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ABSTRACT Federated Learning (FL) is an innovative area of machine learning that enables different clients
to collaboratively generate a shared model while preserving their data privacy. In a typical FL setting,
a central model is updated by aggregating the clients’ parameters of the respective artificial neural network.
The aggregated parameters are then sent back to the clients. However, two main challenges are associated
with the central aggregation approach. Firstly, most state-of-the-art strategies are not optimised to operate
in the presence of certain types of non-iid (not independent and identically distributed) applications and
datasets. Secondly, federated learning is vulnerable to various privacy and security concerns related to model
inversion attacks, which can be used to access sensitive information from the training data. To address
these issues, we propose a novel federated learning strategy FedNets based on ensemble learning. Instead
of sharing the parameters of the clients over the network to update a single global model, our approach
allows clients to have ensembles of diverse-lightweight models and collaborate by sharing ensemble
members. FedNets utilises graph embedding theory to reduce the complexity of running Deep Neural
Networks (DNNs) on resource-limited devices. Each Deep Neural Network (DNN) is treated as a graph,
from which respective graph embeddings are generated and clustered to determine which part of the DNN
should be shared with other clients. Our approach outperforms state-of-the-art FL algorithms such as
Federated Averaging (Fed-Avg) and Adaptive Federated Optimisation (Fed-Yogi) in terms of accuracy; on
the Federated CIFAR100 dataset (non-iid), FedNets demonstrates a remarkable 63% and 92% improvement
in accuracy, respectively. Furthermore, FedNets does not compromise the client’s privacy, as it is safeguarded
by the design of the method.

INDEX TERMS Federated learning, ensemble learning, convolutional neural networks, graph embedding,
affinity propagation, non-IID datasets, privacy.

I. INTRODUCTION

With the proliferation of the Internet of Things (IoT), and
the launch of 5G networks, the IoT has emerged as one of
the major technological advances in our lives. We can see
their advances in different domains, including wearable smart
health devices [1], intelligent energy networks, smart trans-
portation [2] and smart building [3], [4]. These tiny connected
devices generate massive amounts of data on the network
edge, giving great opportunities to generate valuable insights
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and complete sophisticated machine learning (ML) tasks.
The traditional approach to analysing IoT data is to transfer
user data (clients) to a central cloud server. Then the server
completes the analysis and generates the required insights [5].
However, moving sensitive information to a remote server can
pose a significant risk to data privacy and lead to breaches of
data protection laws such as GDPR (General Data Protection
Regulation) [6]. Federated learning is a machine learning
paradigm that enables the collaborative training of a model on
data that is distributed across multiple devices or data centres
without the need to transfer raw data to a central server [7].
In the standard federated learning setting, each device
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contributes an independent and identically distributed (IID)
sample of data to the model. However, most current FL strate-
gies are not optimised to handle statistical heterogeneity, such
as non-iid (non-independent and identically distributed) data
generated by different clients [8]. Since different clients are
likely to exhibit different behaviour (distinct usage patterns),
the local training samples may follow a different distribution.
As a result, the local models are likely to become vastly
different; hence they could reduce the accuracy and lead
to slow covariance [9]. Furthermore, different studies raised
some privacy concerns related to sharing weights and biases
by models. Sharing the model updates during the training
process make it vulnerable to penetration, potentially causing
leaks of sensitive information [10]. A number of authors
have considered tackling non-iid challenges using clustering
[11], [12]. Clustering is a technique that can be used in non-
IID federated learning to mitigate the impact of non-IID data
distribution [13]. Clustering can group devices with simi-
lar data distributions together and allow local models to be
trained on similar data; the resulting local models can then be
combined to obtain a more accurate global model [14], [15],
however performing clustering on resource-limited environ-
ments may cause performance issues.

This paper proposes a novel holistic approach to a fed-
erated learning strategy based on ensemble learning that
improves accuracy and respects privacy at the edge end. This
work is the first of its kind because it looks at federated learn-
ing from a different perspective. Unlike traditional federated
learning strategies, our approach allows clients to collaborate
by sharing complete models, not only weights. The proposed
framework is an iterative process that begins by initialising a
pool of pruned deep learning models (a global pool). These
models are then randomly deployed to different clients to
be trained on local datasets, taking into account any dis-
crepancies in label distribution between the local and global
datasets. Subsequently, the predictions of the models are com-
bined using ensemble learning to achieve a better generalisa-
tion performance on the local testing sets. The next step in the
process is to personalise the ensemble-based federated learn-
ing by clustering the models that exhibit similar behaviour.
However, clustering DNNs on resource-constrained devices
can be computationally expensive. To address this issue,
we employ graph embeddings theory to reduce the complex-
ity of the DNNs. Each ANN can be represented as a graph,
with nodes representing layers and vertices representing con-
nections between layers. We generate embeddings of all mod-
els and then cluster them. Finally, we select representatives of
the resulting embedding clusters and ask the clients to share
the corresponding models to be part of the global pool, thus
initiating a new iteration.

Our key contributions could be summarised as follows:

« introducing a new federated learning strategy under
non-iid settings; the proposed approach employs deep-
ensemble learning to maximise the generalisation at the
edge-end and provide better performance on different
distributions of the clients’ local data;
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« proposing a novel ensemble pruning technique to reduce
communication overheads over the network. It aims to
minimise the storage footprint for ensembles by apply-
ing affinity propagation clustering. The clustering is
applied to the embeddings of the models, considering
that a graph could represent each artificial neural net-
work, and

« establishing a new privacy approach to preserve clients’
sensitive data in the applications that require running an
ensemble of models.

The paper is organised as follows: Section II intro-
duces related work in federated learning in non-iid set-
tings. Section III describes the proposed approach in detail.
The experimental study and the results are discussed in
Section IV. Finally, the conclusion and future works are pre-
sented in Section IV-D.

Il. RELATED WORK

Different works have been proposed to explore the high
variance of federated learning algorithms in the presence of
non-IID datasets (data heterogeneity) [16], [17], [18]. In the
following section, we provide a deeper understanding of the
effect of data heterogeneity on federated learning strategies.
Subsequently, we list some popular techniques to address
statistical heterogeneity in federated learning.

A. THE EFFECT OF NON-INDEPENDENTLY AND
IDENTICALLY DISTRIBUTED (NON-IID DATA) IN
FEDERATED LEARNING

FedAvg is one of the first central aggregation strategies that
orchestrates the distributed federated learning process [19].
FedAvg employs SGD (Stochastic Gradient Decent) to opti-
mise the averaged weights from the clients. However, SGD
requires IID sampling of the training data sets to generate
an unbiased estimate of the full gradient [20]. In real-world
applications, it’s unrealistic to assume that the data on edge
devices is following IID distribution. Actually, dealing with
non-IID datasets is a key challenge in federated learning [21].
Due to the statistical heterogeneity between the clients’
datasets, the distribution of each local dataset is different
from the global distribution (drift in local updates). As a
result, each client’s objective is inconsistent with the global
optima. Furthermore, large local updates (a large number of
epochs) lead to significant differences between the averaged
model and global optima, leading to low accuracy in non-IID
settings [22]. 1 explains the issue of FedAvg under non-iid
settings. As shown in the figure above, if a client performs
different local updates, then the updated global model w/+1:0)
stays close to the local minimum wys rather than straying
toward the true global minimum x*.

B. APPROACHES TO DEAL WITH NON-IID DATA IN
FEDERATED LEARNING

FedAvg suffers when the heterogeneity of the data is dif-
ferent between clients [23] (non-IID datasets). This happens
because the distribution of each local dataset is very different
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FIGURE 1. Model updates in the parameter space. Orange and green refer
to the minima of global and local objectives, respectively.

from the global distribution. Different works have been pro-
posed to optimise FL. on non-IID datasets; we divide them
into different categories and summarise the most recent ones:

1) DATA-BASED APPROACHES

Data-based approaches could be divided into two main cat-
egories, namely data sharing and data augmentation. Data
sharing is a simple yet effective approach to tackle statistical
heterogeneity in non-iid settings. Reference [9] proposes to
create a subset of the data to be globally shared between the
clients, hence generalising the learning task. The experiments
on the CIFAR10 dataset show that the accuracy could be
increased up to 30% while globally sharing only 5% of the
dataset. Similarly, [24] developed a mechanism to select a
global subset of the client’s data to be used in a federated
learning task which is popular in some domains like the health
sector. There are notable deficiencies in the data-sharing
approaches. Initially, obtaining a uniformly distributed global
dataset is challenging due to the server’s lack of knowledge
regarding data distributions among connected clients. Addi-
tionally, distributing segments of the global dataset to each
client for model training goes against the fundamental moti-
vation of privacy-preserving learning, which is a requirement
for this process.

Data augmentation methods are a set of techniques to
increase the number of data samples by applying different
transformations. Its mainly used to mitigate the issues of
using imbalanced datasets in ML applications [25]. Refer-
ence [26] uses data augmentation to develop a self-balancing
federated learning framework that outperforms FedAvg on
imbalanced EMNIST and imbalanced CINIC-10 datasets.
To address the issue of Non-IID data, XorMixFL framework
has been introduced by [27] which applies a data augmen-
tation technique. The basic concept in XorMixFL is that
each client shares its encoded seed samples (encoded through
the XOR operator) with the server for decoding. A new
balanced dataset is constructed by combining the decoded
samples with the base data samples on the server. Subse-
quently, a global model is trained on this reconstructed data,
which is then downloaded to each client until the training
is complete. In [28], on the other hand, the authors sug-
gest a mean augmented method, which involves exchanging
locally averaged batch data with the server. The mean data
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received is then combined and transferred back to each client,
reducing the degree of local data imbalance. In general, the
use of data augmentation techniques can greatly enhance the
learning performance of models trained on Non-IID data by
replenishing the imbalanced local data with augmentations.
Nevertheless, as mentioned above, many of these techniques
require data sharing, which could potentially increase the risk
of data privacy breaches.

2) ALGORITHM-BASED APPROACHES

Several algorithm-based approaches were proposed in the
literature as follows.

a: LOCAL FINE TURNING

The authors of FedProx [21], apply some modifications to
FedAvg to allow partial information aggregation. This pro-
vides convergence guarantees when learning over data from
non-identical distributions. Reference [29] is another optimi-
sation attempt to work on non-idd data. The approach uses
local batch normalisation to alleviate the feature shift before
averaging the clients” models. FedNova [30] is another recent
framework that relies on FedAvg; it normalises and scales the
local updates of the clients according to their number of local
steps before updating the global model.

b: PERSONALISATION LAYERS

edge clients are given the option to have a set of personalised
layers that will not be shared with the server. A popular
approach that falls under this category is FedMA [31] which
was originally designed to offer extra support for deep learn-
ing models, and it works by sharing the global model in a
layer-wise manner. Furthermore, LG-FEDAVG [32] is a new
federated learning framework that outperforms FedAvg in
federated learning settings. In LG-FEDAVG, the shallow lay-
ers of the deep learning models are considered personalised
layers, and the base layers of the networks are shared with
the server. In contrast to LG-FEDAVG, FedPer [33] allows
the shallow layers to be shared with the aggregation server.
FedPer and LG-GEDAVG have resulted in good accuracy
results, and they also reduce communication costs since shal-
low layers are lightweight when shared over the network with
the aggregation server. In general, Personalisation Layers are
a promising approach to enhance accuracy in non-iid settings.
However, one major drawback is that the clients are not able
to release the personalisation layers.

¢: MULTI-TASK LEARNING (MTL) METHODS

are inductive transfer approaches that aim to improve gen-
eralisation performance by learning multiple tasks simulta-
neously. Reference [34] has developed MOCHA as a new
framework that considers the issues of high communica-
tion cost, stragglers, and fault tolerance in distributed multi-
task settings. MOCHA employs primal-dual optimisation
to generate separate but related models for each client.
However, primal-dual optimisation is unsuitable for non-
convex problems and is limited to shallow networks.
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d: TRANSFER LEARNING (KNOWLEDGE DISTILLATION)
Transfer learning allows knowledge exchange between differ-
ent domains to achieve higher learning rates. Following this
approach, [35] has developed FedHealth as the first federated
transfer learning framework for wearable health devices. Fed-
Health adapts the inputs from different domains by replacing
fully connected layers with an alignment layer. Similarly,
[36] has developed another federated transfer learning frame-
work for smart manufacturing with cross-domain applica-
tions (Fed-LTD). However, one of the main disadvantages of
knowledge distillation is the negative transfer that can cause
clients to perform worse. Negative transfer occurs when data
from the source domain and the task contribute to reduced
learning performance in the target domain [37]. Client clus-
tering: In the literature, two primary types of secure data sim-
ilarity evaluation methods have been introduced to address
this issue. One method involves evaluating the similarity of
the loss value, while the other main goal is to evaluate the
similarity of model weights. The first similarity evaluation
approach, as reported in [38], [39], [40], involves comparing
the loss values of various cluster models. The fundamental
concept behind this technique is simple: instead of creating
a single global model, the server produces multiple global
models and distributes all cluster models to connected clients
for local empirical loss computation. Each client then updates
the received cluster model with the lowest loss value and
transmits it back to the server for cluster model aggregation.
The second approach involves assessing the similarity of
local data and clustering based on the local model weights.
In [41], [42] FedAvg is employed first to train and warm up
the global model, and then the model is downloaded locally
to each client for local training. Then the models are sent
back to the server to be clustered based on the weights. Client
clustering is both necessary and justifiable to tackle non-iid
challenges, and this is because merging local models trained
on vastly different data can lead to negative knowledge trans-
fer; hence, the overall performance of the shared model will
decline. Furthermore, creating multiple global models instead
of a single one improves the scalability and flexibility of FL
systems, enabling system developers to select or combine dif-
ferent cluster models to suit specific tasks. Nevertheless, this
method requires additional computation and communication
resources for model training and testing. Ensemble learn-
ing: In Fed-ensemble [43], the authors leverage ensemble
learning to bring greater generalisation power to Federated
Learning (FL). Fed-ensemble utilises random permutation to
update a group of models and then produces the prediction
through model averaging. By doing so, Fed-ensemble is able
to achieve improved performance and accuracy compared to
traditional FL methods.

e: GRAPH REPRESENTATION LEARNING

most recently, graph representation has become a promi-
nent topic in the ML community due to its wide appli-
cations. Different works have been proposed to use graph
learning in FL. GraphFL [44] is specifically designed to
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address the challenge of non-iid using a semi-supervised
node classification approach based on graphs. First, GraphFL
follows the training scheme of MAML (Model Agnostic
Meta-Learning) to learn a global model on a server. Then,
it leverages the traditional FL methods (e.g. FedAvg) to fur-
ther improve generalisation on training sets. FedCG [45]
is another framework to address the statistical heterogeneity
in FL by means of GCN (Graph Convolutional Networks).
FedCG consists of three major steps: a-identify the clus-
ters that share the same data distributions; b-assign network
components to the formed clusters; c-interaction with the
GCN. References [46] and [47] preserve privacy in FL using
similarity-based graph neural networks. Unlike traditional FL
approaches to tackle the statistical heterogeneity in non-iid
settings, our approach employs graph theory and ensemble
learning aiming to reduce communication overhead over the
network while preserving privacy. In the proposed approach,
we use deep ensemble learning to address statistical het-
erogeneity in real-world applications of FL. Our solution
allows resource-constrained devices to run deep ensembles
smoothly. Second, we adopt graph theory and, specifically,
graph embeddings to develop a novel clustering mechanism.

ill. METHOD
In this section, we describe the proposed approach by pro-
viding a summary of the entire process and then explain each
step in detail.

The proposed framework is an iterative process; it starts by
initialising a pool of pruned deep learning models (a global
pool 6p). Then, the members of the proposed pool are ran-
domly deployed to different clients to be trained on local
datasets (assuming the label distribution of the local datasets
does not match the global one). After that, the predictions of
the models are combined using ensemble learning to obtain
a better generalisation performance on the local testing sets.
The next step in the process aims to personalise the ensemble-
based federated learning by clustering the models that exhibit
similar behaviour. However, clustering DNNs on devices
that are resource-constrained is expensive. Thus, we employ
graph embeddings theory to reduce the complexity of the
DNNSs. Since each ANN (Artificial Neural Network) could
be represented as a graph (nodes are layers, vertices are con-
nections of layers), we generate embeddings of all models,
and then we cluster them. Finally, we choose representatives
of the resulting embedding clusters and then ask the clients to
share the corresponding models to be part of the global pool
6o and a new iteration begins.

The following is a detailed description of the steps of
FedNets and the overall system topology.

A. SYSTEM TOPOLOGY

As many federated learning strategies, FetNets follows the
star network communication topology where a central cloud
server is connected to a network of resource-limited devices.
The server orchestrates the learning process by aggregat-
ing deep learning ensembles from all connected clients
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FIGURE 2. FedNets follows a star communication topology where a server connects with all the remote
clients. The server orchestrates the communications in each learning round; it starts by deploying the global
ensemble to the clients. Then, each client shares a few members of their ensembles with the server.

(each communication round). Figure 2 summarises the main
communication topology.

B. ENSEMBLE GENERATION AND PRUNING

In non-iid federated learning settings, the statistical hetero-
geneity of clients can vary significantly [8]. This led to a
different distribution of the local data on each client [48];
hence, traditional federated learning settings experience a
drop in accuracy [49]. To overcome those challenges, our
approach utilises deep ensemble learning to give more gen-
eralisation power at the edge end and boost performance.
Typically, any pruning process has different hyperparameters,
and it could be a challenging task to set the optimal values
of these parameters. Thus, different optimisation techniques
could be used [50], [51], [52], [53]. However, due to the high
complexity of DNNs, we aim to prune the models before
running them at the edge end. To complete the pruning and
the deployment of models, we follow a similar approach
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to the one described here [54]. In this work, the authors
proposed a multi-phase pruning framework that enables edge
devices to run deep ensemble learning without draining the
resources of devices. However, our approach has two main
differences: (1) we use Constant Sparsity pruning instead of
weight pruning; (2) integer quantisation is ignored as we do
not run the experiments on real devices. At the end of this
step, we have a group of N clients; each client has a group of
M different models.

C. MODEL TRAINING ON LOCAL DATASETS (NON-IIDs)
UPDATE LOCAL MODELS WEIGHTS

As all federated learning strategies, FedNets requires the local
models (ensemble members) to be trained on the datasets of
each client. In the training process, the models will simply
learn the good values for all the weights and the bias from the
labelled examples. However, FedNets employs deep learning
ensembles. Thus, the training accuracy will depend on all
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members. To calculate the accuracy of an ensemble: Let
En = my,---,my be an ensemble of the deployed mod-
els m;. The prediction of the ensemble for a training/testing
example (x is the data feature, y is the data label) using
max-voting is the class that receives the maximum support
Nfinal(W) from all members of the ensemble. Based on that,
the output of the ensemble could be defined as:

N
Nfinal(W) = argmaxje(i,... Z)’i,j

i=1

D. GRAPH CONVERSION
Graph clustering based on embedding is a popular technique
that aims to convert graph structure and node attributes into
the low dimensional feature and split similar nodes into non-
overlapping groups [55], [56]. The purpose of this step is
to cluster models with similar properties using the graph
topology and node features. To convert an artificial neural
network to a graph, let us have a k layer neural network; each
layer has a set of weights W = wy, wp, - - - , wy,, the output of
layerkisz =W x x + b.

A graph G = (V, E) is defined as a collection of vertices
V ={vi,...,v,} where v; € En, edges E = {elj}zjzl where
e; is aconnection between /; and /;1 1 assuming that k is a layer
inm;, and X; = {(wy, b1), - - - , (Wy, by)} is the corresponding
node vector that holds the average weights Zf: 1 avg(Wy) and
biases Avg(z,i.‘:l (b)) in each layer k.

Figure 3 shows how FedNets converts an artificial neural
network into a graph.

E. GRAPH EMBEDDING GENERATION

The representation of a node v; according to [57] can be
calculated as:

ui = MLPy, ((1 +ey T D] u}”) ey
JEN (D)

where ; is the representation of node v;, N (i) is the neigh-
bourhood of node V;, € could be learnt by a hyperparameter
or GD (gradient descent) and MLP’{Vk refers to multilayer
perceptron for the k< GIN layer and weights Wy. After gen-
erating the node embeddings, we calculate the overall graph
embeddings following the same approach described in [57]:

hg = MLPy (||kK=1ATT@(k) (Ug)) )

The embedding of the input graph of graph g is Ug € RN*P

where the n — th row, u, € RP. The output of this step
is an array of the corresponding graph embeddings for each
model Em,;.

F. CLUSTERING OF EMBEDDINGS

At this stage, all models m; € 6y are transformed into a two-
dimensional array Em;. We apply affinity clustering on Em;,
and then we choose representatives from each cluster. The
selection criteria will be based on the following: Let ¢; be
one of the generated clusters, c/ is the length of the cluster
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(number of members of the group) and acc; be the precision of
the corresponding model m; on a validation set VS (10% of the
training set). The chosen model should satisfy the following:

[mieC,-where:cl>K where K =1,---,20 3)

acc;i > 55% on VS

The pseudocode of FedNets is shown in Algorithm 1.

Algorithm 1 FedNets Pseudocode
Server
Initialise global pool 6y
for Each communication Round R, r < 1to 7 do
Select N Client
for Eachclienti =1, 2, .., N do
Download 6,
Client; update and receive em;
end for
GE < AffinityPropagation(EMs)
M < RepresentativeSelection(GE)
Update Global Pool gy with M
end for

Client Update
Replace local ensemble 6; <— 0;41
for Local Epoch e < 1to E do

N
Nfinal(W) = argmaxjeqi,... c) Zyi,j
i=1

end for
for Each model M in 6; do

em < generatedEmbeddings(M) return em
end for

G. PRIVACY PRESERVING
Unlike the typical federated learning approaches, the
proposed method provides a privacy-preserving-by-design
approach. The sharing of a subset of the local ensemble per
client makes it harder to reveal the behaviour of the users of
individual clients. Formally, if the number of models making
up the ensemble in a client is n, only m models are shared,
where m < n. Thus, privacy increases when the value 7 = 7
decreases. Note that T can be a hyperparameter when apply-
ing the proposed method. An important factor in increasing
privacy is the diversity of the ensemble. The more diverse the
ensemble is the more private the proposed method is. In other
words, with the same value for , the diverse ensemble is
inherently more private.

For example, if n = 10 and m = 3, then = = 0.3. This is
a setting that will result in high privacy. However, if ¢ = 0.9,
then privacy may be compromised because most of the mod-
els that make up the ensemble are shared centrally, making it
possible to reproduce the data fed to the model locally. It is
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FIGURE 3. FedNets approach to convert an ANN to a graph. Each layer will be converted to a node, and the
mean value of the weights/biases will be added as a feature to the node.

worth pointing out that in a typical federated learning setting,
the parameters of the model are shared centrally (i.e. T = 1),
making the models shared by the clients vulnerable.

IV. EXPERIMENTAL STUDY

In this section, we first explain in detail our simulation envi-
ronment and setup, then evaluate the precision of Fed-Nets
using the ResNetV2 and CIFAR100 federated dataset. Next,
we compare our results with Fed-Avg. Finally, we provide
important measures related to ensemble performance, such
as inference time, required training time, and the number of
models per client. Those measures are essential to give an idea
about the feasibility of running deep ensembles on resource-
limited devices (IoT). The code used in the experiment is
publicly available on GitHub.'

A. DATA SET AND MODELS

1) FEDERATED CIFAR100 FOR SIMULATION

This dataset is specially designed to simulate non-
independent and identically distributed data samples. It is
derived from the original CIFARI00 dataset, and it has
50,000 training samples and 10,000 testing samples. Unlike
the original dataset, the training and testing samples are parti-
tioned across 500 and 100 clients (respectively, and no over-
lapping across the clients). The training clients’ IDs range
from O to 499, while the testing clients’ IDs go from O to 99.
The data partitioning part is done using PAM (Pachinko
Allocation Method) [58], which is an improved version of

1 https://github.com/besherh/FedNets
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LDA (Latent Dirichlet Allocation). This approach uses a
two-stage LDA process, where each client has an associated
multinomial distribution over the coarse labels of CIFAR-
100, and a coarse-to-fine label multinomial distribution for
that coarse label over the labels under that coarse label.

2) ResNetV2

This model belongs to the Deep Residual Networks (RNN5s)
family that achieved breakthroughs in the deep learning com-
munity. ResNetV2 is the new version of ResNet; the main
improvements are related to the arrangement of the layers
in residual blocks. The Model accepts an input of shape
299 x 299 pixels; the output is the probability distribution
for the predicted classes [59].

B. SIMULATION SETUP

We run our simulation on a powerful workstation with mul-
tiple GPU and CPU nodes. The following are the hardware
specifications:

o CPU Nodes:5 nodes - 72 cores per node, PowerEdge
R740 Server, Intel Xeon Gold 6240 2.6G.

o GPU Nodes:2 nodes - 72 cores per node, PowerEdge
R740 Server, Intel Xeon Gold 6240 2.6G, NVIDIA(R)
Tesla(TM) T4 16GB Passive, Single Slot, Full Height
GPU (2 cards per node) - 320 Turing Tensor cores
and 2560 Cuda cores per card.

All nodes have ‘CentOS-8.2.2004-x86_64" operating sys-
tem installed. There are also different hyperparameters that
control the design of FedNets, starting from initialising the

VOLUME 11, 2023
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FIGURE 4. FedNets Framework involves the following steps:-Step1: server deploys deep learning ensembles to the clients and clients train
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the attributes of the nodes are mean of weights and biases of whole layers; step3: clients generate the corresponding graph embeddings
and share them with the server; step4: the server to cluster the embeddings using affinity propagation and choose a representative from
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each cluster, then models are deployed to clients. .

global pool and ending with the deployment of the models to
the clients. Table 1 summarises all hyperparameters that are
used in the different processes of FedNets.

As shown in Table 1, there are a lot of different hyperpa-
rameters that control the process flow of FedNets. Starting
from the generation of the global pool and ending with rep-
resentative selection. The values of the hyperparameters are
selected based on a “trial and error” approach, and we only
reported the values related to the presented results.

C. RESULTS AND ANALYSIS

We start this section by introducing details about the baseline
model and the pool of models we use to deploy deep learning
ensembles to clients. We move next to investigate the effec-
tiveness of FedNets on non-iid settings. We use the federated
CIFAR100 dataset as a benchmarking dataset and ResNetV?2
as a baseline model. Additionally, we provide accuracy com-
parison with state-of-the-art federated learning algorithms
including Fed-Avg and Fed-Yogi. The simulation is applied to
a different number of clients (two clients, five clients and ten
clients) for four federated learning rounds, where each client
has an ensemble of ten pruned models. Finally, we provide
time measures related to the performance of the deep learning
ensembles on the proposed virtual clients.

The baseline of ResNetV2 (3,575 KB) is trained on the
original CIFAR100 dataset, and the accuracy of the model
on the testing set is 68%. We apply constant-sparsity pruning
on ResNetV2 to generate a pool of 500 models. During the
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FIGURE 5. Accuracy comparison on two clients.

pruning process, we use different values of the pruning hyper-
parameters to ensure diversity between the pool’s members.
Diversity leads to better generalisation and provides better
accuracy results at the edge end as shown in [60]. The max-
imum accuracy in the pruned pool against a validation set
(20% of the testing set) is around 66%, and the minimum
is 0.05%. The pruning leads to around 37% reduction of the
original baseline model size( the average size of the pruned
models is 1,295 KB).

1) COMPARISON WITH STATE OF THE ART

Here we compare the accuracy results of FedNets with two
of the state of the federated learning strategies (FedAvg,
FedYogi) on the federated CIFAR 100 dataset. In the next sec-
tion, we provide the simulation results for different numbers
of clients (two, five, and ten clients).
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TABLE 1. FedNets hyperparameters.

Phase Hyperparameter name Values
Epochs [2,3,4,5,6]
Batch Size [16,32,64]
.. . Loss [Categorical Cross Entropy, Mean Squared
Training and Pruning Error, Mean Absolute Error]
Optimiser Adam
Target Sparsity [0.2,0.55]
Frequency [50,75,100]
Graph Classification Model-Layer Size [32,64]
Graph Classification Model- Activations ReLU
. Graph Classification Model- Dropout 0
Embeddings Gragh IDX - Size b (100, 2)
Pair Model - optimiser Adam((1e-2)
Pair Model - Loss MSE
Validation Ratio 0.1
Clustering Accuracy Threshold 0.3
Cluster Length 10
Sample Size 60
e 93 . 96 a3 .
0.5 4
= 06 4
g 0.4
26 26|
02 A 2 2
mm FedAvg mm FedYogi
06 § mem FedNets
00 - T T T
client 1 client 2 client 3 client 4 client 5

FIGURE 6. Accuracy comparison on five clients.

As shown in 5 and when the number of clients is equal to
two, FedNets accuracy is 93% and 86% in client] and client2,
respectively. On the other hand, the accuracy of FedAvg is
56% on clientl and 14% on client2. Similarly, the accuracy
of FedYogi on clientl and client2 is 1% and 60%.

The results of the accuracy of FedNets on five different
virtual clients are presented in figure6. From the chart, it can
be seen that FedNet’s accuracy is better than FedAvg and
FedYogi on all clients. The minimum accuracy for FedNets
is 90% while the best accuracy reached by FedNets is 80%.

Figure7 compares the accuracy results between FedNets,
FedAvg and FedYogi. Looking at figure7, it’s apparent that
FedNets is still achieving superior performance and can beat
the state-of-the-art methods on all clients. We can also see
that the maximum accuracy of FedNets is 100% on the
client3, the maximum accuracy of FedAvg is 80% on the
client7 and client 8, and the best accuracy of FedYogi is 53%
on the client10.

As shown in Figures 5,6 and 7, there is a significant per-
formance difference between FedNets and FedAvg/FedYogi.
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FIGURE 7. Accuracy comparison on ten clients.

Our proposed approach provides better accuracy results on
a different number of clients; the clients can share their
knowledge by exchanging the members of the ensembles, and
it seems to be better than the traditional approach of sharing
the weights of the models.

2) ENSEMBLES PERFORMANCE
Before embarking on presenting and analysing the accuracy
results on the federated data set, it is worth noting that as
aforementioned in Section III, FedNets utilises the pruning
framework reported in [54] to run deep learning ensembles on
edge devices. In this work, the proposed framework is proven
to produce lightweight models and provide a quick inference
time. All details related to pruning effects, prediction time,
temperature, and energy consumption could be found in [54].
Now, we move to present the simulation results of the
required time to complete one federated learning round
inFedNets. Each round consists of three main steps: training,
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inferencing, and deployment. We run this simulation on CPU
nodes for four federated learning rounds. The simulation

TABLE 3. Changes to the number of models per client.

results are presented in Table 2. Number of models | Round1 \ Round2 \ Round3 \ Round4
TABLE 2. Time required by the major steps of FedNets in seconds. . 2 Clients
Clientl 7 8 7 6
Measure Round1 \Round2 \ Round3 \ Round4 Client2 6 7 7 5
2 Clients 5 Clients
training locally 78.03 61 54.37 | 43.39 Clientl 8 10 7 9
ensemble inference | 25.36 | 19.95 | 19.22 | 14.27 Client2 5 5 9 9
deployment 64.87 | 62.37 | 62.03 | 60.16 Client3 9 9 9 8
5 Clients Client4 7 9 7 9
training locally | 236.69 | 228.82 | 256.42 | 222.21 Client5 7 9 7 5
ensemble inference | 74.79 | 77.37 | 75.84 | 72.18 10 Clients
deployment 82.62 | 93.04 | 80.74 | 81.35 Clientl 10 10 8 9
10 Clients Client2 9 10 9 7
training locally | 681.45 | 664.27 | 663.02 | 663.76 Client3 10 9 10 8
ensemble inference | 186.63 | 175.94 | 178.53 | 117.06 Client4 9 10 8 8
deployment 120 | 121.18 | 116.41 | 116.38 Client5 10 10 9 10
Client6 10 9 10 8
On closer inspection of Table 2, it shows that training the Cl?ent7 9 10 10 9
deep learning ensembles on the local datasets is consuming Cl%entS 9 10 10 9
most of the time. Training time is noticeably increased when Cl.lent9 10 9 9 10
the number of clients is ten (almost 12 minutes to complete). Client10 10 10 8 10

However, the inference time of the ensembles is acceptable
in most of the applications.

It can also be seen from the data in Table 2 that, in gen-
eral, FedNets requires a relatively long period of time to
complete a federated learning round (especially when the
number of clients is rather considerable, like ten). However,
we should accept the fact that FedNets is an ensemble-based
approach that aims to maximise the generalisation and accu-
racy at the edge end, so it requires more time to complete
a federated learning round. Additionally, we are running the
simulation on CPU nodes only. In a real-life application,
resource-limited devices could be attached to cutting-edge
Al accelerators that bring the power of TPUs to the edge.
We believe that this led to a significant improvement in the
time complexity of FedNets as shown in [54]. Turning now to
examine the size of the composed ensembles on each client
after each federated learning round. This could be directly
related to the effectiveness of our approach in preserving the
resources of IoT devices. Table 3 displays the changes in
the number of models per client (ensemble size) after each
federated learning round.

As shown in Table 3, FedNets reduces the size of the
ensemble by 50% after round 4 (assuming that each client
starts with ten models, as explained earlier). The simulation
on both five and ten clients shows that FedNets is still able
to reduce the number of models per ensemble which lead
to reducing the required memory/storage required by the
approach.

3) PRESERVING PRIVACY

As previously stated, FedNets prompts federated learning by
allowing clients to share the members of the local ensembles;
at the same time, FedNets respects the privacy of the clients.
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Table 4 shows summary statistics about the number of
shared models per client. It is worth mentioning that the
value of 7 is not controlled during the simulation. However,
as explained earlier, T could be a hyperparameter to the
proposed approach which will be used to trade off accuracy
with privacy by controlling the maximum number of models
to be shared with the other clients. As seen in the table, when
the number of models is equal to ten, FedNets tends to share
a large number of models (average 9.6, T = 0.96). This could
be minimised by defining T < 0.5 sharing less than half of
the models per client, forcing greater privacy. However, this
may come at the cost of compromising the accuracy of the
federation.

4) DISCUSSION OF THE RESULTS

The results of FedNets as shown in Figures 5,6,7 indicate
that the proposed approach is effective in providing high
accuracy in non-iid settings where the distribution of class
labels is vastly different among clients. This will work well
for applications that cannot compromise on accuracy as the
quality of the output directly impacts the reliability of the
Al systems. For example, FedNets could be integrated into
Al-Based Medical Diagnosis systems to offer further data
privacy assurance to comply with Health Institutions’ Data
Protection Policies. It is possible that the results in Table 4
could be improved by adding the privacy factor t into the
list of hyperparameters introduced in Table 1. This could
be useful when edge clients deal with very sensitive per-
sonal information, for example, smart wearable devices. The
results obtained from Table 2 shows that FedNets could
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run on resource-limited environments effectively. However,
the required time to complete one federated round could
take a reasonably long time. The observed increase in time
could be attributed to: a) using a baseline model that has
not been fully optimised to run on resource-limited devices;
and b) utilising deep ensemble learning to provide better
generalisation in non-iid settings. Using edge-friendly mod-
els like the MobilesNet family [61] could lead to shorter
training and inference time. However, the fact that FedNets
requires a relatively long period to complete a federated
round will still be valid. This limitation renders FedNets a
less desirable choice when there are no GPUs attached to
the edge devices (operating solely on CPU) and when real-
time applications necessitate instantaneous inference, such as
autonomous vehicles.

TABLE 4. Statistics related to the numbers of shared models per round.

Metric Round1 | Round2 | Round3 | Round4
5 Clients
Minimum 5 5 7 6
Standard Deviation | 1.48 2.07 1.14 1.30
Variance 1.48 2.07 1.14 1.30
Average 7.2 8.6 8.4 8.2
10 Clients
Minimum 7 6 8 7
Standard Deviation| 0.51 0.48 0.87 1.03
Variance 0.26 0.23 0.76 1.06
Average 9.6 9.7 9.1 8.8

D. CONCLUSION AND FUTURE WORKS

In this work, we introduced FedNets, the first ensemble-
based federated learning strategy that provides better gen-
eralisation in non-iid settings. The key differences between
this approach and other federated learning strategies are:
(1) clients are running deep learning ensembles rather than
having one model per client; and (2) instead of sharing the
models’ weights to update a single global model, which is
prone to a privacy breach, our approach allows clients to
share models (members of their deep learning ensembles) to
compose a shared pool of outperforming models, then the
pool is shared with all participating clients. The experimental
results on the federated CIFAR100 dataset demonstrate that
our approach outperforms the Federated Learning Averag-
ing strategy (FedAv), and Adaptive Federated Optimisation
(FedYogi). The results also show that the cost of running deep
learning ensembles (inference time, ensemble size) on edge
devices is feasible in a resource-limited environment.

In future work, we plan to test our approach on other non-
iid benchmarking datasets and to discover the effectiveness
of using modern CNN architectures like MobileNet and Effi-
cientNet when applied in deep learning ensemble settings.
Moreover, we plan to utilise optimisation techniques to fine-
tune the hyperparameters of FedNets in order to achieve
superior results. By leveraging these techniques, we can
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maximise the performance of our models and unlock their
full potential.
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