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a b s t r a c t 

Recent work identified single time points ( “events ”) of high regional cofluctuation in functional Magnetic Reso- 

nance Imaging (fMRI) which contain more large-scale brain network information than other, low cofluctuation 

time points. This suggested that events might be a discrete, temporally sparse signal which drives functional 

connectivity (FC) over the timeseries. However, a different, not yet explored possibility is that network informa- 

tion differences between time points are driven by sampling variability on a constant, static, noisy signal. Using 

a combination of real and simulated data, we examined the relationship between cofluctuation and network 

structure and asked if this relationship was unique, or if it could arise from sampling variability alone. First, we 

show that events are not discrete – there is a gradually increasing relationship between network structure and 

cofluctuation; ∼50% of samples show very strong network structure. Second, using simulations we show that this 

relationship is predicted from sampling variability on static FC. Finally, we show that randomly selected points 

can capture network structure about as well as events, largely because of their temporal spacing. Together, these 

results suggest that, while events exhibit particularly strong representations of static FC, there is little evidence 

that events are unique timepoints that drive FC structure. Instead, a parsimonious explanation for the data is that 

events arise from a single static, but noisy, FC structure. 

1. Introduction 

The human brain is organized into large-scale systems, or ‘networks,’ 

with coordinated functions such as the visual network, somatomotor 

network, and default mode network. In humans, these networks can be 

identified by grouping regions of the brain that have highly correlated 

spontaneous BOLD fMRI signals - regions with high “functional connec- 

tivity (FC) ” ( Biswal et al., 1995 ; Power et al., 2011 ; Yeo et al., 2011 ). 

These FC networks have a canonical spatial layout (most people have the 

same networks represented in the same locations), with stable patterns 

of individual variation (each person’s network topography is slightly dif- 

ferent from the canonical layout and consistent within themselves across 

time; Gordon et al., 2017 ; Gratton et al., 2018 ; Laumann et al., 2015 ; 

∗ Corresponding author at: Cresap Lab 315-318, 2021 Sheridan Road Evanston, IL, 60208 

E-mail address: caterina.gratton@northwestern.edu (C. Gratton) . 

Seitzman et al., 2019 ). At both the individual and group level, func- 

tional network topology accurately predicts which regions of the brain 

will be activated during specific tasks ( Braga et al., 2020 ; Gordon et al., 

2017 ; Smith et al., 2009 ; Tavor et al., 2016 ) and variations in network 

topology are related to individual differences in behavior outside of the 

scanner ( Bijsterbosch et al., 2018 ; Kong et al., 2019 ; Smith et al., 2015 ; 

van den Heuvel et al., 2009 ). Further, FC measured by fMRI has identi- 

fied functional systems in other species which are consistent with circuit 

architecture measured through anatomical tracing ( Du & Buckner, 2021 ; 

Margulies et al., 2009 ; Vincent et al., 2007 ). 

However, analysis of spontaneous fMRI data is not straightforward. 

Unlike in task-fMRI, there is no predefined temporal structure that can 

be used to separate relevant signals from artifactual signals. Instead, 
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typical analyses of spontaneous (resting-state) fMRI remove physiologi- 

cal artifacts (motion, respiration, cardiac rhythms, etc.) and assume the 

residual signal is the neural signal of interest ( Power et al., 2020 ). It 

is typically presumed that this signal is equally present at all moments 

and FC is calculated using all available data over long periods. How- 

ever, recent work suggested that rather than being constantly present, 

FC information might be inordinately present at particular time points 

called “events ” ( Esfahlani et al., 2020 ). Esfahlani and colleagues found 

that “events, ” time points with the highest BOLD signal cofluctuation, 

reproduce static functional connectivity patterns better than the same 

number of “non-events, ” time points with the lowest BOLD signal cofluc- 

tuation, and require relatively few timepoints to reproduce them well. 

The authors concluded that rather than functional network structure 

being present at all timepoints, it is driven by events – a discrete and 

temporally sparse phenomena ( Esfahlani et al., 2020 ). The idea that 

brain network information can be identified in a reduced data set is 

not new. Previous approaches such as co-activation patterns (CAPS) and 

point-process analysis (PPA) have been used to identify a small num- 

ber of points which can capture functional network information (Liu & 

Duyn, 2013; Tagliazucchi et al., 2012), but events are unique in that 

they do not require the specification of a seed region or threshold for 

high-amplitude activity (Esfahlani et al., 2020). This idea has deep im- 

plications for the field: a thorough analysis of events across brain orga- 

nizational levels (e.g., from systems to cellular recordings) could reveal 

information about the physiological mechanisms of FC and new analy- 

sis methods focused on events could improve the clinical utility of fMRI 

( Esfahlani et al., 2021 ; Greenwell et al., 2021 ). 

However, there are alternative interpretations of these findings 

which have not yet been explored. First, it is possible that differences be- 

tween events and non-events are driven by contamination in non-events 

(motion, respiration, etc.) rather than by a unique signal present during 

events. Second, it has been shown that random sampling variability in 

BOLD data is high and alone can create the appearance of discrete states 

in stationary FC simulations ( Hlinka & Hadrava, 2015 ; Laumann et al., 

2017 ). This principle may apply here too – sampling variability could 

make a subset of single points look extreme, even if they are drawn from 

a continuous distribution around a static FC matrix (note that if this were 

the case, events methodology may still be a useful way to rapidly and 

accurately reproduce static FC structure, but this outcome would sug- 

gest that a deep focus on events physiology relative to other timepoints 

has less utility). Recent work has provided a mathematical basis for how 

this could be the case. ( Novelli & Razi, 2022 ). In this paper, we ask (1) 

if events are unique points which drive FC, (2) if non-events are unique 

points with high contamination, or (3) if events and non-events are an 

expected consequence of static FC and sampling variability. 

To answer these questions, we conduct a series of analyses on real 

and simulated data. First, we use real data from the Midnight Scan Club 

dataset to test how unique events and non-events are by examining 

whether their properties differ markedly from intermediate timepoints. 

Second, we create models of simulated static BOLD data to see if sam- 

pling variability on a static signal is sufficient to explain event behavior. 

Finally, we examine why events are able to recreate static FC structure 

with so few time points. 

2. Materials and methods 

2.1. Overview and Dataset 

The goal of this project was to investigate if high cofluctuation mo- 

ments in resting state fMRI BOLD signals are discrete events that drive 

functional connectivity. We used a combination of real and simulated 

data for these analyses. 

The publicly available Midnight Scan Club (MSC) dataset was used 

as our real sample dataset. The MSC dataset contains fMRI data from 

10 highly sampled individuals (5 females, ages 24-34). The data for 

each subject was collected across 10 fMRI sessions within 7 weeks. 

Across these sessions, the MSC dataset includes 5 hours of resting state 

fMRI; this resting-state data is the focus of our analyses. One participant 

(MSC08) has been excluded from these analyses because of head motion 

and drowsiness during rest. For single session-analysis and simulations, 

sessions with less than 333 usable timepoints (6/90 sessions) were ex- 

cluded. All data collection was approved by the Washington University 

Internal Review Board and written informed consent was received from 

all participants. The dataset and processing have been previously de- 

scribed in detail ( Gordon et al., 2017 ). A summary of relevant details is 

provided below. 

2.2. MRI Acquisition 

MRI data were acquired on a Siemens 3T Magnetom Tim Trio with a 

12-channel head coil. T1-weighted (sagittal, 224 slices, 0.8 mm isotropic 

resolution, TE = 3.74ms, TR = 2.4s, TI = 1.0s, flip angle = 8 degrees), T2- 

weighted (sagittal, 224 slices, 0.8 mm isotropic resolution, TE = 479ms, 

TR = 3.2s) and functional (gradient-echo EPI sequence, TE = 27ms, 

TR = 2.2 s, flip angle = 90, voxels = isotropic 4mm 

3 , 36 axial slices) 

MRI images were collected. Thirty minutes of resting-state fMRI were 

collected at the start of each session. 

2.3. Preprocessing 

Data processing for the MSC dataset is explained in detail elsewhere 

( Gordon et al., 2017 ). Relevant details for this project are shared below. 

2.3.1. Structural MRI Processing 

For each participant, T1 images were averaged together and used 

to generate a cortical surface in Freesurfer ( Dale et al., 1999 ). These 

surfaces were hand-edited and registered into fs_LR_32k surface space 

( Glasser et al., 2013 ). 

2.3.2. Functional MRI Processing 

Slice time correction, motion correction, and intensity normalization 

to mode 1000 were all completed in the volume. The functional data 

was then registered to the T2 image (which was registered to the T1 

image registered to template space), resampled to 3mm isotropic res- 

olution and distortion corrected ( Gordon et al., 2017 ). All alignments 

were applied in a single step. 

2.3.3. Functional Connectivity Processing 

Described in detail elsewhere ( Power et al., 2014 ), preprocessing 

steps were taken to reduce the effect of artifacts on functional network 

analysis. This included the regression of nuisance signals (white matter, 

ventricles, global signal, motion and derivative and expansion terms), 

scrubbing of high motion frames (FD > 0.2 mm), and bandpass filter- 

ing (0.009 Hz to 0.08 Hz). For two subjects (MSC03 and MSC10), mo- 

tion parameters were low pass filtered before censoring to address res- 

piratory activity in the motion traces ( Fair et al., 2020 ; Gordon et al., 

2017 ). Functional data was then registered to the surface and spatially 

smoothed (FWHM = 6 mm, sigma = 2.55) ( Marcus et al., 2011 ). 

2.4. Network and region definition 

All analyses were done on parcellated timeseries extracted using a 

group-level map of 333 cortical parcels ( Gordon et al., 2016 ). These 

333 parcels can be split into 12 functional systems: somatomotor (SM), 

somatomotor lateral (SM-lat), visual (Vis), auditory (Aud), cingulo- 

opercular (CO), salience (Sal), frontoparietal (FP), dorsal attention 

(DAN), ventral attention (VAN), default mode (DMN), parietal memory 

(PMN), and retrosplenial (RSP). These systems are used to group parcels 

in the visualization of FC matrices. 
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2.5. Comparisons between events and static functional connectivity in real 

data 

Our first goal was to compare the network structure present in 

events, non-events, and intermediate bins. We followed the approach 

used in Esfahlani et al., 2020 , calculating the RSS (root-sum-square) 

cofluctuation for each timepoint and binning timepoints by their RSS 

cofluctuation value. We compared the network structure present in each 

bin by creating FC matrices for each bin and calculating the similarity 

between bin FC and whole session FC and the modularity of bin FC. 

These measures are defined below. 

2.5.1. Cofluctuation Time Series and Events 

The method for calculating cofluctuation and identifying events has 

been fully described elsewhere ( Esfahlani et al 2020 ). It was followed 

exactly and is summarized here. The original fMRI BOLD timeseries was 

z-scored per parcel. For each edge (a unique pair of parcels), the z-scored 

values at each timepoint were multiplied, resulting in an edges X time- 

points matrix. As described elsewhere, this timeseries (also called the 

edge-time-series), represents the exact contribution of each timepoint 

to static FC ( Esfahlani et al., 2020 ). For each time point, the RSS (root- 

sum-square) across parcels was calculated, resulting a 1 X timepoints 

matrix containing the RSS cofluctuation value at each timepoint. Time- 

points were binned based on RSS cofluctuation value in 5% bins, with 

the 5% of points with highest cofluctuation in bin one, the next 5% of 

points in bin two and so on. 

2.5.2. Functional Connectivity (FC) 

For each session and subject, functional connectivity matrices were 

calculated using either the timepoints from the full session (‘static’ FC 

matrices) or from the timepoints in each bin (cofluctuation bin FC matri- 

ces). In all cases, FC was calculated by the product-moment correlation 

between each pair of parcel timeseries, resulting in a 333 × 333 func- 

tional network matrix. Parcels were grouped by functional system for 

visualization. Edges within the diagonal blocks represent within-system 

correlations, and edges in the off-diagonal blocks represent between- 

system correlations. 

2.5.3. Similarity 

Similarity between each bin’s FC and whole-session ‘static’ FC was 

calculated by vectorizing both matrices and taking the correlation be- 

tween them. 

2.5.4. Modularity 

Modularity was calculated for each bin as measure of network struc- 

ture. Modularity maximization is a strategy used to arrange nodes into 

communities in which there are more edges within communities than ex- 

pected by random chance. Each matrix was thresholded for sparseness, 

keeping only the top 5% of weighted edges (5% edge density). Then, all 

remaining edge weights were set to 1, making the graph unweighted. 

Newman’s spectral optimization was used to identify the optimal net- 

work structure. This structure was then quantified using Newman’s mod- 

ularity statistic, Q, which measures the fraction of within-network edges 

minus the expected value of within-network edges in a network with the 

same communities but random connections ( Newman & Girvan, 2004 ). 

Larger values of modularity reflect stronger community structure than 

expected by chance. 

2.6. Comparisons between events and static functional connectivity in 

simulated data 

Our second goal was to test whether the relationship between net- 

work structure and cofluctuation found in real data could be explained 

by sampling variability in a stationary model. To examine this, we cre- 

ated simulated data with the same dimensionality and static covariance 

structure as BOLD data but sampled from a random Gaussian distribu- 

tion. 

2.6.1. Simulated BOLD Data 

For each subject and session, data was sampled from a Gaussian dis- 

tribution in the dimensionality of the real data from that session. Sep- 

arately, a static FC matrix was calculated from the full 30 minutes of 

real data. The random timeseries were projected on to the eigenvectors 

derived from the static FC matrix, resulting in data matched in dimen- 

sionality and covariance structure with real BOLD data but stationary 

by construction. This strategy is largely adapted from prior simulation 

work ( Laumann et al., 2017 ). We then did the same analysis in the sim- 

ulation data as was described above for real data – calculating cofluc- 

tuation, binning frames by cofluctuation, and comparing the network 

structure present in each bin with two measures (similarity to static FC 

and modularity). 

2.6.2. Simulated Toy Model 

To aid in our second goal, we did a supplementary analysis inves- 

tigating the relationship between network structure and cofluctuation 

in a very simple non-BOLD-like data set. The data set comprised of 4 

nodes total – 2 anti-correlated networks with two nodes each. Network 

A was defined by the simple sine(x) wave, and both network A nodes 

were given that signal. Network B was defined by sine(x + 𝜋/2) and both 

network B nodes were given that signal. Normally distributed random 

noise of half the magnitude as the real signal was added to all four nodes. 

Then, cofluctuation was calculated for each timepoint, timepoints were 

binned by cofluctuation, and similarity with time-averaged FC was cal- 

culated for each bin. 

2.6.3. PCA Analysis 

To test whether simulated data would replicate the result that 

high amplitude cofluctuations show a particular mode of brain activ- 

ity characterized by counter-fluctuations in traditionally task-positive 

and task-negative areas of the brain, we replicated the analysis from 

Esfahlani et al. 2020 in both real and simulated data. For each subject 

and session, we calculated a mean activity pattern for high and low 

cofluctuation time points (top 5% and bottom 5%). We correlated these 

mean activity patterns, and took the first principal component from that 

correlation matrix. We compared the coefficients for the high versus low 

points, and then mapped the coefficient scores from PC1 on to the sur- 

face of the brain. 

2.7. Temporal Spacing Analysis 

Our third goal was to compare the effects of different sampling meth- 

ods on the network structure present in the sampled points. We specif- 

ically wanted to investigate the effect of temporal spacing on network 

structure. 

2.7.1. Comparison of Sampling Methods 

For each subject and session, we examined the network structure 

present in four groups of time points: high cofluctuation points (selected 

as the top 5% of points with highest RSS cofluctuation), low cofluctu- 

ation points (selected as the bottom 5% of points with the lowest RSS 

cofluctuation), consecutive points (5% of points selected consecutively 

beginning at a random point of the session and wrapping around when 

needed), and random points (5% of points selected randomly from the 

session). For consecutive samples, 100 iterations were done for each 

session to not bias the result by starting location.We further tested 

this by varying the number of time points selected rather than choos- 

ing 5% of time points. The number of time points was varied from 1 

to 100. 
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2.7.2. Circular Offset Analysis 

In a supplemental analysis, we examined the relationship between 

cofluctuation and network structure after removing temporal spacing 

effects. To do this, we binned time points by cofluctuation and then 

circularly shifted them by 1-10 points in both directions to maintain 

the temporal spacing found in the original binning while varying their 

cofluctuation values. However, because we previously scrubbed high 

motion points from this data set, it was not possible to select 5% of time 

points (as in other binned analyses) and shift them without running into 

scrubbed points. To address this issue, we randomly sampled only 5 

points per bin and used fewer bins (95-100, 85-90, 70-75, 45-50, 20-25, 

0-5). This resulted in a smaller number of analyzed sessions with lower 

peak similarities for this analysis. To reduce bias from random sampling, 

we did 100 iterations and averaged the results. 

2.8. Dataset and Code Availability 

MSC data has been made publicly available ( https://openneuro.org/ 

datasets/ds000224/versions/1.0.3 ). The parcellated timeseries used for 

these analyses is available here ( https://github.com/GrattonLab/MSC _ 

ROI _ data ).The code for the analyses in this paper is available at ( https: 

//github.com/GrattonLab/Ladwig _ 2022 _ Events _ Static _ FC ) . 

3. Results 

3.1. Overview 

Previous work showed that moments with high amplitude cofluc- 

tuations in BOLD, or “events ”, estimate static functional connectivity 

patterns better than low cofluctuation moments, and can do so with rel- 

atively few timepoints ( Esfahlani et al., 2020 ). This suggested that (1) 

high cofluctuation events may be unique, transient phenomena which 

drive the large-scale network organization that we observe over long 

timeseries ( Esfahlani et al., 2020 ). But there are alternate interpreta- 

tions of this result: (2) differences between low and high cofluctuation 

could be driven by low cofluctuation timepoints exhibiting more BOLD 

artifacts (e.g., motion or respiration) that disrupt functional connectiv- 

ity measures or (3) events may arise as a consequence of sampling from 

a continuous distribution, where some moments will, by chance, exhibit 

higher cofluctuation than others. 

In this work, we test these three hypotheses. We test how network 

structure changes over a range of cofluctuation amplitudes, ask if this 

relationship is present in stationary simulated data, and analyze why 

events can recreate static correlation structure with so few time points. 

3.2. Network structure is continuously related to cofluctuation 

First, we examined the relationship between BOLD cofluctuation and 

network structure across a range of cofluctuation amplitudes. Our hy- 

potheses are visualized in Fig. 1 A. If events are specialized discrete time- 

points that drive network structure, then they should especially well rep- 

resent network structure (purple) relative to other points. If low cofluc- 

tuation points are discrete timepoints more contaminated by artifacts, 

they should especially poorly represent network structure (yellow). If 

BOLD cofluctuations exhibit random variation as would be expected 

from sampling variability, then there should be a continuous relation- 

ship between cofluctuation amplitude and network structure (green). 

For each participant and resting state session (30 minutes), we cal- 

culated BOLD cofluctuation amplitude at each timepoint (after standard 

preprocessing and denoising to improve alignment and remove artifacts, 

including those associated with motion, see Methods ). In Esfahlani et al., 

2020 , events were defined as the top 5% of timepoints ranked by cofluc- 

tuation. We extended this, grouping timepoints in each session into dis- 

crete 5% bins based on their cofluctuation ( Fig. 1 B ). For each bin, we 

calculated an FC matrix using the product-moment correlation ( Fig. 1 C) 

and computed measures of network structure as in Esfahlani et al. 2020 . 

( Fig. 1 D-E). 

We reproduced both results from Esfahlani et al., 2020 show- 

ing that, compared to FC from the lowest cofluctuation bin ( “non- 

events ”), FC from events is more similar to whole-session static FC 

(r events = 0.792, r lowest = 0.514, t(89) = 42.2, p = 1.2e-60) and more 

modular (q events = 0.562, q lowest = 0.478, t(89) = 12.3 p = 6.0e-21) 

( Fig. 1 D, E). However, when we examined the relationship across in- 

termediate bins, we found that both metrics increased gradually with 

cofluctuation, not discretely for events. The increase was especially 

gradual at high values of cofluctuation. In fact, the top bin (events) was 

not substantially different than the 70 th percentile bin (r events = 0.792 

vs. r 70 = 0.797, r diff= -0.005, t(89) = 0.48, p = 0.31; modularity: 

q events = 0.562 vs. q 70 = 0.561, q diff= -0.001, t (89) = 0.15, p = 0.45) 

and only slightly different than the 50 th percentile bin (r 50 = 0.740, 

q 50 = 0.546, r diff= 0.052, q diff = 0.016). Low cofluctuation points, while 

substantially different from events, were not obviously discrete when 

compared with the 10 th and 20 th percentile bins (r lowest = 0.514, 

q lowest = 0.478, r 10 = 0.579, q 10 = 0.499, r 20 = 0.637, q 20 = 0.515). 

Notably, many sets of points explicitly excluding events still recapitu- 

lated network structure well. These relationships were consistent in all 9 

subjects (lines in Fig. 1 D-E , separated by session in Fig. S1 ), suggesting 

that neither high nor low cofluctuation points are discrete, specialized, 

timepoints that drive network structure (or the lack thereof). Rather, 

network structure appears to be present in all bins, with variability that 

is positively correlated with the cofluctuation amplitude of a given time 

point. These results do not suggest that there are a small number of time 

points which drive functional connectivity. 

As an additional check, we re-analyzed the data omitting the low- 

pass filter ( < 0.08 Hz) commonly applied in rsFC analysis. Low-pass 

filters temporally smooth data and we were concerned it may blunt the 

temporally discrete properties of events. We re-analyzed a single sub- 

ject (MSC06) omitting the low-pass filter. As in the original analysis, it 

appears that network structure exists in all cofluctuation bins even in 

the absence of low-pass filtering ( Fig. S2 ). 

3.3. Stationary simulations produce similar behavior to BOLD events and 

non-events 

Above, we found that there was a consistent and gradual relationship 

between BOLD cofluctuation amplitude and network structure. Next, we 

asked, what drives this relationship? One possible explanation is sam- 

pling variability: with noisy data, some timepoints will have higher sim- 

ilarity to the session average, while others will have lower similarity, 

simply by chance. Here, we tested whether sampling variability could 

account for event behavior by creating and analyzing a simulated BOLD 

dataset with stationary covariance structure. In this simulated dataset, 

as in the real data in the previous section, we identified points of high 

and low cofluctuation and compared their relationship to network struc- 

ture. 

The procedure to generate simulated data is shown in Fig. 2 A . For 

each subject and session, data was generated by sampling from a Gaus- 

sian distribution in the dimensionality of real data. This data was then 

projected on to the eigenvectors of the static correlation structure from 

the real BOLD data for that subject and session, resulting in random 

Gaussian data with stationary correlation structure matching real data 

(see Methods ). 

The analysis from Figure 1 was repeated on the simulated data. 

We calculated cofluctuation for each time point, binned time points 

by cofluctuation, computed FC matrices for each bin, and compared 

the network structure properties across bins. We found that the rela- 

tionship between network structure and cofluctuation in simulated data 

was remarkably similar to the one found in real data. Similarity to 

static FC ( Fig. 2 B ) and modularity ( Fig. 2 C ) both showed gradually 

increasing relationships with cofluctuation in the simulated data, just 

as in real data. Visually, the network structure present in each bin was 
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Fig. 1. Network structure varies continuously with BOLD cofluctuation. (A) Previous literature showed that high cofluctuation events contain stronger network 

structure than low cofluctuation points (gray dots). We posited three hypotheses: (1) high cofluctuation points are discrete phenomena which drive network structure 

(purple), (2) low cofluctuation points are discrete artifacts which do not contain network structure (yellow), or (3) there is a continuous gradual relationship between 

cofluctuation magnitude and network structure as would be expected from sampling variability (green). (B) To test these hypotheses, we binned time points into 

5 percentile bins of increasing cofluctuation. See example histogram here from MSC05 session 4. (C) For each bin, we calculated an FC matrix (examples here 

from MSC02 session 5) and calculated two measures of network structure – similarity to static FC and modularity. (D) Similarity to static FC increased gradually 

with cofluctuation for all subjects (black line = mean, colored lines = subjects, error bars represent SEM for the group). (E) Modularity increased gradually with 

cofluctuation as well. These results suggest that neither high nor low cofluctuation time points are discrete, unique entities. 

remarkably similar between simulated and real data ( Fig. 2 D ). These 

results were consistent within individuals and sessions ( Fig. S3 ). 

Further, we confirmed that the task-positive versus task-negative 

activity pattern associated with high amplitude cofluctuations in 

Esfahlani et al. 2020 was present in the simulation data as well, suggest- 

ing that this pattern, too, is sufficiently explained by static FC ( Fig. S4 ). 

These results suggest that the difference between high and low cofluc- 

tuation moments and their relationship to network structure can be ex- 

plained by sampling variability alone. 

Next, we extended this simulation analysis to non-BOLD-like data by 

creating an extremely simple toy model made of correlated sine waves 

and noise ( Fig. 3 A) . Even such a basic model of correlated data showed 

points of high and low cofluctuation amplitude and a gradually increas- 

ing relationship between cofluctuation amplitude and network struc- 

ture, similar to what was seen in BOLD and the stationary simulation. 

( Fig. 3 B, 3 C, 3 D, 3 E ) This provides evidence that these properties may 

be the general statistical behavior of correlated timeseries and not spe- 

cific to BOLD or BOLD-like data. 

3.4. Randomly selected timepoints can also reproduce network structure 

One particularly notable property of events is their ability to recapit- 

ulate network structure with a small number of timepoints. As shown in 

Fig. 1 and Esfahlani et al., 2020 , 5% of time points in a 30-minute resting 

state session (approximately 1.5 min. of total data) show high similar- 

ity with the static FC calculated from the whole session (r = 0.792). 

In contrast, past work ( Anderson et al., 2011 ; Gordon et al., 2017 ; 

Laumann et al., 2015 ; Noble et al., 2017 ) suggests that large amounts 
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Fig. 2. Sampling variability alone can produce event-like behavior. (A) For each subject and session, we generated a dimensionality-matched timeseries sampled 

from a Gaussian distribution. This time series was projected onto the eigenvectors of static FC calculated from that session. This yielded a simulated random Gaussian 

data set with BOLD-matched dimensionality and covariance structure. (B, C) Using the same analysis methods as in Fig. 1 , we found that the relationship between 

network structure and cofluctuation in simulated data was remarkably similar to the one found in real data. Both (B) similarity with session FC and (C) modularity 

increased gradually just as they did in real data. (D) Visually, the FC matrices made from specific cofluctuation bins look similar between simulated and real data. 

The data shown is an example from a single session: MSC02 Session 5. These results suggest the relationship between network structure and cofluctuation amplitude 

can be explained by sampling variability and static FC. 

( > 30 min.) of resting state fMRI data collection are required to achieve 

high reliability. This discrepancy appears to bolster the suggestion that 

events are discrete transient phenomena which drive static functional 

connectivity. 

However, in the previous sections, we showed that events are not 

unique in their ability to reproduce static FC ( Fig. 1 D ). Many other 

points can recreate static FC. The 70 th percentile points were correlated 

with static FC at r = 0.797 and the 50 th percentile points are correlated 

at r = 0.740. These results raise the question: is the ability for a few 

points to recreate session FC driven by cofluctuation or something else? 

We hypothesized that this apparent discrepancy was related to how 

the events methodology samples time points. One reason that substan- 

tial data is required for reliable FC measures is because BOLD data is au- 

tocorrelated – each time point shares information with the time points 

around it. In contrast, the events methodology is not constrained to se- 

lect temporally adjacent points. Looking at a sample timeseries, it is ob- 

vious that events are more spread out than consecutive points ( Fig. 4 A). 

This is confirmed by looking at the histogram of the distance between 

events ( Fig. 4 B). 

To test the effect of temporal spacing on network structure, we com- 

pared 5% of points (a) sampled consecutively (starting from a random 

section of the scan), (b) sampled randomly across the whole scan, (c) 

sampled from the highest cofluctuation points (events), and (d) sampled 

from the lowest cofluctuation moments. Fig. 4 C shows the outcome of 

sampling timepoints in these different ways: randomly sampled points 

are similarly correlated with the static session FC structure as events 

(r random 

= 0.78, r events = 0.79, t(89) = 1.7, p = 0.045). Random points 

show substantially higher similarity to static session FC than either low 

cofluctuation points (r low 

= 0.50 t(89) = 43.0 p = 1.3e − 60 ), or consecu- 

tively sampled time points (r consecutive = 0.58, t(89) = 35.2 p = 2.42e − 54 ). 

These results are consistent over a range of bin sizes ( Fig. 4 D ), suggest- 

ing that random temporal spacing is sufficient to estimate FC well. 

We note that the similarity between randomly sampled points and 

event timepoints in reproducing static network FC is not immediately 
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Fig. 3. The relationship between network structure and cofluctuation is present in extremely simple non-BOLD-like models. We created a 2 network, 4 node model 

from sine waves and tested the relationship between network structure and cofluctuation. (A) Network A is made of two nodes, each with the sine(t) wave. Network 

B is made of two nodes, each with sine(t + 𝜋/2) wave. Random noise was added to all four nodes. (B) Over the time course, there is moderately high magnitude 

(r = 0.7) correlation between in-network nodes. (C) As in real data, there were points of high and low cofluctuation so it was possible to bin time points the same 

way as was done in real and BOLD-simulated data. (D) A similar relationship exists between cofluctuation and network structure where higher cofluctuation bins 

are better able to reproduce network structure from the overall time course. Error bars here represent SEM over 1000 iterations of the model. (E) This relationship is 

visually obvious in correlation matrices. In high cofluctuation bins, the two antagonistic networks are strongly present, and in low bins there is little or no relationship 

between nodes. 

intuitive. One might reasonably expect that randomly sampled points 

would fall somewhere between low and high cofluctuation points, rather 

than be similar to high cofluctuation points as was seen ( Fig. 4 C) . We 

hypothesize this unexpected result is due to temporal spacing – ran- 

domly sampled points are more evenly spread out ( Fig. 4 B) , and thus 

better sample the data than either high or low cofluctuation points. We 

also examined spacing within each of the cofluctuation bins (Fig. S5) , 

finding that while all appear more spaced than consecutive points and 

less spaced than randomly sampled points, the extreme bins (100 th and 

5 th bins) appear less spaced than the others, providing a possible ex- 

planation for why the 100 th bin is slightly less similar to static FC than 

the 90 th bin in real data ( Fig. 1 D). Similarity to static FC appears to be 

affected by two factors – cofluctuation magnitude and temporal spacing. 

To disambiguate the effects of cofluctuation magnitude and tempo- 

ral spacing, we circularly shifted the cofluctuation-binned time points 

(see Methods ) to keep temporal spacing constant and vary cofluctuation. 

We found that after accounting for temporal spacing, there remained a 

graded hierarchy where higher cofluctuation points contained more net- 

work structure than lower cofluctuation time points ( Fig. S6). The sim- 

ulation results in the previous section suggest that this is expected and 

can be parsimoniously explained by sampling variability. To further in- 

vestigate the impact of temporal spacing, we tested all possible spacing 

distances for a set number of sampled points and find that ∼10 seconds 

between samples is sufficient to achieve most of the benefit of temporal 

spacing in terms of estimating static FC (Fig. S7). Jointly, these find- 

ings suggest that the ability to recreate network structure with a few 

time points is a function of both temporal spacing (as shown here) and 

sampling variability (as shown in the previous section). 

4. Discussion 

In this study, we asked if “events ”, time points with high BOLD 

cofluctuation, are discrete, transient moments that drive functional con- 

nectivity. We found that events are not discrete phenomena driving FC. 

When they are removed, static FC structure is still present. Further, there 

is a gradual positive relationship between network structure and cofluc- 

tuation amplitude, with relatively similar behavior for the top 50% of 

timepoints, including events. Next, we asked if this gradual relationship 

between network structure and cofluctuation could be explained by sam- 

pling variability of static FC. We created a simulated data set matched to 

BOLD in dimensionality and covariance structure. Our model produced 

the same gradual positive relationship seen in real data, including the 

existence of extreme points like events, suggesting that event behavior 

can be explained by sampling variability alone. Finally, we analyzed 

why events are able to recreate static FC with so few points. We found 

that small numbers of randomly sampled timepoints are also able to 

reproduce static network structure well, suggesting that both sampling 

variability and temporal spacing are important factors in estimating FC. 

Taken together, these results support the idea that while events are an 

especially good representation of the network structure present in static 

FC, there is not evidence that they are unique points driving it. 
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Fig. 4. Effects of temporal spacing on estimating FC. (A) Events (red dots) are more temporally spaced than consecutive points, shown here for MSC02 session 6. (B) 

Histograms of distance between sampled points using consecutive, random, or cofluctuation-based sampling, aggregated over all subjects and sessions. (C) Randomly 

sampled points are as similar to static session FC as are events; both match static session FC much better than consecutive or low cofluctuation points. (D) These 

relationships hold over a range of bin sizes. These results suggest that temporal spacing is an important factor in estimating FC well. 

4.1. Should events be used to study the neural underpinnings of functional 

connectivity? 

Although there is a large literature linking fMRI BOLD signal to 

neural activity ( Heeger et al., 2000 ; Logothetis et al., 2001 ), the 

physiological mechanism of FC itself is incompletely understood. Past 

work suggests that BOLD FC is constrained by structural connections 

( Honey et al., 2009 ; Johnston et al., 2008 ; Vincent et al., 2007 ) and 

is related to correlations in neural activity ( Nir et al., 2008 ; Shmuel 

& Leopold, 2008 ; Vincent et al., 2007 ) but the underlying drivers of 

these spontaneous activity correlations remain relatively unknown. Be- 

cause events contain similar functional connectivity patterns to static 

functional connectivity, it was suggested that these specific moments 

are responsible for functional connectivity measured over the timeseries 

( Esfahlani et al., 2020 ). From a research perspective, this would make 

them an excellent temporal target for investigating the neural mecha- 

nism of FC. 

In this work, we show that while events do match static FC well, 

they are not discrete markers for it. When they are discarded, static FC 

structure is still strongly present in the remaining time points. Further, 

there is a gradual and increasing relationship between cofluctuation am- 

plitude and FC where many points (at least 50%) have a strong relation- 

ship with static FC. These results suggest that events by themselves do 

not (mechanistically) 1 drive FC and it is unlikely there is a unique phys- 

iological event happening at high cofluctuation points which is creating 

the FC matrix. Given these observations, we consider it unlikely that in- 

vestigating the unique temporal physiological activity coincident with 

events would glean additional new information about the physiologic 

origins of FC, beyond what might be seen at other timepoints as well. 

However, as events show a very strong relationship to FC structure, it is 

possible that their study may prove useful for denoising and analysis, to 

provide a higher signal to noise ratio for investigations of simultaneous 

BOLD and direct neural recordings. 

4.2. Relationship between events and static vs. dynamic functional 

connectivity 

The results of this work show that events can be predicted by static 

functional connectivity and sampling variability. However, the inter- 

pretation of these results and on the practical application of events may 

depend on one’s perspective about the temporal nature of FC. As has 

1 Events do not appear to drive FC in a unique way but do contribute the most 

to FC estimates as a mathematical necessity of their definition and relationship 

with correlation. 
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been summarized elsewhere ( Lurie et al., 2020 ), there are two domi- 

nant perspectives on this topic. One perspective posits that functional 

connectivity exhibits meaningful temporal dynamics on a moment to 

moment basis which could represent differences in neural interactions 

related to ongoing cognition and task processing ( Calhoun et al., 2014 ; 

R. M. Hutchison et al., 2013 ; Lurie et al., 2020 ). This view is supported 

by the fact that states can be found in resting-state FC data at second 

and minute time scales using sliding windows or instantaneous coactiva- 

tion patterns ( Allen et al., 2014 ; Chang & Glover, 2010 ; Petridou et al., 

2013 ; Shakil et al., 2016 ), and that changes in state properties have been 

linked to task behavior, ongoing cognition, and arousal ( Chang et al., 

2016 ; Gonzalez-Castillo et al., 2015 ; M. R. Hutchison et al., 2013 ; Kucyi 

& Davis, 2014 ; Kupis et al., 2021 ; Sadaghiani et al., 2015 ; Tagliazucchi 

& Laufs, 2014 ) as well as more stable measures of cognitive/behavioral 

traits and psychiatric disease ( Damaraju et al., 2014 ; de Lacy et al., 2017 ; 

Liégeois et al., 2019 ; Rashid et al., 2016 ). From this perspective, static 

FC is less significant than its constituent parts. 

The second perspective posits FC is temporally stable and primar- 

ily reflects a history of co-activation between regions ( Laumann & Sny- 

der, 2021 ). This is supported by evidence that functional connectivity 

patterns are consistent within people over sessions ( Finn et al., 2015 ; 

Gratton et al., 2018 ; Laumann et al., 2015 ; Miranda-Dominguez et al., 

2014 ; Mueller et al., 2013 ; Poldrack et al., 2015 ), only slightly al- 

tered during tasks ( Cole et al., 2014 ; Gratton et al., 2016 , 2018 ; 

Krienen et al., 2014 ), and present in anesthesia ( Mhuircheartaigh et al., 

2010 ; Palanca et al., 2015 ) and slow wave sleep ( Mitra et al., 2015 ; 

Sämann et al., 2011 ). This perspective emphasizes that resting state FC 

patterns are only a weak marker of ongoing cognition, and are instead 

more related to stable neuroanatomical constraints ( Barttfeld et al., 

2015 ; Honey et al., 2009 ; Lu et al., 2011 ), homeostatic processes 

( Laumann & Snyder, 2021 ), and learning related adaptations ( Fair et al., 

2007 ; Guerra-Carrillo et al., 2014 ; Lewis et al., 2009 ; Newbold et al., 

2020 ; Tambini et al., 2010 ; Voss et al., 2012 ). This perspective col- 

lides with the previous one in that it suggests that the dynamic states 

found during rest 2 may be explained by sampling variability, motion 

artifacts, and arousal ( Hindriks et al., 2016 ; Hlinka & Hadrava, 2015 ; 

Laumann et al., 2017 ; Liégeois et al., 2017 ) rather than current cogni- 

tive content or information processing. From this second perspective, 

the focus of resting state analysis is on finding a clean and reliable static 

FC measure that may be informative about brain organization. 

The information held in events, then, largely depends on which per- 

spective one takes. From a dynamic FC states perspective, events may 

help identify states and characterize their properties in a more tem- 

porally specific way. Indeed, events have been used to identify states 

within resting state fMRI ( Sporns et al., 2021 ), states that differenti- 

ate people ( Jo et al., 2021 ) and states related to variation in hormone 

concentrations within individuals across days ( Greenwell et al., 2021 ). 

However, from a static FC perspective, events may instead reflect mo- 

ments of randomly good representation of the static FC structure. From 

this view, the previous results could be interpreted as occurring because 

events are particularly good timepoints for identifying stable differences 

between people and stable static network structure that is relevant to 

hormonal neurobiology. 

Consistent with our findings, Novelli and Razi recently showed that 

many of the results of edge functional connectivity (eFC), including the 

presence of high amplitude cofluctuations, can be derived from static FC 

alone ( Novelli & Razi, 2022 ). We showed in this current work that pres- 

ence of events and the gradual relationship between cofluctuation and 

static FC is predictable from static FC too. While a more extended discus- 

sion of dynamic FC is outside the scope of this work, the results shown 

suggest that static FC and sampling variability are sufficient to explain 

2 Significant differences in dynamic FC states are seen during tasks, but they 

tend to be relatively small ( Cole et al., 2014 ; Gratton et al., 2018 ; Krienen et al., 

2014 ; Laumann et al., 2017 ). 

the properties of high cofluctuation timepoints during rest reported so 

far. This work alone does not eliminate the possibility of multiple di- 

verse states within resting state FC. Other modeling work has shown 

that events arise from biophysical models built on structural connec- 

tivity and simulated spontaneous BOLD signal dynamics ( Pope et al., 

2021 ). Indeed, it may be useful to use other simulations which include 

the time-varying components to see the effect of that property on events. 

However, the present work provides a parsimonious explanation for how 

events could arise from a stationary but noisy signal. We echo Novelli 

and Razi in our interest in future explorations of edge FC features which 

cannot be explained by static FC ( Novelli & Razi, 2022 ). 

Further, while we focused specifically on the events methodology 

in this paper, there is not an obvious reason why the results would 

not extend to other methods to identify single critical points like CAPS 

(co-activation patterns) and PPA (point-process analysis) among other 

similar techniques. That is, we suspect that a stationary null model of 

BOLD would also predict the brief instances of spontaneous brain ac- 

tivity reported using CAPS and PPA methodology ( Liu & Duyn, 2013 ; 

Tagliazucchi et al., 2012 ) Indeed, recent work has shown evidence for 

this in both cases ( Cifre et al., 2017 ; Matsui et al., 2021 ). 

Finally, there is the question of the relationship between events and 

task-states. Previously, it was shown that events temporally synchronize 

across subjects during a movie watching task ( Esfahlani et al., 2020 ). 

We did not explore the relationship between events and tasks in this 

paper, but given that arousal and tasks can create modulations in BOLD 

evoked signals and (more subtly) in BOLD functional connectivity pat- 

terns, we consider it possible that tasks and imposed states could change 

the prevalence and structure of events ( Betti et al., 2013 ; Betzel et al., 

2020 ; Cole et al., 2014 ; Gratton et al., 2016 , 2018 ; Krienen et al., 2014 ; 

Laumann et al., 2017 ; Tagliazucchi & Laufs, 2014 ). Indeed, in the pre- 

vious results it was shown that events during movies were driven by 

visual and attention networks rather than default and control networks 

shown during rest, supporting the idea that they are associated with the 

shared visual stimulus. However, more work is needed to fully explore 

these relationships and how they are separately associated with evoked 

versus spontaneous signals. 

4.3. Practical considerations for fMRI functional connectivity analysis 

Beyond fundamental neurophysiological concerns related to FC, 

events could be useful for a range of practical applications in FC analy- 

sis. First, we wondered if events could be used to define a filter for data 

points particularly suited to FC analysis. And second, given that events 

are good at recapitulating static FC, we wondered if it would be possible 

to reduce data collection by inducing more event-like time points. 

Traditionally, resting state FC analyses try to isolate relevant sig- 

nal by identifying and extracting known artifacts (motion, respiration, 

etc.) and presuming the residual data is all equally useful ( Power et al., 

2020 ). Esfahlani and colleagues’ result was particularly exciting because 

it suggested that, after addressing artifacts, the remaining data varied in 

utility for defining FC structure, with events providing a means to isolate 

the particularly useful components ( Esfahlani et al., 2020 ). Although in 

this paper we showed that events can be explained as a consequence of 

sampling variability on static FC, this does not rule out that they may be 

a useful analytical tool. In fact, recent work has shown that ETS (edge- 

time-series) are better at identifying individuals than static FC ( Jo et al., 

2021 ). The strategy of seeking out points with maximal network infor- 

mation as a ‘denoising’ strategy is a paradigm shift in fMRI FC analysis 

and could be an exciting avenue of future study. 

The second question is whether the fact that events can recapitulate 

FC with few timepoints suggests that FC may be effectively measured 

through much shorter data collection regimes. It has become evident in 

recent years that it is possible to study functional brain organization at 

the individual level if enough data is collected ( Braga & Buckner, 2017 ; 

Gordon et al., 2017 ; Laumann et al., 2015 ; Noble et al., 2017 ), with most 

papers suggesting more than 30 minutes of high quality resting-state 
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data is needed to measure static cortical FC reliably. This has motivated 

significant ongoing efforts to collect large amounts of individual ‘pre- 

cision’ data ( Fedorenko, 2021 ; Gratton & Braga, 2021 ; Naselaris et al., 

2021 ; Pritschet et al., 2021 ) which have led to novel findings, but are 

costly and time-intensive, and may be difficult to acquire in clinical or 

pediatric populations. We wondered if, because events contain more net- 

work structure information than other time points, one could decrease 

data collection by increasing the rate of events and focusing analysis 

solely on those moments. The results in this manuscript suggest that 

event correspondence to static FC can be explained by sampling vari- 

ability and temporal spacing - suggesting it would be difficult to en- 

sure a high proportion of events in a short amount of data collection 

time. However, the results do suggest that given a sample of data, net- 

work structure could be maximized by selecting points which have high 

cofluctuation and are well temporally spaced (at least 10 seconds apart). 

Future work could explore this. In line with this, more recent publica- 

tions from Betzel and colleagues have adopted an event-selection strat- 

egy which takes temporal spacing into account ( Betzel et al., 2022 ). Be- 

yond sampling methods, we are optimistic about new strategies for de- 

creasing data collection needs such as new MRI techniques ( Lynch et al., 

2020 ), new parcellation strategies ( Kong et al., 2019 ), and novel efforts 

to reduce artifacts ( Power et al., 2020 ) to address these continued issues 

in fMRI data collection. 

4.4. Limitations 

We will close by noting some limitations in this work and opportu- 

nities for future research. First. we used a dataset collected from a small 

number of individuals. However, we showed that the results were very 

similar across each participant and sessions within participants ( Fig. 

S1 ), suggesting robustness in these results. Second, when simulating 

BOLD data, we used a very simple model which accounted only for spa- 

tial correlation and included no BOLD-like temporal features (e.g., au- 

tocorrelation, matched spectral structure) ( Cordes et al., 2001 ; He et al., 

2010 ; Liégeois et al., 2021 ; Zarahn et al., 1997 ). However, this simple 

model still was able to produce event-like behavior, as was an even sim- 

pler toy model from sine-waves ( Fig. 3 ). That even such simple models 

showed event-like behavior suggests that events arise based on simple 

properties of the BOLD timeseries. Third, as discussed, we focused on 

resting-state fMRI data in this manuscript, rather than data from task 

sessions. However, given the synchronization of events during movie- 

watching, we are curious about the relationship between events and 

tasks, and hope to explore this in future work. 

5. Conclusion 

In this work, we investigated high cofluctuation BOLD events and 

found evidence suggesting that, rather than events behaving as unique 

discrete timepoints that drive functional connectivity, events may arise 

as an expected byproduct of a static functional network structure. Re- 

capitulation of network structure was not unique to events, but varied 

continuously across timepoints in real data, and was present in data from 

which events had been excluded. Simulations demonstrated similar re- 

sponses from stationary signals. Finally, one of the primary interesting 

properties of events – that they can recreate static FC with a few points 

– is not unique and is driven in part by sampling rate. These results 

suggest that events are parsimoniously explained as a consequence of a 

highly correlated, modular, noisy signal (BOLD) and therefore might be 

better suited as methods for identifying good representations of static 

network structure than as a tool to investigate the mechanistic sources 

of functional connectivity. 
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