – another myokine – has been shown to be prognostic in 

patients with NSCLC(259). 

 

1.11.5 Adipopenia 

 

The current consensus definition of cancer cachexia states that the syndrome 

can occur “with or without loss of fat mass”(7), also termed adipopenia. 

Adipopenia can be quantified using imaging software that measures body 

composition metrics and is demonstrated in Figure 1.4(260). It is associated with 

shorter OS and sarcopenia in advanced cancer(261). It is seldom studied in the 

thoracic malignancy literature. 

 

The pathophysiology of adipopenia is poorly understood in the cancer cachexia 

syndrome(262, 263). It may occur prior to the development of sarcopenia 

through lipolysis – lipid breakdown by hydrolysis - resulting in circulating free 

fatty acids and ubiquitin ligase-induced skeletal muscle atrophy(231). Adipose 

tissue is divided into white and brown adipose tissue (WAT and BAT, 

respectively). WAT stores energy in the form of triglycerides and BAT regulates 

lipid oxidation and thermogenesis(264). Studies have discussed the 

pathophysiological changes that results in adipose tissue browning(265, 266). 

BAT is thermogenic and regulates energy expenditure through heat 

dissipation(267). Irisin - briefly mentioned in section 1.11.4.1 of this chapter - is 

related to WAT browning and can increase uncoupling protein 1 (Ucp1) 

expression which is central to non-shivering thermogenesis in adipocytes 

mitochondria(268). WAT browning is associated with altered glucose 

homeostasis(269) and considered to be contributory to hypermetabolism in 

patients with cancer cachexia(266, 270-272), including patients with lung 

cancer(273). Elevated resting energy expenditure (REE) has been reported in 

patients with metastatic NSCLC(274, 275). Higher REE and circulating TNF-

receptor 75 and cortisol have been demonstrated in patients with SCLC 
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compared to NSCLC(276). An in vitro study reported reduced chemosensitivity in 

NSCLC cells through BAT-mediated cell proliferation(277). 

 

 

Figure 1.4 Axial CT scan slices of two patients in the TRACERx study delineated 

by me demonstrating the differences in adiposity between patients. 

Subcutaneous (green), visceral (yellow) and intra-muscular (blue) adipose tissue 

compartments are visible. The red represents skeletal muscle. The image was 

created on Slice-O-Matic® software v5.0 (TomoVision, Montreal, Canada) 

 

1.12 Body composition measurement 

 

Body composition is defined as the proportion of muscle, adipose tissue, bone 

and water content in the human body. It can be assessed using different imaging 

modalities. Dual-energy x-ray absorptiometry (DEXA) and CT are examples of 

this, and although DEXA is considered the gold standard for anthropomorphic 

measurements of total appendicular lean tissue mass(278, 279), CT has the 

significant advantage of facilitating relevant data as part of already routine 

tumour assessment imaging. 

 

1.12.1 Skeletal muscle mass measurement using DEXA 

 

Dual-energy x-ray absorptiometry (DEXA) has been used for cancer cachexia 

evaluation in patients with thoracic malignancy(280-283). Jeffery and colleagues 

used DEXA to measure pre-sarcopenia - defined as appendicular skeletal muscle 

mass 7.26 kg/m2 for men and 5.45 kg/m2 for women - and reported this in over 
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half of the 61 patients studied(283). In the clinical setting, DEXA is not routinely 

available. DEXA also measures lean body mass in grams which is not equivalent 

to muscle mass(284). 

 

1.12.2 Skeletal muscle mass measurement using CT 

 

Computed tomography (CT) is a routinely available imaging modality used for 

diagnostic and response assessment purposes. CT is based on Hounsfield units 

(HU) which are attenuations of tissue relative to water. Water has 0 HU. Tissues 

denser than water such as muscle and adipose tissue have HU values >0 and 

materials less dense than water such as air have HU values <0(285-287). A 

further advantage of CT is that it can be used to differentiate different body 

tissues. There are well-published and validated HUs for skeletal muscle and 

adipose tissue in the sarcopenia literature(288). I will use CT for this reason, and 

as such, it is important to consider what software solutions are available to 

measure skeletal muscle and adipose tissue. 

 

1.12.3 Software programmes used to measure body composition 

 

I have detailed the different software packages available for the purposes of 

body composition measurement in Table 1.3. Different software programmes 

have been compared in multiple previous studies, demonstrating high levels of 

agreement(289-292). Particularly excellent agreement for cross-sectional muscle 

area measurements has been reported using sliceOmatic®(TomoVision®, Magog, 

Canada) and ImageJ software (U.S. National Institutes of Health, Bethesda, 

MD)(292). Excellent agreement levels between OsiriX® (Pixmeo SARL®, Geneva, 

Switzerland) and ImageJ have been observed for paraspinal muscle 

measurements on MRI(293). 

 

As part of my learning of body composition measurement techniques, I attended 

University College London (UCL) during my tenure as a Clinical Research Fellow 

recruiting patients to the TRAcking Cancer Evolution through therapy (Rx) 

(TRACERx) study(294). TRACERx uses multi-region whole-exome sequencing to 

assess the clinical significance of intra-tumour heterogeneity in patients with 
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radically-treatable NSCLC, and to advance the understanding of cancer evolution 

in this cohort. I provided second reader measurements using Slice-O-Matic 

software (TomoVision®, Montreal, Canada) on CT scans as part of a TRACERx 

sub-study assessing body composition changes. This is demonstrated in Figure 1.4 

of this chapter. My experiences with this body composition software aided my 

learning and development of the techniques required to accurately determine 

different body compartments. ImageJ software was chosen as the body 

composition platform for analysis of skeletal muscle and adipose tissue in this 

thesis because it was readily available, free to download and easy to use. I have 

described this in further detail in Chapter 2, Section 2.3.6. 
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Table 1.3 Examples of body composition software programmes 

Software Software developers Examples of study 

populations 

Aquarius NET 

server 

TeraRecon Inc., San Mateo, CA, USA Patients who underwent 

abdominal wall 

reconstruction(295) 

Aquarius 

iNutrition 

TeraRecon, San Mateo, CA, USA Healthy population(296) 

FatSeg Biomedical Imaging Group 

Rotterdam of Erasmus MC, 

Rotterdam, Netherlands, using 

MeVisLab (Mevis Medical Solutions, 

Bremen, Germany) 

Patients with colorectal 

cancer(297) 

ImageJ U.S. National Institutes of Health, 

Bethesda, MD 

Patients with head and neck 

cancer(298) 

MeVisLab MeVisLab, v2.2.1, Bremen, Germany Healthy population(299) 

OsiriX Pixmeo SARL, Geneva, Switzerland Patients with prostate 

cancer(300) 

PACS PACS, Centricity® 4.1, GE 

Healthcare, Barrington, IL, USA 

Patients with multiple 

myeloma(301) 

sliceOmatic TomoVision, Montreal, Canada Patients with non-

metastatic colorectal and 

breast cancers(302) 

Synapse 

Vincent 

FUJIFILM Co. Ltd., Tokyo, Japan Patients with prostate 

cancer(303)  

VikingSlice Aalborg University Hospital Patients with chronic 

pancreatitis(304) 
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1.12.4 Definition of sarcopenia: measurements at L3 

 

Mourtzakis and colleagues developed and validated regression equations for 

extrapolating data from a single third lumbar vertebra (L3) cross-sectional CT 

image to predict whole body composition of adipose tissue and skeletal muscle 

mass area (SMA, cm2)(305). SMA can be divided by height squared (m2) to 

provide skeletal muscle index (SMI, cm2/m2). 

 

The third lumbar vertebra (L3) contains the spinal vertebrae, large and small 

intestines, kidney and liver. It also contains visceral, subcutaneous and intra-

muscular adipose tissue as well as the psoas, erector spinae, quadratus 

lumborum, transversus abdominus, internal and external obliques and rectus 

abdominus muscle groups. This is illustrated in Figure 1.5. 

 

 

Figure 1.5 Single axial contrast-enhanced CT image of a patient with MPM 

demonstrating the muscles at the third lumbar vertebra (L3) which include the 

psoas (A), erector spinae (B), quadratus lumborum (C), transversus abdominis 

(D), internal obliques (E), external 

 

 

 

A 

B 

C 

E 

F 

G 

D 



 68 

Authors have proposed different cut-offs and definitions for sarcopenia using a 

single mid-axial CT image slice at L3 using body composition software tools 

based on their populations’ skeletal muscle mass and target outcomes(306, 307). 

However, the most used sex- and BMI-specific sarcopenia cut-offs at L3 were 

devised by Martin and colleagues and are defined as: SMI 43 cm2/m2 for males 

with a BMI <25 kg/m2 and SMI <53 cm2/m2 for males with a BMI ≥25 kg/m2; SMI 

<41 cm2/m2 for females regardless of BMI category(186). 

 

1.12.5 Definition of sarcopenia in mesothelioma: L3 versus T4 

 

In patients with thoracic malignancy, CT scans often do not extend inferiorly to 

include L3. In one epidemiological survey of mostly patients with thoracic 

malignancy, only 65% of patients had CT scans which included L3 for evaluation 

of skeletal muscle mass(308). As a result, those researching skeletal muscle loss 

in thoracic malignancies have sought alternative skeletal muscle area 

measurements. Derstine and colleagues reported excellent correlation between 

muscle area measurements performed at multiple levels from the tenth thoracic 

vertebra (T10) to the fifth lumbar vertebra (L5) supporting the validity of 

calculating SMI at different axial levels(309). There are no data to support the 

measurement of sarcopenia at different thoracic levels in patients with MPM. 
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1.12.5.1 Fourth thoracic vertebra 

 

The fourth thoracic vertebra (T4) has been investigated as a surrogate of 

sarcopenia in patients with thoracic and other malignancies(310-314). This is 

illustrated in Figure 1.6. 

 

 

Figure 1.6 Single axial contrast-enhanced CT image of a patient with MPM 

demonstrating the muscles at the fourth thoracic vertebra (T4) which includes 

the pectoralis (A), intercostals (B), sub-scapularis (C), infraspinatus (D), 

trapezius(E) and erector spinae (F) 

 

Sarcopenia measured at T4 is prognostically important and associated with 

treatment-related adverse outcomes in other cancers. In a study of 117 male 

patients diagnosed with SCLC, sarcopenia at T4 – defined as those in the lowest 

quartile of T4 skeletal muscle index (T4SMI) values – was found to have lower 

median progression-free survival than non-sarcopenic patients (6.0 vs. 7.5 

months, p=0.009)(311). Hua and colleagues assessed 301 patients with breast 

cancer who received post-operative adjuvant radiotherapy and concluded that 

patients with higher T4SMI had longer median OS compared to those with lower 

T4SMI (62.4 months versus 68.5 months, p=0.025)(313). In 213 patients with head 

and neck cancers, CT-measured T4SMI and L3SMI measurements were combined 
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into a single score for SMI difference and was an independent predictor of early 

termination of treatment (OR 0.96, p=0.021)(314). Conversely, in their study of 

86 patients with advanced NSCLC, Wysham and colleagues did not find that 

thoracic sarcopenia (measured at T4) correlated with adverse outcomes (HR 

0.94, p=0.66)(315). 

 

Sarcopenia measured at T4 has also been investigated in non-cancer patient 

cohorts. Rozenberg and colleagues determined that thoracic muscle cross-

sectional–area - measured at the carina which corresponds roughly –o T4 - was 

associated with metrics of frailty in 527 patients who underwent lung 

transplantation(316). Moon and colleagues measured the cross-sectional area of 

the pectoralis, paraspinal, serratus and latissimus muscles at T4 in 180 patients 

with idiopathic pulmonary fibrosis and concluded that male patients in the 

lowest quartile of T4SMI values had lower OS (p=0.035)(317). Low skeletal 

muscle radiation attenuation at T4 – a radiological marker of myosteatosis, or 

skeletal muscle fat infiltration – was associated with post-operative pneumonia 

following liver surgery in a study of 180 patients (OR 3.65, p<0.01)(312). 
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1.13 Overall aim and hypothesis of thesis 

 

The overall aim of this thesis is to develop, validate and describe the 

significance of radiological biomarkers for treatment response measurement and 

survival prediction in patients with malignant pleural mesothelioma (MPM). The 

materials and methods for these clinical research studies will be detailed in 

Chapter 2. The results will be presented in three results chapters. The individual 

hypotheses for each results chapter are summarised below. 

 

1.13.1 Chapter 3: Semi-automated segmentation of MPM tumour volume 

 

Volumetric tumour measurement is established in other solid tumour types. In 

MPM, semi-automated tumour volumetric measurements based on magnetic 

resonance imaging (MRI) have recently been shown to outperform traditional T-

staging in predicting survival in MPM. However, MRI is not routinely performed in 

clinical practice and computed tomography (CT) remains the primary imaging 

modality of response assessment in MPM. The null hypothesis of this study is that 

a semi-automated contrast-enhanced CT tumour segmentation method cannot 

be extrapolated from contrast-enhanced MRI to serve as the ground truth for a 

future MPM volumetric AI algorithm. 

 

1.13.2 Chapter 4: Volumetric MPM tumour assessment using human and deep 

learning algorithmic segmentations 

 

The delivery of more accurate volumetric measurements is important due to the 

limitations of modified Response Evaluation Criteria In Solid Tumours (mRECIST) 

criteria which is inaccurate and associated with poor reproducibility. A fully 

automated approach to MPM pleural tumour segmentation would directly address 

major limitations of human readers, including high inter-observer variation and 

costs. The null hypothesis of this study is that a volumetric AI algorithm cannot 

improve human response classification in patients with MPM treated with 

chemotherapy. 
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1.13.3 Chapter 5: Prevalence, pattern and prognostic significance of altered 

body composition in patients with chemotherapy-treated MPM 

 

Altered body composition such as the loss of skeletal muscle and adipose tissue 

mass results in reduced tolerance to chemotherapy and shorter survival in 

patients with solid organ cancers. Accurate and reproducible measurements of 

skeletal muscle and adipose tissue mass may be able to facilitate the 

identification of those patients most-at-risk of developing complications related 

to systemic anti-cancer therapy (SACT), including those patients with a PS ≥2. 

Few data exist relating to skeletal muscle and adipose tissue loss in patients 

with MPM. The null hypothesis of this study is that altered body composition is 

not prognostically significant in patients with chemotherapy-treated MPM. 
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2 Chapter 2: Methods 

 

This chapter outlines the design and data collection for the three studies that 

aimed to address the hypothesis of this thesis. The Chief Investigator for all the 

studies was Professor Kevin G. Blyth, Queen Elizabeth University Hospital, 

Glasgow, United Kingdom. 

 

2.1 Semi-automated segmentation of MPM tumour volume 

 

A single centre retrospective cohort study was performed at the Queen Elizabeth 

University Hospital, Glasgow (QEUH). The study sponsor was NHS Greater 

Glasgow and Clyde (NHSGGC). Patients were recruited prospectively to an initial 

pilot study and subsequently to an MRI sub-study of the Diagnostic and 

Prognostic Biomarkers in the Rational Assessment of Mesothelioma (DIAPHRAGM) 

study (ISRCTN10079972) between January 2013 and October 2016. The Chief 

Investigator for DIAPHRAGM was Professor Kevin G. Blyth, Queen Elizabeth 

University Hospital, Glasgow, United Kingdom. Ethical approval was granted by 

the West of Scotland Research Ethics Service (12/WS/0219, 13/WS/0240). 

 

2.1.1 Study objectives and outcome measures 

 

This single centre cohort study aimed to determine whether a semi-automated 

magnetic resonance imaging (MRI) method could be successfully adapted for 

deployment on routinely acquired computed tomography (CT) scans in patients 

with chemotherapy-treated malignant pleural mesothelioma (MPM). The first 

step was to determine Hounsfield unit (HU) values of different thoracic tissues 

using CT scans of patients with MPM. This was to facilitate a method of semi-

automated tumour region-growing by which HUs replaced the SI unit values used 

in the original MRI method. The second step involved manual delineation of 

pleural tumour on CT scans. The final step was to determine the accuracy of 

pleural tumour coverage afforded by the semi-automated segmentation process 

through subjective visual inspection and assessment of inter-observer agreement 

plus an assessment of the time taken to perform the task. Table 2.1 summarises 

the study objectives and outcome measures. 
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Table 2.1 Objectives and outcome measures of the semi-automated 

segmentation of MPM tumour volume study 

Study objectives Outcome measures 

Primary objectives  

To determine the difference in 

Hounsfield units between different 

thoracic tissues using CT scans of 

patients with MPM 

Radiodensity of pleurae (HU) 

 

Radiodensity of lung, bone, 

intercostal muscle, pleural fluid, 

diaphragm, spleen and liver (HU) 

To determine the feasibility and 

accuracy of a semi-automated method 

for MPM primary tumour volumetry 

based on radiodensity-tuned 

segmentation of contrast-enhanced 

CT scans 

Accurate coverage of pleural tumour 

in patients based on subjective visual 

assessment 

 

Time taken to complete volume 

analysis (minutes) 

Secondary objectives  

To determine correlation and 

agreement between semi-automated 

CT and MRI volumes 

Tumour volume on CT (cm3) 

Tumour volume on MRI (cm3) 

 

Correlation (Spearman Rho) 

Agreement (Bland-Altman) 

To determine whether a semi-

automated volumetric CT method is 

reproducible 

Tumour volume on CT (cm3) 

 

CT: computed tomography; HU: Hounsfield units; MPM: malignant pleural 

mesothelioma; MRI: magnetic resonance imaging 
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2.1.2 Study population 

 

Patients included in this chapter were selected from the Diagnostic and 

prognostic biomarkers in the rational assessment of Mesothelioma (DIAPHRAGM) 

study(318). DIAPHRAGM was a prospective, multicentre, observational study that 

recruited 747 patients over 3 years from 23 UK sites at first presentation of MPM. 

This study included an MRI sub-study which recruited 58 patients with suspected 

MPM. These patients had contemporaneous CT and MRI prior to histological 

sampling. Of these, MPM was confirmed in 31/58(319). 8/31 patients were 

excluded. Of these, 2/8 had arterial phase CT pulmonary angiograms and 6/8 

were co-enrolled into the Prediction of Resistance to Chemotherapy in Malignant 

Pleural Mesothelioma (PRISM) study and were included in the external validation 

set of the volumetric study described in Chapter 4 of this thesis. 23 patients 

were included in the final analyses and are illustrated in a study flowchart in 

Figure 2.1. 
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  DIAPHRAGM 
n=1143 

Patients with MPM 
n=31 

Patients with available 
contrast-enhanced MRI 

n=58 

Excluded: 
BAPE, n=11 
Other pleural malignancy, n=5 
TB or rheumatoid pleuritis, n=5 
Post-lobectomy change, n=1 
Pulmonary embolism, n=1 
Reactive effusion, n=1 
Drug-related effusion, n=1 

Excluded: 
CTPA, n=2 
Co-enrolled in PRISM, n=6 
 

Patients with 
contemporaneous MRI & CT 

n=23 
 

 
Figure 2.1 Flowchart of patients included in semi-automated 

segmentation of MPM tumour study 

BAPE: benign asbestos pleural effusion 
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2.1.3 Study procedures 

 

2.1.3.1 Collection of study data 

 

Clinical data were entered onto a Microsoft Excel data collection sheet. Each 

patient was associated with a study number and their data entered on to the 

appropriate row. Patient identifiers were entered and data recorded in a linked 

anonymised format. All image analyses were performed in Glasgow using the 

same methods and the same reporters for all subjects. The scans were 

anonymised and issued a study number. 

 

2.1.3.2 Clinical data 

 

Data were extracted retrospectively from the study database and supplemented 

by electronic records, including demographics (age, sex), Eastern Cooperative 

Oncology Group performance status (ECOG PS)(157, 320), disease stage 

according to the eighth TNM classification for malignant pleural 

mesothelioma(45) and histological sub-type (epithelioid, biphasic, sarcomatoid 

or not specified). ECOG PS was not recorded consistently and a best estimate of 

ECOG PS was recorded based on MDT outcome documentation, pre-

chemotherapy clinic letters or inferences made from functional descriptions in 

pre-chemotherapy clinic letters. 
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2.1.4 Image analyses 

 

2.1.4.1 Summary of MRI method 

 

The semi-automated threshold-based segmentation method used in this chapter 

has been adapted from a previously published study investigating MRI perfusion-

tuned segmentation(319). This work was done by Dr Selina Tsim. I learned this 

method so that I could adapt it to CT. I have presented the MRI method for 

completeness. 

 

Three coronal MRI slices (anterior, midpoint and posterior) were assessed using 

Myrian Intrasense® software v2.4.3 (Paris France). Multiple regions of interest 

(ROI) were distributed across parietal pleurae and mean signal intensity and 

standard deviation (SD) measured. Free-hand parietal pleural tumour 

delineations were drawn every 8 to 10 slices (slice thicknesses were 2.33 to 

5mm). This technique was semi-automatic: 8 to 10 slices accurately defined 

pleural tumour within an acceptable time. Propagation of the contour mask 

resulted in a completed contour mask of the entire image series. A contour mask 

is a free-hand drawing performed which grossly defines the pleura. Signal 

intensity (SI) threshold-based segmentation – defined as the median of the SI 

ranges divided by 2 – was achieved through seed points placed on areas of 

pleural tumour within the contour mask, resulting in a final pleural tumour 

volume (cm3). A seed point is an area representative of pleural tumour within a 

contour mask from which SI threshold-based regions are grown. Figure 2.2 

provides a visual summary of the MRI method. 
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Figure 2.2 Coronal plane of contrast-enhanced MRI scans illustrating the semi-

automated SI-tuned pleural tumour segmentation method 
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2.1.5 CT method 

 

I performed the CT method which was extrapolated from the MRI method. 

Hounsfield unit (HU) threshold-based segmentation was employed rather than SI 

threshold-based segmentation. HU were identified through radiodensity 

analyses. 

 

2.1.5.1 Radiodensity analyses 

 

I performed the radiodensity analyses using Myrian Intrasense® software v2.4.3 

(Paris, France). Anonymised Digital Imaging and Communications in Medicine 

(DICOM) files were imported into Myrian Intrasense® software. Fifteen regions of 

interest (ROIs) were placed using a track-and-ball mouse and cursor on 

representative areas of pleural tumour on 3 coronal plane CT scan slices as per 

the MRI signal intensity (SI) method described by Tsim and colleagues(319). 

Median intensity and interquartile range [IQR] were documented for each ROI in 

HU. I was blinded to clinical and histopathological data. 

 

The coronal planes were defined into separate slices as follows: 

 

• Mid-point: CT slice with the longest continuous cranio-caudal length of 

parietal pleura 

• Anterior: CT slice half-way from the mid-point coronal slice to the most 

anterior slice with distinguishable parietal pleura 

• Posterior: CT slice half-way from the mid-point coronal slice to the most 

posterior slice with distinguishable parietal pleura 

 

This has been outlined in Figure 2.3. 
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Figure 2.3 Coronal plane of contrast-enhanced CT scans with ROIs placed on areas representative of pleural tumour across three different 

slices (highlighted by the green dots) 
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2.1.5.2 Pleurae 

 

The thoracic cavity contains visceral and parietal pleurae. During the 

development of the SI-threshold MRI method, efforts were made to obtain non-

nodular and macro-nodular disease ROI measurements solely in the parietal 

pleura. To facilitate the development of the HU-threshold CT method, I mirrored 

this ROI measurement technique by including only parietal pleural tumour in the 

ROIs. The parietal pleura was defined as the anatomical membrane internal to 

and parallel with the ribcage and immediately adjacent to aerated lung.  

 

2.1.5.3 Other thoracic structures 

 

Three ROIs were placed on the corresponding tissues and median intensity and 

interquartile range [IQR] were documented for each ROI in HU. This has been 

illustrated in Figure 2.4. The external, internal and innermost intercostal 

muscles were identified as the thin muscle layer present in the intercostal space 

and parallel with the ribs. Pleural fluid was identified as an accumulation of 

fluid in the pleural cavity which usually manifests as a crescent-shaped opacity 

in the dependent parts of the thorax on CT scans. Lung was identified as the 

aerated space that filled the mediastinum between the ribs, intercostal muscles 

and pleurae. Ribs were identified as the curved bones that caged the thorax and 

their high attenuation manifested as a bright white structure on CT scans. 

Calcified pleural plaques were identified as areas of high attenuation in the 

parietal pleurae. The right and left hemi-diaphragms were identified as the 

dome-shaped muscles separating the thoracic and abdominal cavities. In cases 

where the diaphragmatic muscles were not immediately obvious, diaphragmatic 

crurae were identified and measured. The liver was identified as the organ 

immediately infero-posterior to the right hemi-diaphragm in the right upper 

quadrant. The spleen was identified as the oval organ immediately infero-

posterior to the left hemi-diaphragm in the left upper quadrant. 
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Figure 2.4 Coronal CT scan slice illustrating thoracic tissues 

 

2.1.5.4 Contour mask 

 

I created contour masks using Myrian Intrasense® software v2.4.3 (Paris, 

France). Areas of visible parietal pleurae were defined and delineated using a 

free-hand drawing tool. This is illustrated in Figure 2.5. The first 20 apical slices 

were delineated followed by manual delineations every 5 slices. The final 20 

basal slices were also segmented. This resulted in approximately 75 slices per 

image series. More apical and basal slices were delineated due to the complexity 

of pleural tumours in these anatomical areas. The higher resolution MRI scans 

acquired in the same patients served as guide to the contour mask drawing 

process. This has been illustrated in Figure 2.6. Semi-automated linear 

interpolation by Myrian Intrasense® software v2.4.3 (Paris, France) extended the 

contours I had drawn throughout the image series, resulting in a complete 

contour mask containing pleural tumour. If there were areas of where pleural 

tumour was not included, manual adjustments to the contour mask were made. 
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Figure 2.5 Example of contouring of pleural tumour in the axial slice of a 

contrast-enhanced CT scan. The yellow area contains what was interpreted as 

pleural tumour 

 

 

Figure 2.6 Example of the difference in pleural tumour resolution between a 

contrast-enhanced CT scan (left) and contrast-enhanced MRI (right) in the same 

patient. The white arrow denotes pleural enhancement 

  



 86 

2.1.5.5 Semi-automated segmentation using radiodensity thresholds 

 

After completion of the contour mask, a semi-automated region-growing step 

was attempted using region growing limits. HU threshold limits were based on 

the radiodensity range (minimum to maximum) measured in the pleural ROIs in 

all 23 patients. These data were then summarised by generating a median 

pleural radiodensity value in HU for all the ROIs in all the patients (n=154 ROIs). 

This value was divided by 2 to provide a seed point estimate which was placed in 

areas representative of pleural tumour in the contour mask. 

 

2.1.6 CT image acquisition and anonymisation 

 

CT scans with thoracic views obtained as part of routine care were included. 

Image acquisition followed intravenous injection of iodine-based contrast media 

(75 to 95ml) with portal-venous phase images obtained 65 seconds following 

contrast injection. Different scanners were used and included Canon Medical 

Aquilion and GE Medical Systems BrightSpeed, LightSpeed or Optima 660. Multi-

slice helical axial images had been reconstructed with a contiguous minimum 

slice of 1 mm and a maximum slice thickness of 2 mm. 

 

2.1.7 Statistical analyses 

 

Statistical tests were performed in SPSS v24.0 (Chicago, USA) and GraphPad 

v9.1.0 (San Diego, USA). No formal sample size calculations were performed as 

the study design was exploratory. Data were tested for normal distribution using 

the Kolmogorov–Smirnov test. Individual data are summarised by median 

[interquartile range, IQR] or mean (standard deviation, SD) depending on their 

distribution. 

 

2.1.7.1 Primary objectives 

 

To determine the difference in Hounsfield units (HU) between different thoracic 

tissues using CT scans of patients with MPM, median HU values (range) were 
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generated. Violin plots were drawn to visualise the spread of the data and 

identify reasons for the observed results, e.g., overlapping HU values 

determined by the median, 25th and 75th percentiles and minimum and maximum 

HUs. Accuracy of pleural tumour coverage was based on subjective visual 

assessment. Time efficiency was determined by the median time taken to 

complete each volume analysis in minutes. 

 

2.1.7.2 Secondary objectives 

 

Spearman’s Rho test was used for correlation and agreement evaluated using 

Bland-Altman plots between semi-automated CT and MRI volumes. To assess 

reproducibility, intra-class correlation coefficient (ICC) was used to determine 

human inter- and intra-observer variability. 
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2.2 Volumetric MPM tumour assessment using human and deep 

learning algorithmic segmentations 

 

This study, which was called Automatic RECIST reporting in Mesothelioma using 

Deep Learning Artificial Intelligence, was a multicentre retrospective cohort 

study based at the Queen Elizabeth University Hospital, Glasgow (QEUH), 

Wythenshawe Hospital and University Hospitals of Leicester NHS Trust. The study 

sponsor was NHS Greater Glasgow and Clyde (NHSGGC). The NHS Greater 

Glasgow and Clyde (NHSGGC) Safe Haven granted approval for access to 

unconsented anonymised imaging data required for this project on 12th April 

2018 (Ref: GSH/18/ON/001). 

 

2.2.1 Study objectives and outcome measures 

 

The objectives and associated outcome measures for this study are detailed in 

Table 2.2. The training and internal validation sets were used to generate the 

detailed ground truth needed to report correlation and agreement and inter-

observer reliability between human readers and the later convolutional neural 

network (CNN) outputs. 

 

The external validation set used to compare the CNN against modified Response 

Evaluation Criteria in Solid Tumours (mRECIST) classifications as well as the 

analysis of the prognostic value of the CNN volumetric measurements versus 

human reader-defined tumour volume and mRECIST classifications. 
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Table 2.2 Objectives and outcome measures of volumetric MPM tumour 

assessment using human and deep learning algorithmic segmentations study 

Study objectives Outcome measures 

Training and internal validation  

To generate detailed ground truth 

needed for the CNN by fully manual 

annotations using contrast-enhanced CT 

scans of patients with MPM, based on 

learning from Chapter 4 

Pleural tumour volume on CT (cm3) 

To determine correlation and agreement 

between human and CNN output volumes 

Pleural tumour volume on CT (cm3) 

Correlation (Spearman Rho) 

Agreement (Bland-Altman) 

To assess inter- and intra-observer 

variations for later comparison with CNN 

output volumes 

Pleural tumour volume on CT (cm3) 

External validation  

Comparison between classifications of 

treatment response as defined by human 

volume, CNN volume and mRECIST 

Pleural tumour volume on CT (cm3) 

Agreement (Cohen’s Kappa) 

Analysis of anatomical features 

associated with CNN segmentation errors 

Visual inspection 

Survival analyses based on treatment 

response as defined by human volumes, 

CNN volumes and mRECIST 

Pleural tumour volume on CT (cm3) 

Overall survival (days) 

CNN: convolutional neural network; CT: computed tomography; MPM: 

malignant pleural mesothelioma mRECIST: modified Response Evaluation 

Criteria In Solid Tumours; PD: progressive disease; non-PD: non-progressive 

disease 
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2.2.2 Study population 

 

2.2.2.1 Original study population 

 

The first version of the study protocol stipulated that patients were to be 

recruited from one of the following three clinical studies which have been 

detailed below and in Table 2.3 and Figure 2.7: 

 

• Diagnostic and Prognostic Biomarkers in the Rational Assessment of 

Mesothelioma (DIAPHRAGM)(318) 

• The South West Area Mesothelioma and Pemetrexed trial (SWAMP)(321) 

• Prediction of ResIstance to chemotherapy using Somatic copy number 

variation in Mesothelioma (PRISM)(322) 

 

The DIAPHRAGM study has been summarised in Chapter 2, Section 2.1.2. The 

South West Area Mesothelioma and Pemetrexed (SWAMP) trial was a multicentre 

prospective observational study evaluating biomarkers of chemotherapy response 

and prognostication(321). The Prediction of Resistance to chemotherapy using 

Somatic Copy Number Variation in Mesothelioma (PRISM) study is an ongoing 

retrospective cohort study which aims to define a genomic classifier that 

predicts chemo-resistance in patients with MPM(322). 
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Table 2.3 Original studies included in the first Automatic RECIST reporting in 

Mesothelioma using Deep Learning Artificial Intelligence protocol 

Study Eligibility Criteria Patients 

DIAPHRAGM 

REC Ref: 13/WS/0240 

Inclusion: Suspected MPM requiring 

biopsy, recruited in Glasgow 

 

Exclusion: eGFR <30 ml/min, MRI 

contraindicated 

n=25 

SWAMP 

REC Ref: 08/H0102/46 

Inclusion: Diagnosis of MPM, 

chemotherapy planned 

 

Exclusion: No measurable disease, 

prognosis <3 months 

n=65 

PRISM 

REC Ref: 16/WS/0207, 

Amendment 348 

Inclusion: MPM diagnosis, previous 

chemotherapy, CT images available 

 

Exclusion: Insufficient tumour for 

genomic analyses 

n=380 

eGFR: estimated glomerular filtration rate; MPM: malignant pleural 

mesothelioma; REC: research ethics committee 
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Figure 2.7 Flowchart of pleural tumour volumes included in the original 

Automatic RECIST reporting in Mesothelioma using Deep Learning Artificial 

Intelligence protocol (n=468 patients) 

 

Unfortunately, due to data access restrictions, acquisition of images from the 

SWAMP study was not possible. NHSGGC made a formal application to the Health 

Research Authority (HRA) via the NHS Research Scotland Permissions 

Coordinating Centre to address this, but subsequent associated project delays 

prevented this data being included. Following discussions with the Trial 

Management Group, this problem was addressed by re-distributing the training 

and validation sets to include subjects from the DIAPHRAGM and PRISM studies 

only. This removed the capability to test the algorithm on data obtained from a 

fully independent study but preserved a fully reserved external validation set 

which was comprised of scans from three different study centres. This was a 

smaller size than originally planned with only Glasgow cases used in the training 

and internal validation set. 

  



 93 

2.2.2.2 Final version 

 

The second and final version of the study protocol recruited patients from two 

studies which have been detailed below and in Figure 2.8: 

 

• DIAPHRAGM 

• PRISM 

 

 

Figure 2.8 Flowchart of pleural tumour volumes included in final Automatic 

RECIST reporting in Mesothelioma using Deep Learning Artificial Intelligence 

protocol (n=108 patients) 
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Full 
annotations 
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The training and internal validation set comprised 123 annotated pleural tumour 

volumes from 108 patients in the DIAPHRAGM study (n=23) and PRISM (n=57) 

study sets. 80/123 were full manual volumes and 43/123 were partially 

annotated volumes, which I have described in more detail in Section 2.2.8 of this 

chapter. The external validation set 60 pleural tumour volumes (n=30 volumes at 

pre-chemotherapy and n=30 from response assessment time points) from 30 

patients in the PRISM study only (n=10 patients from each of the three 

participating study centres). 

 

2.2.3 Eligibility criteria 

 

The following eligibility criteria were applied to all cases selected for the 

present study: 

 

• Inclusion criteria: 

o Recruited to DIAPHRAGM or PRISM studies (Glasgow, Leicester or 

Wythenshawe patients) 

o Histological diagnosis of MPM 

o Venous-phase contrast-enhanced CT scan available 

• Exclusion criteria: 

o Contrast-enhanced CT acquisition performed as CT pulmonary 

angiography (i.e., arterial-phase scans) 

 

In the training and internal validation set, PRISM study patients were solely 

recruited from Glasgow. DIAPHRAGM cases were also included in the training and 

internal validation set because they had contemporaneous contrast-enhanced 

magnetic resonance imaging (MRI) scans which were used to aid in the 

delineation of tumour from adjacent soft tissue structures on CT scans. The 

advantage of MRI is that it offers superior soft tissue contrast(323, 324). Only 

pre-chemotherapy CT scans were assessed in the training and internal validation 

set. Patients in the external validation set were solely recruited from the PRISM 

study and included patients from Glasgow, Leicester or Wythenshawe. Both pre-

chemotherapy and response assessment CT scans were assessed. 

 



 95 

2.2.4 Study procedures 

 

2.2.4.1 Clinical data 

 

Clinical data were entered onto a Microsoft Excel data collection sheet. Each 

patient was associated with a study number and their data entered on to the 

appropriate row. Patient identifiers were entered and data recorded in a linked 

anonymised format. Clinical data was transferred to the QEUH in Glasgow from 

the other participating centres using a secure file transfer portal (University of 

Glasgow, https://transfer.gla.ac.uk/). 

 

Data were extracted from study databases and supplemented by electronic 

records, including demographics (age, sex), Eastern Cooperative Oncology Group 

performance status (ECOG PS)(157, 320), disease stage according to the eighth 

TNM classification for MPM(45), histological sub-type (epithelioid, biphasic, 

sarcomatoid or not specified), date of diagnosis, type of chemotherapy received, 

chemotherapy intent, dates of chemotherapy, number of chemotherapy cycles 

received, reason for chemotherapy cessation and dates of pre-chemotherapy and 

response assessment CT imaging. Data regarding ECOG PS were inconsistently 

recorded and steps to provide a best estimate have been described in Chapter 2, 

Section 2.1.3.2. Overall survival (OS, days) was recorded from the date of pre-

chemotherapy CT to death from any cause. 

 

2.2.5 CT image acquisition and anonymisation 

 

All image analyses were performed in Glasgow using the same methods and the 

same reporters for all subjects. The pre-chemotherapy CT scan was the last scan 

performed before administration of chemotherapy. The response assessment 

scan was defined as the CT scan on which the treating oncologist made their 

assessment of response to chemotherapy. This scan was not less than four-weeks 

after completion of the first chemotherapy cycle. 

 

All CT scans were anonymised by the supplying site and issued the appropriate 

study number. Transfer of linked anonymised imaging data from the non-

https://d.docs.live.net/2e541af536040628/Documents/PhD%20chapters/Latest%20draft/DRAFT%20PHD/Final%20submission_February%202023/sgow,%20https:/transfer.gla.
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Glasgow sites was done using the University of Glasgow secure file transfer 

portal (https://transfer.gla.ac.uk/). NHSGGC Research Radiography staff 

downloaded the linked anonymised CT images onto a secure encrypted external 

hard drive for the purposes of chemotherapy response evaluation and manual 

tumour segmentation. 

 

2.2.6 Treatment response evaluation using mRECIST 

 

Modified Response Evaluation Criteria in Solid Tumours (mRECIST) reporting was 

used in all subjects incorporating recent guidance on how to standardise this 

method when applied to CT imaging(325, 326). A Consultant Radiologist with 

expertise in MPM response assessment (Dr Gordon Cowell) reported all CT scans 

independently and was blinded to outcome data. Standardised window settings 

were reported as detailed in Table 2.4. I have provided further detail and an 

accompanying image of mRECIST measurements in Chapter 1, Section 1.5.2 and 

Figure 1.2, respectively. 

 

Partial response (PR) was defined as a ≥30% reduction of tumour thickness on 

two occasions four-weeks apart. Progressive disease (PD) was defined as increase 

of >20% in tumour thickness over the two measurements. Stable disease (SD) 

included patients who did not meet the criteria for PR or PD. 

 

  

https://transfer.gla.ac.uk/
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Table 2.4 mRECIST standardised window settings 

Pre-chemotherapy CT scans Response Assessment CT scans 

Target lesions: 5 lesions each with 2 

diameter measurements (10 fields) 

Target lesions: 5 lesions each with 2 

diameter measurements (10 fields) 

Sum of longest diameters of target 

lesions 

Sum of longest diameters of target 

lesions 

Non-target lesions: Yes/No Percentage change in sum of longest 

diameters 

Extra-thoracic disease: Yes/No Non-target lesion response: CR, PR, 

SD, PD 

 Overall disease response: CR, PR, SD, 

PD 

 Extra-thoracic disease response: CR, 

PR, SD, PD 

CR: complete response; PD: progressive disease; PR: partial response; SD: 

stable disease 
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2.2.7 Manual tumour segmentation 

 

I performed the human tumour annotations using Myrian Intrasense® software 

v2.4.3 (Paris, France) to generate the reference ground truth annotations. 

Pleural tumour boundaries were contoured on visible pleural tumour using a 

track-ball mouse and cursor on every axial slice in the CT image series. This is 

illustrated in Figure 2.5. Pleural tumour volume was calculated using the 

summed axial pleural tumour areas and slice thickness. Figure 2.9 provides an 

overview of the manual segmentation process. 

 

80/123 volumetric studies were performed using a fully manual segmentation 

method. In the training and external validation set, an additional 43/123 scans 

were sparsely annotated with contours drawn only every fifth slice in 43/123 CT 

scans. This method was preceded by an interim analysis by an EngD Research 

Engineer (Owen Anderson) from Canon Medical Research Europe (CMRE) which 

highlighted high correlation between adjacent pleural tumour CT scan slices. 

This process facilitated the enrichment of the number of the patients in the 

training and internal validation set. Each full annotation took approximately 2.5 

hours to complete. A second human reader with PhD training in MPM imaging (Dr 

Selina Tsim) generated annotations using the same method for inter-observer 

data. 
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Figure 2.9 Example of manual pleural tumour segmentation when viewed in the 

axial plane in Panel A, the coronal plane in Panel B and in 3-D in Panel C. Pleural 

tumour is highlighted in green 
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2.2.8 CT image transfer 

 

All anonymised images and segmented pleural tumour volumes were exported to 

the Canon Medical Research Europe team in Digital Imaging and Communications 

in Medicine Radiotherapy (DICOM-RT) format for AI training and development 

using the University of Glasgow secure file transfer portal 

(https://transfer.gla.ac.uk/). 

 

2.2.9 Development of the convolutional neural network 

 

The convolutional neural network (CNN) volumetric measurements were 

performed by an EngD Research Engineer (Owen Anderson) from CMRE using in-

house and Amazon Web Service graphics processing units. A comprehensive 

description of the CNN model has been described by our group previously(327). I 

have summarised the method as follows. A convolutional neural network (CNN) 

with a two-dimensional U-Net architecture was employed(141). Three 

consecutive CT scan slices were added to a pre-trained network. CT Hounsfield 

unit (HU) intensities were clipped to -1025 to +1100 HU and normalised to a 

range of -1 to +1. The probability that each pixel contained tumour was 

predicted by the raw CNN output. A binary mask of the tumour pixels was 

created after a pre-determined threshold was applied to this map. The pre-

determined threshold was defined using a sub-set of the training data. A 

predicted volumetric segmentation was created after this step and repeated on 

all the slices in the CT image series. Internal validation was achieved by seven 

CNN models which were trained by the computer scientists using seven-fold 

division of the training data. The subsequent volumetric measurements 

increased validity and provided confidence estimation. 

  

https://transfer.gla.ac.uk/
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2.2.10 Human and AI volumetric response classification 

 

Human and AI response classifications were based on percentage volume change 

between pre-chemotherapy and response assessment time points. They were 

calculated as: ((post-chemotherapy tumour volume minus pre-chemotherapy 

tumour volume) divided by pre-chemotherapy tumour volume) multiplied by 100 

(%). Volumetric partial response (PR) and progressive disease (PD) were defined 

as a 30% decrease in tumour volume and 20% increase between the two time 

points, respectively. Patients were classified as having stable disease (SD) if the 

percentage volume change did not meet the PR or PD criteria. 

 

2.2.11 Statistical analyses 

 

Statistical tests were performed in SPSS v24.0 (Chicago, USA) and GraphPad 

v9.1.0 (San Diego, USA). The study design was exploratory and no formal sample 

size calculations were performed. Data were tested for normal distribution using 

the Kolmogorov–Smirnov test. Normally and non-normally distributed data were 

summarised by mean (standard deviation, SD) and median [interquartile range, 

IQR], respectively. 

 

2.2.11.1 Training and internal validation set 

 

Initial performance of the CNN determined overlap between manual and 

automated regions was calculated by the Dice score separately by an EngD 

Research Engineer (Owen Anderson) from CMRE. This has not been included in 

this thesis but was presented by Owen Anderson at the 13th International Joint 

Conference on Biomedical Engineering Systems and Technologies in 2020 and 

subsequently published in the Bioimaging journal(327). The Dice score is a 

measure of performance commonly reported in the AI literature and has been 

described in more detail in Chapter 1, Sections 1.7 and 1.8.2. 

 

Correlation between human and AI volumes using CT scans of patients with MPM 

was determined by Spearman’s Rho test. Agreement between human and AI 

volumes using CT scans of patients with MPM was determined using Bland-Altman 
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plots. Intra-class correlation coefficient (ICC) determined reproducibility 

between human and AI readers. For inter-observer data, I randomly chose 13 

pleural tumour volumes which were delineated by a respiratory physician with 

expertise in MPM (Dr Selina Tsim). For intra-observer data, I randomly chose 10 

training set scans and repeated delineations of these scans at least three weeks 

after my original delineations. 

 

2.2.11.2 External validation set 

 

Paired volume data were compared using the Wilcoxon matched-pairs signed 

rank test. Agreement between chemotherapy response classification by human 

volumetry, AI volumetry and mRECIST was calculated using Cohen’s Kappa 

statistic. The Kruskal-Wallis test compared differences in volume between the 

AI- and mRECIST-defined PR, SD and PD groups. Dunn’s test was used for 

multiple comparisons. Overall survival (OS, days) was determined using Kaplan-

Meier methodology and compared using the log-rank test. Cases with scans 

having interval periods between pre-chemotherapy and response assessment 

time points exceeding 100 days were excluded from the survival analyses. Post-

hoc subjective visual analysis of CNN segmentation errors determined whether 

anatomical features could account for these. 
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2.3 Prevalence, pattern and prognostic significance of altered body 

composition in patients with chemotherapy-treated MPM 

 

A multicentre retrospective cohort study was performed. NHS Greater Glasgow 

and Clyde (NHSGGC) were the study sponsors. The NHS Greater Glasgow and 

Clyde (NHSGGC) Safe Haven granted approval for access to unconsented 

anonymised imaging data required for this project on 12th April 2018 (Ref: 

GSH/18/ON/001). This covered both local NHS Research and Development (R&D) 

and Research Ethics Committee (REC) approvals. The study protocol was 

approved by the NHSGGC Biorepository Clinical Governance Group. This 

extended the existing ethical approval in place for Biorepository projects 

(Biorepository Application 348). 

 

2.3.1 Study objectives 

 

2.3.1.1 Primary objective and outcome measures 

 

The primary objective of this study was to determine the prevalence and pattern 

of altered body composition at the third lumbar (L3) and fourth thoracic 

vertebrae (T4) in patients with MPM who went on to receive chemotherapy. 

 

2.3.1.2 Secondary objectives and outcome measures 

 

The secondary objectives were to determine, a) the prognostic significance of 

sarcopenia and adipopenia at L3 and sarcopenia at T4, and, b) the 

reproducibility of skeletal muscle and adipose tissue indices. Table 2.5 

summarises the primary and secondary objectives and outcome measures. Table 

2.6 summarises the exploratory objectives and outcome measures. 
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Table 2.5 Primary and secondary objectives and associated outcome measures of 

the altered body composition study 

Study objectives Outcome measures 

Primary objective  

To define the prevalence and pattern 

of skeletal muscle and adipose tissue 

loss during chemotherapy at L3 in 

patients with MPM who went on to 

receive chemotherapy 

Presence of L3SMI (cm2/m2) loss, Y/N 

Presence of L3VFI (cm2/m2) loss, Y/N 

Presence of L3TFI (cm2/m2) loss, Y/N 

 

where loss was defined as minus 1 

standard deviation if the data were 

normally distributed or data below 

the 25th percentile if non-normally 

distributed 

To define the prevalence and pattern 

of skeletal muscle loss during 

chemotherapy at T4 in patients with 

MPM who went on to receive 

chemotherapy 

Presence of T4SMI (cm2/m2) loss, Y/N 

 

where loss was defined as minus 1 

standard deviation if the data were 

normally distributed or data below 

the 25th percentile if non-normally 

distributed 

Secondary objectives  

To determine if L3SMI, L3VFI, L3TFI 

and T4SMI correlate with measures of 

pre-chemotherapy systemic 

inflammation and tumour volume 

L3SMI (cm2/m2) 

L3VFI (cm2/m2) 

L3TFI (cm2/m2) 

T4SMI (cm2/m2) 

 

Measures of inflammation: WCC, 

neutrophils, platelets, lymphocytes, 

NLR, PLR, albumin, mGPS 

 

MPM tumour volume CT (cm3) 
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To determine the prognostic 

significance of sarcopenia and 

adipopenia at L3 and sarcopenia at T4 

Presence of sarcopenia as defined by: 

L3SMI (cm2/m2) loss, Y/N 

T4SMI cm2/m2) loss, Y/N 

 

Presence of adipopenia as defined by: 

L3VFI (cm2/m2) loss, Y/N 

L3TFI (cm2/m2) loss, Y/N 

 

where loss was defined as minus 1 

standard deviation if the data were 

normally distributed or data below 

the 25th percentile if non-normally 

distributed 

 

Overall survival (OS), days 

To determine the reproducibility 

of L3SMI, L3VFI and L3TFI 

measurements by different observers 

L3SMI (cm2/m2) 

L3VFI (cm2/m2) 

L3TFI (cm2/m2) 

 

To determine the reproducibility 

of T4SMI measurements by different 

observers 

T4SMI (cm2/m2) 

CRP: C-reactive protein; L3: third lumbar vertebra; L3SMI: skeletal muscle 

index at L3; L3TFI: total fat index at L3; L3VFI: visceral fat index at L3; mGPS: 

modified Glasgow Prognostic Score; NLR: neutrophil:lymphocyte ratio; PLR: 

platelet:lymphocyte ratio; T4: fourth thoracic vertebra; T4SMI: skeletal 

muscle index at T4; WCC: white cell count 
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Table 2.6 Exploratory objectives and outcome measures of the altered body 

composition study 

Exploratory objectives Outcome measures 

To determine the difference between 

ipsilateral and contralateral T4SMI loss 

Ipsilateral T4SMI (cm2/m2) 

Contralateral T4SMI (cm2/m2) 

To determine the prognostic 

significance of ipsilateral T4SMI loss 

 

Presence of ipsilateral T4SMI loss 

(cm2/m2), Y/N 

Overall survival (OS), days 

To determine correlation between 

L3SMI and T4SMI and response to 

treatment 

Presence of L3SMI (cm2/m2) loss, Y/N 

Presence of T4SMI (cm2/m2) loss, Y/N 

 

To determine correlation between 

L3SMI and T4SMI 

L3SMI (cm2/m2) 

T4SMI (cm2/m2) 

To determine if sex- and BMI-specific 

differences exist at L3 and T4 

L3SMI (cm2/m2) in males 

L3SMI (cm2/m2) in females 

L3VFI (cm2/m2) in males 

L3VFI (cm2/m2) in females 

L3TFI (cm2/m2) in males 

L3TFI (cm2/m2) in females 

T4SMI (cm2/m2) in males 

T4SMI (cm2/m2) in females 

 

L3SMI (cm2/m2) in BMI <25 kg/m2 

L3SMI (cm2/m2) in BMI ≥25 kg/m2 

L3VFI (cm2/m2) in BMI <25 kg/m2 

L3VFI (cm2/m2) in BMI ≥25 kg/m2 

L3TFI (cm2/m2) in BMI <25 kg/m2 

L3TFI (cm2/m2) in BMI ≥25 kg/m2 

T4SMI (cm2/m2) in BMI <25 kg/m2 

T4SMI (cm2/m2) in BMI ≥25 kg/m2 

BMI: body mass index; L3: third lumbar vertebra; L3SMI: skeletal muscle index 

at L3; T4: fourth thoracic vertebra; T4SMI: skeletal muscle index at T4; 

Ipsilateral & Contralateral T4SMI: skeletal muscle index at T4 on ipsilateral 

and contralateral side of tumour, respectively 
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2.3.2 Study population 

 

Patients were selected from the Prediction of Resistance to chemotherapy using 

Somatic Copy Number Variation in Mesothelioma (PRISM) study which is a 

multicentre MPM biomarker study assessing a genomic predictor classifier of 

chemotherapy resistance described in Section 2.2.2.1 of this chapter. Potentially 

eligible patients were identified retrospectively using existing databases at the 

study centres. 

 

2.3.3 Eligibility criteria 

 

The following eligibility criteria were applied to all cases selected for the 

present study: 

 

• Inclusion criteria: 

o Histological diagnosis of MPM 

o Cisplatin (or carboplatin) plus pemetrexed chemotherapy received 

o Pre-chemotherapy and response assessment venous-phase contrast-

enhanced CT images available for analysis 

o Height and weight metrics available at pre-chemotherapy time 

point 

• Exclusion criteria: 

o Non-availability of pre-chemotherapy and response assessment 

venous-phase contrast-enhanced CT images 

o Non-availability of height and weight metrics available at pre-

chemotherapy time point 
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2.3.4 Study procedures 

 

2.3.4.1 Clinical data 

 

The coordinating study centre was the Queen Elizabeth University Hospital 

(QEUH) in Glasgow. Data and imaging were collected from Wythenshawe 

Hospital and University of Leicester Hospitals NHS Trust. Clinical data were 

entered onto a Microsoft Excel data collection sheet. Each patient was 

associated with a study number and their data entered on to the appropriate 

row. Patient identifiers were entered and data recorded in a linked anonymised 

format. Clinical data was transferred to Glasgow from the other participating 

centres using a secure file transfer portal (https://transfer.gla.ac.uk/). 

 

Data were extracted retrospectively from study databases and supplemented by 

electronic records, including demographics (age, sex), Eastern Cooperative 

Oncology Group performance status (ECOG PS)(157, 320), histological sub-type 

(epithelioid, biphasic, sarcomatoid or not specified), disease stage according to 

the eighth TNM classification for malignant pleural mesothelioma(45) and details 

of chemotherapy (outlined in Section 2.2.4.1 of this chapter). Data regarding 

ECOG PS have been further described in Section 2.1.3.2 of this chapter. Overall 

survival (OS, days) was recorded from the date of pre-chemotherapy CT to death 

from any cause. 

 

The systemic inflammatory response can be defined by single measures. Pre-

chemotherapy blood laboratory value data were collected and included 

haemoglobin, white cell count, neutrophils, platelets and lymphocytes. The 

latter haematological indices are included in the neutrophil:lymphocyte ratio 

(NLR) – calculated by dividing the number of neutrophils by number of 

lymphocytes - and platelet:lymphocyte ratio (PLR) – defined by dividing the 

number of platelets by number of lymphocytes. Laboratory value data collected 

also included acute phase proteins C-reactive protein (CRP) and albumin and the 

integrated modified Glasgow Prognostic Score (mGPS) which combines CRP and 

albumin(328). A single centre sub-group of patients also had available response 

assessment blood laboratory results, including white cell count, neutrophils, 

lymphocytes, platelets, albumin and CRP. 

https://d.docs.live.net/2e541af536040628/Documents/PhD%20chapters/Latest%20draft/DRAFT%20PHD/Final%20submission_February%202023/rtal%20(https:/transfer.gla.
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2.3.4.2 Weight and height measurements 

 

Weight and height measurements were collected retrospectively. Body mass 

index (BMI) was calculated as: (weight (kg) divided by height squared (m2)). The 

World Health Organisation (WHO) categories were used and have been 

summarised as follows(329): 

 

• Underweight: BMI <18.5 kg/m2 

• Normal: BMI 18.5–24.9 kg/m2 

• Overweight: 25–29.9 kg/m2 

• Obese: BMI ≥30 kg/m2 

 

2.3.5 CT image acquisition and anonymisation 

 

CT image acquisition and anonymisation has been described in Sections 2.2.6 of 

this chapter. 

 

2.3.6 Body composition analyses 

 

A freely available image processing software called ImageJ (U.S. National 

Institutes of Health, Bethesda, MD)(330) was used for body composition analyses. 

 

2.3.6.1 Skeletal muscle at the third lumbar vertebra 

 

The third lumbar vertebra (L3) was identified by counting down from the first rib 

and counting upwards from the pelvic bones. Images were saved at the mid-

point of the spinous process. Adequate image penetration and image contrast 

were evidenced by visualising lumbar vertebral bodies with both trabecular and 

cortical bone demonstrated. The L3 muscle groups included the following muscle 

groups: psoas, erector spinae, quadratus lumborum, transversus abdominis, 

internal obliques, external obliques, rectus abdominus. 
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The L3 skeletal muscle area measurement method is illustrated in Figure 2.10. 

The external musculature was delineated by the segmented line tool on ImageJ 

software (U.S. National Institutes of Health, Bethesda, MD; see Figure 2.10: 

Panel A). Established Hounsfield unit (HU) skeletal muscle thresholds of -29 to 

+150 HU were applied(288), and area measured (cm2, see Figure 2.10, Panel B). 

The internal musculature was delineated (see Figure 2.10, Panel C) with the 

same HU thresholds set and area measured (see Figure 2.10, Panel D). The 

external and internal musculature areas were subtracted to provide the L3 

skeletal muscle area (L3SMA, cm2). 

 

 

Figure 2.10 Axial slices of CT scans demonstrating the third lumbar vertebra 

(L3). Panel A demonstrates the delineation of the external skeletal muscle area 

(SMA) on ImageJ software, defined by the area included in the dotted yellow 

line. Panel B demonstrates the skeletal muscle threshold selection using a HU 

range of -29 to +150 HU. Panel C demonstrates the delineation of the internal 

SMA, defined by the area included in the dotted yellow line. Panel D 

demonstrates skeletal muscle HU threshold selection 
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2.3.6.2 Skeletal muscle at the fourth thoracic vertebra 

 

The fourth thoracic vertebra (T4) was identified by counting down from the first 

rib and counting upwards from the twelfth thoracic vertebra. Images were saved 

at the mid-point of the spinous process. Adequate image penetration and image 

contrast were evidenced by visualising thoracic vertebral bodies with both 

trabecular and cortical bone demonstrated. The T4 muscle groups included the 

following muscle groups: pectoralis, intercostal, serratus, latissimus and 

paraspinal muscles. Figure 2.11 illustrates the skeletal muscle HU threshold 

method for total T4 skeletal muscle area measurement which is described in 

detail in Section 2.3.6.1 of this chapter. 

 

 

Figure 2.11 Axial slices of CT scans demonstrating fourth thoracic vertebra (T4). 

Panel A demonstrates the delineation of the external skeletal muscle area (SMA) 

on ImageJ software, defined by the area included in the dotted yellow line. 

Panel B demonstrates the skeletal muscle threshold selection (HU range, -29 to 

+150 HU). Panel C demonstrates the delineation of the internal SMA, defined by 

the area included in the dotted yellow line. Panel D demonstrates skeletal 

muscle HU threshold selection 



 112 

2.3.6.3 Skeletal muscle at the ipsilateral fourth thoracic vertebra 

 

Ipsilateral T4 was defined as the side of the thorax containing pleural tumour. 

The border between ipsilateral and contralateral compartments was defined as a 

straight line drawn posterio-anteriorly from the mid-point of the vertebral body 

to the midpoint of the sternum. Figure 2.12 illustrates the same skeletal muscle 

HU threshold method for skeletal muscle area measurement described in Section 

2.3.6.2 of this chapter. The contralateral fourth thoracic vertebra (Contralateral 

T4) muscle area was calculated subtracting the ipsilateral T4 muscle area (cm2) 

from the total T4 muscle area. 

 

 

Figure 2.12 Axial slices of CT scans demonstrating fourth thoracic vertebra (T4). 

Panel A demonstrates the delineation of the external skeletal muscle area (SMA) 

on the ipsilateral side of MPM tumour, defined by the area included in the 

dotted yellow line. Note the straight yellow line separating the ipsilateral and 

contralateral muscle compartments. Panel B demonstrates the skeletal muscle 

threshold selection (HU range, -29 to +150 HU). Panel C demonstrates the 

delineation of internal SMA, defined by the area included in the dotted yellow 

line. Panel D demonstrates skeletal muscle HU threshold selection 
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2.3.6.4 Adipose tissue at the third lumbar vertebra 

 

Image analysis for adipose tissue was based on a single image at L3 on contrast-

enhanced CT scans defined as per Section 2.3.6.1 of this chapter. The exterior 

skin was delineated (see Figure 2.13, Panel A). Established HU thresholds for 

adipose tissue (-190 to -30 HU) were applied(305), and area measured (cm2, see 

Figure 2.13: Panel B). The external musculature was delineated (see Figure 2.13, 

Panel C) and subcutaneous adipose tissue HU thresholds were applied (see Figure 

2.13: Panel D). Subcutaneous adipose area (SFA, cm2) was calculated by 

subtracting the exterior skin and external musculature areas. The internal 

musculature was delineated (see Figure 2.13: Panel E) with adipose tissue HU 

thresholds applied and area measured (see Figure 2.13, Panel F). Visceral 

adipose area (SFA, cm2) was calculated by subtracting the external and internal 

musculature areas (cm2). Total fat area (TFA, cm2) was calculated as the sum of 

visceral adipose area (VFA, cm2) and subcutaneous adipose area (SFA, cm2). 
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Figure 2.13 Axial slices of CT scans demonstrating L3. Panel A demonstrates the 

delineation of the external adipose tissue on ImageJ software, defined by the 

area included in the dotted yellow line. Panel B demonstrates the adipose tissue 

threshold selection using established adipose tissue HU ranges of -190 to -30 HU. 

Panel C demonstrates the delineation of external adipose tissue area. Panel D 

demonstrates adipose tissue HU threshold selection. Panel E and F demonstrates 

internal adipose tissue area (defined by the area included in the dotted yellow 

line) and HU threshold selection, respectively  
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2.3.7 Body composition index changes 

 

Body composition indices were calculated by dividing the relevant muscle or 

adipose tissue areas (cm2) by height squared (m2) to provide skeletal muscle 

index (SMI, cm2/m2) or adipose tissue indices, including total fat index (TFI, 

cm2/m2), visceral fat index (VFI, cm2/m2) and subcutaneous fat index (SFI, 

cm2/m2). 

 

I used published sex- and BMI-specific cut-offs for sarcopenia at L3 as 

follows(186): 

 

• L3 skeletal muscle index (L3SMI) <41 cm2/m2 in females 

• L3SMI <53 cm2/m2 if BMI ≥25 kg/m2 and L3SMI <43 cm2/m2 if BMI <25 kg/m2 

in males 

 

No sarcopenia thresholds exist for skeletal muscle index at T4 (T4SMI) or 

Ipsilateral or Contralateral T4SMI. I made an a priori decision to dichotomise 

patients into muscle losing and non-losing groups based on thresholds of mean 

minus 1 standard deviation if the data were normally distributed or data below 

the 25th percentile if non-normally distributed. There are also no thresholds for 

T4SMI or T4SMI Ipsilateral changes between pre-chemotherapy and response 

assessment time points. Percentage changes between pre-chemotherapy and 

response assessment time points were computed for each case as: ((response 

assessment SMI minus pre-chemotherapy SMI) divided by pre-chemotherapy SMI) 

multiplied by 100 (%). I made an a priori decision to dichotomise patients into 

muscle losing and non-losing groups based on thresholds of mean minus 1 

standard deviation if the data were normally distributed or data below the 25th 

percentile if non-normally distributed. The same thresholds were used for 

percentage changes between pre-chemotherapy and response assessment time 

points at L3SMI and for all the adipose tissue indices. 
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2.3.8 Chemotherapy response evaluation 

 

Chemotherapy response evaluation was performed by a Consultant Radiologist 

(Dr Gordon Cowell) using mRECIST described in Section 2.2.6 of this chapter. 

 

2.3.9 Tumour volume 

 

I performed manual pleural tumour segmentations on pre-chemotherapy CT 

scans using Myrian Intrasense® software v2.4.3 (Paris, France). This method has 

been described in detail in Section 2.2.7 of this chapter. 

 

2.3.10 Statistical analyses 

 

Statistical analyses were performed using SPSS v24.0 (Chicago, USA) and 

GraphPad v9.1.0 (San Diego, USA). Sample size calculations were not performed 

due to the exploratory study design. Data were tested for normal distribution 

using the Kolmogorov–Smirnov test. Descriptive data have been presented as 

percentage, mean (standard deviation, SD) for normally distributed and median 

[interquartile range, IQR] for non-normally distributed variables. 

 

2.3.10.1 Primary objective 

 

The prevalence of skeletal muscle and adipose tissue loss at L3 and skeletal 

muscle loss at T4 was determined as: (number of patients in the muscle or 

adipose tissue losing group divided by the total number of patients) multiplied 

by 100 (%). 

 

2.3.10.2 Secondary objectives 

 

The proportion of cases in muscle losing and non-muscle losing groups was 

compared using X2 or Fisher's exact test, where appropriate. Mean or median 

values for groups were compared using the unpaired Student's t-test for normally 
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distributed data or the Mann-Whitney U test for non-normally distributed data. 

Differences in T4SMI change and mRECIST-defined partial response (PR), stable 

disease (SD) and progressive disease (PD) groups were compared by ANOVA 

Correlations between variables and muscle indices were calculated by Parson's 

or Spearman's correlation, where appropriate. No factors with r>0.8 were 

included in the same multivariable model to account for co-linearity. Factors 

with values of p<0.05 in univariate analyses were included in the multivariate 

analysis with the Cox proportional hazards model. Overall survival (OS, days) was 

generated using Kaplan-Meier methodology and compared using the log-rank 

test. Correlation between L3SMI and T4SMI was determined by Spearman’s Rho 

test. For inter-observer data of L3, I randomly selected 35 CT scans which were 

annotated independently by a respiratory physician (Dr Geoffrey Martin). For 

intra-observer data, I re-annotated 35 randomly selected scans, three weeks 

after my original annotations. For inter-observer data of T4, I randomly selected 

35 CT scans which were annotated independently by a clinical fellow (Dr Jenny 

Ferguson). For intra-observer data, I re-annotated 35 randomly selected scans, 

three weeks after my original annotations. 
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3 Chapter 3: Semi-automated segmentation of MPM 

tumour volume 

 

3.1 Introduction 

 

Response assessment in patients with malignant pleural mesothelioma (MPM) is 

important in determining prognosis and suitability for traditional chemotherapies 

agents as well as emerging immunotherapies. An alternative to the modified 

Response Evaluation Criteria in Solid Tumours (mRECIST) classification is 

required due to high inter-observer variation(78) and tumour over-

classification(82). Tumour volumetry has become established in lung(331) and 

other malignancies(332-334) and overcomes the limitation of arbitrary 

unidimensional measurements made on serial computed tomography (CT) scans 

to provide a more reliable assessment of tumour volume. 

 

Volumetric segmentation of pleural tumour in MPM has been studied by several 

previous group(46, 80, 99, 104, 108), including using magnetic resonance 

imaging (MRI)(319). MRI is a medical imaging modality that generates anatomical 

images using magnetic field gradients and radio waves(335). It affords clearer 

soft tissue definition when compared to CT(336). Research from our own study 

group has demonstrated that MRI-measured T-volume is superior to TNM8-

defined T-stage as a survival predictor (HR 4.03, p=0.006)(319). However, MRI is 

not used routinely in clinical practice and is not suitable in every patient, for 

example, due to claustrophobia or pre-existing metalwork in the body. 

 

CT remains the primary initial cross-sectional imaging modality in the evaluation 

of patients with suspected MPM(2). CT does have technical limitations, but due 

to the availability, cost and familiarity among radiologists (in the short to 

medium term at least), better tools are required to use the data acquired by CT, 

including development of an automated approach to pleural tumour volumetry in 

MPM. Recent studies have reported semi-automated(109, 112, 113, 337) and 

automated approaches to CT volumetry in patients with MPM(136). However, 

these approaches require human annotations which have wide inter-observer 
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variability(102, 104) and have struggled to differentiate complex pleural 

tumours from other anatomical structures in the thorax(113, 338). Automated CT 

volumetry has the potential to obviate the need for time-consuming and 

potentially inaccurate annotations drawn by human readers but has yet to be 

established in MPM. This first step in volumetric automation is the training of 

artificial intelligence (AI) algorithms using human-defined – or ground –ruth - 

volumes. 

 

This chapter describes the attempt to deploy a recently reported semi-

automated method of volumetric MPM tumour assessment developed using MRI 

on contrast-enhanced CT scans to serve as ground truth for a future AI 

algorithm. 
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3.2 Methods 

 

A detailed description of the methods is provided in Chapter 2, Section 2.1. 

 

The objectives and associated outcome measures for this study are detailed in 

Chapter 2, Section 2.1.1. To summarise, the primary objective was to determine 

the feasibility of semi-automated MPM volumetry based on radiodensity-tuned 

segmentation of contrast-enhanced CT scans (originally developed on MRI). The 

secondary objectives were to assess correlation and agreement between CT and 

MRI volumes and the reproducibility of the method. 
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3.3 Results 

 

3.3.1 Study population 

 

23 patients were included and have been summarised in Table 3.1. The median 

age was 71 [IQR 71 to 83] years and the majority were male (87%). Epithelioid 

mesothelioma was the most common histological sub-type (70%). Patients mostly 

had earlier stage disease (TNM8 stage I disease 70%) with an ECOG Performance 

status of 0 (13%) or 1 (61%). Over one fifth of patients had a PS of 2 (22%). 

 

Table 3.1 Clinicopathological data of 23 patients with MPM who had 

contemporaneous contrast-enhanced CT and MRI scans 

 Median [IQR] or n (%) 

Age at diagnosis, years 71 [71–83] 

Male gender 20 (87%) 

Histological sub-type  

Epithelioid 16 (70%) 

Biphasic 3 (13%) 

Sarcomatoid 2 (9%) 

Not available 2 (9%) 

Disease stage  

I 16 (70%) 

II 0 (0%) 

III 1 (4%) 

IV 0 (0%) 

Not available 6 (26%) 

ECOG Performance status   

0 3 (13%) 

1 14 (61%) 

2 5 (22%) 

3 1 (4%) 

ECOG: Eastern Cooperative Oncology Group 
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3.3.2 Primary objectives 

 

3.3.2.1 Radiodensity measurements 

 

The total number of pleural ROIs assessed was 154. The median radiodensity in 

Hounsfield unit (HU) values in these ROIs was 52 [IQR 46 to 60] HU, see Table 

3.2. The HU threshold limits used for subsequent region growing for generation 

of pleural volumes was the median value of seed placed in the contour mask +/- 

11 HU. 

 

Table 3.2 Pleural tumour ROI HU values obtained in the coronal plane of 

contrast-enhanced CT scans 

 

 

 

 

 

 

 

 

The median HU in areas of intercostal muscle, diaphragm and pleural fluid were 

20.4 [IQR 11.9 to 32.3] HU, 40.4 [IQR 26.4 to 56.4] HU and 11.8 [IQR 8.3 to 17.8] 

HU, respectively (see Table 3.3). Lung, rib and pleural plaque were -827.9 [IQR -

863.9 to -791.5] HU, 438 [IQR 382.2 to 481.2] HU and 639.6 [IQR 538.5 to 763.3] 

HU, respectively. 

 

  

 Pleural tumour HU 

Minimum 21 

25th Percentile 46 

Median 52 

75th Percentile 60 

Maximum 100 

HU: Hounsfield unit 
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Table 3.3 Other thoracic tissues ROI HU values obtained in the coronal plane of contrast-enhanced CT scans 

 Intercostal 

muscle HU 

Pleural 

fluid HU 

Diaphragm 

HU 

Liver HU Spleen HU Rib HU 

 

Pleural 

plaque HU 

Lung HU 

Minimum 3.3 1.2 7.8 16.4 12.5 293.8 249 -1003 

25th Percentile 11.9 8.3 26.4 73.3 85.7 382.2 538.5 -863.9 

Median 20.4 11.8 40.4 95.9 104 438 639.6 -827.9 

75th Percentile 32.3 17.8 56.4 107.8 118.7 491.2 763.3 -791.5 

Maximum 53.3 35.1 87.1 138.7 175.3 703.1 1007 17.3 

HU: Hounsfield unit 
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3.3.2.2 Comparison of radiodensities in pleural tumour and other tissues 

 

There was significant overlap between the radiodensities of the pleurae and 

adjacent structures as illustrated in Figures 3.1 and 3.2. 
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Figure 3.1 Violin plots illustrating overlapping HU values of all thoracic 

tissues. The dotted lines inside the violins represent the median and 25th and 

75th percentile HU values. The red dotted lines across the plot represent the 

minimum and maximum HU values for pleural tumour 
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Figure 3.2 Violin plots illustrating overlapping HU values of pleural tumour 

and adjacent thoracic tissues, including intercostal muscle, pleural fluid and 

diaphragm. The dotted lines inside the violins represent the median and 25th 

and 75th percentile HU values. The red dotted lines across the plot represent 

the minimum and maximum HU values for pleural tumour 
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3.3.2.3 Segmentation attempt 1 

 

Despite the similarities in HUs between pleural tumour and different thoracic 

tissues, semi-automated volumetric segmentation was attempted. In my first 

attempt, freehand contours were drawn every 10 slices to include 36 axial 

slices. This process took 35 minutes. After propagating the contour mask, areas 

were visible within the semi-automated volumes that included anatomical 

structures out-with pleural tumour. These presented as areas of artefact – or 

‘ghost images’ - superimposed on the CT image. This has been illustrated in 

Figure 3.3. I considered the complex shapes of the lung and chest wall to be 

possible reasons for this phenomenon as well as a relatively light segmentation 

schedule which the software was unable to semi-automate in the linear 

interpolation step to make an accurate contour mask. The threshold mask 

volume based on the 36 contoured axial slices was approximately 493 cm3, but 

when the HU-thresholds of +/- 11 HU were applied to 2 areas representative of 

pleural tumour, the final tumour volume was much lower at 116 cm3. This has 

been illustrated in Figure 3.4. 

 

 

Figure 3.3 Segmentation attempt illustrating erroneous extrusion of the contour 

mask (white arrows) 
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Figure 3.4 Segmentation attempt illustrating under-segmentation of pleural 

tumour (in blue). There are light grey areas of pleural tumour that should have 

been entirely blue (white arrows) 

 

3.3.2.4 Segmentation attempts 2 to 5 

 

I made two further attempts at contouring pleural tumour on the first 20 apical 

and last 20 basal slices with contours drawn every 5 slices in between these. This 

resulted in approximately 75 contoured slices and took 120 minutes. The semi-

automated contour masks in these cases appeared to have fewer of the 

superimposed ‘ghost artefacts’. However, propagation errors were still evident 

in the apical and basal areas. The threshold mask volumes measured 647 cm3, 

but when 2 seed points +/- 11 HU were applied, the volumes were approximately 

234 cm3. Figure 3.5 illustrates this under-segmentation. 
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Figure 3.5 Segmentation attempt illustrating under-segmented pleural tumour 

(in blue). There are light grey areas of pleural tumour that should have been 

entirely blue (white arrow) 

 

A third attempt was made with more slices contoured (108/390 axial slices). 

However, the ‘ghost artefacts’ and under-segmentation of pleural tumour were 

still evident and have been illustrated in Figure 3.6. 

 

 

Figure 3.6 Segmentation attempt illustrating both erroneous contour mask 

propagation (in blue, overlying pleural effusion) and extra-pleural segmentation 

errors (white arrow) 
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3.3.2.5 Segmentation attempts 6 and 7 

 

A sixth attempt was made with the first 20 apical and last 20 basal slices 

contoured and contours drawn every other slice, resulting 200/312 axial slices 

contoured. The threshold mask volume measured 966 cm3, but when 3 seed 

points +/- 11 HU were placed, the volume increased to 3340 cm3. After visual 

inspection of this inflated volumetric measurement, segmented areas bled into 

the neighbouring pleural fluid and other thoracic structures not contained within 

the contour mask. This has been illustrated in Figure 3.7. 

 

 

Figure 3.7 Segmentation attempt illustrating over-segmentation with bleeding 

into the pleural fluid (blue area highlighted by white arrows) 

 

3.3.2.6 Radiodensity measurements using axial views 

 

To further explore the pleural tumour segmentation issues encountered with the 

HU-specific seed points, I performed a detailed visual inspection of pleural 

tumour in the coronal plane. Identifiable areas of pleural tumour were often 

only visible in two or three areas. One scan had no areas of visible pleural 

tumour in the three coronal slices assessed. This has been summarised in Table 

3.4.   
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Table 3.4 Subjective visual analysis of ROIs in coronal plane slices of contrast-

enhanced CT scans 

Case Number of 

ROIs 

Description 

1 8 Minimal pleural tumour visible in mid-point slice 

2 5 Minimal pleural tumour in anterior and mid-point slice 

3 7 Minimal pleural tumour in mid-point slice 

4 10 Pleural tumour visible in all areas 

5 12 Pleural tumour only visible at costophrenic angle 

6 3 Two areas of pleural tumour visible in mid-slice 

7 15 Pleural tumour visible in all areas 

8 2 Small area of pleural tumour in anterior and mid-

point slices 

9 5 Minimal pleural tumour in mid-point slice 

10 2 Pleural tumour visible in all areas 

11 9 Minimal pleural tumour in mid-point slice 

12 3 Pleural tumour only visible in apical area 

13 3 Pleural tumour visible in all areas 

14 0 No areas of pleural tumour identified 

15 4 Pleural tumour mainly in the posterior slice 

16 10 Small volume pleural tumour in all slices 

17 4 Small volume pleural tumour in all slices 

18 5 Small volume pleural tumour in all slices 

19 10 Limited areas of pleural tumour in anterior and mid-

point slices 

20 4 Limited areas of pleural tumour in anterior and mid-

point slices 

21 11 Limited pleural tumour in mid-point slice 

22 12 Pleural tumour in posterior slice 

23 10 Pleural tumour in anterior slice 

ROI: region of interest 
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In the clinical setting, assessment of CT scans in axial plane is more 

commonplace. After reviewing pleural tumour in both the coronal and axial 

planes in a selection of CT scans, it became apparent that the yield of pleural 

tumour ROI measurements would increase if I measured ROIs in the axial plane. 

An example of the differences in pleural tumour visibility in the axial versus 

coronal planes has been illustrated in Figure 3.8. 

 

 

Figure 3.8 Example of pleural tumour (white arrows) when viewed in axial (A) 

and coronal (B) planes in the same patient. The contrast is clearer on Panel A 

compared to Panel B 
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I re-assessed all the CT scans in the axial view to enhance the pleural tumour 

radiodensity data. Fifteen ROIs were distributed cranio-caudally on areas of 

what I considered representative of pleural tumour. This has been illustrated in 

Figure 3.9. Mean intensity and standard deviation (SD) were documented for 

each ROI in HU. HU threshold limits used for subsequent region growing were 

derived using the ranges (maximum to minimum) of the pleural tumour ROIs in 

all 23 patients and divided by two to facilitate region growing either side of the 

seed points placed on representative areas of pleural tumour. 

 

 

Figure 3.9 Radiodensity measurements in the axial plane with the red marker 

placed on an area representative of pleural tumour 

 

3.3.2.7 Segmentation attempts using median pleural tumour ROI in axial views 

 

The median radiodensity in HU in areas of pleural tumour was 49.3 [IQR 39.8 to 

62.7] HU. Table 3.5 summarises the median and range differences in HUs 

between coronal and axial planes. 
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Table 3.5 Comparison of pleural tumour ROIs in coronal and axial planes of 

contrast-enhanced CT scans 

Case Coronal   Axial   

 ROI 

n=154 

Median HU 

 

HU 

range 

ROI 

n=269 

Median 

HU 

HU 

range 

1 8 55.1 31 12 50.8 102 

2 5 54.8 23 15 52.5 61 

3 7 65.4 19 12 51.5 60 

4 10 54.5 43 15 59.5 27 

5 12 46.8 22 14 49.3 39 

6 3 79.7 48 2 36.9 6 

7 15 53.8 32 15 40.6 56 

8 2 54.0 10 5 27.6 189 

9 5 65.4 32 15 62.4 54 

10 2 54.0 18 14 54.9 38 

11 9 55.4 33 8 32.8 20 

12 3 66.3 16 15 52.8 59 

13 3 52.3 15 3 29.3 13 

14 0 N/A N/A 8 47.6 59 

15 4 46.5 12 8 44.6 22 

16 10 48.4 18 15 40.4 47 

17 4 49.5 10 7 38.7 21 

18 5 46.8 47 12 49.5 44 

19 10 53.3 35 15 58.8 73 

20 4 46.5 9 14 49.2 36 

21 11 49.8 20 15 35.8 53 

22 12 51.5 33 15 59.7 50 

23 10 51.7 26 15 54.7 47 

ROI: region of interest; HU: Hounsfield unit 
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Repeat measurements were not taken for the other thoracic tissues as these 

were easily identifiable in the three coronal plane slices. The new HU threshold 

limits used for subsequent region growing based on 23 patients (ROI n=269) was 

+/- 22 HU. 

 

I made a further semi-automated segmentation attempt using these new data. 

However, I continued to encounter the aforementioned issues with artefact, or 

‘ghost areas’. Moreover, seed points based on axial HU-threshold limits of +/- 22 

HU resulted in a greater proportion of over-segmentation of pleural tumour and 

bleeding into other non-pleural tumour tissues which have been illustrated in 

Figure 3.10.  

 

 

Figure 3.10 Segmentation attempt 8 illustrating over-segmentation (in blue) with 

inclusion of non-pleural tumour (white arrows) in the final volume using seed 

point thresholds of +/- 22 HU 

  



136 

Anatomical difficulties in interpretating pleural tumour also contributed to the 

repeated failed attempts of a semi-automated approach to pleural tumour 

segmentation. Detailed illustrations and descriptions of the anatomical 

difficulties are included in Figure 3.11. I have presented the images without 

segmentation colour to demonstrate the subtle differences in greyscale. 

 

 

Figure 3.11 Difficulties in interpreting pleural tumour. Panel A illustrates the 

similarities between pleural tumour (red arrow) and atelectasis (white arrow). 

Panel B illustrates the difficulties in differentiating between different tissues, 

e.g., pleural fluid (red P), atelectasis (white arrow) and tumour (red arrows). 

Panel C illustrates non-confluence of pleural tumour (red arrows) which resulted 

in software limitations and time spent returning to edit the completed contour 

mask. Panel C also illustrates atelectasis (white arrow). Panel D illustrates 

calcified tumour (white arrow) which was not included in the segmented 

volumes and pleural tumour (red arrows) 

 

P 
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3.3.2.8 Time taken for volume analyses 

 

The mean time taken to complete semi-automated segmentation for the CT 

scans (n=8) was 25 (SD 7) minutes, with the mean number of CT slices delineated 

77 (SD 21). 

 

3.3.3 Secondary objectives 

 

3.3.3.1 Correlation and agreement analyses between semi-automated CT and 

MRI volumes 

 

The median semi-automated CT and MRI volumes (n=8) were 204 [IQR 124 to 

1852] cm3 and 368 [IQR 238 to 502] cm3, respectively. The semi-automated CT 

volumes were larger than the MRI volumes with a mean difference between MRI 

and CT volumes of -457.6 cm3 (95% limits of agreement -2741 to +1826 cm3, see 

Figure 3.12: Panel A). There was a strong correlation between CT and MRI 

volumes (r=0.738, p=0.0458, see Figure 3.12: Panel B). 
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Figure 3.12 Bland-Altman plot (Panel A) and Spearman’s correlation (Panel B) 

comparing primary tumour volume measured using semi-automated 

segmentation CT scans versus semi-automated segmentation MRI scans in 8 

patients with MPM 
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3.3.3.2 Abandonment of a semi-automated segmentation approach 

 

Following subjective interpretation of the 8 segmented CT volumes, and the very 

wide 95% limits of agreement following the correlation analysis, I met with a 

Myrian Intrasense® software engineer to determine a solution to the semi-

automated segmentation errors. The first step involved installing an update to 

the Myrian Intrasense® software. However, the semi-automated segmentation 

errors persisted despite this. The main reasons for the semi-automated 

segmentation errors were determined to be the complexity of pleural tumour in 

patients with MPM and the inability to obtain feasible HU-defined threshold 

limits (+/- 11 HU and +/- 22 in the coronal and axial planes, respectively) due to 

overlapping thoracic tissue HU values. As such, further semi-automated 

segmentation attempts were abandoned in favour of a fully manual 

segmentation approach which is described in more detail in Chapter 2, Section 

2.2.7. 

 

The failure of my primary objective to develop a semi-automated region-growing 

step for tumour segmentation using contrast-enhanced CT scans meant that it 

was not possible to proceed with the secondary outcome of intra-observer 

agreement. 
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3.4 Discussion 

 

3.4.1 Heterogeneity of Hounsfield units in thoracic tissues 

 

The first aim of this chapter was to determine the radiodensities of different 

thoracic tissues. To recap, Hounsfield units (HU) are radiodensities of tissues 

relative to water, which has 0 HU(285). Tissues denser than water will have HUs 

>0. This was reflected in the present study where the median [interquartile 

range, IQR] pleural tumour (measured in the axial plane) and pleural effusion 

radiodensities were 49.3 [IQR 39.8 to 62.7] HU and 11.8 [8.3 to 17.8] HU, 

respectively. I observed overlapping radiodensities between pleural tumour 49.3 

[IQR 39.8 to 62.7] HU, intercostal muscle (20.4 [11.9 to 32.3] HU), diaphragm 

(40.4 [26.4 to 56.4] HU) and pleural fluid (11.8 [8.3 to 17.8] HU). My thoracic 

radiodensity values were analogous to those described by Corson and colleagues 

who reported the following median radiodensity values: pleural tumour 56 [IQR 

23 to 91] HU, intercostal muscle 61 [37 to 85] HU and pleural fluid 4 [-24 to 30] 

HU(339). Similarly, Mirvis and colleagues reported a median radiodensity of 

pleural tumour of 44 HU in their study of 9 patients with MPM(340). Luerken and 

colleagues determined differences in contrast-enhanced multi-detector-

computed-tomography radiodensities in 28 patients with MPM and reported MPM 

tumour radiodensities that were larger than my measurements (56.7 HU in the 

arterial-phase and 75.4 HU in the portal-venous phase, respectively(341)). After 

plotting median HU values alongside IQR values, overlapping HU distributions 

were obvious. When HU-defined seed points were applied to the propagated 

contour masks, seeding into structures and thoracic tissue compartments 

adjacent to pleural tumour resulted in inaccurate tumour volumes. 

 

3.4.2 Comparison to MRI method 

 

I extrapolated my CT method from the MRI method developed by Tsim and other 

colleagues from our own study group who determined mean signal intensity (SI) 

values on T1-weighted dynamic contrast-enhanced MRI (DCE-MRI)(342). DCE-MRI 

is a functional imaging technique that can be used to measure tissue 
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perfusion(342, 343), including MPM pleural tumour(344). Tsim and colleagues 

determined that pleural tumour has an intermediate signal intensity on T1-

weighted MRI of 99 arbitrary units (AU) which was greater than that of pleural 

fluid and intercostal muscles(319). The diaphragm muscles have a low signal 

intensity(345) as does lung parenchyma with signal intensities ranging from -132 

to -158 AU, depending on normalisation relative to water or muscle(346). As 

such, there were no overlapping signal intensities between different thoracic 

tissues using the Tsim and colleagues MRI method. 

 

DCE-MRI has recently been shown to predict response to treatment in patients 

with MPM(347). Very few data exist regarding dynamic contrast-enhanced CT 

scans (DCE-CT) in MPM(348-350). DCE-CT sequentially measures tissue density 

over time on an image series(351). Gudmundsson and colleagues reported 

differences in tissue blood flow and tissue blood volume on DCE-CT between 

chemotherapy-treated and untreated patients with MPM(348). The thoracic 

tissue HU measurements I made were obtained without CT perfusion data. 

Further studies assessing DCE-CT perfusion metrics would yield further data that 

may serve to facilitate more accurate identification of pleural tumour using CT. 

 

3.4.3 ROI measurements in coronal and axial views 

 

There is no gold standard approach to region of interest (ROI) selection when 

determining the radiodensity range of pleural tumour. I employed a strategic 

approach to define ROIs to ensure standardisation across the dataset. In the 

coronal plane this involved ROI measurements in pre-defined anterior, mid-point 

and posterior slices. In the axial plane, I sequentially identified pleural tumour 

working down the images series in a cranial-caudal direction. Accurate 

identification of pleural tumour was difficult when assessed in the coronal view 

and resulted in less ROIs to define population values for pleural tumour HU that 

could be later used to define threshold limits for subsequent region growing. 

Attempts to mitigate this problem using contemporaneous MRI were 

unsuccessful. 
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The identification of pleural tumour from other thoracic tissues was made easier 

when viewed in the axial plane and resulted in a greater number of ROIs 

distributed across each CT scan, enriching the pleural tumour radiodensity data. 

The median HUs in axial and coronal views were similar (49.3 [IQR 39.8–62.7] HU 

and 52 [46-60] HU, respectively). However, the median ranges of axial plane-

defined HU thresholds were wider than those obtained in the coronal plane. The 

reason for this is unclear. One possible explanation may relate to the smaller 

number of ROIs afforded by assessment in the coronal view, with a larger margin 

of error. For example, 5/23 scans assessed in the coronal view included only 2 or 

3 ROIs and there were no obvious areas of pleural tumour in one scan. A further 

explanation may be the inclusion of areas of pleural tumour where prior 

pleurodesis had occurred. Typically, this would manifest as visible areas of high 

attenuation on CT(352). I made a conscious effort not to include visible areas of 

high attenuation in my ROI measurements. However, pleurodesis can result in 

more subtle changes such as pleural thickening and pleural nodularity(352). A 

study examining positron emission tomography (PET CT) and CT in 9 patients 

who had prior talc pleurodesis for malignant pleural effusions reported a mean 

pleural HU value of 230 HU (range 140 to 380 HU)(353). If I did include areas of 

pleurae exposed to pleurodesis, higher HU values will have been recorded. 

Another explanation may relate to the way that Myrian Intrasense© software 

determined mean radiodensity within a ROI measurement volume. The HU value 

obtained from each ROI measurement was a mean value of the different voxels – 

voxels are 3-D analogues of pixels(354) - contained within each ROI. This is 

evident on the ‘intensity histogram’ visible in Figure 3.9 which includes 

minimum and maximum voxels of 2 HU and 83 HU, respectively. I made efforts 

to keep the volumes of the measured ROIs low, for example, the ROI volume in 

Figure 3.9 was 0.37 cm3. However, my ROIs may have included voxels of 

adjacent non-pleural tissues with divergent HU values such as intercostal muscle 

(20.4 [IQR 11.9 to 32.3] HU) and air (-827.9 [IQR -863.9 to -791.5] HU). 

 

3.4.4 Comparison to other semi-automated CT segmentation methods 

 

Authors have described pleural tumour volumetric thresholding and region 

growing in MPM. Frauenfelder and colleagues – who also used Myrian Intrasense® 
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software - employed a semi-automatic thresholding and region growing method 

on normal lung tissue and associated anatomy with subsequent semi-automatic 

parietal pleurae segmentation on every fourth to fifth CT slice followed by inter-

slice interpolation(108). They reported high inter-observer agreement between 

absolute tumour volumes. They did acknowledge the requirement for manual 

input from human readers which is a limitation. My method differed to the 

Frauenfelder method in its sole use of a semi-automated region growing method 

to pleural tumour, without prior fixing of lung tissue. My final tumour volumes 

required to be exportable to serve as the ground truth for a convolutional neural 

network (CNN) described in the next chapter. It is unclear whether prior fixing 

of lung tissue would have been compatible with these later processes. 

Regardless of this, I was unable to achieve the same results as the Frauenfelder 

team. 

 

Sensakovic and colleagues also described a mixed semi-automated and 

automated approach. They employed a computerised segmentation of lung 

tissue and the hemi-thoraces as well as semi-automated liver segmentation to 

define MPM in the pleural space followed by classification of tissues into 

categories based on pixel HUs, with pleural tumour HU values ranging from 0 to 

100 HU(109). They reported a mean difference between the computerised 

method and human measurements of −59 (SD 17) cm2 and 95% limits of 

agreement for the differences of −40 to 28 cm2. Two of their human observers 

demonstrated superior mean differences of −36 (SD 11) cm2 with 95% limits of 

agreement for the differences of −26 to 19 cm2. They described the lung bases 

and pleural effusions as being particularly problematic. I was able to apply my 

clinical knowledge of MPM to help distinguish pleural fluid and calcified tumour 

and pleural plaques. I also focused on the first and last 20 slices in each image 

series with more detailed delineations applied to the pleural cupulae and 

diaphragmatic recesses, respectively. 

 

Similar pleural tumour HU thresholds (20 to 80 HU) were utilised by Gill and 

colleagues who reported a semi-automated volumetric approach initiated by 

software-automated segmentation with the requirement for subsequent manual 

human user delineations, including correction for the presence of pleural 
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effusions(111). As previously mentioned, my median pleural tumour HU values 

were 49.3 [IQR 39.8 to 62.7] HU and 52 [IQR 46 to 60] HU when determined in 

axial and coronal planes, respectively. When seed points of +/- 11 HU were 

placed in areas of representative of pleural tumour, this would have captured 

tissue with HUs of approximately 39 to 61 HUs. The maximum intercostal muscle 

and pleural fluid HUs were 53.5 HU and 35.1 HU, respectively. Erroneous 

inclusion of these structures would have been possible. When seed points of +/- 

22 HU following re-assessment in the axial plane were applied, the expected HU 

will have been approximately 28 to 72 HU. This broader range of tissue capture 

would explain why diaphragm (40.4 HU) and pleural fluid (maximum HU value, 

35 HU) were erroneously included in the final volume on my eighth segmentation 

attempt. 

 

I did not proceed to assess inter-observer variability due to the flaws and 

inaccuracies of my semi-automated method attempts. Other authors have 

reported high inter-observer variability, including Gill and colleagues who 

reported absolute differences in volumes of 173 to 860 cm3(111). MPM disease-

specific pathological features such as pleural effusions and pleurodesis were 

again reported to be problem areas. I have outlined the pitfalls of potentially 

including areas of pleural tumour exposed to pleurodesis in my ROI 

measurements in Section 3.4.3 of this discussion. 

 

There is no standardised approach to the number of contours or seed points 

applied to respective contour masks. Chen and colleagues placed 20 to 30 seed 

points in areas representative of pleural tumour across six to ten axial CT scan 

slices in their computer-aided random walk-based method(112). I placed two to 

three seed points per each segmented image series. When I attempted to place 

further seed points, tumour over-segmentation occurred. The reason for this is 

not entirely clear, however it was likely due to limitations caused by the 

complex morphology of the MPM tumours, resulting in seepage of what the 

software perceived as pleural tumour into adjacent structures with similar HUs 

such as intercostal muscle and pleural fluid. Lauk and colleagues used the 

Frauenfelder technique on Myrian Intrasense® software, contouring pleural 

tumour every fifth to tenth CT slices with adjustments made if necessary(355). 
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They did not assess inter-observer variation. The mean number of contours in my 

analysis was 77 (SD 21), with a minimum of 36 and maximum of 108. I initially 

delineated every five to ten slices before sequentially increasing the number of 

CT slice delineations to correct for the linear interpolation errors I encountered. 

This culminated in a final contour mask attempt where I had delineated every 

other axial CT slice. 

 

Despite my best efforts, and meetings with the Myrian Intrasense® software 

engineers to solve the aforementioned issues, I was unable to find a solution to 

the limitations of HU-based region growing of MPM tumour. The decision to move 

to a manual method was based on the premise that automated segmentation 

methods are restricted to pixel HU data while human readers can use a much 

broader pallet of visual clues and clinical experience to estimate a volume even 

when the radiodensity fundamentals could not in isolation support the contour 

masks drawn. 

 

3.4.5 Possible clinical implications 

 

Although MRI has been shown to be superior to CT in soft tissue enhancement, it 

is not as routinely available as CT in clinical practice. MRI is also not suitable in 

all patients, for example, those with metal implants or those who experience 

claustrophobia. MRI is also more expensive than CT but has technical 

advantages. Therefore, the development of an automated approach to pleural 

tumour volumetry using CT in patients with MPM is important. Volumetric 

methods using CT are increasingly being reported in the mesothelioma literature 

and have been shown to be superior to mRECIST at predicting pleural tumour 

and assessing response to treatment(108). The results from this chapter directly 

led to the manual volumetric segmentation method descried in the next chapter. 

 

3.4.6 Study limitations and strengths 

 

The main limitation of this study was the small sample size of 23 patients. 

However, the pleural tumour HU threshold values were determined on >200 
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regions of interest. It also important to highlight that median pleural tumour HU 

values were almost identical when assessed in the coronal and axial views, 

suggesting that my ROI measurement technique was reproducible. 

 

Nodular and circumferential pleural thickening are commonly associated with 

pleural malignancy(356) and contrast-enhanced CT remains the first-line imaging 

modality for assessment for MPM(2). However, there are wide ranging 

sensitivities and specificities for the identification of pleural tumour on CT in the 

thoracic malignancy literature(49-52). Although I used my knowledge of CT 

features in MPM when measuring HU of pleural tumour with efforts made to 

include only these in my pleural tumour ROIs, it is possible that non-malignant 

parietal pleura may have been included in these ROIs, and as a direct 

consequence, the semi-automated tumour volumes that were grown from the 

seed points applied. Research from our own research group determined that 

early contrast enhancement, based on tumoral blood vessel density, is a 

sensitive biomarker for determining pleural malignancy using MRI scans(342). A 

similar biomarker is not available in CT but would be a useful clinical tool. If the 

inclusion of non-malignant parietal pleura was a limiting factor in the present 

study, the impact would have been consistent across the dataset. 

 

Another limitation is the potential for pleural tumour ROIs to have included 

areas previously exposed to pleurodesis, resulting in higher radiodensity values 

as described in Section 3.4.2 of this discussion. Although I excluded any areas 

with visibly high attenuation in my ROIs (i.e., talc deposits), I was not able to 

fully control for this in my dataset. It is important to note that assessment of 

pleural tumour radiodensities were solely made from patients included in the 

DIAPHRAGM study which were mostly diagnostic CT scans, i.e., scans were 

performed early in the diagnostic pathway which will have likely preceded any 

pleural interventions involving surgical pleurodesis or the administration of talc. 

Another tissue with higher radiodensities is calcified pleural tumour which had a 

median radiodensity of 639 [IQR 538 to 763] HU in the present study. The 

maximum pleural tumour HU in both the coronal and axial measurements views 

was 189 HU, evidencing that no calcified pleural plaques were included in the 

ROI measurements. 
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My ROI dataset was mostly comprised of patients with earlier disease stage, i.e., 

TNM8 stage 1. It is uncertain whether pleural tumour ROI values are dependent 

on the stage of the disease. The natural history of MPM is the extension of a 

rind-like growth around the pleurae with interlobar fissure involvement and 

chest wall invasion in later stages. Radiodensities can differentiate benign from 

malignant pulmonary nodules(357) as well as the invasiveness(358) and 

likelihood of recurrence in early stage lung cancer(359). However, it is unclear 

whether HU values correspond to different disease stages in solid organ cancers. 

Veeratterapillay and colleagues concluded that HU values did not correlate with 

disease stage in their cohort of patients with renal cancer(360). Conversely, 

higher HU values were inversely related to growth deceleration in patients with 

meningiomas(361). In patients with gastric(362) and lung cancers(363), 

decreasing HU values following chemotherapy is predictive of response to 

treatment. No data exist relating to HU differences according to stage or 

treatment response in MPM. Corson and colleagues reported higher 

radiodensities of MPM tumour compared to my data, with 97.5% centile and 

maximum radiodensities of 181 HU and 355 HU, respectively(339). My maximum 

pleural tumour radiodensity was 100 HU. However, the Corson study did not 

provide details on the disease stages of the patients on their cohort, neither did 

the Mirvis(340) or Leurken studies(341). The inclusion of patients with early-

stage disease stage in the present study also meant that pleural tumour was 

more difficult to visualise due to smaller tumour volumes associated with this. I 

will demonstrate that patients in the DIAPHRAGM study had a smaller volume of 

measurable disease than patients in the PRISM study later in this thesis (Chapter 

4, Sections 4.3.2.4 and 4.3.3.1), as the PRISM study scans were obtained later in 

patient’s respective cancer pathways. 

 

Another limitation was that the study dataset was composed of mostly patients 

with the epithelioid sub-type of MPM. A sizeable minority (30%) of patients did 

not have available histological data. Authors have reported CT imaging features 

that can differentiate between different histological MPM sub-types, for 

example, the sarcomatoid MPM sub-type is more likely to involve extension into 

the lung parenchyma(364) and volume loss on the ipsilateral side of the 

tumour(356). Conversely, Escalon and colleagues demonstrated no statistically 
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differences between histological sub-type and CT imaging features(365). 

Radiodensity differences have failed to distinguish tumour sub-types in patients 

with renal(366) and breast cancers(367). A future study with a more diverse 

range of mesothelioma sub-types would increase the generalisability of the 

findings and could potentially provide further insights into whether there are 

variations in pleural tumour radiodensities dependent on the MPM sub-type being 

investigated. 

 

3.5 Conclusion 

 

In this chapter, the methods for an attempted semi-automated segmentation 

approach to tumour segmentation using CT scans have been described. It was 

not possible to accurately deploy a semi-automated volumetric analysis method 

for MPM developed using MRI on contrast-enhanced CT images. Reduced 

definition between tumour and neighbouring structures was a major contributor. 

A manual segmentation method was chosen to serve as the ground truth for the 

development of an automated volumetric approach described in the next 

chapter. 
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4 Chapter 4: Volumetric MPM tumour assessment using 

human and deep learning algorithmic segmentations 

 

4.1 Introduction 

 

Computed tomography (CT) scans taken before and during treatment are 

routinely used to determine response to systemic anti-cancer therapy (SACT). In 

solid tumours, Response Evaluation Classification In Solid Tumours (RECIST) 

criteria have traditionally provided objectivity in response assessment to SACT. 

Modified Response Evaluation Classification In Solid Tumours (mRECIST) was 

developed in malignant pleural mesothelioma (MPM) to tackle the limitations of 

RECIST which assumes that tumours have spherical growth patterns(6). The 

mRECIST reader makes unidimensional tumour thickness measurements 

perpendicular to the chest wall in two positions at three levels on thoracic CT 

scans to provide a summed value that broadly classifies response to treatment. 

The mRECIST method has poor reproducibility, with up to 30% variability 

reported between observers(81). This wide variation can cross response 

thresholds based on the same data. In the clinical setting, response assessment 

is often made through subjective assessment of serial cross-sectional images, 

neglecting the use of mRECIST criteria altogether. 

 

Accurate and time-efficient methods of response assessment are required to 

improve response assessment in MPM. Semi-automated methods have been 

explored but remain time-consuming and are prone to inter-observer 

differences(102, 111). In Chapter 3, I demonstrated the limitations of a semi-

automated volumetry method after being unable to adapt a successful method 

defined using MRI to CT data, primarily because of insufficient soft tissue 

contrast on the CT images. More recent volumetric methods have focused on 

utilising advancements in artificial intelligence (AI), specifically deep learning 

methods such as convolutional neural networks (CNN)(136). Some CNNs have 

been proven to out-perform humans when trained on very large datasets(142). 

Commercial object detection and recognition datasets are trained on millions of 

images(143-146). Similarly sized datasets are not yet routinely available in the 
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medical setting. However, detailed ground truth allows CNN algorithms to 

‘learn’ more efficiently, using the thousands of pixels in each image and their 

surrounding context(141, 151). 

 

This chapter describes a multicentre retrospective cohort study which aims to 

develop a volumetric AI algorithm to improve human response classification in 

patients with chemotherapy-treated MPM. 
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4.2 Methods 

 

A detailed description of the methods is provided in Chapter 2, Section 2.2. 

 

The objectives and associated outcome measures for this study are detailed in 

Chapter 2, Section 2.2.1. To summarise, the objectives of the training and 

internal validation set were to generate the detailed ground truth needed (based 

on learning from Chapter 3) and to report correlation and agreement and inter- 

and intra-observer variations for comparisons with the deep learning outputs. I 

undertook the following analyses to address these, while the CNN was built by 

Owen Anderson and Keith Goatman from Canon Medical Research Europe 

(CMRE). The CNN performance was also assessed by Owen Anderson and Keith 

Goatman using Dice overlap. In the external validation set, the objectives were 

to compare the CNN against mRECIST as this set involved paired scans obtained 

at the pre-chemotherapy and response assessment time points and analysis of 

the prognostic value of the CNN volume measures versus human read-outs of 

volume and mRECIST classifications. 
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4.3 Results 

 

4.3.1 Study population 

 

Tables 4.1 summarises the clinical characteristics of the training and internal 

validation and external validation sets. The mean age at diagnosis in the training 

and internal validation and external validation sets were 70 (SD 8) and 69 (SD 7) 

years, respectively. Most patients in training and internal validation and external 

validation sets were male (71/80 (89%) and 22/30 (73%), respectively) and had 

an ECOG Performance Status (ECOG PS) of 0 (20/80 (25%) and 6/30 (20%), 

respectively) or ECOG PS 1 (47/80 (59%) and 15/30 (50%), respectively). 

Epithelioid MPM was the predominant histological sub-type (77% in both sets). 

There was also a predominance of early-stage disease, with 35% and 40% of 

patients having stage I disease in the training and internal validation and 

external validation sets, respectively. A sizeable minority had stage III and IV 

disease (22% in the training and internal validation set and 27% in the external 

validation set). All patients received doublet chemotherapy cisplatin or 

carboplatin and pemetrexed with a median number of cycles of 4 [3.75 to 4]. 

 

In the external validation set, the median interval between the last dose of 

chemotherapy and response assessment scan was 22 [IQR 10 to 62] days. The 

median interval between the last dose of chemotherapy and response 

assessment scan in 4/30 was >100 days. 
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Table 4.1 Clinicopathological data in patients with MPM divided according to 

training and internal validation (scan n=123) and external validation sets (scan 

n=30) 

 

 

Training and internal 

validation set (scan 

n=123) 

Mean (SD) or n (%) 

External validation set 

(scan n=30) 

Mean (SD) or n (%) 

Age at diagnosis, years 70 (SD 8) 69 (SD 7) 

Male gender 71 (89%) 22 (73%) 

ECOG PS   

0 20 (25%) 6 (20%) 

1 47 (59%) 15 (50%) 

2 11 (14%) 2 (7%) 

Not available 2 (3%) 7 (23%) 

Histological sub-type   

Epithelioid 62 (77%) 23 (77%) 

Non-epithelioid 15 (19%) 5 (17%) 

Not available 3 (4%) 2 (7%) 

Disease stage   

I 28 (35%) 12 (40%) 

II 2 (3%) 4 (13%) 

III 11 (14%) 3 (10%) 

IV 6 (8%) 5 (17%) 

Not available 33 (41%) 6 (20%) 

ECOG PS: Eastern Cooperative Oncology Group performance status 
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4.3.2 Training and internal validation 

 

4.3.2.1 Manual CT tumour volumes 

 

The mean number of CT scan slices in the images series was 225. The mean CT 

volume (n=23) was 279.4 (SD 94.6) cm3. The mean time taken to segment pleural 

tumour was 151 (SD 19) minutes, or approximately 2.5 hours. 

 

4.3.2.2 Comparison between manual CT and semi-automated MRI tumour 

volumes 

 

The mean MRI volume (n=23) was 354.2 (SD 140.6) cm3. CT volumes were 

consistently smaller than MRI volumes (mean difference between AI minus 

human scans 74.8 (SD 122) cm3, 95% limits of agreement -313 to 164 cm3, see 

Figure 4.1: Panel A). The data were moderately correlated (Pearson’s r 0.524, 

95% CI 0.142 to 0.769, p=0.0103, see Figure 4.1: Panel B).  
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Figure 4.1 Bland-Altman plot (Panel A) and Pearson’s correlation (Panel B) 

comparing tumour volume measured using manual segmentation CT scan versus 

semi-automated segmentation MRI in 23 patients with MPM 
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4.3.2.3 Reproducibility 

 

There was moderate human inter-observer agreement (ICC 0.732, p=0.001), with 

a mean absolute difference of 65.7 (SD 73.8) cm3. There was excellent human 

intra-observer agreement (ICC 0.997, p<0.0001), with a mean difference of 29.6 

(SD 19.1) cm3. These data have been summarised in Table 4.2. AI inter-observer 

analyses would have to involve comparison with a different algorithm. There is 

no AI intra-observer variation. 

 

Table 4.2 Manually segmented pleural tumour volume differences between two 

human readers 

Reader 1 volume (cm3) Reader 2 volume (cm3) Volume difference (cm3) 

237 172 65 

292 225 67 

306 239 67 

360 309 51 

220 208 12 

473 597 -124 

258 174 84 

361 213 148 

175 123 52 

308 154 154 

268 171 97 

378 220 158 

248 224 24 
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4.3.2.4 Human versus AI volumes 

 

The median human and AI volumes were 330 [IQR 248.5 to 464] cm3 and 474.5 

[IQR 354 to 694] cm3, respectively. AI volumes were larger than human volumes 

with a mean difference between AI and human volumes of +142 cm3 (95% limits 

of agreement -226 to 511 cm3, see Figure 4.2: Panel A). There was a strong 

correlation between human and AI volumes (training set r=0.847, 95% CI 0.768 to 

0.901, p<0.0001, see Figure 4.2: Panel B).

 

Figure 4.2 Bland-Altman analysis (Panel A) and Spearman’s correlation (Panel B) 

between human and AI training and interval validation set volumes (n=80 scans) 
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4.3.3 External validation 

 

4.3.3.1 Human versus AI volumes 

 

In the external validation set, the median human and AI tumour volumes were 

336.5 [IQR 227.8 to 637] cm3 and 394 [IQR 217 to 679] cm3, respectively. There 

was a mean difference between AI minus human of +31 cm3 on the Bland-Altman 

plots (95% limits of agreement 345 to +407 cm3, see Figure 4.3: Panel A). There 

was a strong correlation between human and AI volumes (r=0.851, 95% CI 0.759 

to 0.910, p<0.0001, see Figure 4.3: Panel B). 

 

Figure 4.3 Bland-Altman analysis (Panel A) and Spearman’s correlation (Panel B) 

between human and AI external validation set volumes in 60 scans 
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4.3.3.1.1 Human versus AI pre-chemotherapy volumes 

 

At the pre-chemotherapy time point, there was a mean difference between AI 

minus human of +29.1 cm3 on the Bland-Altman plots (95% limits of agreement -

312.9 to +371.1 cm3, see Figure 4.4: Panel A). Pre-chemotherapy human and AI 

volumes were also strongly correlated (r=0.837, 95% CI 0.683 to 0.920, see 

Figure 4.4: Panel B). 

 

Figure 4.4 Bland-Altman analysis (Panel A) and Spearman’s correlation (Panel B) 

between pre-chemotherapy (PC) human and AI external validation set volumes in 

60 scans 

 



161 

4.3.3.1.2 Human versus AI response assessment volumes 

 

At the response assessment time point, there was a mean difference between AI 

minus human of +32.1 cm3 on the Bland-Altman plots (95% limits of agreement -

381 to +445.2 cm3, see Figure 4.5: Panel A). Response assessment human and AI 

volumes were strongly correlated (r=0.802, 95% CI 0.621 to 0.902, p<0.0001, see 

Figure 4.5: Panel B). 

 

Figure 4.5 Bland-Altman analysis (Panel A) and Spearman’s correlation (Panel B) 

between response assessment (Res) human and AI external validation set 

volumes in 60 scans 
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4.3.4 Visual inspection of outlying volumes 

 

Visual inspection of the 4 datapoints out-with the 95% limits of agreement was 

carried out and are illustrated in Figure 4.6. These cases have been extracted 

from the Bland Altman plot of the 60 scans from the external validation set in 

Figure 4.3: Panel A. 

 

Figure 4.6 Examples of the scans out-with the 95% limits of agreement. Panel A 

illustrates under-segmentation by the AI in pre-chemotherapy images with 

tumour in the left lung fissure (yellow arrow) not included in the final volume. 

Panel B illustrates over-segmentation with the AI erroneously including lung 

atelectasis above the right hemidiaphragm (yellow arrow). Panel C illustrates 

over-segmentation with the AI erroneously including contralateral benign pleural 

thickening by the AI (yellow arrow)  
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4.3.5 Changes in tumour volume following chemotherapy by human and AI 

 

The median human pre-chemotherapy and response assessment tumour volumes 

were 366 [IQR 244 to 656] cm3 and 328 [IQR 225 to 663] cm3, respectively 

(p=0.196). The median AI pre-chemotherapy and response assessment tumour 

volumes were 427 [IQR 220 to 682] cm3 and 371 [IQR 122 to 689] cm3, 

respectively (p=0.081). There was a mean difference between AI and human 

volumes of +2.1% (95% limits of agreement -59.6 to 55.5%, see Figure 4.7: Panel 

A). There was moderate correlation between human and AI volumetric changes 

(r=0.611, 95% CI 0.311 to 0.799, p=0.0003, see Figure 4.7: Panel B). 

 

Figure 4.7 Bland-Altman analysis (Panel A) and Spearman’s correlation (Panel B) 

between human and AI percentage volume change in the 60 volumes in the 

external validation set 



164 

There was agreement in 20/30 (67%) cases following classification of human and 

AI percentage volume changes into partial response (PR), stable disease (SD) and 

progressive disease (PD) (Kappa=0.439, 95% CI 0.178 to 0.700, see Figure 4.8). 

When dichotomised into non-PD versus PD, there was agreement in 26/30 cases 

(87%), kappa=0.586, 95% CI 0.227 to 0.945, see Figure 4.9. 
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Figure 4.8 Comparison of human- and AI-defined volume responses for each 

patient (rows 1 to 30) in the external validation set. Partial response is green, 

stable disease is amber and progressive disease is red  
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Figure 4.9 Comparison of human- and AI-defined volume responses for each 

patient (rows 1 to 30) in the external validation set. Progressive disease (PD) is 

red and Non-PD is blue 
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4.3.6 mRECIST versus AI volumetric response 

 

There were differences between human-, AI- and mRECIST-defined treatment 

response classifications. These have been summarised in Table 4.3. 

 

Table 4.3 Response to treatment defined by human and AI volumes and mRECIST 

in 30 patients with MPM (n=60 scans) 

 Human volume 

n (%) 

AI volume 

n (%) 

mRECIST 

n (%) 

PR 4/30 (13%) 9/30 (30%) 6/30 (20%) 

SD 21/30 (70%) 14/30 (47%) 13/30 (43%) 

PD 5/30 (17%) 7/30 (23%) 11/30 (37%) 

 

Non-PD 25/30 (83%) 23/30 (77%) 19/30 (63%) 

PD 5/30 (17%) 7/30 (23%) 11/30 (37%) 

PD: progressive disease; PR: partial response, SD: stable disease 

 

 

There was agreement between mRECIST and AI response classification in 16/30 

(55%) cases (Kappa=0.284, 95% CI 0.026 to 0.543, see Figure 4.10). When 

mRECIST and AI response classifications were classified into non-PD v PD, there 

was agreement in 20/30 (67%) cases (Kappa=0.223, 95% CI -0.128 to 0.574, see 

Figure 4.11). 
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Figure 4.10 Comparison of mRECIST- and AI-defined volume responses for each 

patient (rows 1 to 30) in the external validation set. Partial response is green, 

stable disease is amber and progressive disease is red 

  



168 

 
AI volume classification mRECIST response classification 

1     

2     

3     

4     

5     

6     

7     

8     

9     

10     

11     

12     

13     

14     

15     

16     

17     

18     

19     

20     

21     

22     

23     

24     

25     

26     

27     

28     

29     

30     

 

Figure 4.11 Comparison of mRECIST- and AI-defined volume responses for each 

patient (rows 1 to 30) in the external validation set. Progressive disease (PD) is 

red and Non-PD is blue   
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The median mRECIST-defined PD, SD and PR percentage volume changes were -

52 cm3, -21 cm3 and -18 cm3, respectively, when the human ground truth 

volumes were used as a reference standard. There was no significant difference 

in percentage volume change between the groups (p=0.072, see Figure 4.12: 

Panel A). The median AI-defined PD, SD and PR percentage volume changes were 

-18 cm3, -15 cm3, +23 cm3, respectively. There was a significant difference in 

volume change between the groups (p=0.009, see Figure 4.12: Panel B). 

 

Figure 4.12 Classification of percentage human volume changes into mRECIST 

(Panel A) and AI-defined (Panel B) progressive disease (PD), stable disease (SD) 

and partial response (PR) in the external validation set 
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4.3.7 Survival analyses 

 

The median follow-up period was 1729 days. The median overall survival (OS) in 

the external validation set was 377 days. When human tumour volume in the 

external validation set was dichotomised into high and low volume based in 

median volumes (366 cm3), higher pre-chemotherapy human tumour volume was 

associated with shorter OS (293 versus 473 days, HR 4.01, 95% CI 1.26 to 6.48, 

p=0.0019, see Figure 4.13: Panel A). Similarly, when AI tumour volume in the 

external validation set was dichotomised into high and low volume based in 

median volumes (427 cm3), higher pre-chemotherapy AI tumour volume was 

associated with shorter OS (299 versus 462 days, HR 2.40, 95% CI 1.07 to 5.41, 

p=0.0114, see Figure 4.13: Panel B). When dichotomised according to human 

volume-defined PD and Non-PD, there were no survival differences (379 versus 

375 days, HR 0.71, 95% CI 0.28 to 1.84, p=0.403, see Figure 4.13: Panel C). 

Similarly, no differences were observed with AI-defined response assessment (PD 

452 versus non-PD 317 days, HR 1.18, 95% CI 0.48 to 2.90, p=0.6853, see Figure 

4.1: Panel D). There was a non-significant trend towards shorter OS in the 

mRECIST-defined PD group versus non-PD (317 versus 450 days, HR 1.98, 95% CI 

0.84 to 4.69, p=0.0616, see Figure 4.13: Panel E). 
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Figure 4.13 Kaplan-Meier curves and number at risk tables illustrating overall 

survival stratified by, Panel A) pre-chemotherapy human tumour volume ≥366 

cm3 and, Panel B) pre-chemotherapy AI tumour volume ≥427 cm3, Panel C) 

human volume-defined progressive disease (PD) and Non-PD, Panel D) AI volume-

defined PD and Non-PD, and, Panel E) mRECIST-defined PD and Non-PD 
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4.4 Discussion 

 

4.4.1 Manual CT method 

 

A fully automated deep learning CNN is reported in this chapter. The ground 

truth for the CNN was provided by manual pleural tumour volumetric 

segmentations following learning in Chapter 3 of this thesis. On visual 

inspection, the manually contoured slices were robust and consistently volumed 

the entirety of the parietal pleura. I reported excellent reproducibility with my 

repeat measurements. However, the manual contouring process was time-

consuming with each scan taking approximately 2.5 hours to complete. I 

demonstrated moderate reproducibility between two different human readers 

with an absolute difference of 65.7 (SD 73.8) cm3. However, there were absolute 

differences in pleural tumour volumes ranging between -124 and 158 cm3. Gill 

and colleagues reported similar findings in their semi-automated assessment of 

pleural tumour volume in 129 patients with MPM using Vitrea Enterprise suite 6.0 

(Vital Images, Minnesota, USA)(111). Although good correlation was reported 

between two radiologists (Spearman’s Rho=0.822), with absolute volume 

differences of ≤200 cm3 in 80% of the scans assessed, there was marked 

variability in volume estimates between the radiologists with absolute 

differences in volume ranging between 173.7 cm3 and 860.6 cm3(111). Gill and 

colleagues concluded that this discordance between readers reflected not only 

the limitations of identifying pleural tumour using contrast CT imaging, but also 

what the radiologists interpreted as pleural tumour, with perception, prior 

experience and time spent segmenting all considered to be variable between 

readers(111). 

 

4.4.2 Comparison to the MRI method 

 

In the present study, CT volumes were consistently smaller than MRI volumes 

with an average difference of 74.8 cm3 suggesting that the MRI method was able 

to identify more pleural tumour than the manual CT method. The MRI method 

described by Tsim and colleagues was preceded by high performing detailed 
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perfusion studies that were tuned specifically to pleural tumour(319, 342). MRI 

inherently affords superior soft tissue contrast resolution with clearer 

demarcation of normal pleurae and pleural tumour compared to CT as well as 

superior definition of pleural tumour(368). MRI is also better at detecting 

invasion of MPM into the chest wall as well as trans-diaphragmatic tumour 

extension and extension into the inter-lobar fissures(336, 369). Also, unlike the 

HU-defined threshold limits for tumour region growing, the median MRI signal 

intensity value used by Tsim and colleagues was +/- 99 AU which did not overlap 

with adjacent thoracic structures. This has been discussed in further detail in 

Chapter 3, Section 3.4.2. 

 

Although only high quality venous-phase contrast-enhanced CT scans were 

included in the final analyses, the retrospective nature of the study meant that 

contrast administration and dosimetry have not been accounted for and may not 

have been consistent. Tumour enhancement using CT is known to be dependent 

on the timing of image acquisition post-administration of intravenous 

contrast(370). Traditionally, the optimal timing of image acquisition is 40 to 60 

seconds post-intravenous contrast administration. However, Patel and colleagues 

assessed increased time delays beyond this traditional interval and concluded 

that a time delay of 230 to 300 seconds post-intravenous contrast administration 

improved pleural tumour discernability(371). Another problem encountered with 

the CT method was that pleural tumour was often not visible despite the paired 

MRI scans demonstrating visible pleural tumour. I illustrated this in Chapter 2, 

Figure 2.6. This was particularly evident when the images were viewed in the 

coronal plane. Pleural tumour was also more visible on some CT scans than 

others which I illustrated in Table 3.4 in Chapter 3. The potential for variability 

in contrast enhancement may be explained by factors such as histological sub-

type differences on CT imaging(365) which were not accounted for in the 

present study which I discuss in detail in Section 3.4.6 of Chapter 3. Regardless 

of these imaging limitations and pleural tumour volume differences between the 

two imaging modalities, the CT and MRI data reported in the present study 

remained moderately correlated (Pearson’s r=0.524, 95% CI 0.142 to 0.769), and 

as such, provided reassurance that the volumes could be used to train the deep 

learning CNN. 
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4.4.3 AI and ground truth tumour volumes 

 

In the training and internal validation set, the median AI pre-chemotherapy 

tumour volumes were larger than the volumes measured by my ground truth (330 

[IQR 248.5 to 464] cm3 versus 474.5 [IQR 354 to 694] cm3, respectively). The 

mean difference between AI and human volumes was +142 cm3. The diversity of 

disease stages of the cases included in the training and interval validation set 

may explain this as there was a predominance of patients in the PRISM study who 

had later-stage disease whereas the 23 patients in the DIAPHRAGM study had 

earlier-stage disease and scans performed at the diagnostic, rather than pre-

chemotherapy, time point. The mean human and AI volumes for patients in the 

DIAPHRAGM study were lower (262.5 (SD 98.3) cm3 and 358.6 (SD 160.6) cm3, 

respectively). 

 

In the external validation set, the median AI pre-chemotherapy tumour volumes 

were also larger than the volumes determined by my ground truth (336.5 [IQR 

227.8 to 637] cm3 versus 394 [IQR 217 to 679] cm3, respectively). There was a 

mean difference of +31 cm3 between AI and human volumes on the Bland-Altman 

plots in the external validation set. There may be several reasons for the higher 

AI volumes compared to the ground truth. Firstly, in the inter-observer work, I 

consistently reported higher tumour volumes compared to the other human 

observer with a mean difference of +65.7 cm3. Labby and colleagues also 

recognised this in their study and reported that different observers consistently 

annotate differently with some observers consistently segmenting less tumour 

than others(104). Secondly, the CNN will segment images features that a human 

reader may not(372). Thirdly, CT is known to underestimate the extent of 

pleural tumour volume in MPM. A further reason could be overfitting for the 

CNN. Attempts were made to minimise over-fitting by training the CNN using 

different CT scanners as well as testing the CNN using an external validation set. 

 

There was strong correlation between human and AI volumes in the training and 

internal validation (r=0.847, p<0.0001) and external validation sets (r=0.851, 

p<0.001). A similar finding was reported by Weikert and colleagues in their study 
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of patients with NSCLC with positive correlation between volumes calculated by 

AI algorithms and ground truth volumes (r=0.634, p<0.001)(373). 

 

4.4.4 Tumour volume comparison to other studies 

 

The pre-chemotherapy tumour volumes in this study (330 cm3) were similar to 

those reported by Gill and colleagues (319 cm3)(101) and Rusch and colleagues 

(most tumours were <500 cm3)(102). Labby and colleagues reported higher mean 

pleural disease volume (1511 (SD 1065) cm3)(104). Pass and colleagues reported 

smaller volumes, reflecting patients with earlier-stage disease who were eligible 

for surgery (the mean tumour volumes for pleurectomy decortication and extra-

pleural pneumonectomy were 88 cm3 and 86 cm3, respectively(99).  

 

4.4.5 CNN model performance 

 

Region overlap between different volumetry methods was quantified using the 

Dice coefficient - a metric of performance in image segmentation by deep 

learning algorithms – which was performed separately by an EngD Research 

Engineer (Owen Anderson) from Canon Medical Research Europe (CMRE) and 

published in a conference abstract(327). The mean Dice co-efficient between 

the ground truth human annotation and AI segmentation in this study was 0.55 

(SD 0.12), mirroring studies by Sensakovic and colleagues and Gudmundsson and 

colleagues who reported a median Jaccard index of 0.484 - which equates to a 

Dice coefficient of 0.65 - and median Dice coefficients ranging from 0.662 to 

0.800, respectively(109, 136). In their studies, Chen and colleagues and Brahim 

and colleagues reported higher mean Dice coefficients (0.825 and of 0.88, 

respectively)(112, 113). 

 

4.4.6 Reproducibility 

 

The tumour segmentation method and software utilised in the present study are 

closest to those employed by Frauenfelder and colleagues who compared 

volumetric measurement of MPM pre- and post-chemotherapy according to 
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mRECIST criteria(108). The authors of that study reported a high inter-rater 

reliability (0.99) and inter-observer agreement (general κ 0.9) for absolute 

pleural tumour volumes on volumetric measurements. They also reported mean 

differences of ≤66 cm3 between their three human readers. The inter-observer 

and intra- observer coefficients in this study were 0.732 and 0.997, respectively. 

The selection of 10 cases for inter-observer analysis was arbitrary, but similar to 

recent similar publications, including Brahim and colleagues who evaluated 10 

cases(113) and Sensakovic and colleagues(109) and Gudmundsson and 

colleagues(136) who, although analysed larger patient numbers, assessed fewer 

CT image sections. 

 

4.4.7 Analysis of anatomical features associated with AI segmentation errors 

 

In the external validation set, 4/60 patients had segmentation errors that 

exceeded 95% limits of agreement. Closer examination of these cases 

demonstrated morphological features including adjacent atelectasis of lung, 

tumour in the lung fissure and contralateral pleural thickening. 

 

Gudmundsson and colleagues experienced similar “volumetric outliers” in their 

study examining an automated segmentation method, reporting that 7/15 cases 

where their algorithm over-predicted tumour area contained pleural 

effusions(152). Sensakovic and colleagues reported their computerised volumes 

to be larger (mean volume difference 59.3 cm2), which they attributed to 

“leakage of the active surface” used in the hemi-thoracic cavity segmentation 

method. Their segmentation errors were most likely to occur in the lung bases 

and intercostal spaces due to segmentation difficulties in these areas as well as 

pleural effusion(109). Brahim and colleagues reported a mean over-segmentation 

rate between their adjusted thoracic cavity segmentation method output and 

the ground truth of 19.55%, citing their thoracic cavity delimitation step which 

may have included sections of adjacent tissues(113). I provided a commentary of 

the anatomical complexities that I encountered when delineating pleural tumour 

in Chapter 3, Section 3.4.6. The segmentation errors experienced in the present 

study are likely to be relatively infrequent features in the training and internal 

validation data given the small sample size, however they will have direct 
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implications for the next steps in CNN development. If deep learning techniques 

are to be further optimised, enrichment of future data sets to include these 

features will be required to improve the training, and subsequent performance 

of, deep learning CNNs. 

 

4.4.8 Survival analyses 

 

Higher human-defined pre-chemotherapy tumour volume was associated with 

poorer OS which is consistent with previous volumetry studies(99, 101-103). Pass 

and colleagues reported that patients with pre-operative tumour volume 

<100cm3 had a longer median survival (22 months versus 11 months, p=0.03)(99). 

Patients with pre-operative tumour volumes >52 cm3 had shorter progression-

free intervals (8 months versus 11 months, p=0.02)(99). Using the volumetric 

measurement methods described by Gill and colleagues(101), Rusch and 

colleagues divided tumour volume into tertiles with mean volumes of 91.2 cm3, 

245.3 cm3, 511.3 cm3, with associated median overall survival of 37, 18 and 8 

months, respectively(102). Gill and colleagues measured pre-operative CT-based 

tumour volume in patients with MPM undergoing extra-pleural pneumonectomy 

and concluded that patients with tumour volume ≥500 cm3 had poorer OS 

compared with those with tumour volume ≤500 cm3 (24.4 months versus 12 

months, p<0.0001)(101). Paajanen and colleagues divided tumour size - 

calculated by the sum of the maximal tumour thickness and tumour extent grade 

of the pleural circumference (measured at the level of the carina) - into tertiles 

with the median OS in the lowest, middle and highest tumour volume groups 

being 14.0, 11.1 and 5.4 months, respectively (p=0.016)(103). In the present 

study, patients were excluded from the response classification survival analyses 

if they had a pre-chemotherapy and response assessment CT scan interval period 

of ≥100 days. This arbitrary threshold was chosen to ensure that only cases with 

imaging that aligned with clinical practice were included, i.e., four cycles of 

chemotherapy over three weeks equates to three months, or approximately 100 

days. 
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4.4.9 Differences in mRECIST-, human- and AI-defined volumetric response 

classification 

 

The chemotherapy partial response (PR) rate by mRECIST was 20%. This is similar 

to previous studies by Santoro and colleagues in their expanded access program 

(n=1704, PR 21.7-26.3%)(374) and in a meta-analysis of chemotherapy trials by 

Blayney and colleagues (n=526, PR 11%)(375). In the present study, stable 

disease (SD) as defined by mRECIST was the most common response rate (43%). 

In the aforementioned studies by Santoro and Blayney and respective colleagues, 

similar SD rates were reported (54.1%(374) and 75%(375), respectively). The low 

efficacy of doublet chemotherapy in MPM most likely explains the high 

progressive disease (PD) rate (37%) and low PR rate (13%) in the present study. 

Oxnard and colleagues reported similarly low PR rates (14%)(82). 

 

In the present study, there were differences in human volumetry- and AI-defined 

response assessment classifications. For example, human volumetry- and AI-

defined SD, PR and PD were 21/30 (70%), 9/30 (30%) and 5/30 (17%), 

respectively, and 13/30 (47%), 4/30 (13%) and 7/30 (23%), respectively. 

Moreover, there was moderate agreement in volumetric response classifications 

between human and AI (general κ 0.439), which increased to 0.586 when 

dichotomised into progressive disease and non-progressive disease. The most 

likely reason for only moderate agreement was the more detailed segmentation 

afforded by the human reader compared to the AI, i.e., in subtle areas such as 

non-pleural progressive disease. Our research group has previously reported that 

total tumour volume error can be as high as 60% due to uncertainty of only half a 

voxel in the edge delineation of pleural tumour(327). In addition, different 

thoracic cage tissues have overlapping Hounsfield units and MPM has a complex 

morphology which has been described in detail in Chapter 3. 

 

Fair agreement was observed in volumetric response classifications between 

mRECIST and AI (general κ 0.284). This poor agreement between mRECIST and 

AI-classification is most likely explained by the volumetric response thresholds 

chosen and may explain the differences observed between AI- and mRECIST-

defined volume changes and OS (i.e., p=0.6853 and p=0.0616, respectively). 
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4.4.10 Thresholds for AI and mRECIST response classification 

 

One of the most challenging aspects of this study was defining optimal 

volumetric thresholds for response assessment classification. Response 

assessment classification differs depending on the dimensionality of tumour 

measurement(376) and whether tumour volumetric, unidimensional or 

bidimensional techniques are employed in lung(331, 377, 378), breast(379, 380) 

and hepatocellular cancers(381). In MPM, there have been similar discrepancies 

between CT tumour volumetry-defined and mRECIST-defined response 

assessment classifications(324) as well as wide inter-observer variability with the 

mRECIST technique(81) and with volumetric measurements(108). 

 

The decision to define PR as a percentage volume change of -30% and PD +20% 

(with SD defined as percentage volume change between -30% to +20%) was based 

on criteria proposed by Oxnard and colleagues(82) who modelled the impact of 

non-spherical growth patterns on RECIST response criteria and found these to be 

unchanged when a crescent-shaped prism was assumed. These criteria were 

selected as volumetric response thresholds in the present study as they 

represented a good approximation of the pleural cavity which is demonstrated in 

Figure 2.9 in Chapter 2 of this thesis. 

 

Oxnard and colleagues also proposed alternative ‘volume equivalent’ PR and PD 

thresholds as a volume decrease of 65.7% and increase of 72.8%, respectively. 

These ‘volume equivalent’ criteria result in a broad SD percentage change range 

of 138.5%. Frauenfelder and colleagues applied by these ‘volume equivalent’ 

criteria as proposed by Oxnard and colleagues and reported mRECIST- and 

volumetry-defined SD in 7/30 (23%) and 20/30 (67%) cases, respectively, and PR 

in 16/30 (53%) and 2/30 (7%), respectively(108). A similarly broad SD range was 

reported in the present study with more patients classified as having SD 

according to human-volumetry than mRECIST (70% versus 43%). Ak and 

colleagues experienced the same (43% versus 33.3%) after defining PD as a 

tumour volume increase of ≥15% and PR as a decrease of 50%(107). Oxnard and 

colleagues reported RECIST and ‘volume equivalent’ SD of 73% and 91%, 

respectively(82). Volumetric measurements are sensitive to minimal change 
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during systemic anti-cancer therapy(334). Having such a large proportion of 

patients in the SD response assessment category risks equivocality and may not 

capture what constitutes a clinically important difference. 

 

4.4.11 Comparison with other computer-generated tumour volumes 

 

Although computer-generated volumetric measurement techniques have been 

reported in the MPM literature, to my knowledge, the CNN described in this 

chapter is the first fully automated system independent of human user input. 

Gudmundsson and colleagues reported a deep learning algorithm that utilised 

the same CNN architecture as the present study(136). However, it required 

manual input to define the hemi-thorax in which disease was present. Ak and 

colleagues reported a three-dimensional interpretation technique - termed 

Cavalieri’s geometrical principle of stereology - by counting the number of dots 

placed on representative tumour on cross-sectional imaging(107). Frauenfelder 

and colleagues reported semi-automated linear interpolation(108) and Chen and 

colleagues described a random walker algorithmic approach(112). 

 

4.4.12 Possible clinical implications 

 

The clinical implications of the successful deployment of a CNN-derived 

volumetric approach to pleural tumour segmentation are considerable. At 

present, mRECIST criteria and subjective visualisation of pleural tumour are the 

methods employed to determine response to treatment in patients with MPM and 

are associated with wide inter-observer variability. Human annotations which 

can be accurately measured by experts in pleural tumour interpretation are not 

routinely performed in clinical practice or in the clinical research setting due to 

the time taken to manually segment pleural tumour. The present study 

demonstrates that the CNN generates similar measurements to expert human 

annotations. 

Having accurate measures of disease response would improve clinical decision 

making, especially earlier cessation of toxic treatment if an AI-generated volume 

can segment more subtle interval changes compared to the traditional mRECIST 
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response assessment classification or subjective interpretative approaches. 

Moreover, the rapidity of AI algorithm volumetric processes when compared to 

manual human delineation could result in significant cost reductions(334). 

Further refinement is required to avoid variability in image quality and resultant 

inconsistency in response assessment classifications. Standardised image 

acquisition and large-scale validation are crucial in the ongoing development of 

automated tumour volumetry in patients with MPM. 

 

4.4.13 Study limitations and strengths 

 

The main limitation of this study has been my inability to advance the question 

of optimal volumetric response assessment thresholds further in the present 

study. This has been discussed in detail in Section 4.4.10 of this discussion. 

Larger studies are therefore essential to determine the optimal cut points for 

volumetric PR and PD in MPM. 

 

Another limitation of this study is the small sample size of 80 fully annotated 

scans and 43 part-annotated scans. CNN dataset often exceeds 10,000 images. 

However, the present study included volumetric measurements of entire CT 

image series resulting in a mean total of 2250 CT slices (10 patients with a mean 

of 225 CT slices each) which exceeds the comparisons made in previous studies. 

For example, Sensakovic and colleagues assessed 5 image slices in CT scans of 31 

patients(109) and Gudmundsson and colleagues assessed 69 scan slices of 27 

patients(136). Moreover, expert ground truth was provided rather than relying 

on minimal ground truth which is often utilised in larger commercial projects, 

thus improving the quality of the data fed into the CNN architecture. 

A third limitation was that the manual segmentation method was time-

consuming, averaging approximately 2.5 hours per scan. This would not be 

feasible due to the heavy workloads experienced by radiologists in standard 

clinical practice. Additionally, the level of thoracic oncology expertise required 

to accurately identify pleural tumour in mesothelioma will not be available in 

every hospital. 
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A further limitation is that only one human reader provided ground truth data 

and only one human reader provided mRECIST data. The mRECIST criteria in MPM 

is associated with intra- and inter-observer variabilities as the three pleural 

tumour measurements required as part of these criteria can be placed at 

different anatomical levels(75, 81, 82). This was also evidenced by Frauenfelder 

and colleagues who reported low inter-observer agreement (general κ 0.33) 

between their three readers using unidimensional tumour measurements(108). A 

more robust approach would have been double reading of CT scans +/- a 

consensus reader to resolve any mRECIST discrepancies. 

 

The retrospective study design is a further limitation. Disease stage, which is a 

key determinant of MPM prognosis, was unavailable in 41% and 20% of the 

patients included in the training and internal validation and external validation 

sets, respectively. However, both sets were broadly similar with a predominantly 

middle-aged, male population with good performance status receiving doublet 

chemotherapy, mirroring other studies assessing tumour volumetry in MPM(99, 

101, 102, 108). 

 

The performance of the algorithm was assessed on subjects from imaging centres 

across three different sites thus providing an unbiased assessment of 

performance using data from centres not involved in training the algorithm. Over 

the 10-year time period that the patients were recruited, a variety of scanners 

will have been used, resulting in important differences in the reconstruction and 

acquisition parameters. This lack of standardisation is common in retrospective 

datasets and may impact on the reliability of the results. Conversely, this 

multiplicity of scanners from different hospital sites will have partly off-set the 

potential for over-fitting compared to using a small study sample from one 

centre. 

 

The present study reported tumour volume generated entirely by a CNN 

algorithm. Volumetric assessment of lung nodules(382) and primary lung(383, 

384), pancreatic(385) and breast tumours(386) have been reported using deep 

learning algorithms. To my knowledge, this is the first study to do so in the MPM 

population. 
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4.5 Conclusions 

 

In this chapter, I have described the training and internal validation and external 

validation of an automated CNN to segment pleural tumour in MPM using 

detailed human ground truth. The development of an automated approach may 

facilitate a more accurate and less time-consuming approach to radiological 

response assessment which is an important metric in decision-making regarding 

response to systemic anti-cancer therapy. This represents the first step towards 

replacing mRECIST with volumetric response assessment. Implementation of this 

larger goal requires calibration of optimal and validated response assessment 

cut-off thresholds to help define what constitutes a clinically important 

difference between human and AI volumetry measurements. 
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Chapter 5 

PREVALENCE, PATTERN AND PROGNOSTIC 

SIGNIFICANCE OF ALTERED BODY COMPOSITION IN 

PATIENTS WITH CHEMOTHERAPY-TREATED MPM 
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5 Chapter 5: Prevalence, pattern and prognostic 

significance of altered body composition in patients 

with chemotherapy-treated MPM 

 

5.1 Introduction 

 

Survival prediction is important in guiding treatment decisions and identifying 

patients most at risk of developing toxicities to systemic anti-cancer therapy 

(SACT). The current survival prediction models in patients with malignant pleural 

mesothelioma (MPM) do not include measures of altered body composition such 

as the loss of skeletal muscle mass – also termed sarcopenia – which is associated 

with chemotherapy toxicity and poorer overall survival (OS) in other cancer 

cohorts(173, 175, 176). Although frequently encountered in the clinical setting, 

there are little data describing the prevalence of sarcopenia in patients with 

MPM. Recent studies utilising dual-energy X-ray absorptiometry (DEXA) have 

defined pre-sarcopenia and sarcopenia in patients with MPM(257, 283). However, 

DEXA is not routinely performed in the clinical setting and measures lean body 

mass which is not equivalent to muscle mass(387, 388). Computed tomography 

(CT) has the advantage of being available through its use in clinical practice. 

Sarcopenia linked to adverse outcomes in patients with other solid organ cancers 

have traditionally been acquired at the level of the third lumbar vertebrae 

(L3)(251, 305). However, CT scans acquired in patients with thoracic malignancy 

may not extend inferiorly to include this vertebral level and those researching 

thoracic malignancy have sought alternative measures of skeletal muscle area, 

including the fourth thoracic vertebra (T4) as a surrogate marker of 

sarcopenia(311, 313). 

 

Adipopenia - or the loss of fat mass - is another feature of the cancer cachexia 

syndrome that is prognostically significant in patients with lung(389-392), 

gastrointestinal and lung(393), gastric(394, 395), breast(396) and renal cell 

cancers(397). Very few data exist regarding adiposity indices in MPM(190, 257). 
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This chapter describes a retrospective cohort study based on measures of 

skeletal muscle and adipose tissue at L3 and skeletal muscle at T4 in patients 

with chemotherapy-treated MPM to determine if altered body composition at 

these levels is associated with poorer OS and response to treatment. 
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5.2 Methods 

 

A detailed description of the methods is provided in Chapter 2, Section 2.3. 

 

The objectives and associated outcome measures for this study are detailed in 

Chapter 2, Section 2.3.1. To summarise, the primary objective was to determine 

the prevalence of sarcopenia and adipopenia at L3 and T4 and the prevalence of 

sarcopenia at T4. Secondary objectives included demonstration of any prognostic 

association of these measures and their reproducibility. I also addressed several 

exploratory objectives, including determining the frequency of asymmetrical T4 

sarcopenia ipsilateral to the primary tumour and the prognostic impact of this if 

present. I also looked for relationships between patterns of sarcopenia and 

adipopenia at L3 and T4 and measures of systemic inflammation and primary 

tumour volume, the latter derived from the measurements I made in Chapter 4. 
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5.3 Results 

 

5.3.1 Study population 

 

147 patients were screened. 91 patients had height and weight data and an 

identifiable L3 on pre-chemotherapy and response assessment time points. 111 

patients had height and weight data and an identifiable T4 on pre-chemotherapy 

and response assessment time points. 47/111 patients in the T4 group had 

inflammatory indices at pre-chemotherapy and response assessment time points. 

This is illustrated in Figure 5.1. 

 

Table 5.1 summarises the clinicopathological characteristics of the study cohort. 

Patients were predominantly male (82%) with epithelioid mesothelioma (81%) 

and a performance status (PS) of 0 (26%) or 1 (50%). The pre-chemotherapy 

inflammatory indices were frequently within normal limits. Approximately 29% of 

patients had a response to chemotherapy. The baseline median tumour volume 

was 377 [IQR 279 to 524] cm3 and median survival from the date of pre-

chemotherapy CT scan to death from any cause was 389 days, or 12.8 months. 
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T4 sub-study 
n=47 

Screened cases 
n=147 

Cases prior to imaging review 
n=120 

Excluded: 
No height &/or weight 
available, n=27 

Excluded: 
No identifiable L3, n=29 

Excluded: 
No identifiable T4, n=9 

Excluded: 
Cases without paired pre-
chemotherapy & 
response assessment 
inflammatory indices, 
n=64 

L3 
n=91 

T4 
n=111 

Figure 5.1 Flowchart of body composition study 
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Table 5.1 Clinicopathological characteristics in patients with MPM who received 

chemotherapy 

 L3 (n=91) 

Median [IQR] or n (%) 

T4 (n=111) 

Median [IQR] or n (%) 

Age, years 69 [64-73] 69 [63–72] 

Male sex 72 (80%) 91 (82%) 

ECOG PS 0 26 (29%) 30 (26%) 

ECOG PS 1 42 (46%) 55 (50%) 

ECOG PS 2 7 (8%) 8 (7%) 

ECOG PS not defined 16 (18%) 18 (16%) 

Epithelioid sub-type 74 (81%) 90 (81%) 

Biphasic sub-type 7 (8%) 8 (7%) 

Sarcomatoid sub-type 8 (9%) 10 (8%) 

Unspecified sub-type 2 (2%) 3 (3%) 

Disease stage I 36 (40%) 45 (41%) 

Disease stage II 16 (18%) 22 (20%) 

Disease stage III 17 (19%) 12 (11%) 

Disease stage IV 10 (11%) 19 (17%) 

Median number of cycles 4 [3–4] 4 [3–4] 

PC WCC, x109/L 8.6 [7.4–11.2] 8.6 [7.3–11.0] 

PC neutrophils, x109/L 5.7 [4.9–8.1] 5.8 [4.9–8.0] 

PC lymphocytes, x109/L 1.5 [1.1–2.1] 1.5 [1.0–2.0] 

PC platelets, x109/L 350 [285–431] 343 [281–418] 

PC NLR 4 [3–6] 4 [2–6] 

PC PLR 245 [170–348] 234 [167–351] 

PC albumin, g/L 36 [30–40] 35 [30–39] 

PC CRP, mg/L 29 [8–57] 25 [8–49] 

mRECIST: progressive disease 23 (25%) 27 (24%) 

mRECIST: stable disease 36 (40%) 45 (41%) 

mRECIST: partial response 25 (27%) 32 (29%) 

PC tumour volume, cm3 377 [277–520] 377 [279–524] 

Survival, days 389 [251-63] 389 [279–524] 

CRP: C-reactive protein; ECOG PS: Eastern Cooperative Oncology Group performance 

status; mRECIST: modified Response Evaluation in Solid Organ Tumours; NLR: 

neutrophil:lymphocyte ratio; PC: pre-chemotherapy; PLR: platelet:lymphocyte ratio; 

WCC: white cell count 
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5.3.2 Primary objective 

 

5.3.2.1 Prevalence and pattern of sarcopenia and adipopenia at L3 

 

5.3.2.1.1 Sarcopenia 

 

The prevalence of sarcopenia - defined by the Martin and colleagues 

criteria(186) – was 32/91 (35%) at pre-chemotherapy and 44/91 (48%) at 

response assessment time points (see Table 5.2). The median pre-chemotherapy 

and response assessment L3SMI were 50 [IQR 44 to 57] cm2/m2 and 47 [IQR 42 to 

57] cm2/m2, respectively. The median L3SMI percentage change between pre-

chemotherapy and response assessment was -2.4 [IQR -9 to 1.4] %. 

 

5.3.2.1.2 Adipopenia 

 

The prevalence of adipopenia – defined as total fat index (TFI) mean minus 1 SD 

- was 13/91 (14%) at pre-chemotherapy and 14/91 (15%) at response assessment 

time points (see Table 5.2). The mean pre-chemotherapy and response 

assessment total fat indices were 126.6 (SD 57.6) cm2/m2 and 122 (SD 66.4) 

cm2/m2, respectively. The mean TFI percentage change between pre-

chemotherapy and response assessment was -6.17 (SD 29.8) %.  
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5.3.2.2 Prevalence and pattern of sarcopenia at T4 

 

The prevalence of sarcopenia at T4 – defined as T4SMI values below the 25th 

percentile - was 32/111 (28%) at pre-chemotherapy and 35/111 (32%) at 

response assessment time points (see Table 5.2). The median pre-chemotherapy 

and response assessment T4SMI were 54.3 [IQR 48.7 to 60.3] cm2/m2 and 53.1 

[IQR 47.6 to 60.1] cm2/m2, respectively. The mean T4SMI percentage change 

between pre-chemotherapy and response assessment was -1.5 (SD 13.4) %. 

 

Table 5.2 Body composition measurements at L3 (n=91) and T4 (n=111) 

 Median [IQR] or mean 

(SD) 

n (%) 

Pre-chemotherapy  

L3SMI, cm2/m2 50 [44–57] 35/91 (35%) 

TFI, cm2/m2 126.6 (57.6) 13/91 (14%) 

T4SMI, cm2/m2 54.3 [48.7-60.3] 32/111 (28%) 

Response assessment  

L3SMI, cm2/m2 47 [42–57] 44/91 (48%) 

TFI, cm2/m2 122 (66.4) 14/91 (15%) 

T4SMI, cm2/m2 53.1 [47.6-60.1] 35/111 (32%) 

L3SMI: skeletal muscle index at the third lumbar vertebra; T4SMI: skeletal 

muscle index at the fourth thoracic vertebra; TFI: total fat index 
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5.3.3 Secondary objectives 

 

5.3.3.1.1 L3 measures and systemic inflammation and tumour volume 

 

Figure 5.2 illustrates associations of skeletal muscle and fat indices, 

inflammatory indices and tumour volume according to adjusted p-values. 

Patients with lower body weight had greater TFI and visceral fat index (VFI) 

percentage changes (r=-0.34, 95% CI -0.54 to -0.17, p<0.001, and r=-0.48, 95% CI 

-0.63 to -0.30, p<0.001, respectively). Similar, patients with lower BMI had 

higher TFI and VFI percentage changes (r=-0.41, 95% CI -0.57 to -0.22, p<0.001, 

and r=-0.44, 95% CI -0.59 to -0.25, p<0.001, respectively). Subcutaneous fat 

index (SFI) percentage change positively correlated with pre-chemotherapy 

weight (r=0.31, 95% CI 0.10 to 0.49, p=0.003) and BMI (r=0.36, 95% CI 0.16 to 

0.53, p<0.001). VFI percentage change positively correlated with pre-

chemotherapy platelets (r=0.30, 95% CI 0.08 to 0.49, p=0.006). 

 

Tumour volume negatively correlated with pre-chemotherapy lymphocytes (r=-

0.30, 95% CI -0.51 to -0.06, p=0.013) and positively correlated with pre-

chemotherapy NLR (r=0.33, 95% CI 0.09 to 0.53, p=0.007), PLR (r=0.34, 95% CI 

0.11 to 0.54, p=0.004) and CRP (r=0.30, 95% CI 0.02 to 0.54, p=0.032). 
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Figure 5.2 Heatmap of adjusted p-values summarising associations of L3 skeletal 

muscle and adipose indices and inflammatory indices and tumour volume in 91 

patients with MPM 

 

  



195 

5.3.3.1.2 T4 measures and systemic inflammation and tumour volume 

 

T4SMI percentage change did not correlate with any pre-chemotherapy 

inflammatory indices (see Figure 5.3, Panel A). T4SMI did not correlate with 

tumour volume (r=-0.03, 95% CI -0.25 to 0.20, p=0.819). 

 

Ipsilateral T4SMI did not correlate with any pre-chemotherapy inflammatory 

indices (see Figure 5.3, Panel B). Ipsilateral T4SMI did not correlate with tumour 

volume (r=-0.14, 95% CI -0.36 to 0.087, p=0.210, see Figure 5.3, Panel B). 

 

Tumour volume negatively correlated with pre-chemotherapy lymphocytes (r=-

0.28, 95% CI -0.49 to -0.05, p=0.016) and positively correlated with pre-

chemotherapy NLR (r=0.29, 95% CI 0.05 to 0.49, p=0.014), PLR (r=0.31, 95% CI 

0.07 to 0.51, p=0.009) and CRP (r=0.32, 95% CI 0.05 to 0.55, p=0.018). 
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Figure 5.3 Heatmap of adjusted p-values summarising associations of total T4 

skeletal muscle index percentage change (Panel A) and ipsilateral T4SMI 

percentage change (Panel B) and inflammatory indices and tumour volume in 111 

patients with MPM 
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Table 5.3 summarises the pre-chemotherapy and response assessment 

inflammatory indices in a single centre sub-group of 47 patients. There was a 

weakly positive correlation between response assessment albumin and T4SMI 

percentage change (r=0.32, 95% CI 0.02 to 0.56, p=0.036, see Table 5.4). There 

were no correlations between ipsilateral T4SMI and pre-chemotherapy and 

response assessment inflammatory indices (see Table 5.4). 

 

Table 5.3 Inflammatory indices between pre-chemotherapy and response 

assessment time points in a single centre sub-group of 47 patients with MPM 

Pre-chemotherapy bloods Mean (SD) or median [IQR] 

WCC, x109/L 9.8 (3.2) 

Neutrophils, x109/L 6.1 [5.1-8.2] 

Lymphocytes, x109/L 1.7 (0.7) 

Platelets, x109/L 353 [285-416] 

NLR 3.9 [2.9-5.9] 

PLR 249 (116) 

Albumin, g/L 31.9 (6) 

CRP, mg/L 33 [13.5-71.5] 

Response assessment bloods  

WCC, x109/L 7.7 [5.9-11.6] 

Neutrophils, x109/L 5 [2.7-8.4] 

Lymphocytes, x109/L 1.2 [1.0-1.9] 

Platelets, x109/L 338 [254-488] 

NLR 3.9 [1.8-7.2] 

PLR 264 [180-439] 

Albumin, g/L 29.9 (7.0) 

CRP, mg/L 62 [16-136] 

CRP: C-reactive protein; NLR: neutrophil:lymphocyte ratio; PLR: 

platelet:lymphocyte ratio; WCC: white cell count 

 

  



198 

Table 5.4 Correlation matrices of p-values of T4 skeletal muscle indices and inflammatory indices of a single centre sub-group of 47 

patients with MPM 

 Pre-chemotherapy 

WCC Neutrophils Lymphocytes Platelets NLR PLR Albumin CRP 

T4SMI % 

change 

0.168 0.408 0.159 0.793 0.338 0.636 0.513 0.642 

Ipsilateral 

T4SMI % 

change 

0.196 0.180 0.122 0.911 0.057 0.256 0.450 0.558 

 Response assessment 

WCC Neutrophils Lymphocytes Platelets NLR PLR Albumin CRP 

T4SMI % 

change 

0.154 0.120 0.843 0.529 0.128 0.779 0.036 0.543 

Ipsilateral 

T4SMI % 

change 

0.106 0.072 0.835 0.634 0.095 0.747 0.206 0.638 

CRP: C-reactive protein; NLR: neutrophil:lymphocyte ratio; PLR: platelet:lymphocyte ratio; T4SMI % and T4SMI 

Ipsilateral % change: percentage change in fourth thoracic vertebra (T4) skeletal muscle index and Ipsilateral 

T4SMI between pre-chemotherapy and response assessment time points; WCC: white cell count 
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When dichotomised into decreasing thoracic skeletal muscle index groups and 

increasing inflammatory indices groups, there was an association between 

ipsilateral T4SMI and NLR (X2 4.97, p=0.026, see Table 5.5). 

 

Table 5.5 Chi square of decreased T4SMI percentage change and increasing 

inflammatory indices between pre-chemotherapy and response assessment 

inflammatory indices in a single centre sub-group of 47 patients with MPM 

 T4SMI Ipsilateral T4SMI 

X2 p-value* X2 p-value* 

WCC 0.015 0.901 1.091 0.296 

Neutrophils 0.096 0.756 0.658 0.417 

Lymphocytes 0.006 0.937 0.006 0.937 

Platelets 0.643 0.423 0.672 0.412 

NLR 0.018 0.894 4.968 0.026 

PLR 0.073 0.787 0.006 0.937 

Albumin 0.256 0.613 0.256 0.613 

CRP 0.065 0.798 1.046 0.306 

CRP: C-reactive protein; NLR: neutrophil:lymphocyte ratio; PLR: 

platelet:lymphocyte ratio; WCC: white cell count; X2: chi square 

*Fisher’s exact test 
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5.3.3.1.3 Survival at L3 and T4 

 

5.3.3.1.3.1 Sarcopenia at L3 

 

The pre-chemotherapy sarcopenia group trended towards shorter OS compared 

to the non-sarcopenia group (315 days versus 416 days, HR 1.49, 95% CI 0.95 to 

2.52, p=0.077, see Figure 5.4: Panel A). 

 

The response assessment sarcopenia group trended towards shorter OS compared 

to the non-sarcopenia group (334 days versus 420 days, HR 1.47, 95% CI 0.95 to 

2.27, p=0.0702, see Figure 5.4: Panel B). 

 

24 (26.4%) patients had a L3SMI percentage change loss of ≥9% (below 25th 

percentile) between pre-chemotherapy and response assessment time points. 

The decreased L3SMI did not have shorter OS compared to the non-sarcopenia 

group (369 days versus 375 days, HR 1.20, 95% CI 0.72 to 2.00, p=0.4456, see 

Figure 5.4: Panel C). 
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Figure 5.4 Kaplan-Meier curves and number at risk tables illustrating no survival 

differences in overall survival (OS) and L3 muscle index differences at pre-

chemotherapy (Panel A) and response assessment (Panel B) time points and in 

patients who lose skeletal muscle at L3 during chemotherapy (Panel C)  
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5.3.3.1.3.2 Sarcopenia at T4 

 

There was no difference in survival rates in the pre-chemotherapy T4SMI muscle 

losing and non-muscle losing groups (379 versus 399 days, HR 1.10, 95% CI 0.72 

to 1.70, p=0.65, see Figure 5.5: Panel A). 

 

There was no difference in survival rates in the response assessment T4SMI 

muscle losing and non-muscle losing groups (302 versus 438 days, HR 1.47, 95% CI 

0.94 to 2.31, p=0.06, see Figure 5.5: Panel B). 

 

Patients who had a T4SMI percentage change of -14.9% (mean minus 1 standard 

deviation) between pre-chemotherapy and response assessment time points 

were defined as losing muscle (n=15, 13.5%). The T4SMI muscle losing group had 

a shorter OS compared to the non-muscle losing group (215 versus 420 days, HR 

2.79, 95% CI 1.22 to 6.40, p<0.0001, see Figure 5.5: Panel C). 
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Figure 5.5 Kaplan-Meier curves and number at risk tables illustrating no survival 

differences in overall survival (OS) and pre-chemotherapy (Panel A) and response 

assessment (Panel B) fourth thoracic vertebra skeletal muscle indices. Panel C 

illustrates poorer OS in patients who lost thoracic skeletal muscle during 

chemotherapy (Panel C) 
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Sub-group analyses were performed with stratification by stage and pre-

chemotherapy tumour volume. When stratified by stage, patients in the T4SMI 

muscle losing and disease stage>1 group had shorter OS than with patients who 

did not lose T4SMI with earlier-stage disease (253 versus 416 days, HR 2.31, 95% 

CI 0.91 to 5.87, p=0.0096, see Figure 5.6: Panel A). When stratified by pre-

chemotherapy tumour volume, patients with in the decreased T4SMI group with 

tumour volume ≥377 cm3 had shorter OS than with patients who maintained 

T4SMI with lower tumour volume (233 versus 404 days, HR 4.58, 95% CI 0.86 to 

24.46, p<0.0001, Figure 5.6: Panel B). 

 

Figure 5.6 Kaplan-Meier curves and number at risk tables illustrating poorer OS 

in those patients with higher disease stage losing skeletal muscle at T4 during 

chemotherapy (Panel A) and in those patients with higher pre-chemotherapy 

tumour volume losing thoracic skeletal muscle during chemotherapy (Panel B) 
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Table 5.6 illustrates the survival differences of thoracic sarcopenia between 

males and females. There was no difference in survival in males or females with 

pre-chemotherapy thoracic sarcopenia (males 350 versus 401 days, HR 1.47, 95% 

CI 0.83 to 2.6, p=0.1358; and females 450 versus 266 days, HR 1.04, 95% CI 0.41 

to 2.6, p=0.9364). Male patients with thoracic sarcopenia had shorter OS at the 

response assessment time point despite there being no survival difference when 

the entire cohort was assessed (293 versus 450 days, HR 1.87, 95% CI 1.08 to 

3.25, p=0.0063). Male and female patients losing thoracic skeletal muscle during 

chemotherapy continued to have a shorter OS (males 233 versus 410 days, HR 

2.48, 95% CI 1.1 to 5.61, p=0.0011; and females 155 versus 450 days, HR 21.12, 

95% CI 0.003 to 136994, p<0.0001). It is important to note that only 1 event, 

i.e., muscle loss during chemotherapy, was available in the latter female 

survival analysis cohort which is reflected in the very wide confidence intervals 

reported. 

 

Table 5.6 Hazard ratios from Log Rank test for T4SMI indices between males and 

females 

 Hazard ratios 95% CI p-value 

Pre-chemotherapy 

T4SMI Males 1.47 0.83 to 2.6 0.1358 

T4SMI Females 1.04 0.41 to 2.6 0.9364 

Response assessment 

T4SMI Males 1.87 1.08 to 3.25 0.0063 

T4SMI Females 1.18 0.48 to 2.94 0.7027 

Muscle loss during chemotherapy 

T4SMI Males 2.48 1.1 to 5.61 0.0011 

T4SMI Females 21.12 0.003 to 136994 <0.0001 

T4SMI: skeletal muscle index at fourth thoracic vertebra 
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Table 5.7 illustrates the univariate analyses of factors contributing to OS in 

patients with chemotherapy-treated MPM. Elevated pre-chemotherapy 

inflammatory markers (white cell count, neutrophils and CRP) as well as T4SMI 

and ipsilateral T4SMI muscle loss during chemotherapy were significant 

predictors for OS. 

 

Two multivariate models are included in Table 5.7. In the first model, T4SMI  

muscle loss during chemotherapy (HR 2.15, 95% CI 1.02 to 4.54, p=0.045) and  

pre-chemotherapy neutrophils (HR 2.05, 95% CI 1.20 to 3.52, p=0.019) were  

significant predictors for OS. In the second model, T4SMI ipsilateral muscle loss  

during chemotherapy (HR 2.85, 95% CI 1.17 to 6.94, p=0.021) and higher  

neutrophils (HR 1.81, 95% CI 1.04 to 3.16, p=0.037) were significant predictors 

for OS. 
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Table 5.7 Univariate and multivariate analyses of factors contributing to overall survival in 111 patients with MPM 

 Univariate Multivariate model 1 Multivariate model 2 

Variables HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value 

Age ≥69 1.026 (0.694–1.516) 0.899     

Male gender 1.439 (0.858–2.414) 0.168     

ECOG PS >0 1.039 (0.648–1.667) 0.874     

Epithelioid 0.611 (0.373–1.004) 0.052     

Non-epithelioid 1.611 (0.910–2.852) 0.121     

Disease stage >I 1.480 (0.971–2.256) 0.069     

Pre-chemotherapy weight 

≤75.9 kg 

1.188 (0.803–1.757) 0.389     

Pre-chemotherapy BMI ≥30 

kg/m2 

0.639 (0.397-1.028) 0.065     

Pre-chemotherapy BMI 

≤18.5 kg/m2 

1.353 (0.425-431) 0.609     

Pre-chemotherapy WCC 

≥8.6 x 109/L 

1.637 (1.079–2.484) 0.021     

Pre-chemotherapy 

neutrophils ≥5.7 x 109/L 

1.841 (1.190–2.847) 0.006 2.050 (1.195-3.517) 0.019 1.809 (1.037-3.155) 0.037 
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Pre-chemotherapy 

lymphocytes ≥1.5 x 109/L 

0.967 (0.643–1.454) 0.872     

Pre-chemotherapy platelets 

≥244 x 109/L 

1.493 (0.993–2.246) 0.054     

Pre-chemotherapy NLR ≥4.1 1.380 (0.902–2.110) 0.138     

Pre-chemotherapy PLR ≥234 1.258 (0.828–1.912) 0.283     

Pre-chemotherapy albumin 

≤35 g/L 

1.263 (0.834–1.914) 0.270     

Pre-chemotherapy CRP ≥25 

mg/L 

1.849 (1.119–3.057) 0.017 1.500 (0.889-1.500) 0.129 1.576 (0.939-2.645) 0.085 

Pre-chemotherapy tumour 

volume ≥377 cm3 

1.563 (0.978–2.498) 0.062     

T4SMI percentage change 

muscle loss 

2.923 (1.66-5.146) <0.001 2.147 (1.016-4.537) 0.045   

Ipsilateral T4SMI percentage 

change muscle loss 

3.24 (1.823-5.76) <0.001   2.853 (1.173-6.939) 0.021 

BMI: body mass index; CI: confidence interval; CRP: C-reactive protein; ECOG PS: Eastern Cooperative Oncology Group performance 

status; Hb: haemoglobin; HR: hazard ratio; NLR: neutrophil:lymphocyte ratio; PLR: platelet:lymphocyte ratio; T4SMI: skeletal 

muscle index at fourth thoracic vertebra; WCC: white cell count 
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5.3.3.1.3.3 Adipopenia at L3 

 

There was a statistically significant difference in OS between the pre-

chemotherapy total fat index (TFI, cm2/m2) losing and non-losing groups (336 

versus 380 days, HR 1.65, 95% CI 0.91 to 3.25, p=0.0038). Pre-chemotherapy 

visceral fat index (VFI, cm2/m2) loss trended towards significance (339 versus 

379 days, HR 1.68, 95% CI 0.88 to 3.24, p=0.051). Patients with lower pre-

chemotherapy subcutaneous fat index (SFI, cm2/m2) had shorter OS compared 

to those with higher SFI (317 versus 394 days, HR 1.82, 95% CI 1.02 to 3.26 

p=0.011). Patients with lower response assessment TFI did not have shorter OS 

compared to those with higher TFI (308 versus 382 days, HR 1.71, 95% CI 0.85 to 

3.43, p=0.058). There was no statistically significant difference in the response 

assessment VFI losing and non-losing groups (320 versus 379 days, HR 1.72, 95% 

CI 0.85 to 3.45, p=0.057). Patients with lower response assessment SFI had 

shorter OS compared to those with higher SFI (307 versus 401 days, HR 1.93, 95% 

CI 1.07 to 3.48, p=0.005) 

 

Table 5.8 Hazard ratios from Log Rank test for pre-chemotherapy and response 

assessment adipose tissue indices in 91 patients with MPM 

 Hazard ratios 95% CI p-value 

Pre-chemotherapy 

TFI 1.72 0.91 to 3.25 0.038 

VFI 1.68 0.88 to 3.24 0.051 

SFI 1.82 1.02 to 3.26 0.011 

Response assessment 

TFI 1.71 0.85 to 3.43 0.058 

VFI 1.72 0.85 to 3.45 0.057 

SFI 1.93 1.07 to 3.48 0.005 

SFI: subcutaneous fat index; TFI: total fat index; VFI: visceral fat index 
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Thresholds for low and high adipose tissue mass were determined as those 

patients below the 25th percentile for TFI, VFI and SFI based on distribution of 

percentage changes between pre-chemotherapy and response assessment time 

points. 

 

There were no statistically significant differences between patients who lost TFI 

between pre-chemotherapy and response assessment time points and those who 

did not (305 versus 394 days, HR 1.54, 95% CI 0.88 to 2.69, p=0.0793, see Figure 

5.7: Panel A). 

 

Patients who lost VFI between pre-chemotherapy and response assessment time 

points had shorter OS compared to those with higher VFI (272 versus 401 days, 

HR 1.95, 95% CI 1.05 to 3.62, p=0.0067, see Figure 5.7: Panel B). 

 

There were no statistically significant differences between patients who lost SFI 

between pre-chemotherapy and response assessment time points and those who 

did not (336 versus 380 days, HR 1.24, 95% CI 0.73 to 2.18, p=0.386), see Figure 

5.7: Panel C). 
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Figure 5.7 Kaplan-Meier curves and number at risk tables illustrating the survival 

advantage afforded by not losing total fat (Panel A) and visceral fat (Panel B) 

between pre-chemotherapy and response assessment time points. Subcutaneous 

fat tissue loss was not associated with overall survival (Panel C)  
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Table 5.9 illustrates the univariate and multivariate analyses of factors 

contributing to OS in patients with L3SMI and adipose indices. Epithelioid sub-

type, elevated pre-chemotherapy BMI, visceral fat loss during chemotherapy and 

elevated pre-chemotherapy inflammatory markers (pre-chemotherapy 

lymphocytes and neutrophils) were significant predictors for OS. 

 

The multivariate models are illustrated in Table 5.9. The multivariate models 

are illustrated in Table 5.9. Epithelioid subtype (HR 0.47, 95% CI 0.26 to 0.86, 

p=0.014), obesity (HR 0.36, 95% CI 0.20 to 0.65, p<0.001), greater VFI 

percentage change loss (HR 1.81, 95% CI 1.04 to 3.13, p=0.035) and higher pre-

chemotherapy neutrophils (HR 1.62, 95% CI 1.01 to 1.62, p=0.048) were 

significant independent predictors for OS. Obesity was significant and 

outperformed MPM sub-type and NLR which are both established prognostic 

variables. 
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Table 5.9 Univariate and multivariate analyses of factors contributing to overall survival in 91 patients with MPM 

 Univariate Multivariate 

Variables HR (95% CI) p-value HR (95% CI) p-value 

Age ≥69 1.14 (0.732-1.774) 0.563   

Male gender 1.564 (0.904-2.705) 0.110   

ECOG PS >0 1.139 (0.685-1.893) 0.614   

Epithelioid 0.517 (0.296-0.903) 0.020 0.472 (0.261-0.856) 0.014 

Disease stage >I 1.532 (0.952-2.464) 0.077   

Pre-chemotherapy weight ≤75.9 

kg 

1.373 (0.888-2.123) 0.154   

Pre-chemotherapy BMI ≥30 

kg/m2 

0.418 (0.240-0.730) 0.002 0.361 (0.202-0.647) <0.001 

Pre-chemotherapy BMI ≤18.5 

kg/m2 

1.207 (0.378-3.859) 0.751   

Pre-chemotherapy WCC ≥8.6 

x109/L 

1.405 (0.891-2.215) 0.143   

Pre-chemotherapy neutrophils 

≥5.7 x109/L 

1.762 (1.093-2.839) 0.020 1.623 (1.005-1.621) 0.048 

Pre-chemotherapy lymphocytes 

≥1.5 x109/L 

1.145 (0.731-1.792) 0.555   
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Pre-chemotherapy platelets ≥244 

x109/L 

1.231 (0.787-1.928) 0.363   

Pre-chemotherapy NLR ≥4.1 1.246 (0.784-1.981) 0.352   

Pre-chemotherapy PLR ≥234 1.185 (0.749-1.875) 0.469   

Pre-chemotherapy albumin ≤35 

g/L 

1.401 (0.881-2.229) 0.155   

Pre-chemotherapy CRP ≥25 mg/L 1.672 (0.951-2.943) 0.074   

Pre-chemotherapy tumour 

volume ≥377 cm3 

1.595 (0.977-2.605) 0.062   

L3SMI muscle loss 1.231 (0.748-2.027) 0.423   

TFI loss (percentage change) 1.799 (0.965-3.356) 0.084   

VFI loss (percentage change) 2.048 (1.166-3.595) 0.008 1.807 (1.043-3.131) p=0.035 

BMI: body mass index; CI: confidence interval; CRP: C-reactive protein; ECOG PS: Eastern Cooperative 

Oncology Group performance status; Hb: haemoglobin; HR: hazard ratio; NLR: neutrophil:lymphocyte 

ratio; PLR: platelet:lymphocyte ratio; T4SMI: skeletal muscle index at fourth thoracic vertebra; WCC: 

white cell count 
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5.3.3.1.4 Reproducibility at L3 

 

L3SMI intra-observer agreement was excellent (ICC 0.987, 95% CI 0.975 to 0.994, 

p=0.000), with a mean difference of -2.8 (SD 3.8) cm2/m2. L3SMI inter-observer 

agreement was excellent (ICC 0.985, 95% CI 0.971 to 0.992, p=0.000), with a 

mean difference of -3.0 (SD 2.0) cm2/m2. 

 

Inter-observer agreement was excellent for VFI (ICC 0.998, 95% CI 0.997 to 

0.999, p<0.0001) and SFI (ICC 0.996, 95% CI 0.992 to 0.998, p<0.0001). TFI ICC, 

by definition, was 1.0 as it is the sum of VFI and SFI. Intra-observer agreement 

was excellent for VFI (ICC 0.962, 95% CI 0.925 to 0.981, p<0.001) and SFI (ICC 

0.969, 95% CI 0.938 to 0.984, p<0.001). TFI ICC, by definition, was 1.0 as it is the 

sum of VFI and SFI. 

 

5.3.3.1.5 Reproducibility at T4 

 

T4SMI intra-observer agreement was excellent (ICC 0.988, 95% CI 0.977 to 0.994, 

p=0.000), with a mean difference of -0.7 (SD 2.2) cm2/m2. T4SMI inter-observer 

agreement was good (ICC 0.831, 95% CI 0.665 to 0.915, p=0.000), with a mean 

difference of 2.2 (SD 8.9) cm2/m2. 
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5.3.4 Exploratory objectives 

 

5.3.4.1 Ipsilateral T4 and survival 

 

T4SMI was divided into ipsilateral and contralateral compartments as 

demonstrated in Chapter 2, Section 2.3.6.3. The median pre-chemotherapy and 

response assessment ipsilateral T4SMI were 26.3 [IQR 23.6 to 29.8] cm2/m2 and 

25.9 [IQR 23.1 to 29.4] cm2/m2, respectively. Patients with ipsilateral T4SMI 

muscle loss of 16.9% (mean minus 1 standard deviation) were included. 

 

Patients in the muscle losing pre-chemotherapy group did not have improved OS 

than the non-losing ipsilateral T4SMI group (399 versus 382 days, HR 1.02, 95% CI 

0.65 to 1.59, p=0.9245, see Figure 5.8: Panel A). 

 

Patients in the muscle losing response assessment ipsilateral T4SMI group had 

shorter OS than the non-losing muscle losing group (297 versus 433 days, HR 

1.78, 95% CI 1.05 to 3.02, p=0.0093, see Figure 5.8: Panel B). 

 

Patients who had an ipsilateral T4SMI percentage change of -16.9% (mean minus 

1 standard deviation) between pre-chemotherapy and response assessment time 

points were defined as those losing muscle (n=16, 14.4%). The ipsilateral T4SMI 

muscle losing group had a shorter OS compared to the non-muscle losing group 

(255 versus 433 days, HR 2.91, 95% CI 1.28 to 6.59, p<0.0001), Figure 5.8: Panel 

C). 



217 

 

Figure 5.8 Kaplan-Meier curves and number at risk tables illustrating overall 

survival stratified by muscle losing and non-losing groups, Panel A) pre-

chemotherapy ipsilateral (to tumour) T4SMI, Panel B), response assessment 

ipsilateral T4SMI, and, Panel C) ipsilateral T4SMI percentage change between 

pre-chemotherapy and response assessment scans  
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5.3.4.2 Chemotherapy treatment completion and response to treatment 

 

5.3.4.2.1 Relationship between chemotherapy treatment completion and 

response to treatment at L3 

 

33 (37.4%) patients received less than four cycles of chemotherapy due to 

toxicity, progression whilst on treatment or death. 8/15 (61.5%) patients in the 

TFI percentage change losing group received less than 4 cycles of chemotherapy. 

26/78 (33.3%) patients in the TFI percentage change non-losing group received 

less than 4 cycles. This was not statistically significant (p=0.067, using Fisher’s 

exact test). 9/17 (52.9%) patients in the TFI percentage change losing group 

received less than 4 cycles of chemotherapy. 25/74 (75.3%) patients in the TFI 

percentage change non-losing group received less than 4 cycles. This was not 

statistically significant (p=0.1697, using Fisher’s exact test). 

 

The mean percentage changes in TFI in patients who had mRECIST-defined 

progressive disease (PD), stable disease (SD) and partial response (PR) were -

16.65 (SD 31.33) %, -2.972 (SD 24.4) % and -2.680 (SD 35.4) %, respectively. 

Response to chemotherapy was not associated with percentage change in TFI 

(p=0.1748, see Figure 5.9: Panel A). When dichotomised into mRECIST-defined 

PD and non-PD (SD and PR), response to chemotherapy was not associated with 

percentage change in TFI (-16.65 (SD 31.33) % versus -2.85 (SD 2.1) %, p=0.061). 

The median percentage changes in VFI in patients who had mRECIST-defined PD, 

SD and PR were -15 [IQR -51 to 0] %, -15.5 [IQR -27.8 to 19] % and -10 [IQR -29.5 

to 26] %, respectively. Response to chemotherapy was not associated with 

percentage change in VFI (p=0.4491, see Figure 5.9: Panel B). When 

dichotomised into mRECIST-defined PD and non-PD, response to chemotherapy 

was not associated with percentage change in VFI (-15 [IQR -51 to 0] % versus -15 

[IQR -28.5 to 21.5] %, p=0.2123).  
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Figure 5.9 Scatterplot illustrating mRECIST-defined response assessment criteria 

and percentage changes between pre-chemotherapy and response assessment 

scans in, Panel A) total fat index (TFI), and, Panel B) visceral fat index (VFI) in 

91 patients with MPM 

PD: progressive disease; PR: partial response; SD: stable disease 
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5.3.4.2.2 Relationship between chemotherapy treatment completion and 

response to treatment at T4 

 

36 (32%) patients received less than four cycles of chemotherapy due to toxicity, 

progression whilst on treatment or death. 6/15 (40%) patients in the T4SMI 

percentage change muscle losing group received less than 4 cycles of 

chemotherapy. 30/96 (31%) patients in the T4SMI percentage change muscle 

retaining group received less than 4 cycles. There was no statistically significant 

difference (p=0.5579, using Fisher’s exact test). 7/15 (46.7%) patients in the 

ipsilateral T4SMI percentage change muscle losing group received less than 4 

cycles of chemotherapy. 30/96 (31%) patients in the ipsilateral T4SMI percentage 

change muscle retaining group received less than 4 cycles. There was no 

statistically significant difference (p=0.3870, using Fisher’s exact test). 

 

The mean percentage changes in T4SMI in patients who had mRECIST-defined 

progressive disease (PD), stable disease (SD) and partial response (PR) were -3.01 

(SD 14.26) %, -1.94 (SD 14.21) % and 1.09 (SD 11.97) %, respectively. Response to 

chemotherapy as defined by mRECIST was not associated with percentage 

change in T4SMI (p=0.4701, see Figure 5.10: Panel A). When dichotomised into 

mRECIST-defined PD and non-PD (SD and PR), response to chemotherapy was not 

associated with percentage change in T4SMI (-3.01 (SD 14.26) % versus -0.99 (SD 

13.37) %, p=0.5084). The mean percentage changes in ipsilateral T4SMI in 

patients who had mRECIST-defined PD, SD and PR were -2.86 (SD 13.97) %, 3.08 

(SD 20.32) % and -1.13 (SD 14.31) %, respectively. Response to chemotherapy 

was not associated with percentage change in ipsilateral T4SMI (p=0.3166, see 

Figure 5.10: Panel B). When dichotomised into mRECIST-defined PD and non-PD, 

response to chemotherapy was not associated with percentage change in 

ipsilateral T4SMI (-2.86 (SD 13.97) % versus 1.03 (SD 17.97) %, p=0.3098). 

 

The mean percentage changes in T4SMI in patients who had human volume-

defined PD, SD and PR were -7.58 (SD 12.13) %, -5.97 (SD 10.85) % and 6.73 (SD 

15.17) %, respectively (n=30). Response to chemotherapy was not associated 

with percentage change in T4SMI (p=0.1285, see Figure 5.10: Panel C). When 

dichotomised into human volume-defined PD and non-PD, response to 



221 

chemotherapy was not associated with percentage change in T4SMI (-7.58 (SD 

12.13) % versus -3.94 (SD 12.23) %, p=0.5474). The mean percentage changes in 

ipsilateral T4SMI in patients who had human volume-defined PD, SD and PR were 

-7.24 (SD 10.88) %, -3.44 (SD 13.82) % and -0.98 (SD 20.16) %, respectively 

(n=30). Response to chemotherapy was not associated with percentage change in 

ipsilateral T4SMI (p=0.7965, see Figure 5.10: Panel D). When dichotomised into 

human volume-defined PD and non-PD, response to chemotherapy was not 

associated with percentage change in ipsilateral T4SMI (7.24 (SD 10.88) % versus 

-3.04 (SD 14.52) %, p=0.5473). 
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Figure 5.10 Violin plots illustrating fourth thoracic vertebra skeletal muscle 

index (T4SMI) and ipsilateral (to tumour) T4SMI percentage changes between 

pre-chemotherapy and response assessment scans and response assessment 

criteria according to, Panels A) and, Panel B) mRECIST, and, Panel C) and, Panel 

D) human volumes in 111 patients with MPM 

PD: progressive disease; PR: partial response; SD: stable disease 
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5.3.4.3 Sex-and BMI-specific differences 

 

5.3.4.3.1 Sex-specific differences at L3 

 

Table 5.10 summarises the sex-specific differences in skeletal muscle and 

adipose tissue indices at L3. Male patients had a higher mean pre-chemotherapy 

L3SMI than females (52.1 (SD 7.9) cm2/m2 versus 45.2 (SD 8.9) cm2/m2, p=0.012, 

respectively). Males also had higher median response assessment L3SMI than 

females (48 [IQR 43 to 58] cm2/m2 versus 41 [IQR 40 to 48] cm2/m2, p=0.001, 

respectively). There was a statistically significant difference in pre-

chemotherapy visceral fat indices (VFI) between male (59 [IQR 40 to 91] cm2/m2) 

and female patients (41 [IQR 8 to 66] cm2/m2, (p=0.0095). There was a trend 

towards significance in pre-chemotherapy subcutaneous fat indices (SFI) 

between male (58 [IQR 45 to 72] cm2/m2) and female patients (89 [IQR 33 to 

120] cm2/m2), respectively (p=0.0529). There was no statistically significant 

difference in pre-chemotherapy total fat index (TFI) between male (124 [IQR 95 

to 152] cm2/m2) and female patients (148 [IQR 50 to 176] cm2/m2), respectively 

(p=0.9325). There was a statistically significant difference in response 

assessment visceral fat index (VFI) between male (52 [IQR 34 to 79] cm2/m2) and 

female patients (32 [IQR 8 to 94] cm2/m2), respectively (p=0.0138). There was 

no statistically significant difference in response assessment subcutaneous fat 

index (TFI) between male (61 [IQR 38 to 78] cm2/m2) and female patients (82 

[IQR 28 to 115] cm2/m2), respectively (p=0.1059). There was no statistically 

significant difference in response assessment total fat index (TFI) between male 

(116 [IQR 74 to 152] cm2/m2) and female patients (120 [IQR 32 to 187] cm2/m2), 

respectively (p=0.9132). 
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Table 5.10 Sex-specific differences in skeletal muscle and adipose indices at L3 

in 91 patients with MPM 

 Male 

Mean (SD) or 

median [IQR] 

Female 

Mean (SD) or 

median [IQR] 

p-value 

Pre-chemotherapy 

Pre-chemotherapy L3SMI,  cm2/m2 52.1 (7.9) 45.2 (8.9) 0.0012 

Total fat index, cm2/m2 124 [95-152] 148 [50-176] 0.9325 

Visceral fat index, cm2/m2 59 [40-91] 41 [8-66] 0.0095 

Subcutaneous fat index, cm2/m2 58 [45-72] 89 [33-120] 0.0529 

Response assessment 

Response assessment L3SMI, cm2/m2 48 [43–58] 41 [40–48] 0.0010 

Total fat index, cm2/m2 116 [74-152] 120 [32-187] 0.9132 

Visceral fat index, cm2/m2 52 [34-79] 32 [8-94] 0.0138 

Subcutaneous fat index, cm2/m2 61 [38-78] 82 [28-115] 0.1059 

SMI: skeletal muscle index, cm2/m2 
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5.3.4.3.2 Sex-and BMI-specific differences at T4 

 

Table 5.11 summarises the skeletal muscle indices at T4 in the study cohort. 

Males had a higher pre-chemotherapy weight than females (78.7 (SD 13.9) kg and 

63.3 (SD 10.3) kg, respectively, p<0.0001). There were no differences in pre-

chemotherapy BMI between males and females (26.7 (SD 4.1) kg/m2 and 25.1 (SD 

4.1) kg/m2, respectively, p=0.1371). 

 

Male patients had a higher mean pre-chemotherapy T4SMI than females (56.7 (SD 

8.3) cm2/m2 versus 47.9 (SD 6.2) cm2/m2, p<0.0001). Males also had higher mean 

response assessment T4SMI than females (54.8 (SD 9.8) cm2/m2 versus 50.1 (SD 

7.3) cm2/m2, p=0.0457). 

 

Patients with higher BMI – defined as overweight as per the WHO definition of 

BMI ≥25 kg/m2 – did not have a higher mean pre-chemotherapy T4SMI than those 

patients with lower BMI (54 [IQR 48 to 60] kg/m2 versus 54 [IQR 49 to 60] kg/m2, 

p=0.622). Patients with higher BMI also did not have a higher mean response 

assessment T4SMI than those patients with lower BMI (52 [IQR 47 to 60.5] kg/m2 

versus 53.5 [IQR 48 to 59.3] kg/m2, p=0.868). 
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Table 5.11 Body composition analyses at T4 in 111 patients with MPM 

 All patients 

(n=111) 

Mean (SD) or 

median [IQR] 

Male 

(n=91) 

Mean (SD) or 

median [IQR] 

Female 

(n=20) 

Mean (SD) 

or median 

[IQR] 

p-value 

Pre-chemotherapy 

PC Weight, kg 75.9 (14.5) 78.7 (13.9) 63.3 (10.2) <0.0001 

PC BMI, kg/m2 26.4 (4.1) 26.7 (4.1) 25.1 (4.1) 0.1371 

T4SMI, cm2m2 55.1 (8.6) 56.7 (8.3) 47.9 (6.1) <0.0001 

Ipsilateral T4SMI, 

cm2m2 

26.8 (4.7) 28.3 (7.2) 23.1 (3.4) 0.0024 

Contralateral 

T4SMI, cm2m2 

28.2 (4.4) 28.9 (4.2) 25.8 (3.6) <0.0001 

Response assessment 

T4SMI, cm2m2 53.9 (9.5) 54.8 (9.8) 50.1 (7.3) 0.0457 

Ipsilateral T4SMI, 

cm2m2 

25.9 [23.1-29.4] 26.8 [23.4-

29.7] 

23.7 [21.1-

25.8] 

0.0069 

Contralateral 

T4SMI, cm2m2 

26.8 [23.6-30.5] 27.6 [23.8-

31] 

25.1 [22.6-

28.8] 

0.1140 

Percentage change between pre-chemotherapy and response assessment 

T4SMI, % -1.5 (13.4) -2.9 (12.9) 5.2 (14) 0.0143 

Ipsilateral T4SMI, % -0.1 (16.8) -1.4 (15.3) 5.5 (22) 0.0952 

BMI: body mass index; T4SMI: skeletal muscle index at fourth thoracic 

vertebra; Ipsilateral & Contralateral T4SMI: skeletal muscle index at T4 on 

ipsilateral and contralateral side of tumour, respectively 
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5.3.4.4 Correlation between L3 and T4 

 

Pre-chemotherapy L3SMI and T4SMI were moderately correlated (r=0.42, 95% CI 

0.23 to 0.58, p<0.0001, see Figure 5.11: Panel A). When assessed according to 

sex, pre-chemotherapy L3SMI and T4SMI continued to correlate in males (r=0.36, 

95% CI 0.16 to 0.56, p=0.0006, Figure 5.11: Panel B), but the strength of 

correlation was lost in females (r=0.29, 95% CI -0.34 to 0.74, p=0.3657, see 

Figure 5.11: Panel C). 

 

Response assessment T4SMI and L3SMI were also moderately correlated (r=0.45, 

95% CI 0.27 to 0.61, p<0.0001, see Figure 5.11: Panel D). The correlation was 

made stronger in males only (r=0.48, 95% CI 0.28 to 0.65, p<0.0001, Figure 5.11: 

Panel E). The strength of correlation was again diminished in females (r=0.28, 

95% CI -0.37 to 0.74, p=0.3786, Figure 5.11: Panel F). 

 

Pre-chemotherapy T4SMI and L3TFI did not correlate (r=-0.07, 95% CI -0.29 to 

0.16, p=0.5382). Response assessment T4SMI and L3TFI did not correlate (r=0.03, 

95% CI -0.18 to 0.24, p=0.7538). 
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Figure 5.11 Correlations between third lumbar vertebra skeletal muscle index 

(L3SMI) and fourth thoracic vertebra skeletal muscle index (T4SMI) at the pre-

chemotherapy time points in all patients (Panel A), male (Panel B) and female 

patients (Panel C), and at response assessment time points in all patients (Panel 

D), male (Panel E) and female patients (Panel F) 

PC: pre-chemotherapy; Res: response assessment 
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5.4 Discussion 

 

5.4.1 Skeletal muscle measurements at the L3 and T4 

 

Following the work of Mourtzakis and colleagues(305) who first extrapolated 

data from a single cross-sectional CT image at the third lumbar vertebra (L3) to 

predict whole body composition of skeletal muscle mass, and Prado and 

colleagues who defined sex- and BMI-specific thresholds(251), sarcopenia has 

been associated with adverse outcomes in patients with cancer(398, 399). 

However, this widely validated approach to measuring skeletal muscle index 

using L3 has limitations in patients with thoracic malignancy as CT scans 

acquired during diagnostic work-up, prior to chemotherapy and response 

assessment may not extend inferiorly enough to capture L3. In my cohort, only 

91 patients had an identifiable L3 on pre-chemotherapy and response assessment 

CT scans with accompanying height metrics. At the fourth thoracic vertebra 

(T4), 111 patients had these data. In an epidemiological survey by Sun and 

colleagues that included mostly patients with lung cancer, only 65% had scans in 

which skeletal muscle mass could be evaluated at the L3 level(308). Other 

studies have reported similar issues with up to one third of patients being 

excluded from studies due to L3 not being identifiable on CT scans(400, 401). 

Fourth thoracic vertebra-defined sarcopenia is being increasingly reported in the 

sarcopenia literature(311-313, 317). Sarcopenia has also been determined at 

other thoracic levels in patients with lung cancer, including at the fifth(190, 

402), eighth(403) and tenth thoracic vertebrae(404, 405) as well as the sum of 

the eight and twelfth thoracic vertebrae(406). 

 

5.4.2 Thresholds for sarcopenia 

 

In their systematic review, Vangelov and colleagues reported that only 75% of 

studies assessing sarcopenia reported cut-off values and that authors were using 

different methods(310). A meta-analysis of 81 studies which determined the 

performance of sarcopenia cut-offs in cancer concluded that despite the 

variability of thresholds used, including optimal stratification, median, 
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percentiles and receiving operator curves, low lean muscle mass was associated 

with poorer prognosis(407). 

 

I determined sarcopenia at L3 based on the well-validated sex- and BMI-specific 

SMI cut-offs defined by Martin and colleagues who used an optimal stratification 

method(186, 408). There is no consensus on specific sex- and BMI-specific 

thresholds for sarcopenia at T4. My two-dimensional measurements at the level 

of T4 were normalised for height squared to adjust for body size as per the 

height-based indexing described by Prado and colleagues at the third lumbar 

vertebra(174). I defined T4 sarcopenia groups using a priori definitions based on 

the distribution of the study sample, i.e., those patients with T4SMI mean minus 

1 standard deviation if normally distributed or those with T4SMI below the 25th 

percentile if non-normally distributed. Skeletal muscle cut-offs have been 

defined as the mean minus one or two standard deviations by other authors(309, 

409, 410). Sarcopenia has also been defined according to patients in lowest 

quartile in colorectal cancer(410, 411) and patients diagnosed with idiopathic 

pulmonary fibrosis(317) and post-operative pneumonia following partial 

hepatectomy for colorectal metastasis(312). Verhoek and colleagues defined 

sarcopenia according to the lowest tertile in their recent study of patients with 

MPM(190). 

 

5.4.3 Body composition differences between male and female patients 

 

I demonstrated that male patients had higher T4SMI compared to females and 

lost muscle mass between the two time points assessed. This is consistent with 

previous studies demonstrating that male patients have higher skeletal muscle 

mass(412) and strength(413) compared to females. Conversely, females gained 

mean muscle mass index at T4 between pre-chemotherapy and response 

assessment time points (2.2 cm2/m2). The cause for this latter observation is 

unclear. Stene and colleagues reported that nearly half of their patients with 

non-small cell lung cancer (NSCLC) had a stable or increased muscle mass after 

chemotherapy(414). Stable muscle or muscle gain has also been reported in 

patients with NSCLC by Prado and colleagues(415) with the suggestion that 

chemotherapy may be exerting an anti-catabolic effect in treatment 
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responders(415). To investigate this observation further, I performed a post-hoc 

analysis and demonstrated differences in the median interval period between CT 

scans between males (116 [IQR 82 to 174] days) and females (98 [IQR 79 to 147] 

days). Male patients with cancer cachexia are known to lose skeletal muscle at a 

greater rate than females(416, 417) and the longer interval period between 

scans in male patients may partly explain this. Alternatively, this finding may 

reflect differences in thoracic musculature between male and female patients. I 

demonstrated that T4 skeletal muscle measurements were larger than L3 which 

is likely due to the muscles at T4 being involved with arm and shoulder 

movement. The muscles of the shoulder, i.e., deltoid, were not included in my 

muscle tissue segmentations to limit this potential for confounding. I did include 

the pectoralis muscles in my T4 muscle areas. Males have larger pectoralis 

mass(418) and strength(419) compared to females. Pectoralis muscle mass is 

prognostic in patients with NSCLC(420, 421). Male sex and pectoralis muscle area 

remained significant in the proportional hazards model reported by Kinsey and 

colleagues(421). 

 

The median pre-chemotherapy T4 ipsilateral muscle areas were lower than the 

contralateral skeletal muscle areas in both male and female patients. The 

decreased ipsilateral T4SMI group – stratified to muscle losing and non-losing 

groups according to mean minus 1 SD - had a shorter OS compared to the 

maintained SMI groups. Moreover, male patients had greater ipsilateral T4SMI 

loss, reenforcing the finding that male patients lose skeletal muscle at a higher 

rate than females. The reason for the differences between ipsilateral and 

contralateral muscle compartments is not clear. Patients with pleural 

malignancy frequently have altered chest wall mechanics due either to pleural 

effusion or tumour bulk. Survival is sufficiently long in some patients with MPM 

that this may translate into loco-regional changes in thoracic muscle 

compartments. Another reason for this observation could be that reduced 

muscle mass is associated with poor lung function and breathlessness which is 

observed in the clinical setting of MPM as well as in the chronic obstructive 

pulmonary disease (COPD) literature(422, 423). Sun and colleagues defined 

muscle losing groups according to peak expiratory flow rate-defined respiratory 
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strength and pectoralis muscle, reporting that pre-operative sarcopenia based 

upon these criteria was significantly associated with poor OS(420). 

 

5.4.4 Correlations between T4SMI and L3SMI 

 

I demonstrated moderate correlations between L3 and T4 pre-chemotherapy and 

response assessment skeletal muscle indices ((r=0.42 and r=0.45, respectively). 

In their study of patients with head and neck cancers, Van Heusden and 

colleagues reported a strong correlation between muscle cross-sectional area at 

T4 (excluding the muscles of the shoulder) and L3 (r=0.79) which was further 

strengthened (r=0.856) after incorporating age, sex, weight, arm positioning and 

weight(424). Grønberg and colleagues reported moderate agreement with intra-

class correlation 0.71 in males and 0.52 in females(425). 

 

I assessed T4SMI and L3SMI correlations in males and females with female 

patients having weaker correlations at both the pre-chemotherapy and response 

assessment scan time points (r=0.29 and r=0.28, respectively) compared to 

males who retained low-to-moderate r values (r=0.36 and r=0.48, respectively). 

My subsequent correlative analyses of total fat index (TFI) as an exploratory 

surrogate for adipose tissue volumes did not yield any concrete systemic reasons 

as to why the previously moderate L3SMI and T4SMI correlations had become 

uncoupled in female patients. As described earlier in this discussion, males 

generally have different chest musculature compared to females, particularly in 

respect to larger pectoralis muscle areas(426, 427). Females have different fat 

distribution at the level of thoracic vertebrae, including breast tissue in the 

anterior thoracic wall. I did not measure adipose tissue at T4 - or elsewhere in 

the chest - to further test this hypothesis. One study assessing adiposity at the 

level of T4 demonstrated that females have higher volume of adipose tissue at 

this level compared with males(428). The only study to date in MPM has assessed 

adiposity in the chest and demonstrated that males had more anterior 

mediastinal fat than females(190). A study assessing thoracic adipose tissue 

volume could shed further light on these differences. 
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5.4.5 Sarcopenia survival outcomes 

 

The median survival time in this study was 389 days. This is similar to the 

outcomes reported in the South West Area Mesothelioma and Pemetrexed 

(SWAMP) trial(321) (368 days) and the Phase III study of pemetrexed in 

combination with cisplatin versus cisplatin alone in patients with malignant 

pleural mesothelioma study (12.1 months, or approximately 368 days)(3). 

 

In the NSCLC population, pre-operative sarcopenia measured at L3 has been 

shown to be prognostically significant(245-248, 250, 429). Similar findings have 

been reported in advanced NSCLC(315, 430, 431) and small cell lung cancer 

(SCLC)(249). In the present study, the pre-chemotherapy and response 

assessment L3 sarcopenia groups trended towards shorter OS compared to the 

non-sarcopenia group, but neither reached statistical significance (p=0.077 and 

p=0.054, respectively). 

 

The rate of muscle loss over time is associated with mortality and has been 

observed in patients with lung(414, 432), colorectal(221, 433), foregut(434), 

ovarian(435) and gastric cancers(436) as well as in patients with melanoma(437). 

I dichotomised patients into interval muscle losing and non-losing groups by 

calculating the percentage change in L3SMI, T4SMI and ipsilateral T4SMI from the 

pre-chemotherapy time point. The percentage change method is routinely used 

in medicine and is independent of units of measurement(438). At L3, I found no 

survival difference between the two groups (p=0.307). This is inconsistent with 

the findings of the aforementioned studies exploring longitudinal change in 

muscle mass in different solid organ tumour sites. This was a surprising finding as 

both males and females lost skeletal muscle between the interval time points 

assessed. Moreover, the median time between CT scans in my study was 109 [IQR 

80 to 174] days, or 15 [IQR 11 to 24] weeks, which is a reasonably long interval 

period to assess changes in muscle mass loss. Other possible explanations for this 

finding are the small sample size (n=91) and the percentage change method 

used. The latter method has been criticised by Vickers and colleagues who 

suggested the use of analysis of co-variance instead(439). 
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In the present study, the L3 muscle losing group had a percentage change 

decrease of ≥9% which was similar to the thresholds applied by Blauwhoff‐

Buskermolen and colleagues(440) and Daly and colleagues(441). Two other 

studies have assessed longitudinal muscle mass loss defined by percentage 

change and reported no impact on survival. Firstly, Degens and colleagues 

determined skeletal muscle percentage change over 6-weeks using CT images of 

patients with advanced NSCLC and concluded that patients with decreasing 

skeletal muscle mass - defined as a skeletal muscle mass decrease of >1.3% - did 

not have shorter OS compared to those who maintained muscle(442). Similar 

findings were reported by Tan and colleagues who assessed patients with 

advanced pancreatic cancer according to 60-day percentage change skeletal 

muscle mass tertiles(399). The latter study did report that patients with 

sarcopenia and obesity had a worse prognosis(399). 

 

When measured at the fourth thoracic vertebra, pre-chemotherapy and response 

assessment sarcopenia – defined as mean minus 1 SD – was not associated with 

poorer OS compared to the muscle retaining groups (p=0.789 and p=0.185, 

respectively). However, percentage change in skeletal muscle loss between pre-

chemotherapy and response assessment time points was associated with shorter 

OS (p=0.0002). T4SMI loss was also an independent predictor of OS following 

multivariate analysis. When stratified by stage, patients in the T4SMI muscle 

losing and higher tumour volume group had shorter OS. This is not surprising as 

tumour volume is a recognised predictor or poorer OS in the MPM 

population(100). This also links to my tumour volume work which has been 

discussed in detail in Chapter 4. 

 

Thoracic sarcopenia measured at T4 is prognostic in patients with breast 

cancer(313) as well as in patients with post-liver surgery pneumonia(312). To my 

knowledge, the present study is only the second study that has determined the 

prognostic impact of CT-measured skeletal muscle mass loss and the first study 

to assess longitudinal changes in the MPM population. A recent study by Verhoek 

and colleagues reported that patients with MPM and sarcopenia – measured at 

the fifth thoracic vertebra (T5) - have a higher three-year mortality compared to 

those who are not sarcopenic (p=0.002)(190). In the thoracic malignancy 
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literature, other authors have defined sarcopenia according to pectoral mass 

muscle(311, 420) and the twelfth thoracic vertebra groups(431, 443-445).  

 

5.4.6 Adipopenia 

 

Although there are no BMI- and sex-specific thresholds for adipose tissue 

measurements, the cachexia literature reports that females have higher body fat 

compared to BMI-matched males(446) and that females have lower visceral 

adipose tissue(447, 448). Results from the present study support this as males 

had a higher median visceral adipose index (VFI) compared to females and lower 

TFI compared to females. Mallio and colleagues reported similar visceral adipose 

tissue findings in their study of patients with NSCLC, citing hormone differences 

between males and females as a potential reason for this(449). 

 

Adipopenia – the loss of fat mass - has been shown to be prognostically 

significant in patients with lung(389-392), gastrointestinal and lung(393), 

gastric(394, 395), breast(396) and renal cell cancers(397). Higher fat density has 

been shown to be prognostic in patients with colorectal cancer(450). Other 

studies have demonstrated improved outcomes with higher adipose tissue 

metrics, including patients with NSCLC and higher subcutaneous adipose tissue 

(SAT) volumes having better progression free survival compared to those with 

lower SAT volumes(451) and patients with advanced renal cell carcinoma and 

higher visceral fat area (VFA) having longer OS compared to those with lower 

VFA(452). Verhoek and colleagues determined pre-cardial fat mass at T5 and did 

not demonstrate any association with this metric and three-year 

survival(p=0.863)(190). In the present study, loss of VFI measured at L3 were 

associated with shorter OS (p=0.007). Visceral fat loss was a predictor of OS in 

my subsequent multivariate analysis (p=0.035). In their study of patients with 

pancreatic cancer(453), Di Sebastiano and colleagues hypothesised that there is 

a relationship between adipose tissue loss rate and greater expression of pro-

catabolic pathways associated with wasting. Visceral fat is pro-inflammatory and 

associated with the release of leptin, tumour necrosis factor and interleukin-6 

(IL-6)(454) and greater insulin resistance, thus potentiating an environment 
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conducive to tumour growth(455). However, studies determining local adipose 

tissue inflammation in cancer are contradictory(263, 456, 457). 

 

In addition to visceral fat loss, obesity – defined by WHO BMI criteria of ≥30 

mg/m2 – was a protective factor in my multivariate analysis (p<0.001). The 

‘obesity paradox’ is the term given to describe the paradoxically protective 

effect of obesity in chronic diseases and cancers and has been discussed in the 

cachexia literature(458, 459), including in patients with lung cancer(392, 460). A 

recent meta-analysis of more than 6.3 million patients with cancer concluded 

that patients with obesity and lung and renal cancers and melanoma had 

improved survival compared to patients without obesity(461). Higher BMI has 

also been inversely associated with lung cancer development(462). However, the 

crudity of body mass index body as a surrogate metric for adiposity has been 

cited as a possible reason for this paradox. In the present study, obesity and loss 

of visceral fat both remained independent predictors of OS in the multivariate 

analysis suggesting that the distribution of fat mass is important. Moreover, fat 

and muscle indices did not correlate in the present study, neither did age and 

fat indices suggesting that obesity was not associated with higher skeletal 

muscle mass or younger age as postulated by Lennon and colleagues in their 

review article determining potential biases associated with BMI(458). 

 

Smoking and concurrent metformin – a medication used in the management of 

diabetes through activated 5' adenosine monophosphate-activated protein kinase 

(AMPK) – have been postulated by Barbi and colleagues to be further confounders 

contributing to the ‘obesity paradox’(390). Smoking status as a confounding 

variable has been explored by other authors(463-465). The same authors 

highlighted the importance of adipose tissue distribution - including visceral fat - 

rather than BMI in determining obesity in patients with NSCLC. They reported 

that higher VFI conferred a worse prognosis in their patient group(390). Blanc-

Durand and colleagues also reported the prognostic influence of adipose tissue 

indices, reporting a higher VAT/SAT ratio being an independent predictor of both 

progression free survival and OS in their population(466). I did not have smoking 

status or medications available to include in my analyses to assess for potential 

confounding. 
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5.4.7 Treatment tolerance 

 

In the present study, over one third of patients did not receive four cycles of 

chemotherapy either due to toxicity, progression whilst on treatment or death. I 

did not identify an association between pre-chemotherapy or response 

assessment sarcopenia measured at T4 and number of treatment cycles 

received. Chemotherapy has been shown to be causative of and contributory to 

muscle mass loss in patients with lung(414), colorectal(440), breast(467), 

gastric(468) and oesophageal cancers(469). Skeletal muscle mass correlates with 

increased toxicity during treatment in locally advanced oesophageal cancer(470) 

and gastric cancer(471). Pathophysiological mechanisms for his include 

chemotherapy-induced protein catabolism(186) and anorexic changes(472) as 

well as direct changes that chemotherapy exerts on skeletal muscle(473). 

 

The patients in the present study received either carboplatin or cisplatin and 

pemetrexed chemotherapies, with most patients receiving carboplatin rather 

than cisplatin. Sjøblom and colleagues reported that patients with sarcopenia 

have increased toxicities to these agents(400). The mechanism for this is 

unclear, however may relate to the formulae used to dose chemotherapy. 

Carboplatin is dosed according to the Wright formula which places emphasis on 

an estimation of glomerular filtration rate (eGFR) rather than weight as it is 

eliminated solely by the kidneys(474). The Wright formula is calculated as: 

((6500 minus 38.8 multiplied by age) multiplied by BSA multiplied by (1 minus 

0.168 multiplied by sex)) divided by creatinine(474). Patients with sarcopenia 

will lose muscle, leading to a decrease in serum creatinine with the potential for 

eGFR overestimation(475), and theoretically, increased toxicities as a result of 

this (serum creatinine is the denominator in the Wright formula). 

 

I did not identify associations between fat indices and treatment tolerance. 

There were limited data available relating to chemotherapy treatment toxicities 

resulting in only a small number of patients included in this analysis. The short 

follow-up time also precluded progression free survival analyses. It is also 

important to acknowledge that most patients in the present study were PS 0 and 
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1, representing a fit cohort. Patients who are borderline PS 1 and those who are 

PS 2 are most likely to have a reduced tolerance to treatment. 

 

Although not statistically significant, less patients in the fat losing (52.9%) than 

non-losing groups (75.3%) did not complete the planned 4 cycles of 

chemotherapy. The reason for this is unclear and must be considered in the 

context of a small sample size with the potential for type II error. Altered 

adipose distribution in the context of systemic anti-cancer therapies (SACT) is 

important as most SACT doses are calculated using body surface area (BSA), 

including cisplatin and pemetrexed in patients with MPM. BSA for chemotherapy 

dosing is most commonly calculated using the Du Bois formula as: weight 

(kg)]x0.425 multiplied by height (cm)x0.725 multiplied by 0.007184(476). Based on 

this, patients who are obese will have a higher BSA than non-obese patients. 

Interestingly, an analysis of 25 different BSA formulae by Redlarski and 

colleagues demonstrated marked variation in BSA estimates, with up to 0.5 m2 

differences reported depending on the formulae used(477). Practising 

oncologists often dose chemotherapy according to ideal body weight rather than 

actual body weight, with a BSA limit set to 2.0 m2(478). However, a recent 

update from the American Society of Clinical Oncologists (ASCO) recommended 

that chemotherapy should be dosed according to actual body weight in patients 

with obesity(479). However, dosing to actual body weight can result in doses 

being 15% to 30% greater compared to dosing according to ideal body 

weight(480). 

 

A further consideration in the present study is whether patients who were obese 

received higher doses of chemotherapy. I did not have the doses of 

chemotherapy available at the time of my analyses to answer this question. It is 

an important consideration as changes in body composition have the potential to 

alter the pharmacokinetics of chemotherapy, including the volume of 

distribution and metabolism, which could result in sub-therapeutic dosing(481) 

or even toxicities(478). Patients with excess adipose tissue have a reduced 

water:muscle proportions(482). Carboplatin and pemetrexed are hydrophilic 

chemotherapies(483, 484) and distribute poorly in adipose tissue(485). As 

highlighted earlier, carboplatin is eliminated exclusively by the kidneys with 
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some studies suggesting that obese patients have higher creatinine 

clearance(485). Cisplatin elimination has been shown to be higher in patients 

with obesity compared to non-obese patients(486). Hall and colleagues 

highlighted the call by some authors to offer increased doses of carboplatin and 

cisplatin in patients with obesity(487). 

 

In breast(488) and other solid organ malignancies including lung and colorectal 

cancers(489), obese patients have been demonstrated to have better tolerance 

to chemotherapy. This relates to the ‘obesity paradox’ discussed in Section 

5.4.6. of this discussion. Increased energy reserves(490) and distribution of 

fat(491) have been reported as possible reasons for improved tolerance to 

chemotherapy. It is unclear whether this tolerance to chemotherapy translates 

into improved OS in obese patients. A press release from the European Society of 

Medical Oncologists (ESMO) suggested that patients who are obese receiving 

chemotherapy for colorectal cancer may have poorer OS due to chemotherapy 

dose-reductions(492). A study by Martini and colleagues concluded that although 

patients with prostate cancer who received higher doses of docetaxel 

chemotherapy due to BSA dosing, the increase OS observed was not related to 

the higher doses received(493). Similar conclusions were drawn in obese patients 

with breast cancer by Liu and colleagues in their response(494) to a study by 

Karatas and colleagues who postulated that dose-capping at BSA 2.0 cm2 may 

have impacted on the lower survival trends observed in their study of obese 

chemotherapy-treated breast cancer patients(495). 

 

5.4.8 Response assessment 

 

In this study, the overall partial response rate during chemotherapy was 29% in 

patients with MPM which is similar to the response rate reported by the phase I 

study of pemetrexed and carboplatin(496), but lower than the phase III trial(3). 

Studies have demonstrated relationships altered body composition and response 

to treatment. Nattenmüller and colleagues reported that patients with NSCLC 

received less chemotherapy cycles than those without sarcopenia(253). 

Shiroyama and colleagues determined that patients without sarcopenia had a 

higher overall response rate to programmed cell death protein 1 (PD-1) inhibitors 
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in patients with NSCLC(430). Shachar and colleagues reported poorer response to 

capecitabine in sarcopenic patients with breast cancer(497). Higher visceral fat 

area is predictive of treatment response in patients with colorectal cancer(498). 

 

In the present study, response to chemotherapy was not associated with a 

decrease in T4SMI. This aligns with findings in previous studies, including 

patients with gastric(471, 499), foregut(441) and bladder cancers(500). In 

patients with mesothelioma, this could reflect the limitations of accurately 

measuring response assessment using the mRECIST criteria which does not 

evaluate the complexities of the tumour growth pattern and is associated with 

poor reproducibility(81). More recent volumetric approaches are being 

investigated, including human-defined and machine learning methods. These 

may improve response assessment in this cohort and have been discussed in 

detail in Chapter 4 of this thesis. I also assessed human volume-defined response 

to treatment with T4SMI values. Although not statistically significant, I did 

observe T4SMI percentage change trends of -7.240%, -3.438% and -0.975% 

according to progressive disease, stable disease and partial response, 

respectively. However, the total number of patients assessed was small (n=30). I 

also did not find a statistically significant difference in fat indices and mRECIST-

defined response assessment classifications. 

 

5.4.9 Systemic inflammation 

 

Studies have demonstrated that low muscularity is related to systemic 

inflammation, including in patients with lung(311), colorectal(501, 502) and 

oesophageal cancers(503). The pathogenesis of MPM is highly influenced by the 

systemic inflammatory response(504). In the present study, skeletal muscle 

index percentage change at L3, T4 and ipsilateral T4 did not correlate with pre-

chemotherapy inflammatory indices. This could be due in part to missing data, 

for example, in the T4 analyses, only 71/111 (64%) patients had complete C-

reactive protein (CRP) data. A small sub-study (n=47) was performed to examine 

markers of systemic inflammation at pre-chemotherapy and response assessment 

time points. I identified weakly negative correlations between ipsilateral T4SMI 

and response assessment neutrophil:lymphocyte ratio (NLR). NLR is associated 
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with poor outcomes in MPM. In their systematic review which included 33,432 

patients, Templeton and colleagues concluded that the prognostic effect of NLR 

was highest in MPM compared to other solid organ cancers (HR=2.35)(163). 

Unsurprisingly, I also demonstrated that TFI and VFI percentage changes 

negatively correlated with weight (r=-0.367 and r=-0.482, respectively) and BMI 

(r=-0.413 and r=-0.435, respectively). Patients with MPM and low BMI have also 

been shown to trend towards poorer OS(505). VFI percentage change also 

positively correlated with pre-chemotherapy platelets (r=0.296). A meta-analysis 

of 3602 patients concluded that pre-treatment thrombocytosis is an adverse 

prognostic indicator in MPM(506). Moreover, thrombocytosis is positively 

associated with elevated BMI and total fat mass percentage(507) and visceral 

adipose tissue(508). Platelet-derived microparticles – released by activated 

platelets - have been associated with excessive adipose tissue(509) and are 

associated with malignancy(510). 

 

5.4.10 Tumour volume 

 

In the present study, L3SMI, T4SMI and ipsilateral T4SMI did not correlate with 

tumour volume. There are little data exploring tumour volume in the context of 

sarcopenia. Vohra and colleagues reported alterations in skeletal muscle 

properties by increased tumour burden in their murine model of pancreatic 

cancer(511). Other murine models examining tumour volume and skeletal muscle 

indices have been published(512-514). 

 

In the wider context of the cancer cachexia syndrome, a review examining the 

advantage of introducing the measurement of tumour burden in the assessment 

of cancer cachexia concluded that the extent of cachexia increases with tumour 

burden(515). A study examining the extent of tumour, diet and patient-related 

factors including appetite, metabolic hormones, immune activation, liver 

function and quality of life were compared in patients with colorectal liver 

metastases concluded that those patients who lost weight had a higher volume 

of liver metastases(516). Interestingly, I demonstrated that tumour volume 

negatively correlated with pre-chemotherapy lymphocytes and positively 

correlated with pre-chemotherapy NLR, platelet:lymphocyte ratio (PLR) and 
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CRP. MPM tumour volume is associated with elevated inflammatory markers, 

including activin A(517) and complement component 4d (C4d)(518). The latter 

study also found a positive correlation between C4d and CRP(518). Moreover, 

neoangiogenesis – the proliferation of blood vessels in tumour growth - 

correlates with NLR(167). 

 

5.4.11 Potential clinical implications 

 

I have demonstrated that sarcopenia measured at the fourth thoracic vertebra is 

an independent predictor of poorer OS. It has the potential to be an additional 

prognostic radiological biomarker in patients with MPM receiving systemic anti-

cancer therapy. Sarcopenia has been traditionally measured at the third lumbar 

vertebra, however CT scans in patients with thoracic malignancies often do not 

have third lumbar vertebral views as this level is included in abdominal image 

sequences. The inherent advantage of the fourth thoracic vertebra is that it will 

be included in pre-chemotherapy images and subsequent interval scans in 

patients with thoracic malignancy. The use of the T4 as a surrogate for 

sarcopenia could improve clinical decision-making, and ultimately outcomes, for 

patients with thoracic malignancies such as MPM. A larger study is required to 

validate these findings, especially given the sex- and BMI-specific thresholds that 

exist for sarcopenia determination when measured at the third lumbar vertebra. 

 

Another interesting finding from this study has been the apparent protective 

effect of obesity. In the cachexia literature, this has been termed the ‘obesity 

paradox’. I also demonstrated that the loss of visceral adipose tissue is 

prognostic. The exact mechanism of this unclear. Adipose tissue is considered to 

be an endocrine organ(519) and has a role in inflammatory pathways(520) with 

suggestions that the pro-inflammatory effects of obesity can intensify the 

immune response through T cell activation(521-523). With immunotherapy 

becoming more commonplace in the treatment of solid organ cancers, including 

the recent approval of nivolumab and ipilimumab as first-line treatment of 

patients with MPM in Scotland, further investigation of the complex hormonal 

and inflammatory interplay that exists between the tumour and host is 

warranted. 
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The identification of thoracic sarcopenia and visceral adipopenia prior to 

treatment with systemic anti-cancer therapies may provide a window of 

opportunity for intervention to reverse or even halt the sarcopenia and 

adipopenia processes which are central to the cancer cachexia syndrome and 

associated with treatment-related toxicities and poorer prognosis. Anti-cachexia 

agents are already the subject of clinical trials in patients with thoracic 

malignancies (NCT03743064, NCT04131426, NCT04803305), including MPM(225). 

 

5.4.12 Study limitations and strengths 

 

The main limitation of this study was its retrospective study design. Despite 

having identifiable T4 on CT scans, 23 patients did not have available height 

metrics for calculation of skeletal muscle index, and as such, they were not 

included in the final analyses. Additionally, there was only a small sub-study of 

patients who had inflammatory indices at the pre-chemotherapy and response 

assessment time points (n=47). Moreover, I did not have weight, and 

subsequently BMI, measurements available at the response assessment time 

point. Interval changes in weight and BMI would have been useful in determining 

whether changes in body composition impacted on these metrics that are 

routinely monitored during chemotherapy. Response assessment skeletal and 

adipose areas were indexed according to height squared that was measured prior 

to chemotherapy as height was unlikely to change significantly over the interval 

period examined. 

 

A further limitation was the lack of data of chemotherapy doses at the time of 

my analyses. This has been discussed in Section 2.4.7 of this discussion and 

would have facilitated an assessment of whether tolerance to treatment and 

survival between obese and non-obese and sarcopenic and non-sarcopenic 

patients were influenced by the doses administered. 

 

A third limitation is that I did not assess fat indices at the fourth thoracic 

vertebra. Verhoek and colleagues assessed pre-cardial fat at T5(190). Jeffery 

and colleagues have assessed the relationship between skeletal muscle loss and 

adipose tissue changes using DEXA(257). Other studies have measured thoracic 
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adipose tissue volumes according to pericardial, intrathoracic and subcutaneous 

thoracic adipose tissue(524, 525). Combined fat and muscle indices such as those 

recently reported by Jeffery and colleagues may also shed further light on the 

importance of adiposity on outcomes. 

 

Another important limitation relates to the definition of sarcopenia which 

includes skeletal muscle quantity as well as skeletal muscle strength and 

physical performance(526, 527). One study by Yang and colleagues demonstrated 

that the prognostic impact of skeletal muscle loss in patients with advanced 

NSCLC was improved when handgrip strength and performance status were 

included in their multivariable analysis(431). Treatments directed towards 

reversing sarcopenia often include exercise programmes to strengthen muscle 

and preserve function(528-530). The data for the present study was collected 

retrospectively and did not include skeletal muscle strength. The most validated 

method of muscle strength is grip strength and physical performance using gait 

speed or short physical performance battery(526, 531). Moreover, I did not have 

data relating to patients’ use of anti-inflammatory medications, physical 

exercise regimes or access to nutritional support regimes which may have 

impacted on muscle mass. 

 

A further limitation relates to the lack of data on patient ethnicity. Studies 

assessing sarcopenia in the thoracic malignancy literature are often confined to 

one ethnic group, for example, European(247), Japanese(245, 246, 248, 250) and 

South Korean populations(256). Muscle mass differs depending on patient 

ethnicity(254, 532). Having these data would enhance the knowledge of 

sarcopenia in different populations. 

 

Although the sample sizes were modest (n=91 at the third lumbar vertebra and 

n=111 at the fourth thoracic vertebra), they are similar to a previous study 

assessing thoracic sarcopenia in patients with SCLC(311, 315). To my knowledge, 

this is the first study to assess sarcopenia at the fourth thoracic vertebra in 

patients with MPM, as well as the first study to assess ipsilateral sarcopenia in 

any solid organ cancer. Patients were recruited across three different hospital 

sites with different CT scanners used which improved generalisability. The 
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method used to quantify skeletal muscle mass was performed using freely 

available body composition software and had good-to-excellent intra- and inter-

observer reliability. 

 

5.5 Conclusions 

 

In this chapter, I demonstrated the negative impact of decreasing thoracic 

skeletal muscle mass and visceral adipose tissue on treatment response and 

survival in patients with MPM receiving chemotherapy. Patients losing thoracic 

muscle had poorer overall survival during chemotherapy than patients who 

maintained thoracic skeletal muscle. This association was further strengthened 

when muscle losing groups were stratified according to tumour volume. I also 

identified that lumbar vertebra-measured adipopenia was associated with poorer 

OS and that pre-chemotherapy obesity may have exert a protective effect with 

loss of adipose tissue during treatment conferring a worse prognosis.  
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6 Chapter 6: Conclusions 

 

Prognostication in patients with malignant pleural mesothelioma (MPM) is 

difficult due to the heterogeneity of the disease. Our own research group have 

suggested that routinely available clinical data are insufficient in determining 

accurate prognosis in MPM with other candidate factors potentially at play, 

including alterations in body composition(172). The visual evaluation of MPM for 

the purposes of staging and monitoring response is fraught with difficulty due to 

the complex and unique morphology of MPM. These imaging limitations have 

hampered the limited accuracy of volumetric measurements which are 

important in determining patients’ response to systemic anti-cancer therapies, 

including chemotherapy and immunotherapy. The development of reliable and 

reproducible tumour volumetric measurements would improve clinical decision-

making, including earlier cessation of toxic treatment as well as advancing 

clinical trials. The challenges and limitations of a semi-automated approach to 

tumour volume measurement were reported in Chapter 3 and provided the 

impetus to develop a fully automated method of pleural tumour volumetry based 

on pleural tumour volumes measured by a physician with expertise in MPM 

(reported in Chapter 4). The novel artificial intelligence method reported 

provides the basis for future studies to assess the role of automated tumour 

volumetry on a larger scale. Body composition is another important prognostic 

factor that has been poorly studied in MPM. In other solid organ cancers, body 

composition metrics such as skeletal muscle loss and adipose tissue loss have 

prognostic implications for patients. Importantly, the reversibility of these body 

composition abnormalities is the subject of ongoing clinical research. Chapter 5 

highlighted the importance of altered body composition in patients with MPM in 

a multicentre setting and has enhanced our knowledge of altered body 

composition in this disease. 
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6.1 Limitations of semi-automated tumour segmentation in MPM 

 

In Chapter 3, volumetric assessment of tumour burden in patients with MPM was 

examined in a single centre observational study. I hypothesised that pleural 

tumour volume could be achieved accurately and reliably by using a semi-

automated volumetric segmentation method on contrast-enhanced computed 

tomography (CT) scans extrapolated from a previously published magnetic 

resonance imaging (MRI) method(319). There were obvious segmentation errors 

on subjective visual assessment of the final segmented volumes which included 

under-segmentation of pleural tumour volume, i.e., incomplete inclusion of 

pleural tumour, and over-segmentation of tumour volume, i.e., volumes which 

included other thoracic soft tissue structures. Overlapping HU values between 

different thoracic tissues accounted for the over-segmentation of tumour 

volumes. 

 

Despite multiple segmentation attempts and refinement of the semi-automated 

technique, including increasing the number of axial CT slices delineated, and 

after meeting with the Myrian Intrasense® engineers to seek a resolution to 

these problems, accurate threshold-based region growing could not be achieved 

and further semi-automated volumetry attempts using contrast-enhanced CT 

scans were abandoned.  

 

6.2 Development of automated tumour volumetry in MPM 

 

An automated approach to volumetric tumour segmentation in patients with 

MPM was described in Chapter 4. I hypothesised that accurate pleural tumour 

segmentation could be achieved through a fully automated artificial intelligence 

(AI) algorithm – specifically, a deep learning convolutional neural network (CNN) 

- based on detailed human ground truth using contrast-enhanced CT scans. My 

involvement in this multicentre study was as a clinician with expertise in pleural 

anatomy. The research group also consisted of a Consultant Radiologist (Dr 

Gordon Cowell) who provided the modified Response Evaluation Criteria in Solid 

Tumours (mRECIST) measurements and disease stage metrics and two AI 

scientists (Owen Anderson and Keith Goatman) who trained the deep learning 
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CNN to segment pleural tumour based on my tumour volumes, also termed 

ground truth. 

 

Due to the failure to achieve my primary objective of developing an accurate 

semi-automated volumetric segmentation technique in Chapter 3, time-

consuming manual delineation was required for the ground truth; as such, the 

time-to-annotate pleural tumour far exceeded our initial estimates. Delays were 

accommodated by adjusting the project timeline to make the development of 

the algorithm and annotation of the training and validation data concurrent 

processes, thus prioritising development which could be completed without 

annotated data. A key action was the deliberate reduction in number of 

annotated CT slices for a sub-section of 43 CT images to allow the completion of 

more scans in the time allocated to the project. The training and internal 

validation set sample size of 123 CT scans exceeded the original target of 90 

scans. Despite the use of manually annotated ground truth, this study included 

the largest number of scans included in the MPM volumetry literature (n=183 

annotated CT images). 

 

The success of the AI RECIST project was that the CNN reported is the first fully 

automated algorithm for MPM tumour segmentation. The identification of 

segmentation errors in 4/30 CT scans reflected important morphological features 

of MPM suggesting the algorithm’s performance could be further improved by 

enriching future training sets for these features. This work has directly informed 

the design of Work Package 5 (WP5) in the Pre-malignant Drivers Combined with 

Target-Drug Validation in Mesothelioma (PREDICT-Meso) study which I detail 

further in the ‘Future work’ section of this chapter. 

 

6.3 The prognostic significance of altered body composition in MPM 

 

In Chapter 5 of this thesis, I hypothesised that sarcopenia and adipopenia 

measured at the third lumbar vertebra (L3) and sarcopenia at the fourth thoracic 

(T4) vertebra would be prognostically significant in patients with MPM receiving 

chemotherapy. 
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Sarcopenia at L3 was not associated with survival, but patients who lost visceral 

adipose tissue between pre-chemotherapy and response assessment time points 

had shorter OS. Skeletal muscle and adipose assessments at L3 were hampered 

by the lack of abdominal views on pre-chemotherapy and response assessment 

CT scans. Assessment of muscle mass at T4 yielded a higher sample size as MPM 

is a thoracic malignancy with more readily available chest CT images. To my 

knowledge, this is the first study that has demonstrated the detrimental impact 

of losing thoracic skeletal muscle mass during chemotherapy for MPM. This is an 

important finding as there is the potential to intervene at the pre-chemotherapy 

juncture and attempt to reverse or halt the progression of skeletal muscle loss, 

thus improving OS independent of chemotherapy tolerance. A larger study is 

needed to negate the potential for type 1 error and to determine whether there 

is a true link to reduced chemotherapy tolerance. This would subsequently 

support an intervention study for patients due to receive chemotherapy. Also, 

immunotherapy is now a first-line treatment in MPM and an unanswered question 

in this study is whether patients on immunotherapy behave differently. Those 

who are more inflamed might lose more skeletal muscle. In the present study, 

patients had a higher NLR following chemotherapy. There is an unanswered 

question as to whether immunotherapy-treated patients will have further to gain 

from anti-sarcopenic interventions 

 

Two important considerations are the lack of data relating to the optimal 

thoracic level for determining sarcopenia and the lack of data available relating 

to optimal sarcopenia cut-offs using the thoracic vertebrae. I elected to use T4 

due to its inclusion in thoracic images and because it has been shown to be 

prognostic in patients with other solid organ cancers(311-313). I defined 

sarcopenia based on a priori threshold cut-offs based on the normality of the 

distribution of the study sample in the absence of a gold-standard approach to 

this and because it has been reported in studies examining the clinical 

significance of sarcopenia at this vertebral level(312, 410, 411). 
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6.4 Future work 

 

The work described in this thesis will be further optimised and validated in a 

larger study as part of the Pre-malignant Drivers Combined with Target-Drug 

Validation in Mesothelioma (PREDICT-Meso) Network. This network aims to 

define accurate response assessment classifications based on volumetric 

measurements and encompasses study centres in the UK, Spain, Italy, Belgium, 

Canada and Brazil. The data will be optimised using CT data from the National 

Consortium of Intelligent Medical Imaging (NCIMI) network. A new Research 

Fellow and new AI Scientist will be employed in Glasgow to move this work 

forward with the plan to use 1000 pre-treatment and 1000 follow-up CT scans, 

i.e., a total of 2000 scans. Cases will be selectively chosen to manually volume 

to include those scans with features of over- and under-segmentation described 

in Chapter 4 as well as sparsely annotating scans to increase the number of cases 

to feed into the CNN architecture. 

 

The manual segmentation method I developed in Chapter 4 has the potential to 

facilitate the identification of future radiological biomarkers, including radiomic 

features. Radiomics - broadly defined as the study of textural and other feature 

imaging analyses(533) - is an expanding radiological research area. Studies have 

assessed the prognostic importance of radiomic features in MPM, including 

assessing shape and textural features using contrast-enhanced CT and MRI 

imaging to help determine benign lesions from MPM(534) and the use of CT-

defined radiomic signatures to aid in early response assessment(535). Radiomics 

has the advantage that can overcome statistical variances around a region of 

interest of an image voxel(536). I have been involved in drafting a research 

protocol with a Consultant Radiologist colleague (Dr Gordon Cowell) which aims 

to define radiomic imaging features that determine response to treatment and 

survival in patients with chemotherapy-treated MPM using the detailed 

volumetric ground truth described in Chapter 4 of this thesis. 

 

Prognostication in patients with MPM is important. In the age of precision 

medicine, advances in imaging, staging and genomic sequencing have superseded 

traditional metrics of survival prediction which have been based largely on 
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routinely available clinical data(30, 34, 36). The clinical, inflammatory markers 

and disease stage data used in this thesis will be included in the PRISM study 

which is funded by the British Lung Foundation(322). In the PRISM study, 

deoxyribonucleic acid (DNA) has been extracted from MPM tumour identified by 

a Consultant Histopathologist on formalin-fixed paraffin embedded (FFPE) 

samples obtained from chemotherapy-treated patients. Subsequent analysis of 

somatic copy number variations (CNV) on the FFPE samples have been carried 

out by the NHSGGC Molecular Pathology Department. Two independent 

Consultant Radiologists have determined mRECIST classifications on pre-

chemotherapy and response assessment CT scans in the same patients. 

Statistical analyses are ongoing at the time of writing this thesis. The aim of the 

PRISM study is to define a genomic predictor-classifier of chemotherapy 

resistance in MPM using these clinical, radiological and genomic data. The 

chemoresistance predictors identified will be externally validated in two 

independent patient cohorts supplied by Royal Papworth Hospital NHS 

Foundation Trust and Wythenshawe Hospital. 

  



253 

References 

 

1. Brims FJH, Maskell NA. Prognostic factors for malignant pleural 

mesothelioma. Current Respiratory Care Reports. 2013;2(2):100-8. 

2. Woolhouse I, Bishop L, Darlison L, De Fonseka D, Edey A, Edwards J, et al. 

British Thoracic Society Guideline for the investigation and management of 

malignant pleural mesothelioma. Thorax. 2018;73(Suppl 1):i1-i30. 

3. Vogelzang NJ, Rusthoven JJ, Symanowski J, Denham C, Kaukel E, Ruffie P, 

et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin 

alone in patients with malignant pleural mesothelioma. J Clin Oncol. 

2003;21(14):2636-44. 

4. Consortium SM. nivolumab (Opdivo®) is accepted for use within NHS 

Scotland.: Scottish Medicines Consortium; 2022 [cited 2022 26/02/22]. 

https://www.scottishmedicines.org.uk/medicines-advice/nivolumab-opdivo-full-

smc2385/]. 

5. England N. NHS England interim treatment options during the COVID-19 

pandemic NICE: NICE; 2022 [cited 2022 26/02/2000022]. 

https://www.nice.org.uk/guidance/ng161/resources/interim-treatment-change-

options-during-the-covid19-pandemic-endorsed-by-nhs-england-pdf-

8715724381]. 

6. Byrne MJ, Nowak AK. Modified RECIST criteria for assessment of response 

in malignant pleural mesothelioma. Ann Oncol. 2004;15(2):257-60. 

7. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. 

Definition and classification of cancer cachexia: an international consensus. 

Lancet Oncol. 2011;12(5):489-95. 

https://www.scottishmedicines.org.uk/medicines-advice/nivolumab-opdivo-full-smc2385/
https://www.scottishmedicines.org.uk/medicines-advice/nivolumab-opdivo-full-smc2385/
https://www.nice.org.uk/guidance/ng161/resources/interim-treatment-change-options-during-the-covid19-pandemic-endorsed-by-nhs-england-pdf-8715724381
https://www.nice.org.uk/guidance/ng161/resources/interim-treatment-change-options-during-the-covid19-pandemic-endorsed-by-nhs-england-pdf-8715724381
https://www.nice.org.uk/guidance/ng161/resources/interim-treatment-change-options-during-the-covid19-pandemic-endorsed-by-nhs-england-pdf-8715724381


254 

8. Schumann SO, Kocher G, Minervini F. Epidemiology, diagnosis and 

treatment of the malignant pleural mesothelioma, a narrative review of 

literature. J Thorac Dis. 2021;13(4):2510-23. 

9. Baumann F, Ambrosi JP, Carbone M. Asbestos is not just asbestos: an 

unrecognised health hazard. Lancet Oncol. 2013;14(7):576-8. 

10. Tlotleng N, Sidwell Wilson K, Naicker N, Koegelenberg CF, Rees D, Phillips 

JI. The significance of non-occupational asbestos exposure in women with 

mesothelioma. Respirol Case Rep. 2019;7(1):e00386. 

11. Abratt R. Malignant mesothelioma: epidemiological snapshots from around 

the world. Malignant Pleural Mesothelioma. 2006;19. 

12. Alleman JE, Mossman BT. Asbestos Revisited. Scientific American. 

1997;277(1):70-5. 

13. Doll R. Mortality from lung cancer in asbestos workers. Br J Ind Med. 

1955;12(2):81-6. 

14. Perry KM. Diseases of the lung resulting from occupational dusts other 

than silica. Thorax. 1947;2(2):75-120. 

15. Gorman T, Johnston R, McIvor A, Watterson A. Asbestos in Scotland. 

International Journal of Occupational and Environmental Health. 2004;10(2):183-

92. 

16. Instruments US. The Asbestos (Prohibitions) (Amendment) Regulations 

1999 https://www.legislation.gov.uk/uksi/1999/2373/made1999 [ 

17. Commission E. COMMISSION DIRECTIVE 1999/77/EC https://eur-

lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:1999:207:0018:0020:EN:PDF19

99 [ 

18. Peto J, Hodgson JT, Matthews FE, Jones JR. Continuing increase in 

mesothelioma mortality in Britain. Lancet. 1995;345(8949):535-9. 

https://www.legislation.gov.uk/uksi/1999/2373/made1999
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:1999:207:0018:0020:EN:PDF1999
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:1999:207:0018:0020:EN:PDF1999
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:1999:207:0018:0020:EN:PDF1999


255 

19. Abdel-Rahman O. Global trends in mortality from malignant 

mesothelioma: Analysis of WHO mortality database (1994-2013). Clin Respir J. 

2018;12(6):2090-100. 

20. Brims F. Epidemiology and Clinical Aspects of Malignant Pleural 

Mesothelioma. Cancers (Basel). 2021;13(16). 

21. Hodgson JT, McElvenny DM, Darnton AJ, Price MJ, Peto J. The expected 

burden of mesothelioma mortality in Great Britain from 2002 to 2050. Br J 

Cancer. 2005;92(3):587-93. 

22. Executive HaS. Mesothelioma statistics for Great Britain, 2021 Health and 

Safety Executive: Health and Safety Executive; 2021 [Available from: 

https://www.hse.gov.uk/statistics/causdis/mesothelioma/mesothelioma.pdf. 

23. Odgerel CO, Takahashi K, Sorahan T, Driscoll T, Fitzmaurice C, Yoko OM, 

et al. Estimation of the global burden of mesothelioma deaths from incomplete 

national mortality data. Occup Environ Med. 2017;74(12):851-8. 

24. Stayner L, Welch LS, Lemen R. The worldwide pandemic of asbestos-

related diseases. Annu Rev Public Health. 2013;34:205-16. 

25. Allen LP, Baez J, Stern MEC, Takahashi K, George F. Trends and the 

Economic Effect of Asbestos Bans and Decline in Asbestos Consumption and 

Production Worldwide. Int J Environ Res Public Health. 2018;15(3). 

26. Rossini M, Rizzo P, Bononi I, Clementz A, Ferrari R, Martini F, et al. New 

Perspectives on Diagnosis and Therapy of Malignant Pleural Mesothelioma. 

Frontiers in Oncology. 2018;8. 

27. Husain AN, Colby TV, Ordóñez NG, Allen TC, Attanoos RL, Beasley MB, et 

al. Guidelines for Pathologic Diagnosis of Malignant Mesothelioma 2017 Update of 

the Consensus Statement From the International Mesothelioma Interest Group. 

Archives of Pathology & Laboratory Medicine. 2017;142(1):89-108. 

https://www.hse.gov.uk/statistics/causdis/mesothelioma/mesothelioma.pdf


256 

28. Klebe S, Brownlee NA, Mahar A, Burchette JL, Sporn TA, Vollmer RT, et 

al. Sarcomatoid mesothelioma: a clinical-pathologic correlation of 326 cases. 

Mod Pathol. 2010;23(3):470-9. 

29. Asciak R, George V, Rahman NM. Update on biology and management of 

mesothelioma. European Respiratory Review. 2021;30(159):200226. 

30. Brims FJ, Meniawy TM, Duffus I, de Fonseka D, Segal A, Creaney J, et al. A 

Novel Clinical Prediction Model for Prognosis in Malignant Pleural Mesothelioma 

Using Decision Tree Analysis. J Thorac Oncol. 2016;11(4):573-82. 

31. Billè A, Okiror L, Harling L, Pernazza F, Muzio A, Roveta A, et al. Analysis 

of survival of patients with metastatic malignant pleural mesothelioma. Tumori 

Journal. 2020;107(2):110-8. 

32. Blyth KG, Murphy DJ. Progress and challenges in Mesothelioma: From 

bench to bedside. Respiratory Medicine. 2018;134:31-41. 

33. Galetta D, Catino A, Misino A, Logroscino A, Fico M. Sarcomatoid 

Mesothelioma: Future Advances in Diagnosis, Biomolecular Assessment, and 

Therapeutic Options in a Poor-Outcome Disease. Tumori Journal. 

2015;102(2):127-30. 

34. Curran D, Sahmoud T, Therasse P, van Meerbeeck J, Postmus PE, 

Giaccone G. Prognostic factors in patients with pleural mesothelioma: the 

European Organization for Research and Treatment of Cancer experience. J Clin 

Oncol. 1998;16(1):145-52. 

35. Fennell DA, Parmar A, Shamash J, Evans MT, Sheaff MT, Sylvester R, et al. 

Statistical validation of the EORTC prognostic model for malignant pleural 

mesothelioma based on three consecutive phase II trials. J Clin Oncol. 

2005;23(1):184-9. 

36. Edwards JG, Abrams KR, Leverment JN, Spyt TJ, Waller DA, O'Byrne KJ. 

Prognostic factors for malignant mesothelioma in 142 patients: validation of 

CALGB and EORTC prognostic scoring systems. Thorax. 2000;55(9):731-5. 



257 

37. Steele JP, Klabatsa A, Fennell DA, Palläska A, Sheaff MT, Evans MT, et al. 

Prognostic factors in mesothelioma. Lung Cancer. 2005;49 Suppl 1:S49-52. 

38. Herndon JE, Green MR, Chahinian AP, Corson JM, Suzuki Y, Vogelzang NJ. 

Factors predictive of survival among 337 patients with mesothelioma treated 

between 1984 and 1994 by the Cancer and Leukemia Group B. Chest. 

1998;113(3):723-31. 

39. Nowak AK, Francis RJ, Phillips MJ, Millward MJ, van der Schaaf AA, Boucek 

J, et al. A Novel Prognostic Model for Malignant Mesothelioma Incorporating 

Quantitative FDG-PET Imaging with Clinical Parameters. Clinical Cancer 

Research. 2010;16(8):2409-17. 

40. Rusch VW, Chansky K, Kindler HL, Nowak AK, Pass HI, Rice DC, et al. The 

IASLC Mesothelioma Staging Project: Proposals for the M Descriptors and for 

Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the 

TNM Classification for Mesothelioma. J Thorac Oncol. 2016;11(12):2112-9. 

41. Flores RM, Akhurst T, Gonen M, Zakowski M, Dycoco J, Larson SM, et al. 

Positron emission tomography predicts survival in malignant pleural 

mesothelioma. The Journal of Thoracic and Cardiovascular Surgery. 

2006;132(4):763-8. 

42. Van Gelder T, Damhuis R, Hoogsteden H. Prognostic factors and survival in 

malignant pleural mesothelioma. European Respiratory Journal. 1994;7(6):1035-

8. 

43. Pass HI, Giroux D, Kennedy C, Ruffini E, Cangir AK, Rice D, et al. 

Supplementary Prognostic Variables for Pleural Mesothelioma: A Report from the 

IASLC Staging Committee. Journal of Thoracic Oncology. 2014;9(6):856-64. 

44. Ak G, Metintas S, Metintas M, Yildirim H, Erginel S, Kurt E, et al. 

Prognostic Factors According to the Treatment Schedule in Malignant Pleural 

Mesothelioma. Journal of Thoracic Oncology. 2009;4(11):1425-30. 



258 

45. Berzenji L, Van Schil PE, Carp L. The eighth TNM classification for 

malignant pleural mesothelioma. Transl Lung Cancer Res. 2018;7(5):543-9. 

46. Nowak A. MS25.01 Impact of Tumor Volume on Outcome: What Are the 

Limitations? Journal of Thoracic Oncology. 2018;13(10):S293-S4. 

47. Patz EF, Jr., Shaffer K, Piwnica-Worms DR, Jochelson M, Sarin M, 

Sugarbaker DJ, et al. Malignant pleural mesothelioma: value of CT and MR 

imaging in predicting resectability. AJR Am J Roentgenol. 1992;159(5):961-6. 

48. Lim E, Darlison L, Edwards J, Elliott D, Fennell DA, Popat S, et al. 

Mesothelioma and Radical Surgery 2 (MARS 2): protocol for a multicentre 

randomised trial comparing (extended) pleurectomy decortication versus no 

(extended) pleurectomy decortication for patients with malignant pleural 

mesothelioma. BMJ Open. 2020;10(9):e038892. 

49. Tsim S, Stobo DB, Alexander L, Kelly C, Blyth KG. The diagnostic 

performance of routinely acquired and reported computed tomography imaging 

in patients presenting with suspected pleural malignancy. Lung Cancer. 

2017;103:38-43. 

50. Metintas M, Ucgun I, Elbek O, Erginel S, Metintas S, Kolsuz M, et al. 

Computed tomography features in malignant pleural mesothelioma and other 

commonly seen pleural diseases. Eur J Radiol. 2002;41(1):1-9. 

51. Hallifax RJ, Haris M, Corcoran JP, Leyakathalikhan S, Brown E, 

Srikantharaja D, et al. Role of CT in assessing pleural malignancy prior to 

thoracoscopy. Thorax. 2015;70(2):192-3. 

52. Hierholzer J, Luo L, Bittner RC, Stroszczynski C, Schröder RJ, Schoenfeld 

N, et al. MRI and CT in the differential diagnosis of pleural disease. Chest. 

2000;118(3):604-9. 

53. Krumbhaar EB, Krumbhaar HD. The Blood and Bone Marrow in Yelloe Cross 

Gas (Mustard Gas) Poisoning: Changes produced in the Bone Marrow of Fatal 

Cases. J Med Res. 1919;40(3):497-508.3. 



259 

54. van Meerbeeck JP, Gaafar R, Manegold C, Van Klaveren RJ, Van Marck EA, 

Vincent M, et al. Randomized phase III study of cisplatin with or without 

raltitrexed in patients with malignant pleural mesothelioma: an intergroup study 

of the European Organisation for Research and Treatment of Cancer Lung Cancer 

Group and the National Cancer Institute of Canada. J Clin Oncol. 

2005;23(28):6881-9. 

55. Zalcman G, Mazieres J, Margery J, Greillier L, Audigier-Valette C, Moro-

Sibilot D, et al. Bevacizumab for newly diagnosed pleural mesothelioma in the 

Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): a randomised, 

controlled, open-label, phase 3 trial. Lancet. 2016;387(10026):1405-14. 

56. Krug LM, Kindler HL, Calvert H, Manegold C, Tsao AS, Fennell D, et al. 

Vorinostat in patients with advanced malignant pleural mesothelioma who have 

progressed on previous chemotherapy (VANTAGE-014): a phase 3, double-blind, 

randomised, placebo-controlled trial. Lancet Oncol. 2015;16(4):447-56. 

57. Dubey S, Jänne PA, Krug L, Pang H, Wang X, Heinze R, et al. A phase II 

study of sorafenib in malignant mesothelioma: results of Cancer and Leukemia 

Group B 30307. J Thorac Oncol. 2010;5(10):1655-61. 

58. Dudek AZ, Pang H, Kratzke RA, Otterson GA, Hodgson L, Vokes EE, et al. 

Phase II study of dasatinib in patients with previously treated malignant 

mesothelioma (cancer and leukemia group B 30601): a brief report. J Thorac 

Oncol. 2012;7(4):755-9. 

59. Jassem J, Ramlau R, Santoro A, Schuette W, Chemaissani A, Hong S, et al. 

Phase III trial of pemetrexed plus best supportive care compared with best 

supportive care in previously treated patients with advanced malignant pleural 

mesothelioma. J Clin Oncol. 2008;26(10):1698-704. 

60. Fennell DA, Casbard AC, Porter C, Rudd R, Lester JF, Nicolson M, et al. A 

randomized phase II trial of oral vinorelbine as second-line therapy for patients 

with malignant pleural mesothelioma. Journal of Clinical Oncology. 

2021;39(15_suppl):8507-. 



260 

61. Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First-

Line Nivolumab in Stage IV or Recurrent Non-Small-Cell Lung Cancer. N Engl J 

Med. 2017;376(25):2415-26. 

62. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. 

Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung 

Cancer. N Engl J Med. 2016;375(19):1823-33. 

63. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, et al. 

Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC. 

New England Journal of Medicine. 2018;379(24):2342-50. 

64. Herbst RS, Giaccone G, de Marinis F, Reinmuth N, Vergnenegre A, Barrios 

CH, et al. Atezolizumab for First-Line Treatment of PD-L1-Selected Patients with 

NSCLC. N Engl J Med. 2020;383(14):1328-39. 

65. Horn L, Mansfield AS, Szczęsna A, Havel L, Krzakowski M, Hochmair MJ, et 

al. First-Line Atezolizumab plus Chemotherapy in Extensive-Stage Small-Cell 

Lung Cancer. New England Journal of Medicine. 2018;379(23):2220-9. 

66. Baas P, Scherpereel A, Nowak AK, Fujimoto N, Peters S, Tsao AS, et al. 

First-line nivolumab plus ipilimumab in unresectable malignant pleural 

mesothelioma (CheckMate 743): a multicentre, randomised, open-label, phase 3 

trial. Lancet. 2021;397(10272):375-86. 

67. Peters S, Scherpereel A, Cornelissen R, Oulkhouir Y, Greillier L, Kaplan 

MA, et al. First-line nivolumab plus ipilimumab versus chemotherapy in patients 

with unresectable malignant pleural mesothelioma: 3-year outcomes from 

CheckMate 743. Annals of Oncology. 

68. Quispel-Janssen J, van der Noort V, de Vries JF, Zimmerman M, Lalezari 

F, Thunnissen E, et al. Programmed Death 1 Blockade With Nivolumab in Patients 

With Recurrent Malignant Pleural Mesothelioma. J Thorac Oncol. 

2018;13(10):1569-76. 



261 

69. Okada M, Kijima T, Aoe K, Kato T, Fujimoto N, Nakagawa K, et al. Clinical 

Efficacy and Safety of Nivolumab: Results of a Multicenter, Open-label, Single-

arm, Japanese Phase II study in Malignant Pleural Mesothelioma (MERIT). Clin 

Cancer Res. 2019;25(18):5485-92. 

70. Scherpereel A, Mazieres J, Greillier L, Lantuejoul S, Dô P, Bylicki O, et al. 

Nivolumab or nivolumab plus ipilimumab in patients with relapsed malignant 

pleural mesothelioma (IFCT-1501 MAPS2): a multicentre, open-label, 

randomised, non-comparative, phase 2 trial. Lancet Oncol. 2019;20(2):239-53. 

71. Hassan R, Thomas A, Nemunaitis JJ, Patel MR, Bennouna J, Chen FL, et al. 

Efficacy and Safety of Avelumab Treatment in Patients With Advanced 

Unresectable Mesothelioma: Phase 1b Results From the JAVELIN Solid Tumor 

Trial. JAMA Oncol. 2019;5(3):351-7. 

72. ASCO. CONFIRM Trial Reports Improvement in Survival With Nivolumab in 

Relapsed Malignant Mesothelioma https://ascopost.com/issues/march-10-

2021/confirm-trial-reports-improvement-in-survival-with-nivolumab-in-relapsed-

malignant-mesothelioma/2021 [ 

73. Bibby AC, Tsim S, Kanellakis N, Ball H, Talbot DC, Blyth KG, et al. 

Malignant pleural mesothelioma: an update on investigation, diagnosis and 

treatment. European Respiratory Review. 2016;25(142):472-86. 

74. Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting results of 

cancer treatment. Cancer. 1981;47(1):207-14. 

75. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein 

L, et al. New guidelines to evaluate the response to treatment in solid tumors. 

European Organization for Research and Treatment of Cancer, National Cancer 

Institute of the United States, National Cancer Institute of Canada. J Natl Cancer 

Inst. 2000;92(3):205-16. 

https://ascopost.com/issues/march-10-2021/confirm-trial-reports-improvement-in-survival-with-nivolumab-in-relapsed-malignant-mesothelioma/2021
https://ascopost.com/issues/march-10-2021/confirm-trial-reports-improvement-in-survival-with-nivolumab-in-relapsed-malignant-mesothelioma/2021
https://ascopost.com/issues/march-10-2021/confirm-trial-reports-improvement-in-survival-with-nivolumab-in-relapsed-malignant-mesothelioma/2021


262 

76. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et 

al. New response evaluation criteria in solid tumours: revised RECIST guideline 

(version 1.1). Eur J Cancer. 2009;45(2):228-47. 

77. van Klaveren RJ, Aerts JG, de Bruin H, Giaccone G, Manegold C, van 

Meerbeeck JP. Inadequacy of the RECIST criteria for response evaluation in 

patients with malignant pleural mesothelioma. Lung Cancer. 2004;43(1):63-9. 

78. Ceresoli GL, Chiti A, Zucali PA, Cappuzzo F, De Vincenzo F, Cavina R, et 

al. Assessment of tumor response in malignant pleural mesothelioma. Cancer 

Treat Rev. 2007;33(6):533-41. 

79. Monetti F, Casanova S, Grasso A, Cafferata MA, Ardizzoni A, Neumaier CE. 

Inadequacy of the new Response Evaluation Criteria in Solid Tumors (RECIST) in 

patients with malignant pleural mesothelioma: report of four cases. Lung 

Cancer. 2004;43(1):71-4. 

80. Liu F, Zhao B, Krug LM, Ishill NM, Lim RC, Guo P, et al. Assessment of 

therapy responses and prediction of survival in malignant pleural mesothelioma 

through computer-aided volumetric measurement on computed tomography 

scans. J Thorac Oncol. 2010;5(6):879-84. 

81. Armato SG, 3rd, Oxnard GR, MacMahon H, Vogelzang NJ, Kindler HL, 

Kocherginsky M, et al. Measurement of mesothelioma on thoracic CT scans: a 

comparison of manual and computer-assisted techniques. Med Phys. 

2004;31(5):1105-15. 

82. Oxnard GR, Armato SG, 3rd, Kindler HL. Modeling of mesothelioma growth 

demonstrates weaknesses of current response criteria. Lung Cancer. 

2006;52(2):141-8. 

83. Beaumont H, Souchet S, Labatte JM, Iannessi A, Tolcher AW. Changes of 

lung tumour volume on CT - prediction of the reliability of assessments. Cancer 

Imaging. 2015;15:17. 



263 

84. Tariq I, Chen T, Kirkby NF, Jena R. Modelling and Bayesian adaptive 

prediction of individual patients' tumour volume change during radiotherapy. 

Phys Med Biol. 2016;61(5):2145-61. 

85. Farchione A, Larici AR, Masciocchi C, Cicchetti G, Congedo MT, Franchi P, 

et al. Exploring technical issues in personalized medicine: NSCLC survival 

prediction by quantitative image analysis-usefulness of density correction of 

volumetric CT data. Radiol Med. 2020;125(7):625-35. 

86. Im HJ, Pak K, Cheon GJ, Kang KW, Kim SJ, Kim IJ, et al. Prognostic value 

of volumetric parameters of (18)F-FDG PET in non-small-cell lung cancer: a 

meta-analysis. Eur J Nucl Med Mol Imaging. 2015;42(2):241-51. 

87. Ganem J, Thureau S, Gardin I, Modzelewski R, Hapdey S, Vera P. 

Delineation of lung cancer with FDG PET/CT during radiation therapy. Radiation 

Oncology. 2018;13(1):219. 

88. Kolinger GD, Vállez García D, Kramer GM, Frings V, Smit EF, de Langen AJ, 

et al. Repeatability of [18F]FDG PET/CT total metabolic active tumour volume 

and total tumour burden in NSCLC patients. EJNMMI Research. 2019;9(1):14. 

89. Lee JY, Choi JY, Heo JH, Han J, Jang SJ, Kim K, et al. Prognostic 

significance of volume-based 18F-FDG PET/CT parameter in patients with 

surgically resected non-small cell lung cancer. Comparison with 

immunohistochemical biomarkers. Nuklearmedizin. 2016;55(1):7-14. 

90. Dosani M, Yang R, McLay M, Wilson D, Liu M, Yong-Hing CJ, et al. 

Metabolic tumour volume is prognostic in patients with non-small-cell lung 

cancer treated with stereotactic ablative radiotherapy. Curr Oncol. 

2019;26(1):e57-e63. 

91. Hyun SH, Ahn HK, Kim H, Ahn MJ, Park K, Ahn YC, et al. Volume-based 

assessment by (18)F-FDG PET/CT predicts survival in patients with stage III non-

small-cell lung cancer. Eur J Nucl Med Mol Imaging. 2014;41(1):50-8. 



264 

92. Soussan M, Chouahnia K, Maisonobe JA, Boubaya M, Eder V, Morère JF, et 

al. Prognostic implications of volume-based measurements on FDG PET/CT in 

stage III non-small-cell lung cancer after induction chemotherapy. Eur J Nucl 

Med Mol Imaging. 2013;40(5):668-76. 

93. Nie K, Zhang YX, Nie W, Zhu L, Chen YN, Xiao YX, et al. Prognostic value 

of metabolic tumour volume and total lesion glycolysis measured by 18F-

fluorodeoxyglucose positron emission tomography/computed tomography in 

small cell lung cancer: A systematic review and meta-analysis. J Med Imaging 

Radiat Oncol. 2019;63(1):84-93. 

94. Oh JR, Seo JH, Chong A, Min JJ, Song HC, Kim YC, et al. Whole-body 

metabolic tumour volume of 18F-FDG PET/CT improves the prediction of 

prognosis in small cell lung cancer. Eur J Nucl Med Mol Imaging. 2012;39(6):925-

35. 

95. van Loon J, Offermann C, Ollers M, van Elmpt W, Vegt E, Rahmy A, et al. 

Early CT and FDG-metabolic tumour volume changes show a significant 

correlation with survival in stage I-III small cell lung cancer: a hypothesis 

generating study. Radiother Oncol. 2011;99(2):172-5. 

96. Jefferson MF, Pendleton N, Faragher EB, Dixon GR, Myskow MW, Horan 

MA. 'Tumour volume' as a predictor of survival after resection of non-small-cell 

lung cancer (NSCLC). Br J Cancer. 1996;74(3):456-9. 

97. Davey A, van Herk M, Faivre-Finn C, Mistry H, McWilliam A. Is tumour 

sphericity an important prognostic factor in patients with lung cancer? Radiother 

Oncol. 2020;143:73-80. 

98. Bianconi F, Fravolini ML, Bello-Cerezo R, Minestrini M, Scialpi M, Palumbo 

B. Evaluation of Shape and Textural Features from CT as Prognostic Biomarkers 

in Non-small Cell Lung Cancer. Anticancer Res. 2018;38(4):2155-60. 



265 

99. Pass HI, Temeck BK, Kranda K, Steinberg SM, Feuerstein IR. Preoperative 

tumor volume is associated with outcome in malignant pleural mesothelioma. J 

Thorac Cardiovasc Surg. 1998;115(2):310-7; discussion 7-8. 

100. Kircheva DY, Husain A, Watso S, Armato S, Kindler H, Vigneswaran WT. 

Tumor volume is an independent predictor of survival in patients with malignant 

pleural mesothelioma. Journal of Cardiothoracic Surgery. 2015;10(1):A48. 

101. Gill RR, Richards WG, Yeap BY, Matsuoka S, Wolf AS, Gerbaudo VH, et al. 

Epithelial malignant pleural mesothelioma after extrapleural pneumonectomy: 

stratification of survival with CT-derived tumor volume. AJR Am J Roentgenol. 

2012;198(2):359-63. 

102. Rusch VW, Gill R, Mitchell A, Naidich D, Rice DC, Pass HI, et al. A 

Multicenter Study of Volumetric Computed Tomography for Staging Malignant 

Pleural Mesothelioma. Ann Thorac Surg. 2016;102(4):1059-66. 

103. Paajanen J, Laaksonen S, Ilonen I, Wolff H, Husgafvel-Pursiainen K, 

Kuosma E, et al. Computed tomography in the evaluation of malignant pleural 

mesothelioma-Association of tumor size to a sarcomatoid histology, a more 

advanced TNM stage and poor survival. Lung Cancer. 2018;116:73-9. 

104. Labby ZE, Nowak AK, Dignam JJ, Straus C, Kindler HL, Armato SG, 3rd. 

Disease volumes as a marker for patient response in malignant pleural 

mesothelioma. Ann Oncol. 2013;24(4):999-1005. 

105. Sobin LH, Gospodarowicz MK, Wittekind C. TNM classification of malignant 

tumours. 7th ed. 2009. ed. Chichester, West Sussex, UK ;: Wiley-Blackwell; 

2010. 

106. Zhao B, Schwartz LH, Liu F, Wang L, Krug L, Flores RM, et al. 81 

Development of a computer method for volumetric response assessment in 

mesothelioma. Lung Cancer. 2006;54. 



266 

107. Ak G, Metintas M, Metintas S, Yildirim H, Ozkan R, Ozden H. Three-

dimensional evaluation of chemotherapy response in malignant pleural 

mesothelioma. Eur J Radiol. 2010;74(1):130-5. 

108. Frauenfelder T, Tutic M, Weder W, Götti RP, Stahel RA, Seifert B, et al. 

Volumetry: an alternative to assess therapy response for malignant pleural 

mesothelioma? Eur Respir J. 2011;38(1):162-8. 

109. Sensakovic WF, Armato SG, 3rd, Straus C, Roberts RY, Caligiuri P, Starkey 

A, et al. Computerized segmentation and measurement of malignant pleural 

mesothelioma. Med Phys. 2011;38(1):238-44. 

110. Chaisaowong K AC, Wilkmann C, Kraus T. A fully automatic probabilistic 

3D approach for the detection and assessment of pleural thickenings from CT 

data. 2013 Fourth International Workshop on Computational Intelligence in 

Medical Imaging (CIMI). 2013:14-21. 

111. Gill RR, Naidich DP, Mitchell A, Ginsberg M, Erasmus J, Armato SG, 3rd, et 

al. North American Multicenter Volumetric CT Study for Clinical Staging of 

Malignant Pleural Mesothelioma: Feasibility and Logistics of Setting Up a 

Quantitative Imaging Study. J Thorac Oncol. 2016;11(8):1335-44. 

112. Chen M, Helm E, Joshi N, Gleeson F, Brady M. Computer-aided volumetric 

assessment of malignant pleural mesothelioma on CT using a random walk-based 

method. Int J Comput Assist Radiol Surg. 2017;12(4):529-38. 

113. Brahim W, Mestiri M, Betrouni N, Hamrouni K. Malignant pleural 

mesothelioma segmentation for photodynamic therapy planning. Comput Med 

Imaging Graph. 2018;65:79-92. 

114. Russel S NP. Artificial Intelligence. A modern approach. Upper Saddle 

River, New Jersey: Pearson Education, Inc.; 2010. 

115. McCarthy J, Minsky ML, Rochester N, Shannon CE. A Proposal for the 

Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955. 

AI Magazine. 2006;27(4):12. 



267 

116. Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief 

nets. Neural Comput. 2006;18(7):1527-54. 

117. Schmidhuber J. Deep learning in neural networks: An overview. Neural 

Networks. 2015;61:85-117. 

118. What the radiologist should know about artificial intelligence - an ESR 

white paper. Insights Imaging. 2019;10(1):44. 

119. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts H. Artificial 

intelligence in radiology. Nat Rev Cancer. 2018;18(8):500-10. 

120. Këpuska V, Bohouta G, editors. Next-generation of virtual personal 

assistants (Microsoft Cortana, Apple Siri, Amazon Alexa and Google Home). 2018 

IEEE 8th Annual Computing and Communication Workshop and Conference 

(CCWC); 2018 8-10 Jan. 2018. 

121. Tan Q, Liu N, Hu X. Deep Representation Learning for Social Network 

Analysis. Frontiers in Big Data. 2019;2. 

122. Fares OH, Butt I, Lee SHM. Utilization of artificial intelligence in the 

banking sector: a systematic literature review. Journal of Financial Services 

Marketing. 2022. 

123. Xu L, Sanders L, Li K, Chow JCL. Chatbot for Health Care and Oncology 

Applications Using Artificial Intelligence and Machine Learning: Systematic 

Review. JMIR Cancer. 2021;7(4):e27850. 

124. Shao X, Kim CS. Multi-Step Short-Term Power Consumption Forecasting 

Using Multi-Channel LSTM With Time Location Considering Customer Behavior. 

IEEE Access. 2020;8:125263-73. 

125. Chaudhuri N, Gupta G, Vallurupalli V, Bose I. On the platform but will 

they buy? Predicting customers' purchase behavior using deep learning. Decis 

Support Syst. 2021;149:113622. 



268 

126. Liang H, Sun X, Sun Y, Gao Y. Text feature extraction based on deep 

learning: a review. EURASIP J Wirel Commun Netw. 2017;2017(1):211. 

127. Seify M, Sepehri M, Hosseini-far A, Darvish A. Fraud Detection in Supply 

Chain with Machine Learning. IFAC-PapersOnLine. 2022;55(10):406-11. 

128. Dada EG, Bassi JS, Chiroma H, Abdulhamid SiM, Adetunmbi AO, Ajibuwa 

OE. Machine learning for email spam filtering: review, approaches and open 

research problems. Heliyon. 2019;5(6):e01802. 

129. Bishop C. Neural Networks for Pattern Recognition. Oxford: Clarendon 

Press; 1995. 

130. Hahn U, Oleynik M. Medical Information Extraction in the Age of Deep 

Learning. Yearb Med Inform. 2020;29(1):208-20. 

131. Hassanzadeh H, Karimi S, Nguyen A. Matching patients to clinical trials 

using semantically enriched document representation. Journal of Biomedical 

Informatics. 2020;105:103406. 

132. Suzuki K. Overview of deep learning in medical imaging. Radiol Phys 

Technol. 2017;10(3):257-73. 

133. Zhou N, Siegel ZD, Zarecor S, Lee N, Campbell DA, Andorf CM, et al. 

Crowdsourcing image analysis for plant phenomics to generate ground truth data 

for machine learning. PLoS Comput Biol. 2018;14(7):e1006337. 

134. Willemink MJ, Koszek WA, Hardell C, Wu J, Fleischmann D, Harvey H, et 

al. Preparing Medical Imaging Data for Machine Learning. Radiology. 

2020;295(1):4-15. 

135. Brodley CE, Friedl MA. Identifying mislabeled training data. Journal of 

artificial intelligence research. 1999;11:131-67. 



269 

136. Gudmundsson E, Straus CM, Armato SG, 3rd. Deep convolutional neural 

networks for the automated segmentation of malignant pleural mesothelioma on 

computed tomography scans. J Med Imaging (Bellingham). 2018;5(3):034503. 

137. Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: 

an overview and application in radiology. Insights Imaging. 2018;9(4):611-29. 

138. Simonyan K, Zisserman A. Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:14091556. 2014. 

139. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al., editors. 

Going deeper with convolutions. Proceedings of the IEEE conference on 

computer vision and pattern recognition; 2015. 

140. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image 

Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition 

(CVPR). 2016:770-8. 

141. Ronneberger O, Fischer P, Brox T, editors. U-Net: Convolutional Networks 

for Biomedical Image Segmentation2015; Cham: Springer International 

Publishing. 

142. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. ImageNet 

Large Scale Visual Recognition Challenge. International Journal of Computer 

Vision. 2015;115(3):211-52. 

143. Deng J, Dong W, Socher R, Li LJ, Kai L, Li F-F, editors. ImageNet: A large-

scale hierarchical image database. 2009 IEEE Conference on Computer Vision and 

Pattern Recognition; 2009 20-25 June 2009. 

144. Kuznetsova A, Rom H, Alldrin N, Uijlings J, Krasin I, Pont-Tuset J, et al. 

The Open Images Dataset V4. International Journal of Computer Vision. 

2020;128(7):1956-81. 



270 

145. Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, et al., 

editors. Microsoft COCO: Common Objects in Context2014; Cham: Springer 

International Publishing. 

146. She Q, Feng F, Hao X, Yang Q, Lan C, Lomonaco V, et al. OpenLORIS-

Object: A Robotic Vision Dataset and Benchmark for Lifelong Deep Learning2020. 

147. Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al. Deep Convolutional 

Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset 

Characteristics and Transfer Learning. IEEE Trans Med Imaging. 2016;35(5):1285-

98. 

148. Shaziya H, Shyamala K, Zaheer R, editors. Automatic Lung Segmentation 

on Thoracic CT Scans Using U-Net Convolutional Network. 2018 International 

Conference on Communication and Signal Processing (ICCSP); 2018 3-5 April 

2018. 

149. Baek S, He Y, Allen BG, Buatti JM, Smith BJ, Tong L, et al. Deep 

segmentation networks predict survival of non-small cell lung cancer. Scientific 

reports. 2019;9(1):1-10. 

150. Grossman R, Haim O, Abramov S, Shofty B, Artzi M. Differentiating Small-

Cell Lung Cancer From Non-Small-Cell Lung Cancer Brain Metastases Based on 

MRI Using Efficientnet and Transfer Learning Approach. Technology in Cancer 

Research & Treatment. 2021;20:15330338211004919. 

151. Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O, editors. 3D 

U-Net: learning dense volumetric segmentation from sparse annotation. 

International conference on medical image computing and computer-assisted 

intervention; 2016: Springer. 

152. Gudmundsson E, Straus C, Li F, Kindler H, Armato S. P1.06-04 Deep 

Learning-Based Segmentation of Mesothelioma on CT Scans: Application to 

Patient Scans Exhibiting Pleural Effusion. Journal of Thoracic Oncology. 

2019;14(10):S478. 



271 

153. Metintas M, Metintas S, Ucgun I, Gibbs AR, Harmanci E, Alatas F, et al. 

Prognostic factors in diffuse malignant pleural mesothelioma: effects of 

pretreatment clinical and laboratory characteristics. Respir Med. 

2001;95(10):829-35. 

154. Linton A, Pavlakis N, O'Connell R, Soeberg M, Kao S, Clarke S, et al. 

Factors associated with survival in a large series of patients with malignant 

pleural mesothelioma in New South Wales. British Journal of Cancer. 

2014;111(9):1860-9. 

155. Ceresoli GL, Grosso F, Zucali PA, Mencoboni M, Pasello G, Ripa C, et al. 

Prognostic factors in elderly patients with malignant pleural mesothelioma: 

results of a multicenter survey. Br J Cancer. 2014;111(2):220-6. 

156. Musk AW, Olsen N, Alfonso H, Reid A, Mina R, Franklin P, et al. Predicting 

survival in malignant mesothelioma. European Respiratory Journal. 

2011;38(6):1420-4. 

157. Oken MM, Creech RH, Tormey DC, Horton J, Davis TE, McFadden ET, et al. 

Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J 

Clin Oncol. 1982;5(6):649-55. 

158. Karnofsky DAB BJ. The Clinical Evaluation of Chemotherapeutic Agents in 

Cancer. In Evaluation of Chemotherapeutic Agents. New York, NY, USA: 

Columbia University Press; 1949. 

159. Kindler HL, Ismaila N, Armato SG, Bueno R, Hesdorffer M, Jahan T, et al. 

Treatment of Malignant Pleural Mesothelioma: American Society of Clinical 

Oncology Clinical Practice Guideline. Journal of Clinical Oncology. 

2018;36(13):1343-73. 

160. Popat S, Baas P, Faivre-Finn C, Girard N, Nicholson AG, Nowak AK, et al. 

Malignant pleural mesothelioma: ESMO Clinical Practice Guidelines for diagnosis, 

treatment and follow-up<sup>&#x2020;</sup>. Annals of Oncology. 



272 

161. Cedres S, Assaf J-D, Iranzo P, Callejo A, Pardo N, Navarro A, et al. 

Efficacy of chemotherapy for malignant pleural mesothelioma according to 

histology in a real-world cohort. Scientific Reports. 2021;11(1):21357. 

162. Rahouma M, Aziz H, Ghaly G, Kamel M, Loai I, Mohamed A. Survival in 

Good Performance Malignant Pleural Mesothelioma Patients; Prognostic Factors 

and Predictors of Response. Asian Pac J Cancer Prev. 2017;18(8):2073-8. 

163. Templeton AJ, McNamara MG, Šeruga B, Vera-Badillo FE, Aneja P, Ocaña 

A, et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a 

systematic review and meta-analysis. J Natl Cancer Inst. 2014;106(6):dju124. 

164. Kao SC, Vardy J, Harvie R, Chatfield M, van Zandwijk N, Clarke S, et al. 

Health-related quality of life and inflammatory markers in malignant pleural 

mesothelioma. Support Care Cancer. 2013;21(3):697-705. 

165. Kao SC, Pavlakis N, Harvie R, Vardy JL, Boyer MJ, van Zandwijk N, et al. 

High blood neutrophil-to-lymphocyte ratio is an indicator of poor prognosis in 

malignant mesothelioma patients undergoing systemic therapy. Clin Cancer Res. 

2010;16(23):5805-13. 

166. Kao SC-H, Klebe S, Henderson DW, Reid G, Chatfield M, Armstrong NJ, et 

al. Low Calretinin Expression and High Neutrophil-To-Lymphocyte Ratio Are Poor 

Prognostic Factors in Patients with Malignant Mesothelioma Undergoing 

Extrapleural Pneumonectomy. Journal of Thoracic Oncology. 2011;6(11):1923-9. 

167. Pinato DJ, Mauri FA, Ramakrishnan R, Wahab L, Lloyd T, Sharma R. 

Inflammation-based prognostic indices in malignant pleural mesothelioma. J 

Thorac Oncol. 2012;7(3):587-94. 

168. Yao ZH, Tian GY, Yang SX, Wan YY, Kang YM, Liu QH, et al. Serum albumin 

as a significant prognostic factor in patients with malignant pleural 

mesothelioma. Tumour Biol. 2014;35(7):6839-45. 



273 

169. Yamagishi T, Fujimoto N, Nishi H, Miyamoto Y, Hara N, Asano M, et al. 

Prognostic significance of the lymphocyte-to-monocyte ratio in patients with 

malignant pleural mesothelioma. Lung Cancer. 2015;90(1):111-7. 

170. Ghanim B, Hoda MA, Winter MP, Klikovits T, Alimohammadi A, Hegedus B, 

et al. Pretreatment serum C-reactive protein levels predict benefit from 

multimodality treatment including radical surgery in malignant pleural 

mesothelioma: a retrospective multicenter analysis. Ann Surg. 2012;256(2):357-

62. 

171. Cihan YB, Ozturk A, Mutlu H. Relationship between prognosis and 

neutrophil: lymphocyte and platelet:lymphocyte ratios in patients with 

malignant pleural mesotheliomas. Asian Pac J Cancer Prev. 2014;15(5):2061-7. 

172. Kidd AC, McGettrick M, Tsim S, Halligan DL, Bylesjo M, Blyth KG. Survival 

prediction in mesothelioma using a scalable Lasso regression model: instructions 

for use and initial performance using clinical predictors. BMJ Open Respir Res. 

2018;5(1):e000240. 

173. Bachmann J, Heiligensetzer M, Krakowski-Roosen H, Büchler MW, Friess H, 

Martignoni ME. Cachexia worsens prognosis in patients with resectable 

pancreatic cancer. J Gastrointest Surg. 2008;12(7):1193-201. 

174. Prado CM, Baracos VE, McCargar LJ, Mourtzakis M, Mulder KE, Reiman T, 

et al. Body composition as an independent determinant of 5-fluorouracil-based 

chemotherapy toxicity. Clin Cancer Res. 2007;13(11):3264-8. 

175. Granda-Cameron C, DeMille D, Lynch MP, Huntzinger C, Alcorn T, Levicoff 

J, et al. An interdisciplinary approach to manage cancer cachexia. Clin J Oncol 

Nurs. 2010;14(1):72-80. 

176. Kimura M, Naito T, Kenmotsu H, Taira T, Wakuda K, Oyakawa T, et al. 

Prognostic impact of cancer cachexia in patients with advanced non-small cell 

lung cancer. Support Care Cancer. 2015;23(6):1699-708. 



274 

177. Rock CL, Demark-Wahnefried W. Nutrition and survival after the diagnosis 

of breast cancer: a review of the evidence. J Clin Oncol. 2002;20(15):3302-16. 

178. Thoresen L, Frykholm G, Lydersen S, Ulveland H, Baracos V, Birdsell L, et 

al. The association of nutritional assessment criteria with health-related quality 

of life in patients with advanced colorectal carcinoma. Eur J Cancer Care (Engl). 

2012;21(4):505-16. 

179. Douglas E, McMillan DC. Towards a simple objective framework for the 

investigation and treatment of cancer cachexia: the Glasgow Prognostic Score. 

Cancer Treat Rev. 2014;40(6):685-91. 

180. Vigano A, Del Fabbro E, Bruera E, Borod M. The cachexia clinic: from 

staging to managing nutritional and functional problems in advanced cancer 

patients. Crit Rev Oncog. 2012;17(3):293-303. 

181. Dewys WD, Begg C, Lavin PT, Band PR, Bennett JM, Bertino JR, et al. 

Prognostic effect of weight loss prior to chemotherapy in cancer patients. 

Eastern Cooperative Oncology Group. Am J Med. 1980;69(4):491-7. 

182. Deans C, Wigmore SJ. Systemic inflammation, cachexia and prognosis in 

patients with cancer. Curr Opin Clin Nutr Metab Care. 2005;8(3):265-9. 

183. Tan BH, Fearon KC. Cachexia: prevalence and impact in medicine. Curr 

Opin Clin Nutr Metab Care. 2008;11(4):400-7. 

184. Fearon KC, Baracos VE. Cachexia in pancreatic cancer: new treatment 

options and measures of success. HPB (Oxford). 2010;12(5):323-4. 

185. Baracos VE, Reiman T, Mourtzakis M, Gioulbasanis I, Antoun S. Body 

composition in patients with non-small cell lung cancer: a contemporary view of 

cancer cachexia with the use of computed tomography image analysis. Am J Clin 

Nutr. 2010;91(4):1133s-7s. 

186. Martin L, Birdsell L, Macdonald N, Reiman T, Clandinin MT, McCargar LJ, 

et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a 



275 

powerful prognostic factor, independent of body mass index. J Clin Oncol. 

2013;31(12):1539-47. 

187. Prado CM, Baracos VE, McCargar LJ, Reiman T, Mourtzakis M, Tonkin K, et 

al. Sarcopenia as a determinant of chemotherapy toxicity and time to tumor 

progression in metastatic breast cancer patients receiving capecitabine 

treatment. Clin Cancer Res. 2009;15(8):2920-6. 

188. Veasey-Rodrigues H, Parsons HA, Janku F, Naing A, Wheler JJ, 

Tsimberidou AM, et al. A pilot study of temsirolimus and body composition. J 

Cachexia Sarcopenia Muscle. 2013;4(4):259-65. 

189. Harimoto N, Shirabe K, Yamashita YI, Ikegami T, Yoshizumi T, Soejima Y, 

et al. Sarcopenia as a predictor of prognosis in patients following hepatectomy 

for hepatocellular carcinoma. Br J Surg. 2013;100(11):1523-30. 

190. Verhoek OG, Jungblut L, Lauk O, Blüthgen C, Opitz I, Frauenfelder T, et 

al. Sarcopenia, Precardial Adipose Tissue and High Tumor Volume as Outcome 

Predictors in Surgically Treated Pleural Mesothelioma. Diagnostics. 

2022;12(1):99. 

191. Muscaritoli M, Bossola M, Aversa Z, Bellantone R, Rossi Fanelli F. 

Prevention and treatment of cancer cachexia: new insights into an old problem. 

Eur J Cancer. 2006;42(1):31-41. 

192. Fortunati N, Manti R, Birocco N, Pugliese M, Brignardello E, Ciuffreda L, et 

al. Pro-inflammatory cytokines and oxidative stress/antioxidant parameters 

characterize the bio-humoral profile of early cachexia in lung cancer patients. 

Oncol Rep. 2007;18(6):1521-7. 

193. Vagnildhaug OM, Balstad TR, Almberg SS, Brunelli C, Knudsen AK, Kaasa S, 

et al. A cross-sectional study examining the prevalence of cachexia and areas of 

unmet need in patients with cancer. Support Care Cancer. 2018;26(6):1871-80. 

194. Argilés JM, Busquets S, Stemmler B, López-Soriano FJ. Cancer cachexia: 

understanding the molecular basis. Nat Rev Cancer. 2014;14(11):754-62. 



276 

195. von Haehling S, Anker SD. Cachexia as a major underestimated and unmet 

medical need: facts and numbers. J Cachexia Sarcopenia Muscle. 2010;1(1):1-5. 

196. Paajanen J, Ilonen I, Lauri H, Järvinen T, Sutinen E, Ollila H, et al. 

Elevated Circulating Activin A Levels in Patients With Malignant Pleural 

Mesothelioma Are Related to Cancer Cachexia and Reduced Response to 

Platinum-based Chemotherapy. Clin Lung Cancer. 2020;21(3):e142-e50. 

197. Baracos VE, Martin L, Korc M, Guttridge DC, Fearon KCH. Cancer-

associated cachexia. Nature Reviews Disease Primers. 2018;4(1):17105. 

198. Porporato PE. Understanding cachexia as a cancer metabolism syndrome. 

Oncogenesis. 2016;5(2):e200-e. 

199. Biswas AK, Acharyya S. Cancer-Associated Cachexia: A Systemic 

Consequence of Cancer Progression. Annual Review of Cancer Biology. 

2020;4(1):391-411. 

200. Loprinzi CL, Ellison NM, Goldberg RM, Michalak JC, Burch PA. Alleviation 

of cancer anorexia and cachexia: studies of the Mayo Clinic and the North 

Central Cancer Treatment Group. Semin Oncol. 1990;17(6 Suppl 9):8-12. 

201. Loprinzi CL. Management of cancer anorexia/cachexia. Support Care 

Cancer. 1995;3(2):120-2. 

202. Ross PJ, Ashley S, Norton A, Priest K, Waters JS, Eisen T, et al. Do 

patients with weight loss have a worse outcome when undergoing chemotherapy 

for lung cancers? Br J Cancer. 2004;90(10):1905-11. 

203. Sanders KJ, Hendriks LE, Troost EG, Bootsma GP, Houben RM, Schols AM, 

et al. Early Weight Loss during Chemoradiotherapy Has a Detrimental Impact on 

Outcome in NSCLC. J Thorac Oncol. 2016;11(6):873-9. 

204. Mytelka DS, Li L, Benoit K. Post-diagnosis weight loss as a prognostic 

factor in non-small cell lung cancer. J Cachexia Sarcopenia Muscle. 2018;9(1):86-

92. 



277 

205. Masel EK, Berghoff AS, Füreder LM, Heicappell P, Schlieter F, Widhalm G, 

et al. Decreased body mass index is associated with impaired survival in lung 

cancer patients with brain metastases: A retrospective analysis of 624 patients. 

Eur J Cancer Care (Engl). 2017;26(6). 

206. Patel JD, Pereira JR, Chen J, Liu J, Guba SC, John WJ, et al. Relationship 

between efficacy outcomes and weight gain during treatment of advanced, non-

squamous, non-small-cell lung cancer patients. Ann Oncol. 2016;27(8):1612-9. 

207. Meniawy TM, Creaney J, Lake RA, Nowak AK. Existing models, but not 

neutrophil-to-lymphocyte ratio, are prognostic in malignant mesothelioma. Br J 

Cancer. 2013;109(7):1813-20. 

208. Rusch VW, Piantadosi S, Holmes EC. The role of extrapleural 

pneumonectomy in malignant pleural mesothelioma. A Lung Cancer Study Group 

trial. J Thorac Cardiovasc Surg. 1991;102(1):1-9. 

209. De Wys W. Working conference on anorexia and cachexia of neoplastic 

disease. Cancer Res. 1970;30(11):2816-8. 

210. Muers MF, Round CE. Palliation of symptoms in non-small cell lung cancer: 

a study by the Yorkshire Regional Cancer Organisation Thoracic Group. Thorax. 

1993;48(4):339-43. 

211. Lindsey AM, Piper BF. Anorexia and weight loss: indicators of cachexia in 

small cell lung cancer. Nutr Cancer. 1985;7(1-2):65-76. 

212. Davis MP, Dreicer R, Walsh D, Lagman R, LeGrand SB. Appetite and 

cancer-associated anorexia: a review. J Clin Oncol. 2004;22(8):1510-7. 

213. Ezeoke CC, Morley JE. Pathophysiology of anorexia in the cancer cachexia 

syndrome. J Cachexia Sarcopenia Muscle. 2015;6(4):287-302. 

214. Laviano A, Inui A, Marks DL, Meguid MM, Pichard C, Rossi Fanelli F, et al. 

Neural control of the anorexia-cachexia syndrome. Am J Physiol Endocrinol 

Metab. 2008;295(5):E1000-8. 



278 

215. Rui L. Brain regulation of energy balance and body weight. Rev Endocr 

Metab Disord. 2013;14(4):387-407. 

216. Krasnow SM, Marks DL. Neuropeptides in the pathophysiology and 

treatment of cachexia. Curr Opin Support Palliat Care. 2010;4(4):266-71. 

217. Olson B, Diba P, Korzun T, Marks DL. Neural Mechanisms of Cancer 

Cachexia. Cancers. 2021;13(16):3990. 

218. Molfino A, Rossi-Fanelli F, Laviano A. The interaction between pro-

inflammatory cytokines and the nervous system. Nature Reviews Cancer. 

2009;9(3):224-. 

219. Grossberg AJ, Scarlett JM, Marks DL. Hypothalamic mechanisms in 

cachexia. Physiol Behav. 2010;100(5):478-89. 

220. Karapanagiotou EM, Polyzos A, Dilana KD, Gratsias I, Boura P, Gkiozos I, et 

al. Increased serum levels of ghrelin at diagnosis mediate body weight loss in 

non-small cell lung cancer (NSCLC) patients. Lung Cancer. 2009;66(3):393-8. 

221. Blauwhoff-Buskermolen S, Langius JA, Heijboer AC, Becker A, de van der 

Schueren MA, Verheul HM. Plasma Ghrelin Levels Are Associated with Anorexia 

but Not Cachexia in Patients with NSCLC. Front Physiol. 2017;8:119. 

222. Temel JS, Abernethy AP, Currow DC, Friend J, Duus EM, Yan Y, et al. 

Anamorelin in patients with non-small-cell lung cancer and cachexia (ROMANA 1 

and ROMANA 2): results from two randomised, double-blind, phase 3 trials. The 

Lancet Oncology. 2016;17(4):519-31. 

223. Turcott JG, Del Rocío Guillen Núñez M, Flores-Estrada D, Oñate-Ocaña LF, 

Zatarain-Barrón ZL, Barrón F, et al. The effect of nabilone on appetite, 

nutritional status, and quality of life in lung cancer patients: a randomized, 

double-blind clinical trial. Support Care Cancer. 2018;26(9):3029-38. 

224. Kirkham TC. Endocannabinoids in the regulation of appetite and body 

weight. Behav Pharmacol. 2005;16(5-6):297-313. 



279 

225. Hoon SN, Fyfe K, Peddle-McIntyre CJ, Bowyer S, Hawkins F, Jeffery E, et 

al. Randomised placebo-controlled cross-over study examining the role of 

anamorelin in mesothelioma (The ANTHEM study): rationale and protocol. BMJ 

Open Respiratory Research. 2020;7(1):e000551. 

226. Duong L, Radley-Crabb HG, Gardner JK, Tomay F, Dye DE, Grounds MD, et 

al. Macrophage Depletion in Elderly Mice Improves Response to Tumor 

Immunotherapy, Increases Anti-tumor T Cell Activity and Reduces Treatment-

Induced Cachexia. Frontiers in Genetics. 2018;9:526. 

227. Luo Y, Zhou H, Krueger J, Kaplan C, Lee SH, Dolman C, et al. Targeting 

tumor-associated macrophages as a novel strategy against breast cancer. J Clin 

Invest. 2006;116(8):2132-41. 

228. Zhang QW, Liu L, Gong CY, Shi HS, Zeng YH, Wang XZ, et al. Prognostic 

significance of tumor-associated macrophages in solid tumor: a meta-analysis of 

the literature. PLoS One. 2012;7(12):e50946. 

229. VanderVeen BN, Murphy EA, Carson JA. The Impact of Immune Cells on 

the Skeletal Muscle Microenvironment During Cancer Cachexia. Frontiers in 

Physiology. 2020;11:1037. 

230. Rausch V, Sala V, Penna F, Porporato PE, Ghigo A. Understanding the 

common mechanisms of heart and skeletal muscle wasting in cancer cachexia. 

Oncogenesis. 2021;10(1):1. 

231. Tisdale MJ. Wasting in cancer. J Nutr. 1999;129(1S Suppl):243s-6s. 

232. Fearon KC, Glass DJ, Guttridge DC. Cancer cachexia: mediators, signaling, 

and metabolic pathways. Cell Metab. 2012;16(2):153-66. 

233. Emery PW, Lovell L, Rennie MJ. Protein synthesis measured in vivo in 

muscle and liver of cachectic tumor-bearing mice. Cancer Res. 1984;44(7):2779-

84. 



280 

234. Fielitz J. Cancer cachexia-when proteasomal inhibition is not enough. J 

Cachexia Sarcopenia Muscle. 2016;7(3):239-45. 

235. Poth KJ, Guminski AD, Thomas GP, Leo PJ, Jabbar IA, Saunders NA. 

Cisplatin treatment induces a transient increase in tumorigenic potential 

associated with high interleukin-6 expression in head and neck squamous cell 

carcinoma. Molecular cancer therapeutics. 2010;9(8):2430-9. 

236. Quinn KM, Kartikasari AE, Cooke RE, Koldej RM, Ritchie DS, Plebanski M. 

Impact of age‐, cancer‐, and treatment‐driven inflammation on T cell function 

and immunotherapy. Journal of Leukocyte Biology. 2020;108(3):953-65. 

237. Kartikasari AER, Huertas CS, Mitchell A, Plebanski M. Tumor-Induced 

Inflammatory Cytokines and the Emerging Diagnostic Devices for Cancer 

Detection and Prognosis. Frontiers in Oncology. 2021;11(2641). 

238. Braun TP, Grossberg AJ, Krasnow SM, Levasseur PR, Szumowski M, Zhu XX, 

et al. Cancer- and endotoxin-induced cachexia require intact glucocorticoid 

signaling in skeletal muscle. The FASEB Journal. 2013;27(9):3572-82. 

239. Jones DP. Redefining oxidative stress. Antioxid Redox Signal. 2006;8(9-

10):1865-79. 

240. Manole E, Ceafalan LC, Popescu BO, Dumitru C, Bastian AE. Myokines as 

possible therapeutic targets in cancer cachexia. Journal of immunology 

research. 2018;2018. 

241. Li F, Li Y, Duan Y, Hu C-AA, Tang Y, Yin Y. Myokines and adipokines: 

Involvement in the crosstalk between skeletal muscle and adipose tissue. 

Cytokine & growth factor reviews. 2017;33:73-82. 

242. Raschke S, Eckardt K, Bjørklund Holven K, Jensen J, Eckel J. 

Identification and Validation of Novel Contraction-Regulated Myokines Released 

from Primary Human Skeletal Muscle Cells. PLOS ONE. 2013;8(4):e62008. 



281 

243. Costelli P, Muscaritoli M, Bonetto A, Penna F, Reffo P, Bossola M, et al. 

Muscle myostatin signalling is enhanced in experimental cancer cachexia. 

European Journal of Clinical Investigation. 2008;38(7):531-8. 

244. Busquets S, Toledo M, Orpí M, Massa D, Porta M, Capdevila E, et al. 

Myostatin blockage using actRIIB antagonism in mice bearing the Lewis lung 

carcinoma results in the improvement of muscle wasting and physical 

performance. Journal of cachexia, sarcopenia and muscle. 2012;3(1):37-43. 

245. Tsukioka T, Nishiyama N, Izumi N, Mizuguchi S, Komatsu H, Okada S, et al. 

Sarcopenia is a novel poor prognostic factor in male patients with pathological 

Stage I non-small cell lung cancer. Jpn J Clin Oncol. 2017;47(4):363-8. 

246. Suzuki Y, Okamoto T, Fujishita T, Katsura M, Akamine T, Takamori S, et 

al. Clinical implications of sarcopenia in patients undergoing complete resection 

for early non-small cell lung cancer. Lung Cancer. 2016;101:92-7. 

247. Hervochon R, Bobbio A, Guinet C, Mansuet-Lupo A, Rabbat A, Régnard JF, 

et al. Body Mass Index and Total Psoas Area Affect Outcomes in Patients 

Undergoing Pneumonectomy for Cancer. Ann Thorac Surg. 2017;103(1):287-95. 

248. Shoji F, Matsubara T, Kozuma Y, Haratake N, Akamine T, Takamori S, et 

al. Relationship Between Preoperative Sarcopenia Status and Immuno-nutritional 

Parameters in Patients with Early-stage Non-small Cell Lung Cancer. Anticancer 

Res. 2017;37(12):6997-7003. 

249. Kim EY, Kim YS, Park I, Ahn HK, Cho EK, Jeong YM. Prognostic Significance 

of CT-Determined Sarcopenia in Patients with Small-Cell Lung Cancer. J Thorac 

Oncol. 2015;10(12):1795-9. 

250. Nakamura R, Inage Y, Tobita R, Yoneyama S, Numata T, Ota K, et al. 

Sarcopenia in Resected NSCLC: Effect on Postoperative Outcomes. J Thorac 

Oncol. 2018;13(7):895-903. 

251. Prado CM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, et al. 

Prevalence and clinical implications of sarcopenic obesity in patients with solid 



282 

tumours of the respiratory and gastrointestinal tracts: a population-based study. 

Lancet Oncol. 2008;9(7):629-35. 

252. Kazemi-Bajestani SM, Mazurak VC, Baracos V. Computed tomography-

defined muscle and fat wasting are associated with cancer clinical outcomes. 

Semin Cell Dev Biol. 2016;54:2-10. 

253. Nattenmüller J, Wochner R, Muley T, Steins M, Hummler S, Teucher B, et 

al. Prognostic Impact of CT-Quantified Muscle and Fat Distribution before and 

after First-Line-Chemotherapy in Lung Cancer Patients. PLOS ONE. 

2017;12(1):e0169136. 

254. Deng HY, Hou L, Zha P, Huang KL, Peng L. Sarcopenia is an independent 

unfavorable prognostic factor of non-small cell lung cancer after surgical 

resection: A comprehensive systematic review and meta-analysis. Eur J Surg 

Oncol. 2019;45(5):728-35. 

255. Cortellini A, Verna L, Porzio G, Bozzetti F, Palumbo P, Masciocchi C, et al. 

Predictive value of skeletal muscle mass for immunotherapy with nivolumab in 

non-small cell lung cancer patients: A "hypothesis-generator" preliminary report. 

Thorac Cancer. 2019;10(2):347-51. 

256. Kim EY, Lee HY, Kim YS, Park I, Ahn HK, Cho EK, et al. Prognostic 

significance of cachexia score assessed by CT in male patients with small cell 

lung cancer. Eur J Cancer Care (Engl). 2018;27(1). 

257. Jeffery E, Lee YCG, Newton RU, Lyons-Wall P, McVeigh J, Fitzgerald DB, 

et al. Changes in body composition in patients with malignant pleural 

mesothelioma and the relationship with activity levels and dietary intake. 

European Journal of Clinical Nutrition. 2022. 

258. Heymsfield SB, Coleman LA, Miller R, Rooks DS, Laurent D, Petricoul O, et 

al. Effect of Bimagrumab vs Placebo on Body Fat Mass Among Adults With Type 2 

Diabetes and Obesity: A Phase 2 Randomized Clinical Trial. JAMA Network Open. 

2021;4(1):e2033457-e. 



283 

259. Nowinska K, Jablonska K, Pawelczyk K, Piotrowska A, Partynska A, 

Gomulkiewicz A, et al. Expression of Irisin/FNDC5 in Cancer Cells and Stromal 

Fibroblasts of Non-Small Cell Lung Cancer. Cancers. 2019;11(10):1538. 

260. Irlbeck T, Massaro JM, Bamberg F, O'Donnell CJ, Hoffmann U, Fox CS. 

Association between single-slice measurements of visceral and abdominal 

subcutaneous adipose tissue with volumetric measurements: the Framingham 

Heart Study. Int J Obes (Lond). 2010;34(4):781-7. 

261. Murphy RA, Wilke MS, Perrine M, Pawlowicz M, Mourtzakis M, Lieffers JR, 

et al. Loss of adipose tissue and plasma phospholipids: Relationship to survival in 

advanced cancer patients. Clinical Nutrition. 2010;29(4):482-7. 

262. Fouladiun M, Körner U, Bosaeus I, Daneryd P, Hyltander A, Lundholm KG. 

Body composition and time course changes in regional distribution of fat and 

lean tissue in unselected cancer patients on palliative care--correlations with 

food intake, metabolism, exercise capacity, and hormones. Cancer. 

2005;103(10):2189-98. 

263. Dahlman I, Mejhert N, Linder K, Agustsson T, Mutch DM, Kulyte A, et al. 

Adipose tissue pathways involved in weight loss of cancer cachexia. British 

journal of cancer. 2010;102(10):1541-8. 

264. Sun X, Feng X, Wu X, Lu Y, Chen K, Ye Y. Fat Wasting Is Damaging: Role of 

Adipose Tissue in Cancer-Associated Cachexia. Frontiers in Cell and 

Developmental Biology. 2020;8:33. 

265. Ebadi M, Mazurak VC. Evidence and mechanisms of fat depletion in 

cancer. Nutrients. 2014;6(11):5280-97. 

266. Shellock FG, Riedinger MS, Fishbein MC. Brown adipose tissue in cancer 

patients: possible cause of cancer-induced cachexia. J Cancer Res Clin Oncol. 

1986;111(1):82-5. 

267. Fenzl A, Kiefer FW. Brown adipose tissue and thermogenesis. Horm Mol 

Biol Clin Investig. 2014;19(1):25-37. 



284 

268. Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-α-

dependent myokine that drives brown-fat-like development of white fat and 

thermogenesis. Nature. 2012;481(7382):463-8. 

269. Chondronikola M, Volpi E, Børsheim E, Porter C, Annamalai P, Enerbäck S, 

et al. Brown Adipose Tissue Improves Whole-Body Glucose Homeostasis and 

Insulin Sensitivity in Humans. Diabetes. 2014;63(12):4089-99. 

270. Cao Q, Hersl J, La H, Smith M, Jenkins J, Goloubeva O, et al. A pilot study 

of FDG PET/CT detects a link between brown adipose tissue and breast cancer. 

BMC Cancer. 2014;14(1):126. 

271. Huang Y-C, Chen T-B, Hsu C-C, Li S-H, Wang P-W, Lee B-F, et al. The 

Relationship between Brown Adipose Tissue Activity and Neoplastic Status: an 

18F-FDG PET/CT Study in the Tropics. Lipids in Health and Disease. 

2011;10(1):238. 

272. Moley JF, Aamodt R, Rumble W, Kaye W, Norton JA. Body cell mass in 

cancer-bearing and anorexic patients. JPEN J Parenter Enteral Nutr. 

1987;11(3):219-22. 

273. Bos SA, Gill CM, Martinez-Salazar EL, Torriani M, Bredella MA. Preliminary 

investigation of brown adipose tissue assessed by PET/CT and cancer activity. 

Skeletal Radiol. 2019;48(3):413-9. 

274. Fredrix EW, Soeters PB, Wouters EF, Deerenberg IM, von Meyenfeldt MF, 

Saris WH. Effect of different tumor types on resting energy expenditure. Cancer 

Res. 1991;51(22):6138-41. 

275. Jatoi A, Daly BD, Hughes V, Dallal GE, Roubenoff R. The prognostic effect 

of increased resting energy expenditure prior to treatment for lung cancer. Lung 

Cancer. 1999;23(2):153-8. 

276. Staal-van den Brekel AJ, Schols AM, Dentener MA, ten Velde GP, Buurman 

WA, Wouters EF. Metabolism in patients with small cell lung carcinoma 



285 

compared with patients with non-small cell lung carcinoma and healthy controls. 

Thorax. 1997;52(4):338-41. 

277. Frille A, Kuhn H, Ebert T, Seyfarth H-J, Wirtz H. The influence of brown 

adipose tissue on the proliferation and chemosensitivity in non-small cell lung 

cancer cells. European Respiratory Journal. 2018;52(suppl 62):PA2844. 

278. Kim J, Wang Z, Heymsfield SB, Baumgartner RN, Gallagher D. Total-body 

skeletal muscle mass: estimation by a new dual-energy X-ray absorptiometry 

method. The American journal of clinical nutrition. 2002;76(2):378-83. 

279. Guglielmi G, Ponti F, Agostini M, Amadori M, Battista G, Bazzocchi A. The 

role of DXA in sarcopenia. Aging Clin Exp Res. 2016;28(6):1047-60. 

280. Op den Kamp CM, Langen RC, Minnaard R, Kelders MC, Snepvangers FJ, 

Hesselink MK, et al. Pre-cachexia in patients with stages I-III non-small cell lung 

cancer: systemic inflammation and functional impairment without activation of 

skeletal muscle ubiquitin proteasome system. Lung Cancer. 2012;76(1):112-7. 

281. Vigano A, Trutschnigg B, Kilgour RD, Hamel N, Hornby L, Lucar E, et al. 

Relationship between angiotensin-converting enzyme gene polymorphism and 

body composition, functional performance, and blood biomarkers in advanced 

cancer patients. Clin Cancer Res. 2009;15(7):2442-7. 

282. Peddle-McIntyre CJ, Bell G, Fenton D, McCargar L, Courneya KS. 

Feasibility and preliminary efficacy of progressive resistance exercise training in 

lung cancer survivors. Lung Cancer. 2012;75(1):126-32. 

283. Jeffery E, Lee YCG, Newton RU, Lyons-Wall P, McVeigh J, Nowak AK, et 

al. Body composition and nutritional status in malignant pleural mesothelioma: 

implications for activity levels and quality of life. European Journal of Clinical 

Nutrition. 2019;73(10):1412-21. 

284. Buckinx F, Landi F, Cesari M, Fieding RA, Visser M, Engelke K, et al. The 

authors reply: Letter on: "Pitfalls in the measurement of muscle mass: a need for 



286 

a reference standard" by Clark et al. J Cachexia Sarcopenia Muscle. 

2018;9(7):1272-4. 

285. Goldman LW. Principles of CT and CT technology. J Nucl Med Technol. 

2007;35(3):115-28; quiz 29-30. 

286. Lee JK, Evens RG. Computed tomography of the body. Disease-a-month : 

DM. 1980;26 7:1-56. 

287. Rössner S, Bo WJ, Hiltbrandt E, Hinson W, Karstaedt N, Santago P, et al. 

Adipose tissue determinations in cadavers--a comparison between cross-sectional 

planimetry and computed tomography. Int J Obes. 1990;14(10):893-902. 

288. Mitsiopoulos N, Baumgartner RN, Heymsfield SB, Lyons W, Gallagher D, 

Ross R. Cadaver validation of skeletal muscle measurement by magnetic 

resonance imaging and computerized tomography. J Appl Physiol (1985). 

1998;85(1):115-22. 

289. Irving BA, Weltman JY, Brock DW, Davis CK, Gaesser GA, Weltman A. NIH 

ImageJ and Slice-O-Matic computed tomography imaging software to quantify 

soft tissue. Obesity (Silver Spring). 2007;15(2):370-6. 

290. Wu GA, Bogie K. Assessment of gluteus maximus muscle area with 

different image analysis programs. Arch Phys Med Rehabil. 2009;90(6):1048-54. 

291. Strandberg S, Wretling ML, Wredmark T, Shalabi A. Reliability of 

computed tomography measurements in assessment of thigh muscle cross-

sectional area and attenuation. BMC Med Imaging. 2010;10:18. 

292. van Vugt JL, Levolger S, Gharbharan A, Koek M, Niessen WJ, Burger JW, et 

al. A comparative study of software programmes for cross-sectional skeletal 

muscle and adipose tissue measurements on abdominal computed tomography 

scans of rectal cancer patients. J Cachexia Sarcopenia Muscle. 2017;8(2):285-97. 



287 

293. Fortin M, Battié MC. Quantitative Paraspinal Muscle Measurements: Inter-

Software Reliability and Agreement Using OsiriX and ImageJ. Physical Therapy. 

2012;92(6):853-64. 

294. Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK, 

Veeriah S, et al. Tracking the Evolution of Non–Small-Cell Lung Cancer. New 

England Journal of Medicine. 2017;376(22):2109-21. 

295. Franklin BR, Patel KM, Nahabedian MY, Baldassari LE, Cohen EI, Bhanot P. 

Predicting abdominal closure after component separation for complex ventral 

hernias: maximizing the use of preoperative computed tomography. Ann Plast 

Surg. 2013;71(3):261-5. 

296. Yun CH, Bezerra HG, Wu TH, Yang FS, Liu CC, Wu YJ, et al. The normal 

limits, subclinical significance, related metabolic derangements and distinct 

biological effects of body site-specific adiposity in relatively healthy population. 

PLoS One. 2013;8(4):e61997. 

297. van Vledder MG, Levolger S, Ayez N, Verhoef C, Tran TC, Ijzermans JN. 

Body composition and outcome in patients undergoing resection of colorectal 

liver metastases. Br J Surg. 2012;99(4):550-7. 

298. Nishikawa D, Hanai N, Suzuki H, Koide Y, Beppu S, Hasegawa Y. The 

Impact of Skeletal Muscle Depletion on Head and Neck Squamous Cell 

Carcinoma. ORL J Otorhinolaryngol Relat Spec. 2018;80(1):1-9. 

299. Rollins KE, Awwad A, Macdonald IA, Lobo DN. A comparison of two 

different software packages for analysis of body composition using computed 

tomography images. Nutrition. 2019;57:92-6. 

300. Pezaro C, Mukherji D, Tunariu N, Cassidy AM, Omlin A, Bianchini D, et al. 

Sarcopenia and change in body composition following maximal androgen 

suppression with abiraterone in men with castration-resistant prostate cancer. 

Br J Cancer. 2013;109(2):325-31. 



288 

301. GroΔ JP, Nattenmüller J, Hemmer S, Tichy D, Krzykalla J, Goldschmidt H, 

et al. Body fat composition as predictive factor for treatment response in 

patients with newly diagnosed multiple myeloma - subgroup analysis of the 

prospective GMMG MM5 trial. Oncotarget. 2017;8(40):68460-71. 

302. Cespedes Feliciano EM, Popuri K, Cobzas D, Baracos VE, Beg MF, Khan AD, 

et al. Evaluation of automated computed tomography segmentation to assess 

body composition and mortality associations in cancer patients. Journal of 

Cachexia, Sarcopenia and Muscle. 2020;11(5):1258-69. 

303. Kashiwagi E, Shiota M, Masaoka H, Imada K, Monji K, Takeuchi A, et al. 

Relationship between body composition and hormone sensitivity for androgen 

deprivation therapy in patients with metastatic prostate cancer. Prostate Int. 

2020;8(1):22-6. 

304. Ozola-Zālīte I, Mark EB, Gudauskas T, Lyadov V, Olesen SS, Drewes AM, et 

al. Reliability and validity of the new VikingSlice software for computed 

tomography body composition analysis. Eur J Clin Nutr. 2019;73(1):54-61. 

305. Mourtzakis M, Prado CM, Lieffers JR, Reiman T, McCargar LJ, Baracos VE. 

A practical and precise approach to quantification of body composition in cancer 

patients using computed tomography images acquired during routine care. Appl 

Physiol Nutr Metab. 2008;33(5):997-1006. 

306. Fujiwara N, Nakagawa H, Kudo Y, Tateishi R, Taguri M, Watadani T, et al. 

Sarcopenia, intramuscular fat deposition, and visceral adiposity independently 

predict the outcomes of hepatocellular carcinoma. J Hepatol. 2015;63(1):131-

40. 

307. van Dijk DP, Bakens MJ, Coolsen MM, Rensen SS, van Dam RM, Bours MJ, et 

al. Low skeletal muscle radiation attenuation and visceral adiposity are 

associated with overall survival and surgical site infections in patients with 

pancreatic cancer. J Cachexia Sarcopenia Muscle. 2017;8(2):317-26. 



289 

308. Sun L, Quan XQ, Yu S. An Epidemiological Survey of Cachexia in Advanced 

Cancer Patients and Analysis on Its Diagnostic and Treatment Status. Nutr 

Cancer. 2015;67(7):1056-62. 

309. Derstine BA, Holcombe SA, Ross BE, Wang NC, Su GL, Wang SC. Skeletal 

muscle cutoff values for sarcopenia diagnosis using T10 to L5 measurements in a 

healthy US population. Sci Rep. 2018;8(1):11369. 

310. Vangelov B, Bauer J, Kotevski D, Smee RI. The use of alternate vertebral 

levels to L3 in computed tomography scans for skeletal muscle mass evaluation 

and sarcopenia assessment in patients with cancer: a systematic review. Br J 

Nutr. 2021:1-14. 

311. Go SI, Park MJ, Song HN, Kang MH, Park HJ, Jeon KN, et al. Sarcopenia 

and inflammation are independent predictors of survival in male patients newly 

diagnosed with small cell lung cancer. Support Care Cancer. 2016;24(5):2075-84. 

312. van der Kroft G, van Dijk DPJ, Rensen SS, Van Tiel FH, de Greef B, West 

M, et al. Low thoracic muscle radiation attenuation is associated with 

postoperative pneumonia following partial hepatectomy for colorectal 

metastasis. HPB (Oxford). 2020;22(7):1011-9. 

313. Hua X, Deng JP, Long ZQ, Zhang WW, Huang X, Wen W, et al. Prognostic 

significance of the skeletal muscle index and an inflammation biomarker in 

patients with breast cancer who underwent postoperative adjuvant 

radiotherapy. Curr Probl Cancer. 2020;44(2):100513. 

314. Sealy MJ, Dechaphunkul T, van der Schans CP, Krijnen WP, Roodenburg 

JLN, Walker J, et al. Low muscle mass is associated with early termination of 

chemotherapy related to toxicity in patients with head and neck cancer. Clin 

Nutr. 2020;39(2):501-9. 

315. Wysham NG, Nipp RD, LeBlanc TW, Wolf SP, Ekstrom MP, Currow DC. A 

practical measurement of thoracic sarcopenia: correlation with clinical 



290 

parameters and outcomes in advanced lung cancer. ERJ Open Research. 

2016;2(2):00085-2015. 

316. Rozenberg D, Mathur S, Herridge M, Goldstein R, Schmidt H, Chowdhury 

NA, et al. Thoracic muscle cross-sectional area is associated with hospital length 

of stay post lung transplantation: a retrospective cohort study. Transpl Int. 

2017;30(7):713-24. 

317. Moon SW, Choi JS, Lee SH, Jung KS, Jung JY, Kang YA, et al. Thoracic 

skeletal muscle quantification: low muscle mass is related with worse prognosis 

in idiopathic pulmonary fibrosis patients. Respiratory Research. 2019;20(1):35. 

318. Tsim S, Kelly C, Alexander L, Shaw A, Paul J, Woodward R, et al. The 

DIAPHRAGM study: Diagnostic and prognostic biomarkers in the rational 

assessment of Mesothelioma. European Respiratory Journal. 2018;52(suppl 

62):OA493. 

319. Tsim S, Cowell GW, Kidd A, Woodward R, Alexander L, Kelly C, et al. A 

comparison between MRI and CT in the assessment of primary tumour volume in 

mesothelioma. Lung Cancer. 2020;150:12-20. 

320. Buccheri G, Ferrigno D, Tamburini M. Karnofsky and ECOG performance 

status scoring in lung cancer: a prospective, longitudinal study of 536 patients 

from a single institution. Eur J Cancer. 1996;32a(7):1135-41. 

321. Hooper CE, Lyburn ID, Searle J, Darby M, Hall T, Hall D, et al. The South 

West Area Mesothelioma and Pemetrexed trial: a multicentre prospective 

observational study evaluating novel markers of chemotherapy response and 

prognostication. British Journal of Cancer. 2015;112(7):1175-82. 

322. Blyth K, Kidd AC, Winter A, Baird W, Dick C, Hair J, et al. An update 

regarding the Prediction of ResIstance to chemotherapy using Somatic copy 

number variation in Mesothelioma (PRISM) study. Lung Cancer. 2018;115:S26-S7. 

323. Stewart D, Waller D, Edwards J, Jeyapalan K, Entwisle J. Is there a role 

for pre-operative contrast-enhanced magnetic resonance imaging for radical 



291 

surgery in malignant pleural mesothelioma? European Journal of Cardio-Thoracic 

Surgery. 2003;24(6):1019-24. 

324. Plathow C, Klopp M, Thieke C, Herth F, Thomas A, Schmaehl A, et al. 

Therapy response in malignant pleural mesothelioma-role of MRI using RECIST, 

modified RECIST and volumetric approaches in comparison with CT. Eur Radiol. 

2008;18(8):1635-43. 

325. Tsao AS, Gladish GW, Gill RR. Revised Modified RECIST Criteria in 

Malignant Pleural Mesothelioma (Version 1.1): A Step Forward in a Long Race. J 

Thorac Oncol. 2018;13(7):871-3. 

326. Nackaerts K, Vansteenkiste J, Nafteux P. A practical guide to measure 

"all" malignant pleural mesothelioma tumors by modified RECIST criteria? J 

Thorac Oncol. 2011;6(12):2143-4; author reply 4-5. 

327. Anderson O, Kidd A, Goatman K, Weir A, Voisey J, Dilys V, et al. Fully 

Automated Volumetric Measurement of Malignant Pleural Mesothelioma from 

Computed Tomography Images by Deep Learning: Preliminary Results of an 

Internal Validation2020. 64-73 p. 

328. Proctor MJ, Morrison DS, Talwar D, Balmer SM, O'Reilly DS, Foulis AK, et 

al. An inflammation-based prognostic score (mGPS) predicts cancer survival 

independent of tumour site: a Glasgow Inflammation Outcome Study. Br J 

Cancer. 2011;104(4):726-34. 

329. Nuttall FQ. Body Mass Index: Obesity, BMI, and Health: A Critical Review. 

Nutr Today. 2015;50(3):117-28. 

330. Health NIo. ImageJ 2021 [Available from: 

https://imagej.nih.gov/ij/docs/intro.html. 

331. Mozley PD, Bendtsen C, Zhao B, Schwartz LH, Thorn M, Rong Y, et al. 

Measurement of tumor volumes improves RECIST-based response assessments in 

advanced lung cancer. Transl Oncol. 2012;5(1):19-25. 

https://imagej.nih.gov/ij/docs/intro.html


292 

332. Spira D, Sökler M, Vogel W, Löffler S, Spira SM, Brodoefel H, et al. Volume 

and attenuation computed tomography measurements for interim evaluation of 

Hodgkin and follicular lymphoma as an additional surrogate parameter for more 

confident response monitoring: a pilot study. Cancer Imaging. 2011;11(1):155-

62. 

333. Mueller S, Wichmann G, Dornheim L, Roessling I, Bertolini J, Preim B, et 

al. Different approaches to volume assessment of lymph nodes in computer 

tomography scans of head and neck squamous cell carcinoma in comparison with 

a real gold standard. ANZ J Surg. 2012;82(10):737-41. 

334. Goldmacher GV, Conklin J. The use of tumour volumetrics to assess 

response to therapy in anticancer clinical trials. Br J Clin Pharmacol. 

2012;73(6):846-54. 

335. Berger A. Magnetic resonance imaging. BMJ (Clinical research ed). 

2002;324(7328):35-. 

336. Heelan RT, Rusch VW, Begg CB, Panicek DM, Caravelli JF, Eisen C. Staging 

of malignant pleural mesothelioma: comparison of CT and MR imaging. AJR Am J 

Roentgenol. 1999;172(4):1039-47. 

337. Armato SG, 3rd, Oxnard GR, Kocherginsky M, Vogelzang NJ, Kindler HL, 

MacMahon H. Evaluation of semiautomated measurements of mesothelioma 

tumor thickness on CT scans. Acad Radiol. 2005;12(10):1301-9. 

338. Armato SG, 3rd, Blyth KG, Keating JJ, Katz S, Tsim S, Coolen J, et al. 

Imaging in pleural mesothelioma: A review of the 13th International Conference 

of the International Mesothelioma Interest Group. Lung Cancer. 2016;101:48-58. 

339. Corson N, Sensakovic WF, Straus C, Starkey A, Armato SG, 3rd. 

Characterization of mesothelioma and tissues present in contrast-enhanced 

thoracic CT scans. Med Phys. 2011;38(2):942-7. 

340. Mirvis S, Dutcher JP, Haney PJ, Whitley NO, Aisner J. CT of malignant 

pleural mesothelioma. AJR Am J Roentgenol. 1983;140(4):665-70. 



293 

341. Luerken L, Thurn PL, Zeman F, Stroszczynski C, Hamer OW. Conspicuity of 

malignant pleural mesothelioma in contrast enhanced MDCT – arterial phase or 

late phase? BMC Cancer. 2021;21(1):1144. 

342. Tsim S, Humphreys CA, Cowell GW, Stobo DB, Noble C, Woodward R, et 

al. Early Contrast Enhancement: A novel magnetic resonance imaging biomarker 

of pleural malignancy. Lung Cancer. 2018;118:48-56. 

343. Yankeelov TE, Gore JC. Dynamic Contrast Enhanced Magnetic Resonance 

Imaging in Oncology: Theory, Data Acquisition, Analysis, and Examples. Curr Med 

Imaging Rev. 2009;3(2):91-107. 

344. Giesel FL, Bischoff H, von Tengg-Kobligk H, Weber MA, Zechmann CM, 

Kauczor HU, et al. Dynamic contrast-enhanced MRI of malignant pleural 

mesothelioma: a feasibility study of noninvasive assessment, therapeutic follow-

up, and possible predictor of improved outcome. Chest. 2006;129(6):1570-6. 

345. Cicero G, Mazziotti S, Blandino A, Granata F, Gaeta M. Magnetic 

Resonance Imaging of the Diaphragm: From Normal to Pathologic Findings. J Clin 

Imaging Sci. 2020;10:1-. 

346. Ball L, Braune A, Spieth P, Herzog M, Chandrapatham K, Hietschold V, et 

al. Magnetic Resonance Imaging for Quantitative Assessment of Lung Aeration: A 

Pilot Translational Study. Frontiers in Physiology. 2018;9. 

347. Vivoda Tomšič M, Bisdas S, Kovač V, Serša I, Šurlan Popovič K. Dynamic 

contrast-enhanced MRI of malignant pleural mesothelioma: a comparative study 

of pharmacokinetic models and correlation with mRECIST criteria. Cancer 

imaging : the official publication of the International Cancer Imaging Society. 

2019;19(1):10-. 

348. Gudmundsson E, Labby Z, Straus CM, Sensakovic WF, Li F, Rose B, et al. 

Dynamic contrast-enhanced CT for the assessment of tumour response in 

malignant pleural mesothelioma: a pilot study. European Radiology. 

2019;29(2):682-8. 



294 

349. Meijerink MR, van Cruijsen H, Hoekman K, Kater M, van Schaik C, van 

Waesberghe JH, et al. The use of perfusion CT for the evaluation of therapy 

combining AZD2171 with gefitinib in cancer patients. Eur Radiol. 

2007;17(7):1700-13. 

350. Armato SG, Labby ZE, Coolen J, Klabatsa A, Feigen M, Persigehl T, et al. 

Imaging in pleural mesothelioma: A review of the 11th International Conference 

of the International Mesothelioma Interest Group. Lung Cancer. 2013;82(2):190-

6. 

351. Miles KA. Measurement of tissue perfusion by dynamic computed 

tomography. Br J Radiol. 1991;64(761):409-12. 

352. Murray JG, Patz EF, Jr., Erasmus JJ, Gilkeson RC. CT appearance of the 

pleural space after talc pleurodesis. AJR Am J Roentgenol. 1997;169(1):89-91. 

353. Kwek BH, Aquino SL, Fischman AJ. Fluorodeoxyglucose positron emission 

tomography and CT after talc pleurodesis. Chest. 2004;125(6):2356-60. 

354. Mahesh M. The Essential Physics of Medical Imaging, Third Edition. Med 

Phys. 2013;40(7). 

355. Lauk O, Patella M, Neuer T, Battilana B, Frauenfelder T, Nguyen-Kim TDL, 

et al. Implementing CT tumor volume and CT pleural thickness into future 

staging systems for malignant pleural mesothelioma. Cancer Imaging. 

2021;21(1):48. 

356. Seely JM, Nguyen ET, Churg AM, Müller NL. Malignant pleural 

mesothelioma: computed tomography and correlation with histology. Eur J 

Radiol. 2009;70(3):485-91. 

357. Choi Y, Gil BM, Chung MH, Yoo WJ, Jung NY, Kim YH, et al. Comparing 

attenuations of malignant and benign solitary pulmonary nodule using semi-

automated region of interest selection on contrast-enhanced CT. Journal of 

thoracic disease. 2019;11(6):2392-401. 



295 

358. Tamura M, Matsumoto I, Saito D, Yoshida S, Kakegawa S, Takemura H. 

Mean Computed Tomography Value to Predict the Tumor Invasiveness in Clinical 

Stage IA Lung Cancer. The Annals of Thoracic Surgery. 2017;104(1):261-6. 

359. Tamura M, Matsumoto I, Tanaka Y, Saito D, Yoshida S, Takata M. 

Predicting recurrence of non-small cell lung cancer based on mean computed 

tomography value. Journal of Cardiothoracic Surgery. 2021;16(1):128. 

360. Veeratterapillay R, r i, Heer R, Haslam P. Can the degree of contrast 

enhancement measured in Hounsfield units on CT scanning for renal cell cancer 

correlate with tumour aggressiveness or survival?2011. 

361. Nakasu S, Onishi T, Kitahara S, Oowaki H, Matsumura K-I. CT Hounsfield 

Unit Is a Good Predictor of Growth in Meningiomas. Neurol Med Chir (Tokyo). 

2019;59(2):54-62. 

362. Md SC, Md SO, Md SSE. Does the Computed Tomography Hounsfield Units 

Change Predict Response to Perioperative Chemotherapy in Patients with Gastric 

Adenocarcinoma. Journal of Cancer. 2022;13(5):1449-55. 

363. Alexander ES, Xiong L, Baird GL, Fernando H, Dupuy DE. CT Densitometry 

and Morphology of Radiofrequency-Ablated Stage IA Non-Small Cell Lung Cancer: 

Results from the American College of Surgeons Oncology Group Z4033 (Alliance) 

Trial. J Vasc Interv Radiol. 2020;31(2):286-93. 

364. Senyiğit A, Bayram H, Babayiğit C, Topçu F, Nazaroğlu H, Bilici A, et al. 

Malignant pleural mesothelioma caused by environmental exposure to asbestos 

in the Southeast of Turkey: CT findings in 117 patients. Respiration. 

2000;67(6):615-22. 

365. Escalon JG, Harrington KA, Plodkowski AJ, Zheng J, Capanu M, Zauderer 

MG, et al. Malignant Pleural Mesothelioma: Are There Imaging Characteristics 

Associated With Different Histologic Subtypes on Computed Tomography? J 

Comput Assist Tomogr. 2018;42(4):601-6. 



296 

366. Ching BC, Tan HS, Tan PH, Toh CK, Kanesvaran R, Ng QS, et al. 

Differential radiologic characteristics of renal tumours on multiphasic computed 

tomography. Singapore Med J. 2017;58(5):262-6. 

367. Wienbeck S, Fischer U, Perske C, Wienke A, Meyer H-J, Lotz J, et al. 

Cone-beam Breast Computed Tomography: CT Density Does Not Reflect 

Proliferation Potential and Receptor Expression of Breast Carcinoma. 

Translational Oncology. 2017;10:599-603. 

368. Wang ZJ, Reddy GP, Gotway MB, Higgins CB, Jablons DM, Ramaswamy M, 

et al. Malignant pleural mesothelioma: evaluation with CT, MR imaging, and PET. 

Radiographics. 2004;24(1):105-19. 

369. Yamamuro M, Gerbaudo VH, Gill RR, Jacobson FL, Sugarbaker DJ, Hatabu 

H. Morphologic and functional imaging of malignant pleural mesothelioma. Eur J 

Radiol. 2007;64(3):356-66. 

370. Armato SG, 3rd, Francis RJ, Katz SI, Ak G, Opitz I, Gudmundsson E, et al. 

Imaging in pleural mesothelioma: A review of the 14th International Conference 

of the International Mesothelioma Interest Group. Lung Cancer. 2019;130:108-

14. 

371. Patel A, Roshkovan L, McNulty S, Alley E, Torigian DA, Nachiappan AC, et 

al. Delayed-Phase Enhancement for Evaluation of Malignant Pleural 

Mesothelioma on Computed Tomography: A Prospective Cohort Study. Clin Lung 

Cancer. 2021;22(3):210-7.e1. 

372. Nowak AK, Chansky K, Rice DC, Pass HI, Kindler HL, Shemanski L, et al. 

The IASLC Mesothelioma Staging Project: Proposals for Revisions of the T 

Descriptors in the Forthcoming Eighth Edition of the TNM Classification for 

Pleural Mesothelioma. J Thorac Oncol. 2016;11(12):2089-99. 

373. Weikert T, Akinci D’Antonoli T, Bremerich J, Stieltjes B, Sommer G, 

Sauter AW. Evaluation of an AI-Powered Lung Nodule Algorithm for Detection 



297 

and 3D Segmentation of Primary Lung Tumors. Contrast Media &#x26; Molecular 

Imaging. 2019;2019:1545747. 

374. Santoro A, O'Brien ME, Stahel RA, Nackaerts K, Baas P, Karthaus M, et al. 

Pemetrexed plus cisplatin or pemetrexed plus carboplatin for chemonaïve 

patients with malignant pleural mesothelioma: results of the International 

Expanded Access Program. J Thorac Oncol. 2008;3(7):756-63. 

375. Blayney JK, Ceresoli GL, Castagneto B, O'Brien ME, Hasan B, Sylvester R, 

et al. Response to chemotherapy is predictive in relation to longer overall 

survival in an individual patient combined-analysis with pleural mesothelioma. 

Eur J Cancer. 2012;48(16):2983-92. 

376. Hopper KD, Kasales CJ, Eggli KD, TenHave TR, Belman NM, Potok PS, et 

al. The impact of 2D versus 3D quantitation of tumor bulk determination on 

current methods of assessing response to treatment. J Comput Assist Tomogr. 

1996;20(6):930-7. 

377. Erasmus JJ, Gladish GW, Broemeling L, Sabloff BS, Truong MT, Herbst RS, 

et al. Interobserver and intraobserver variability in measurement of non-small-

cell carcinoma lung lesions: implications for assessment of tumor response. J 

Clin Oncol. 2003;21(13):2574-82. 

378. Hayes SA, Pietanza MC, O'Driscoll D, Zheng J, Moskowitz CS, Kris MG, et 

al. Comparison of CT volumetric measurement with RECIST response in patients 

with lung cancer. European journal of radiology. 2016;85(3):524-33. 

379. Prasad SR, Jhaveri KS, Saini S, Hahn PF, Halpern EF, Sumner JE. CT tumor 

measurement for therapeutic response assessment: comparison of 

unidimensional, bidimensional, and volumetric techniques initial observations. 

Radiology. 2002;225(2):416-9. 

380. Zimmermann M, Kuhl C, Engelke H, Bettermann G, Keil S. Volumetric 

measurements of target lesions: does it improve inter-reader variability for 



298 

oncological response assessment according to RECIST 1.1 guidelines compared to 

standard unidimensional measurements? Pol J Radiol. 2021;86:e594-e600. 

381. Winter KS, Hofmann FO, Thierfelder KM, Holch JW, Hesse N, Baumann AB, 

et al. Towards volumetric thresholds in RECIST 1.1: Therapeutic response 

assessment in hepatic metastases. Eur Radiol. 2018;28(11):4839-48. 

382. Huang P, Lin CT, Li Y, Tammemagi MC, Brock MV, Atkar-Khattra S, et al. 

Prediction of lung cancer risk at follow-up screening with low-dose CT: a training 

and validation study of a deep learning method. The Lancet Digital Health. 

2019;1(7):e353-e62. 

383. Xu Y, Hosny A, Zeleznik R, Parmar C, Coroller T, Franco I, et al. Deep 

Learning Predicts Lung Cancer Treatment Response from Serial Medical Imaging. 

Clinical Cancer Research. 2019;25(11):3266-75. 

384. Hosny A, Parmar C, Coroller TP, Grossmann P, Zeleznik R, Kumar A, et al. 

Deep learning for lung cancer prognostication: A retrospective multi-cohort 

radiomics study. PLoS Med. 2018;15(11):e1002711. 

385. Liu K-L, Wu T, Chen P-T, Tsai YM, Roth H, Wu M-S, et al. Deep learning to 

distinguish pancreatic cancer tissue from non-cancerous pancreatic tissue: a 

retrospective study with cross-racial external validation. The Lancet Digital 

Health. 2020;2(6):e303-e13. 

386. Koh J, Yoon Y, Kim S, Han K, Kim EK. Deep Learning for the Detection of 

Breast Cancers on Chest Computed Tomography. Clin Breast Cancer. 

2022;22(1):26-31. 

387. Lewandowicz A, Sławiński P, Kądalska E, Targowski T. Some clarifications 

of terminology may facilitate sarcopenia assessment. Archives of Medical 

Science. 2020;16(1):225-32. 

388. Heymsfield SB, Smith R, Aulet M, Bensen B, Lichtman S, Wang J, et al. 

Appendicular skeletal muscle mass: measurement by dual-photon 

absorptiometry. Am J Clin Nutr. 1990;52(2):214-8. 



299 

389. Choi H, Park YS, Na KJ, Park S, Park IK, Kang CH, et al. Association of 

Adipopenia at Preoperative PET/CT with Mortality in Stage I Non–Small Cell Lung 

Cancer. Radiology. 2021;301(3):645-53. 

390. Barbi J, Patnaik SK, Pabla S, Zollo R, Smith RJ, Jr., Sass SN, et al. Visceral 

Obesity Promotes Lung Cancer Progression&#x2014;Toward Resolution of the 

Obesity Paradox in Lung Cancer. Journal of Thoracic Oncology. 2021;16(8):1333-

48. 

391. Leung CC, Lam TH, Yew WW, Chan WM, Law WS, Tam CM. Lower lung 

cancer mortality in obesity. Int J Epidemiol. 2011;40(1):174-82. 

392. Yang R, Cheung MC, Pedroso FE, Byrne MM, Koniaris LG, Zimmers TA. 

Obesity and weight loss at presentation of lung cancer are associated with 

opposite effects on survival. J Surg Res. 2011;170(1):e75-83. 

393. Ebadi M, Martin L, Ghosh S, Field CJ, Lehner R, Baracos VE, et al. 

Subcutaneous adiposity is an independent predictor of mortality in cancer 

patients. Br J Cancer. 2017;117(1):148-55. 

394. Matsui R, Inaki N, Tsuji T. Impact of visceral adipose tissue on long-term 

outcomes after gastrectomy for advanced gastric cancer. Nutrition. 

2022:111619. 

395. Feng W, Huang M, Zhao X, Chen S, Wang C, Chang J, et al. Severe loss of 

visceral fat and skeletal muscle after chemotherapy predicts poor prognosis in 

metastatic gastric cancer patients without gastrectomy. Journal of Cancer. 

2020;11(11):3310-7. 

396. Iwase T, Sangai T, Nagashima T, Sakakibara M, Sakakibara J, Hayama S, et 

al. Impact of body fat distribution on neoadjuvant chemotherapy outcomes in 

advanced breast cancer patients. Cancer Med. 2016;5(1):41-8. 

397. Mizuno R, Miyajima A, Hibi T, Masuda A, Shinojima T, Kikuchi E, et al. 

Impact of baseline visceral fat accumulation on prognosis in patients with 



300 

metastatic renal cell carcinoma treated with systemic therapy. Medical 

Oncology. 2017;34(4):47. 

398. Lieffers JR, Bathe OF, Fassbender K, Winget M, Baracos VE. Sarcopenia is 

associated with postoperative infection and delayed recovery from colorectal 

cancer resection surgery. Br J Cancer. 2012;107(6):931-6. 

399. Tan BH, Birdsell LA, Martin L, Baracos VE, Fearon KC. Sarcopenia in an 

overweight or obese patient is an adverse prognostic factor in pancreatic cancer. 

Clin Cancer Res. 2009;15(22):6973-9. 

400. Sjøblom B, Benth J, Grønberg BH, Baracos VE, Sawyer MB, Fløtten Ø, et 

al. Drug Dose Per Kilogram Lean Body Mass Predicts Hematologic Toxicity From 

Carboplatin-Doublet Chemotherapy in Advanced Non-Small-Cell Lung Cancer. 

Clin Lung Cancer. 2017;18(2):e129-e36. 

401. Srdic D, Plestina S, Sverko-Peternac A, Nikolac N, Simundic AM, Samarzija 

M. Cancer cachexia, sarcopenia and biochemical markers in patients with 

advanced non-small cell lung cancer-chemotherapy toxicity and prognostic 

value. Support Care Cancer. 2016;24(11):4495-502. 

402. Fintelmann FJ, Troschel FM, Mario J, Chretien YR, Knoll SJ, Muniappan A, 

et al. Thoracic Skeletal Muscle Is Associated With Adverse Outcomes After 

Lobectomy for Lung Cancer. Ann Thorac Surg. 2018;105(5):1507-15. 

403. Troschel FM, Kuklinski MW, Knoll SJ, Best TD, Muniappan A, Gaissert HA, 

et al. Preoperative thoracic muscle area on computed tomography predicts long-

term survival following pneumonectomy for lung cancer. Interact Cardiovasc 

Thorac Surg. 2019;28(4):542-9. 

404. Cury SS, de Moraes D, Freire PP, de Oliveira G, Marques DVP, Fernandez 

GJ, et al. Tumor Transcriptome Reveals High Expression of IL-8 in Non-Small Cell 

Lung Cancer Patients with Low Pectoralis Muscle Area and Reduced Survival. 

Cancers (Basel). 2019;11(9). 



301 

405. Goncalves MD, Taylor S, Halpenny DF, Schwitzer E, Gandelman S, Jackson 

J, et al. Imaging skeletal muscle volume, density, and FDG uptake before and 

after induction therapy for non-small cell lung cancer. Clin Radiol. 

2018;73(5):505.e1-.e8. 

406. Madariaga MLL, Troschel FM, Best TD, Knoll SJ, Gaissert HA, Fintelmann 

FJ. Low Thoracic Skeletal Muscle Area Predicts Morbidity After Pneumonectomy 

for Lung Cancer. Ann Thorac Surg. 2020;109(3):907-13. 

407. Li HL, Au PC, Lee GK, Li GH, Chan M, Cheung BM, et al. Different 

definition of sarcopenia and mortality in cancer: A meta-analysis. Osteoporos 

Sarcopenia. 2021;7(Suppl 1):S34-s8. 

408. Williams B, Mandrekar J, Mandrekar S, Cha S, Furth A. Finding Optimal 

Cutpoints for Continuous Covariates with Binary and Time-to-Event Outcomes. 

Technical Report Series. 2006;79. 

409. Zhang X-M, Dou Q-L, Zeng Y, Yang Y, Cheng ASK, Zhang W-W. Sarcopenia 

as a predictor of mortality in women with breast cancer: a meta-analysis and 

systematic review. BMC Cancer. 2020;20(1):172. 

410. Miyamoto Y, Baba Y, Sakamoto Y, Ohuchi M, Tokunaga R, Kurashige J, et 

al. Sarcopenia is a Negative Prognostic Factor After Curative Resection of 

Colorectal Cancer. Ann Surg Oncol. 2015;22(8):2663-8. 

411. Jung HW, Kim JW, Kim JY, Kim SW, Yang HK, Lee JW, et al. Effect of 

muscle mass on toxicity and survival in patients with colon cancer undergoing 

adjuvant chemotherapy. Support Care Cancer. 2015;23(3):687-94. 

412. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and 

distribution in 468 men and women aged 18–88 yr. Journal of Applied Physiology. 

2000;89(1):81-8. 

413. Miller AEJ, MacDougall JD, Tarnopolsky MA, Sale DG. Gender differences 

in strength and muscle fiber characteristics. European Journal of Applied 

Physiology and Occupational Physiology. 1993;66(3):254-62. 



302 

414. Stene GB, Helbostad JL, Amundsen T, Sørhaug S, Hjelde H, Kaasa S, et al. 

Changes in skeletal muscle mass during palliative chemotherapy in patients with 

advanced lung cancer. Acta Oncol. 2015;54(3):340-8. 

415. Prado CM, Sawyer MB, Ghosh S, Lieffers JR, Esfandiari N, Antoun S, et al. 

Central tenet of cancer cachexia therapy: do patients with advanced cancer 

have exploitable anabolic potential? The American Journal of Clinical Nutrition. 

2013;98(4):1012-9. 

416. Du Y, Wang X, Xie H, Zheng S, Wu X, Zhu X, et al. Sex differences in the 

prevalence and adverse outcomes of sarcopenia and sarcopenic obesity in 

community dwelling elderly in East China using the AWGS criteria. BMC 

Endocrine Disorders. 2019;19(1):109. 

417. Zhong X, Zimmers TA. Sex Differences in Cancer Cachexia. Current 

Osteoporosis Reports. 2020;18(6):646-54. 

418. Bartolomei S, Grillone G, Di Michele R, Cortesi M. A Comparison between 

Male and Female Athletes in Relative Strength and Power Performances. J Funct 

Morphol Kinesiol. 2021;6(1). 

419. Chen G, Liu L, Yu J. A Comparative Study on Strength between American 

College Male and Female Students in Caucasian and Asian Populations. Sport 

Science Review. 2012;XXI. 

420. Sun C, Anraku M, Kawahara T, Karasaki T, Kitano K, Nagayama K, et al. 

Respiratory strength and pectoralis muscle mass as measures of sarcopenia: 

Relation to outcomes in resected non-small cell lung cancer. J Thorac Cardiovasc 

Surg. 2020. 

421. Kinsey CM, San José Estépar R, van der Velden J, Cole BF, Christiani DC, 

Washko GR. Lower Pectoralis Muscle Area Is Associated with a Worse Overall 

Survival in Non–Small Cell Lung Cancer. Cancer Epidemiology Biomarkers &amp; 

Prevention. 2017;26(1):38-43. 



303 

422. Di Marco F, Terraneo S, Roggi MA, Repossi AC, Pellegrino GM, Veronelli A, 

et al. Physical activity impairment in depressed COPD subjects. Respir Care. 

2014;59(5):726-34. 

423. Vaz Fragoso CA, Beavers DP, Hankinson JL, Flynn G, Berra K, Kritchevsky 

SB, et al. Respiratory impairment and dyspnea and their associations with 

physical inactivity and mobility in sedentary community-dwelling older persons. 

J Am Geriatr Soc. 2014;62(4):622-8. 

424. van Heusden HC, Swartz JE, Chargi N, de Jong PA, van Baal MCPM, 

Wegner I, et al. Feasibility of assessment of skeletal muscle mass on a single 

cross-sectional image at the level of the fourth thoracic vertebra. European 

Journal of Radiology. 2021;142. 

425. Grønberg BH, Sjøblom B, Wentzel-Larsen T, Baracos VE, Hjermstad MJ, 

Aass N, et al. A comparison of CT based measures of skeletal muscle mass and 

density from the Th4 and L3 levels in patients with advanced non-small-cell lung 

cancer. Eur J Clin Nutr. 2019;73(7):1069-76. 

426. Lim WH, Park CM. Validation for measurements of skeletal muscle areas 

using low-dose chest computed tomography. Scientific Reports. 2022;12(1):463. 

427. McDonald ML, Diaz AA, Ross JC, San Jose Estepar R, Zhou L, Regan EA, et 

al. Quantitative computed tomography measures of pectoralis muscle area and 

disease severity in chronic obstructive pulmonary disease. A cross-sectional 

study. Ann Am Thorac Soc. 2014;11(3):326-34. 

428. Mishra A, Bigam KD, Extermann M, Faramand R, Thomas K, Pidala JA, et 

al. Sarcopenia and low muscle radiodensity associate with impaired FEV(1) in 

allogeneic haematopoietic stem cell transplant recipients. Journal of cachexia, 

sarcopenia and muscle. 2020;11(6):1570-9. 

429. Kim EY, Lee HY, Kim KW, Lee JI, Kim YS, Choi WJ, et al. Preoperative 

Computed Tomography-Determined Sarcopenia and Postoperative Outcome After 

Surgery for Non-Small Cell Lung Cancer. Scand J Surg. 2018;107(3):244-51. 



304 

430. Shiroyama T, Nagatomo I, Koyama S, Hirata H, Nishida S, Miyake K, et al. 

Impact of sarcopenia in patients with advanced non–small cell lung cancer 

treated with PD-1 inhibitors: A preliminary retrospective study. Scientific 

Reports. 2019;9(1):2447. 

431. Yang M, Tan L, Xie L, Hu S, Liu D, Wang J, et al. Factors That Improve 

Chest Computed Tomography-Defined Sarcopenia Prognosis in Advanced Non-

Small Cell Lung Cancer. Front Oncol. 2021;11:754975. 

432. Lee J, Kim EY, Kim E, Kim KG, Kim YJ, Kim YS, et al. Longitudinal changes 

in skeletal muscle mass in patients with advanced squamous cell lung cancer. 

Thorac Cancer. 2021;12(11):1662-7. 

433. Miyamoto Y, Baba Y, Sakamoto Y, Ohuchi M, Tokunaga R, Kurashige J, et 

al. Negative Impact of Skeletal Muscle Loss after Systemic Chemotherapy in 

Patients with Unresectable Colorectal Cancer. PLoS One. 2015;10(6):e0129742. 

434. Daly LE, Ní Bhuachalla ÉB, Power DG, Cushen SJ, James K, Ryan AM. Loss 

of skeletal muscle during systemic chemotherapy is prognostic of poor survival in 

patients with foregut cancer. Journal of cachexia, sarcopenia and muscle. 

2018;9(2):315-25. 

435. Rutten IJ, van Dijk DP, Kruitwagen RF, Beets-Tan RG, Olde Damink SW, 

van Gorp T. Loss of skeletal muscle during neoadjuvant chemotherapy is related 

to decreased survival in ovarian cancer patients. J Cachexia Sarcopenia Muscle. 

2016;7(4):458-66. 

436. Kugimiya N, Harada E, Oka K, Kawamura D, Suehiro Y, Takemoto Y, et al. 

Loss of skeletal muscle mass after curative gastrectomy is a poor prognostic 

factor. Oncol Lett. 2018;16(1):1341-7. 

437. Daly LE, Power DG, O'Reilly Á, Donnellan P, Cushen SJ, O'Sullivan K, et al. 

The impact of body composition parameters on ipilimumab toxicity and survival 

in patients with metastatic melanoma. Br J Cancer. 2017;116(3):310-7. 



305 

438. Törnqvist L, Vartia P, Vartia YO. How Should Relative Changes be 

Measured? The American Statistician. 1985;39(1):43-6. 

439. Vickers AJ. The use of percentage change from baseline as an outcome in 

a controlled trial is statistically inefficient: a simulation study. BMC Med Res 

Methodol. 2001;1:6-. 

440. Blauwhoff-Buskermolen S, Versteeg KS, de van der Schueren MA, den 

Braver NR, Berkhof J, Langius JA, et al. Loss of Muscle Mass During 

Chemotherapy Is Predictive for Poor Survival of Patients With Metastatic 

Colorectal Cancer. J Clin Oncol. 2016;34(12):1339-44. 

441. Daly LE, ÉB NB, Power DG, Cushen SJ, James K, Ryan AM. Loss of skeletal 

muscle during systemic chemotherapy is prognostic of poor survival in patients 

with foregut cancer. J Cachexia Sarcopenia Muscle. 2018;9(2):315-25. 

442. Degens JHRJ, Sanders KJC, de Jong EEC, Groen HJM, Smit EF, Aerts JG, et 

al. The prognostic value of early onset, CT derived loss of muscle and adipose 

tissue during chemotherapy in metastatic non-small cell lung cancer. Lung 

Cancer. 2019;133:130-5. 

443. Tanaka S, Ozeki N, Mizuno Y, Nakajima H, Hattori K, Inoue T, et al. 

Preoperative paraspinous muscle sarcopenia and physical performance as 

prognostic indicators in non-small-cell lung cancer. J Cachexia Sarcopenia 

Muscle. 2021;12(3):646-56. 

444. Dong X, Dan X, Yawen A, Haibo X, Huan L, Mengqi T, et al. Identifying 

sarcopenia in advanced non-small cell lung cancer patients using skeletal muscle 

CT radiomics and machine learning. Thoracic Cancer. 2020;11(9):2650-9. 

445. Matsuyama R, Maeda K, Yamanaka Y, Ishida Y, Kato R, Nonogaki T, et al. 

Assessing skeletal muscle mass based on the cross-sectional area of muscles at 

the 12th thoracic vertebra level on computed tomography in patients with oral 

squamous cell carcinoma. Oral Oncol. 2021;113:105126. 



306 

446. Jackson AS, Stanforth PR, Gagnon J, Rankinen T, Leon AS, Rao DC, et al. 

The effect of sex, age and race on estimating percentage body fat from body 

mass index: The Heritage Family Study. International Journal of Obesity. 

2002;26(6):789-96. 

447. Demerath EW, Sun SS, Rogers N, Lee M, Reed D, Choh AC, et al. 

Anatomical patterning of visceral adipose tissue: race, sex, and age variation. 

Obesity (Silver Spring, Md). 2007;15(12):2984-93. 

448. Després JP, Couillard C, Gagnon J, Bergeron J, Leon AS, Rao DC, et al. 

Race, visceral adipose tissue, plasma lipids, and lipoprotein lipase activity in 

men and women: the Health, Risk Factors, Exercise Training, and Genetics 

(HERITAGE) family study. Arterioscler Thromb Vasc Biol. 2000;20(8):1932-8. 

449. Mallio CA, Greco F, Pacella G, Schena E, Beomonte Zobel B. Gender-based 

differences of abdominal adipose tissue distribution in non-small cell lung cancer 

patients. Shanghai Chest. 2018;2(4). 

450. Charette N, Vandeputte C, Ameye L, Bogaert CV, Krygier J, Guiot T, et al. 

Prognostic value of adipose tissue and muscle mass in advanced colorectal 

cancer: a post hoc analysis of two non-randomized phase II trials. BMC Cancer. 

2019;19(1):134. 

451. Lee J, Lee H, Na J, Lee SM. Effect of adipose tissue volume on prognosis 

in patients with non-small cell lung cancer. Clinical Imaging. 2018;50. 

452. Lee HW, Jeong BC, Seo SI, Jeon SS, Lee HM, Choi HY, et al. Prognostic 

significance of visceral obesity in patients with advanced renal cell carcinoma 

undergoing nephrectomy. International journal of urology. 2015;22(5):455-61. 

453. Di Sebastiano KM, Yang L, Zbuk K, Wong RK, Chow T, Koff D, et al. 

Accelerated muscle and adipose tissue loss may predict survival in pancreatic 

cancer patients: the relationship with diabetes and anaemia. Br J Nutr. 

2013;109(2):302-12. 



307 

454. Shuster A, Patlas M, Pinthus JH, Mourtzakis M. The clinical importance of 

visceral adiposity: a critical review of methods for visceral adipose tissue 

analysis. The British journal of radiology. 2012;85(1009):1-10. 

455. Doyle SL, Donohoe CL, Lysaght J, Reynolds JV. Visceral obesity, metabolic 

syndrome, insulin resistance and cancer. Proc Nutr Soc. 2012;71(1):181-9. 

456. Batista ML, Jr., Neves RX, Peres SB, Yamashita AS, Shida CS, Farmer SR, 

et al. Heterogeneous time-dependent response of adipose tissue during the 

development of cancer cachexia. J Endocrinol. 2012;215(3):363-73. 

457. Batista ML, Jr., Olivan M, Alcantara PS, Sandoval R, Peres SB, Neves RX, 

et al. Adipose tissue-derived factors as potential biomarkers in cachectic cancer 

patients. Cytokine. 2013;61(2):532-9. 

458. Lennon H, Sperrin M, Badrick E, Renehan AG. The Obesity Paradox in 

Cancer: a Review. Curr Oncol Rep. 2016;18(9):56-. 

459. Strulov Shachar S, Williams GR. The Obesity Paradox in Cancer-Moving 

Beyond BMI. Cancer Epidemiol Biomarkers Prev. 2017;26(1):13-6. 

460. Lam VK, Bentzen SM, Mohindra P, Nichols EM, Bhooshan N, Vyfhuis M, et 

al. Obesity is associated with long-term improved survival in definitively treated 

locally advanced non-small cell lung cancer (NSCLC). Lung Cancer. 2017;104:52-

7. 

461. Petrelli F, Cortellini A, Indini A, Tomasello G, Ghidini M, Nigro O, et al. 

Association of Obesity With Survival Outcomes in Patients With Cancer: A 

Systematic Review and Meta-analysis. JAMA Network Open. 2021;4(3):e213520-e. 

462. Abdel-Rahman O. Pre-diagnostic body mass index trajectory in 

relationship to lung cancer incidence and mortality; findings from the PLCO trial. 

Expert Rev Respir Med. 2019;13(10):1029-35. 



308 

463. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, 

and mortality from cancer in a prospectively studied cohort of U.S. adults. N 

Engl J Med. 2003;348(17):1625-38. 

464. Reeves GK, Pirie K, Beral V, Green J, Spencer E, Bull D. Cancer incidence 

and mortality in relation to body mass index in the Million Women Study: cohort 

study. Bmj. 2007;335(7630):1134. 

465. Prospective Studies C. Body-mass index and cause-specific mortality in 

900&#x2008;000 adults: collaborative analyses of 57 prospective studies. The 

Lancet. 2009;373(9669):1083-96. 

466. Blanc-Durand P, Campedel L, Mule S, Jegou S, Luciani A, Pigneur F, et al. 

Prognostic value of anthropometric measures extracted from whole-body CT 

using deep learning in patients with non-small-cell lung cancer. Eur Radiol. 

2020;30(6):3528-37. 

467. Freedman RJ, Aziz N, Albanes D, Hartman T, Danforth D, Hill S, et al. 

Weight and body composition changes during and after adjuvant chemotherapy 

in women with breast cancer. J Clin Endocrinol Metab. 2004;89(5):2248-53. 

468. Yamaoka Y, Fujitani K, Tsujinaka T, Yamamoto K, Hirao M, Sekimoto M. 

Skeletal muscle loss after total gastrectomy, exacerbated by adjuvant 

chemotherapy. Gastric Cancer. 2015;18(2):382-9. 

469. Awad S, Tan BH, Cui H, Bhalla A, Fearon KC, Parsons SL, et al. Marked 

changes in body composition following neoadjuvant chemotherapy for 

oesophagogastric cancer. Clin Nutr. 2012;31(1):74-7. 

470. Panje CM, Höng L, Hayoz S, Baracos VE, Herrmann E, Garcia Schüler H, et 

al. Skeletal muscle mass correlates with increased toxicity during neoadjuvant 

radiochemotherapy in locally advanced esophageal cancer: A SAKK 75/08 

substudy. Radiat Oncol. 2019;14(1):166. 



309 

471. Park SE, Choi JH, Park JY, Kim BJ, Kim JG, Kim JW, et al. Loss of skeletal 

muscle mass during palliative chemotherapy is a poor prognostic factor in 

patients with advanced gastric cancer. Sci Rep. 2020;10(1):17683. 

472. Garcia JM, Scherer T, Chen JA, Guillory B, Nassif A, Papusha V, et al. 

Inhibition of cisplatin-induced lipid catabolism and weight loss by ghrelin in male 

mice. Endocrinology. 2013;154(9):3118-29. 

473. Bozzetti F. Chemotherapy-Induced Sarcopenia. Curr Treat Options Oncol. 

2020;21(1):7. 

474. Wright JG, Boddy AV, Highley M, Fenwick J, McGill A, Calvert AH. 

Estimation of glomerular filtration rate in cancer patients. Br J Cancer. 

2001;84(4):452-9. 

475. Stevens LA, Levey AS. Measured GFR as a Confirmatory Test for Estimated 

GFR. Journal of the American Society of Nephrology. 2009;20(11):2305. 

476. Du Bois D, Du Bois EF. A formula to estimate the approximate surface area 

if height and weight be known. 1916. Nutrition. 1989;5(5):303-11; discussion 12-

3. 

477. Redlarski G, Palkowski A, Krawczuk M. Body surface area formulae: an 

alarming ambiguity. Scientific Reports. 2016;6(1):27966. 

478. Furlanetto J, Eiermann W, Marmé F, Reimer T, Reinisch M, Schmatloch S, 

et al. Higher rate of severe toxicities in obese patients receiving dose-dense (dd) 

chemotherapy according to unadjusted body surface area: results of the 

prospectively randomized GAIN study. Annals of Oncology. 2016;27(11):2053-9. 

479. Griggs JJ, Bohlke K, Balaban EP, Dignam JJ, Hall ET, Harvey RD, et al. 

Appropriate Systemic Therapy Dosing for Obese Adult Patients With Cancer: 

ASCO Guideline Update. Journal of Clinical Oncology. 2021;39(18):2037-48. 

480. Faisal W, Tang H-M, Tiley S, Kukard C. Not All Body Surface Area Formulas 

Are the Same, but Does It Matter? Journal of Global Oncology. 2016;2(6):436-7. 



310 

481. Wright JD, Tian C, Mutch DG, Herzog TJ, Nagao S, Fujiwara K, et al. 

Carboplatin dosing in obese women with ovarian cancer: a Gynecologic Oncology 

Group study. Gynecol Oncol. 2008;109(3):353-8. 

482. Blouin RA, Warren GW. Pharmacokinetic considerations in obesity. J 

Pharm Sci. 1999;88(1):1-7. 

483. Mittal A, Chitkara D, Kumar N. HPLC method for the determination of 

carboplatin and paclitaxel with cremophorEL in an amphiphilic polymer matrix. 

Journal of Chromatography B. 2007;855(2):211-9. 

484. Zhu X, Peng Y, Qiu L. Amino-functionalized nano-vesicles for enhanced 

anticancer efficacy and reduced myelotoxicity of carboplatin. Colloids and 

Surfaces B: Biointerfaces. 2017;157:56-64. 

485. Ekhart C, Rodenhuis S, Schellens JHM, Beijnen JH, Huitema ADR. 

Carboplatin dosing in overweight and obese patients with normal renal function, 

does weight matter? Cancer Chemotherapy and Pharmacology. 2009;64(1):115-

22. 

486. Sparreboom A, Wolff AC, Mathijssen RH, Chatelut E, Rowinsky EK, Verweij 

J, et al. Evaluation of alternate size descriptors for dose calculation of 

anticancer drugs in the obese. J Clin Oncol. 2007;25(30):4707-13. 

487. Hall RG, Jean GW, Sigler M, Shah S. Dosing Considerations for Obese 

Patients Receiving Cancer Chemotherapeutic Agents. Annals of 

Pharmacotherapy. 2013;47(12):1666-74. 

488. Carroll J, Protani M, Walpole E, Martin JH. Effect of obesity on toxicity in 

women treated with adjuvant chemotherapy for early-stage breast cancer: a 

systematic review. Breast Cancer Res Treat. 2012;136(2):323-30. 

489. Dotan E, Tew WP, Mohile SG, Ma H, Kim H, Sun C-L, et al. Associations 

between nutritional factors and chemotherapy toxicity in older adults with solid 

tumors. Cancer. 2020;126(8):1708-16. 



311 

490. Anderson AS, Martin RM, Renehan AG, Cade J, Copson ER, Cross AJ, et al. 

Cancer survivorship, excess body fatness and weight-loss intervention—where are 

we in 2020? British Journal of Cancer. 2021;124(6):1057-65. 

491. Kovarik M, Hronek M, Zadak Z. Clinically relevant determinants of body 

composition, function and nutritional status as mortality predictors in lung 

cancer patients. Lung Cancer. 2014;84(1):1-6. 

492. ESMO. Poorer survival in obese colorectal cancer patients possibly linked 

to lower chemotherapy doses (ESMO World GI 2021 Press Release) 2021 

[Available from: https://www.esmo.org/newsroom/press-releases/poorer-

survival-in-obese-colorectal-cancer-patients-possibly-linked-to-lower-

chemotherapy-doses. 

493. Martini A, Shah QN, Waingankar N, Sfakianos JP, Tsao CK, Necchi A, et al. 

The obesity paradox in metastatic castration-resistant prostate cancer. Prostate 

Cancer Prostatic Dis. 2021. 

494. Liu YL, Connolly EP, Kalinsky K. Obesity’s impact on survival is 

independent of dose adjustments in neoadjuvant chemotherapy in women with 

breast cancer. Breast Cancer Research and Treatment. 2018;168(1):285-. 

495. Karatas F, Erdem GU, Sahin S, Aytekin A, Yuce D, Sever AR, et al. Obesity 

is an independent prognostic factor of decreased pathological complete response 

to neoadjuvant chemotherapy in breast cancer patients. Breast. 2017;32:237-44. 

496. Hughes A, Calvert P, Azzabi A, Plummer R, Johnson R, Rusthoven J, et al. 

Phase I clinical and pharmacokinetic study of pemetrexed and carboplatin in 

patients with malignant pleural mesothelioma. J Clin Oncol. 2002;20(16):3533-

44. 

497. Shachar SS, Deal AM, Weinberg M, Williams GR, Nyrop KA, Popuri K, et al. 

Body Composition as a Predictor of Toxicity in Patients Receiving Anthracycline 

and Taxane-Based Chemotherapy for Early-Stage Breast Cancer. Clin Cancer Res. 

2017;23(14):3537-43. 

https://www.esmo.org/newsroom/press-releases/poorer-survival-in-obese-colorectal-cancer-patients-possibly-linked-to-lower-chemotherapy-doses
https://www.esmo.org/newsroom/press-releases/poorer-survival-in-obese-colorectal-cancer-patients-possibly-linked-to-lower-chemotherapy-doses
https://www.esmo.org/newsroom/press-releases/poorer-survival-in-obese-colorectal-cancer-patients-possibly-linked-to-lower-chemotherapy-doses


312 

498. Guiu B, Petit JM, Bonnetain F, Ladoire S, Guiu S, Cercueil J-P, et al. 

Visceral fat area is an independent predictive biomarker of outcome after first-

line bevacizumab-based treatment in metastatic colorectal cancer. Gut. 

2010;59(3):341-7. 

499. Hwang IG, Park SE, Lee SC, Choi JH. Loss of skeletal muscle mass during 

palliative chemotherapy is a poor prognostic factor in patients with advanced 

gastric cancer. Annals of Oncology. 2019;30:v727. 

500. Lyon TD, Frank I, Takahashi N, Boorjian SA, Moynagh MR, Shah PH, et al. 

Sarcopenia and Response to Neoadjuvant Chemotherapy for Muscle-Invasive 

Bladder Cancer. Clin Genitourin Cancer. 2019;17(3):216-22.e5. 

501. Feliciano EMC, Kroenke CH, Meyerhardt JA, Prado CM, Bradshaw PT, Kwan 

ML, et al. Association of Systemic Inflammation and Sarcopenia With Survival in 

Nonmetastatic Colorectal Cancer: Results From the C SCANS Study. JAMA Oncol. 

2017;3(12):e172319. 

502. Malietzis G, Lee GH, Bernardo D, Blakemore AI, Knight SC, Moorghen M, et 

al. The prognostic significance and relationship with body composition of CCR7-

positive cells in colorectal cancer. J Surg Oncol. 2015;112(1):86-92. 

503. Matsunaga T, Miyata H, Sugimura K, Motoori M, Asukai K, Yanagimoto Y, 

et al. Prognostic Significance of Sarcopenia and Systemic Inflammatory Response 

in Patients With Esophageal Cancer. Anticancer Res. 2019;39(1):449-58. 

504. Vogl M, Rosenmayr A, Bohanes T, Scheed A, Brndiar M, Stubenberger E, et 

al. Biomarkers for Malignant Pleural Mesothelioma-A Novel View on 

Inflammation. Cancers (Basel). 2021;13(4). 

505. Enewold L, Sharon E, Thomas A. Patterns of care and survival among 

patients with malignant mesothelioma in the United States. Lung Cancer. 

2017;112:102-8. 



313 

506. Zhuo Y, Lin L, Zhang M. Pretreatment thrombocytosis as a significant 

prognostic factor in malignant mesothelioma: a meta-analysis. Platelets. 

2017;28(6):560-6. 

507. Han S, Gan D, Wang G, Ru Y, Huang C, Lin J, et al. Associations of Platelet 

Indices with Body Fat Mass and Fat Distribution. Obesity (Silver Spring). 

2018;26(10):1637-43. 

508. Yu J-Y, Choi W-J, Lee H-S, Lee J-W. Relationship between inflammatory 

markers and visceral obesity in obese and overweight Korean adults: An 

observational study. Medicine. 2019;98(9). 

509. Murakami T, Horigome H, Tanaka K, Nakata Y, Ohkawara K, Katayama Y, 

et al. Impact of weight reduction on production of platelet-derived 

microparticles and fibrinolytic parameters in obesity. Thromb Res. 

2007;119(1):45-53. 

510. Lazar S, Goldfinger LE. Platelet Microparticles and miRNA Transfer in 

Cancer Progression: Many Targets, Modes of Action, and Effects Across Cancer 

Stages. Frontiers in Cardiovascular Medicine. 2018;5. 

511. Vohra R, Campbell MD, Park J, Whang S, Gravelle K, Wang YN, et al. 

Increased tumour burden alters skeletal muscle properties in the KPC mouse 

model of pancreatic cancer. JCSM Rapid Commun. 2020;3(2):44-55. 

512. Michaelis KA, Zhu X, Burfeind KG, Krasnow SM, Levasseur PR, Morgan TK, 

et al. Establishment and characterization of a novel murine model of pancreatic 

cancer cachexia. J Cachexia Sarcopenia Muscle. 2017;8(5):824-38. 

513. Grippo PJ, Sandgren EP. Modeling pancreatic cancer in animals to address 

specific hypotheses. Methods Mol Med. 2005;103:217-43. 

514. Capellá G, Farré L, Villanueva A, Reyes G, García C, Tarafa G, et al. 

Orthotopic models of human pancreatic cancer. Ann N Y Acad Sci. 1999;880:103-

9. 



314 

515. De Lerma Barbaro A. The complex liaison between cachexia and tumor 

burden (Review). Oncol Rep. 2015;34(4):1635-49. 

516. Fordy C, Glover C, Henderson DC, Summerbell C, Wharton R, Allen-Mersh 

TG. Contribution of diet, tumour volume and patient-related factors to weight 

loss in patients with colorectal liver metastases. Br J Surg. 1999;86(5):639-44. 

517. Hoda MA, Dong Y, Rozsas A, Klikovits T, Laszlo V, Ghanim B, et al. 

Circulating activin A is a novel prognostic biomarker in malignant pleural 

mesothelioma &#x2013; A multi-institutional study. European Journal of Cancer. 

2016;63:64-73. 

518. Klikovits T, Stockhammer P, Laszlo V, Dong Y, Hoda MA, Ghanim B, et al. 

Circulating complement component 4d (C4d) correlates with tumor volume, 

chemotherapeutic response and survival in patients with malignant pleural 

mesothelioma. Scientific Reports. 2017;7(1):16456. 

519. Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: an 

endocrine organ. Arch Med Sci. 2013;9(2):191-200. 

520. Lengyel E, Makowski L, DiGiovanni J, Kolonin MG. Cancer as a Matter of 

Fat: The Crosstalk between Adipose Tissue and Tumors. Trends in Cancer. 

2018;4(5):374-84. 

521. Borisov AN, Blum CA, Christ-Crain M, Ebrahimi F. No obesity paradox in 

patients with community-acquired pneumonia – secondary analysis of a 

randomized controlled trial. Nutrition & Diabetes. 2022;12(1):12. 

522. Wang Q, Wu H. T Cells in Adipose Tissue: Critical Players in 

Immunometabolism. Frontiers in Immunology. 2018;9. 

523. Aguilar EG, Murphy WJ. Obesity induced T cell dysfunction and 

implications for cancer immunotherapy. Current Opinion in Immunology. 

2018;51:181-6. 



315 

524. Rosito GA, Massaro JM, Hoffmann U, Ruberg FL, Mahabadi AA, Vasan RS, 

et al. Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, 

and vascular calcification in a community-based sample: the Framingham Heart 

Study. Circulation. 2008;117(5):605-13. 

525. Kwack WG, Kang Y-S, Jeong YJ, Oh JY, Cha YK, Kim JS, et al. Association 

between thoracic fat measured using computed tomography and lung function in 

a population without respiratory diseases. Journal of thoracic disease. 

2019;11(12):5300-9. 

526. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et 

al. Sarcopenia: revised European consensus on definition and diagnosis. Age and 

Ageing. 2019;48(1):16-31. 

527. Reginster JY, Cooper C, Rizzoli R, Kanis JA, Appelboom G, Bautmans I, et 

al. Recommendations for the conduct of clinical trials for drugs to treat or 

prevent sarcopenia. Aging Clin Exp Res. 2016;28(1):47-58. 

528. Solheim TS, Laird BJA, Balstad TR, Stene GB, Bye A, Johns N, et al. A 

randomized phase II feasibility trial of a multimodal intervention for the 

management of cachexia in lung and pancreatic cancer. J Cachexia Sarcopenia 

Muscle. 2017;8(5):778-88. 

529. Adams SC, Segal RJ, McKenzie DC, Vallerand JR, Morielli AR, Mackey JR, 

et al. Impact of resistance and aerobic exercise on sarcopenia and dynapenia in 

breast cancer patients receiving adjuvant chemotherapy: a multicenter 

randomized controlled trial. Breast Cancer Res Treat. 2016;158(3):497-507. 

530. Yoh K, Nishikawa H, Enomoto H, Ishii N, Iwata Y, Ishii A, et al. Effect of 

exercise therapy on sarcopenia in pancreatic cancer: a study protocol for a 

randomised controlled trial. BMJ Open Gastroenterology. 2018;5(1):e000194. 

531. Mijnarends DM, Meijers JMM, Halfens RJG, ter Borg S, Luiking YC, Verlaan 

S, et al. Validity and Reliability of Tools to Measure Muscle Mass, Strength, and 

Physical Performance in Community-Dwelling Older People: A Systematic 



316 

Review. Journal of the American Medical Directors Association. 2013;14(3):170-

8. 

532. Gallagher D, Visser M, De Meersman RE, Sepúlveda D, Baumgartner RN, 

Pierson RN, et al. Appendicular skeletal muscle mass: effects of age, gender, 

and ethnicity. Journal of Applied Physiology. 1997;83(1):229-39. 

533. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van 

Timmeren J, et al. Radiomics: the bridge between medical imaging and 

personalized medicine. Nature Reviews Clinical Oncology. 2017;14(12):749-62. 

534. Pena E, Ojiaku M, Inacio JR, Gupta A, Macdonald DB, Shabana W, et al. 

Can CT and MR Shape and Textural Features Differentiate Benign Versus 

Malignant Pleural Lesions? Acad Radiol. 2017;24(10):1277-87. 

535. Catino A, Fanizzi A, Perrotti PPS, Pizzutilo P, Montrone M, Galetta D, et 

al. 125P Radiomic signature from baseline CT Scan to predict initial response to 

treatment in advanced/unresectable pleural mesothelioma: Preliminary data. 

Annals of Oncology. 2022;33:S89-S90. 

536. Fontaine P, Acosta O, Castelli J, De Crevoisier R, Müller H, Depeursinge A. 

The importance of feature aggregation in radiomics: a head and neck cancer 

study. Scientific reports. 2020;10(1):19679-. 

 


