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Coding and noncoding variants in EBF3 are
involved in HADDS and simplex autism
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Marta Byrska-Bishop7, Marjolaine Willems8, Lucile Pinson8, Sylvia Redon9, Caroline Benech9, Kevin Uguen9,
Séverine Audebert-Bellanger10, Cédric Le Marechal9, Claude Férec9, Stephanie Efthymiou11, Fatima Rahman12,
Shazia Maqbool11,12, Reza Maroofian11, Henry Houlden11, Rajeeva Musunuri7, Giuseppe Narzisi7,
Avinash Abhyankar7, Riana D. Hunter6, Jennifer Akiyama6, Lauren E. Fries5, Jeffrey K. Ng1, Elvisa Mehinovic1,
Nick Stong13, Andrew S. Allen14,15,16, Diane E. Dickel6, Raphael A. Bernier17, David U. Gorkin4,18,
Len A. Pennacchio6,19, Michael C. Zody7 and Tychele N. Turner1*

Abstract

Background: Previous research in autism and other neurodevelopmental disorders (NDDs) has indicated an
important contribution of protein-coding (coding) de novo variants (DNVs) within specific genes. The role of de
novo noncoding variation has been observable as a general increase in genetic burden but has yet to be resolved
to individual functional elements. In this study, we assessed whole-genome sequencing data in 2671 families with
autism (discovery cohort of 516 families, replication cohort of 2155 families). We focused on DNVs in enhancers
with characterized in vivo activity in the brain and identified an excess of DNVs in an enhancer named hs737.

Results: We adapted the fitDNM statistical model to work in noncoding regions and tested enhancers for excess of
DNVs in families with autism. We found only one enhancer (hs737) with nominal significance in the discovery (p =
0.0172), replication (p = 2.5 × 10−3), and combined dataset (p = 1.1 × 10−4). Each individual with a DNV in hs737 had
shared phenotypes including being male, intact cognitive function, and hypotonia or motor delay. Our in vitro
assessment of the DNVs showed they all reduce enhancer activity in a neuronal cell line. By epigenomic analyses,
we found that hs737 is brain-specific and targets the transcription factor gene EBF3 in human fetal brain. EBF3 is
genome-wide significant for coding DNVs in NDDs (missense p = 8.12 × 10−35, loss-of-function p = 2.26 × 10−13)
and is widely expressed in the body. Through characterization of promoters bound by EBF3 in neuronal cells, we
saw enrichment for binding to NDD genes (p = 7.43 × 10−6, OR = 1.87) involved in gene regulation. Individuals with
coding DNVs have greater phenotypic severity (hypotonia, ataxia, and delayed development syndrome [HADDS]) in
comparison to individuals with noncoding DNVs that have autism and hypotonia.

Conclusions: In this study, we identify DNVs in the hs737 enhancer in individuals with autism. Through multiple
approaches, we find hs737 targets the gene EBF3 that is genome-wide significant in NDDs. By assessment of
noncoding variation and the genes they affect, we are beginning to understand their impact on gene regulatory
networks in NDDs.
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Background
Large-scale whole-genome sequencing (WGS) is becom-
ing instrumental in assessing the contribution of
protein-coding (coding), but more importantly noncod-
ing variants in complex diseases [1]. Unlike coding
exons, the boundaries of noncoding regions are not well
defined and hence different types of annotations includ-
ing but not limited to evolutionary conservation [2], se-
quence constraint [3], and epigenetic marks [4] are
useful guides. Though genome-wide association studies
(GWAS) have identified multiple common noncoding
variants associated with human disorders [5–7], WGS
has now provided access to rare de novo variants
(DNVs) which are difficult to associate with phenotype
without using aggregation methods [8–11]. These aggre-
gation methods have been successfully used for rare cod-
ing variants [12–16], but have been challenging for
noncoding regions because of the lack of clearly defined,
discrete genomic boundaries and sequence-based models
of variant effect.
Autism is a complex neurodevelopmental disorder

with a heritability of ~ 80% [17]. Large copy number var-
iants [18–21] and coding DNVs contribute to ~ 30% of
cases with higher enrichment in females with autism
and those with intellectual disability [12–16, 22, 23]. Re-
cently, we and others have identified an overall enrich-
ment of de novo [8–11, 24] or paternally inherited
variants [25] within the regulatory sequence of individ-
uals with autism. However, these studies have mostly
assessed this aggregation of genetic burden across a large
panel of pooled regulatory elements. To begin to parse
out the underlying biology of autism DNVs in individual
regulatory regions, we turned to VISTA, which is a data-
base of functionally characterized developmental en-
hancers [26–28]. These enhancers were identified based
on multiple strategies including sequence conservation
and epigenetic signatures. Each enhancer has been tested
in transgenic mouse assays providing information on the
spatial-temporal dynamics of their activity during mam-
malian development. We adapted the fitDNM model
[29] that was previously used to test for excess DNV
load in coding regions so that it would work in noncod-
ing regions. We then applied our updated version of the
fitDNM model to VISTA enhancers with known ability
to drive expression in the embryonic brain. Application
of this test in 2671 families with autism (n = 9831 indi-
viduals) revealed one VISTA enhancer (named hs737)
with nominal significance for excess of DNVs in autism
in our discovery cohort (516 families), replication cohort

(2155 families), and the combined dataset. We exten-
sively tested enhancer hs737 in follow-up genomic, epi-
genomic, phenotypic, in silico, and in vitro analyses. Our
analysis revealed this enhancer targets the transcription
factor gene EBF3 which is enriched for coding DNVs in
the hypotonia, ataxia, and delayed development syn-
drome (HADDS). We also identified new patients with
coding variants in EBF3 and performed extensive pheno-
typic analysis. Combining this with phenotype data we
collected for individuals with the hs737 enhancer DNVs,
we found marked increases in phenotypic severity in in-
dividuals with coding than noncoding variants. This
work provides critical insights into coding and noncod-
ing DNVs at EBF3 and more generally in neurodevelop-
mental disorders.

Results
Statistical assessment of DNVs in VISTA elements
To assess for DNVs in individuals with autism, we ag-
gregated DNV data from a WGS study of 2671 families
with autism [30]. To test the enrichment of DNVs in
noncoding regions, we modified the existing fitDNM
[29]. In particular, we focused on 544 VISTA human
noncoding enhancers (Supplemental Table S1, Supple-
mental Table S2) previously shown to have enhancer ac-
tivity in the brain using a lacZ transgenic assay at
embryonic day 11.5 in mice [27]. We assessed these
same enhancers in our previous paper (Turner et al. [8])
studying 516 families (discovery cohort) and we wanted
to test whether any of these enhancers replicated in a
new set of 2155 families (replication cohort). Of these
enhancers, we identified one (hs737, see Table 1) reach-
ing nominal significance in both cohorts (discovery p =
0.0172, replication p = 2.5 × 10−3) and in the combined
dataset (p = 1.1 × 10−4). The hs737 enhancer drives ex-
pression in the midbrain and hindbrain at embryonic
day 11.5 (E11.5) [8].
In each individual with a DNV in hs737, we also

assessed the rest of the genome for other potentially
relevant genomic variants that could be contributing to
autism in each of the individuals (Supplemental Table
S3, S4). Individual 13396.p1 had no other large de novo
CNVs or coding de novo SNVs/indels. Individual
12975.p1 had three total de novo missense variants with
one in each of the following genes CHD6, FAM129B,
and KCNC1 and also had a 1.6-Mbp de novo deletion at
11q24.1 containing the following genes BLID, BSX,
C11orf63, CRTAM, SORL1, and UBASH3B. Individual
11257.p1 had two de novo missense variants in each of
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the following genes RUVBL1 and VKORC1L1. We
scored each of the variants using a clinical variant scor-
ing program (https://franklin.genoox.com/clinical-db/
home) and all of the variants were classified as variants
of uncertain significance. We checked each individual’s
polygenic risk score [31] for autism spectrum disorder,
schizophrenia, and educational attainment and find no
significant contribution for any of the three individuals
(Supplementary Figure 1).

In vitro assessment of hs737 DNVs
In order to quantify the in vitro transcriptional effects of
hs737 DNVs, we transfected the neuronal cell line Neu-
ro2a with a reporter construct that had both the non-risk
and risk allele of the enhancer individually cloned up-
stream of a luciferase gene and a minimal promoter [32].
As a control, we examined the expression of the known
RET+3 enhancer, shown to be functionally active in this
cell line [32]. Our data shows that all DNVs in hs737 led
to a significant reduction in reporter gene expression
when compared to their respective non-risk allele and the
promoter-only construct and the control enhancer (RET+
3) had high transcriptional activity (Fig. 1C). Thus, these
DNVs in hs737 can individually affect the transcription of
their cognate gene.

In silico transcription factor binding assessment
To better understand functional consequences of the hs737
variants we observed, we analyzed the reference and variant
enhancer sequences using QBiC [33, 34] (http://qbic.gcb.
duke.edu), a program designed to predict the impact of non-
coding mutations on transcription factor binding sites. We
found that the DNVs identified in individuals with autism
were each predicted to impact transcription factor binding
(Fig. 1B). Here we report the most significant hits, realizing
that it could be any of the transcription factors in the family
causing the functional impact on expression dynamics. All
three variants are predicted to impact transcription factor
binding via a transition mutation at a highly preferential base
that is also highly conserved to frog (Fig. 1B). Each mutation
occurs at a location within the position weight matrix that is

predicted to completely change the binding status of the
transcription factors (Fig. 1B). The first two variants are pre-
dicted to each respectively cause SOX30 and ARX to go
from the bound state to unbound (SOX30 p = 2.48 × 10−189,
z-score = −29.35; ARX p < 2.2 × 10−16, z-score = −40.27)
while the third variant is predicted to create a new binding
site for ARID5 (p < 2.2 × 10−16, z-score = 31.87). Mouse
RNAseq at day E11.5 (see the “Methods” section) provides
further support for these transcription factors being impact-
ful as ARX and 12 members of the SOX family are in the
90th percentile and the ARID family members are in the
80th percentile of all genes that are expressed in the brain
(Supplemental Table S6). We specifically assessed RNAseq
data at E11.5 since that is the timepoint at which lacZ re-
porter expression was tested and observed in the VISTA en-
hancer database for the hs737 enhancer (http://enhancer.lbl.
gov/cgi-bin/imagedb3.pl?form=presentation&show=
1&experiment_id=737&organism_id=1).
Next, we turned to human RNAseq data from Brain-

span (http://brainspan.org/rnaseq/search/index.html),
which contains expression profiles from various time-
points ranging from early in development (8 post-
conception weeks [pcw]) to adulthood (40 years) and ex-
amines many regions of the brain. We wanted to deter-
mine what transcription factor may be binding to the
enhancer. As we describe below, the target gene of
hs737 is EBF3. We hypothesized that the transcription
factor that is binding may be correlated in expression
with EBF3. We find that EBF3 is expressed throughout
the brain prenatally and is most highly expressed
through the hindbrain in the cerebellum and cerebellar
cortex (Fig. 1D). We find further evidence for the tran-
scription factors implicated by the in silico analysis.
EBF3 expression is significantly correlated with SOX10
and the ARID1 family after performing a linear regres-
sion for age and brain region (Fig. 1E).

Dosage sensitivity of hs737 in the human genome
To further assess the impact of enhancer hs737 on
NDDs, we measured the effect of its dosage on the NDD
phenotypes. We hypothesize that if heterozygous point

Table 1 VISTA enhancers with an excess of de novo mutation based on fitDNM analysis
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Fig. 1 Characterization of DNVs in hs737. A Pedigrees of families with de novo variants in hs737. Lightning symbols indicate de novo variants
with red = regulatory, purple = missense, and blue = deletion. Family identifiers are shown above the pedigree and the full-scale IQ is shown
below each proband. B Sequence analysis of each of the three hs737 de novo mutations, identified in individuals with autism, including
transcription factor binding site analysis results. C Results of luciferase assays in neuroblastoma (Neuro2a) cell lines with rs2435357 (RET+3) as a
positive control for enhancer activity, promoter only (Basal), the wild type sequence of hs737 (hs737wt), and each of the three DNVs identified in
individuals with autism. Error bars represent standard error (SE). D log2 normalized expression of genes from the transcription factor binding site
analysis in the brain throughout development and adulthood. E Correlogram of candidate genes and EBF3 after performing regression, with
positive control MECP2 and negative control CFTR
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mutations in hs737 alter phenotype strongly, the enhan-
cer would be dosage sensitive and show copy number
variation (CNV) only in individuals with an NDD. To
test this, we first applied two approaches to assess CNVs
in hs737. We assessed the morbidity map [35, 36] data-
base containing 29,085 individuals with neurodevelop-
mental disorders (NDDs) and 19,584 controls. In
particular, we looked at the window analysis in Coe
et al. [35] across the genome to identify the window con-
taining hs737. This enhancer resided in a genomic win-
dow with an excess of deletions (case counts = 27,
control counts = 0, p = 9.14 × 10−7) and duplications
(case counts = 6, control counts = 0, p = 4.55 × 10−2) in
individuals with NDDs. None of the 19,584 control indi-
viduals contained a CNV in this enhancer (Fig. 2). On
average, these CNVs containing hs737 were 10,570,885
± 5,789,023 bp long and overlapped 70 genes (Supple-
mental Table S7). The smallest CNV was 161 kbp and
was in completely noncoding space.
We also applied a tool to determine copy number

(with paralog-specific sensitivity) in 1-kbp windows
across the whole genome [37] to our WGS data and
identified only one CNV in this enhancer. It was a dele-
tion and occurred in proband 14091.p1 and upon further
inspection was found to be part of a larger known dele-
tion (hg38: chr10:126450330–133655780) [38]. To deter-
mine the frequency of deletion/duplication in this
enhancer in individuals without autism, we also ran this
copy number approach on the newly generated 3202 in-
dividuals (high-coverage WGS) from the 1000 genomes
project [39]. Combining our WGS parental data, 1000

genomes project data, and morbidity map, there are no
deletions or duplications in this enhancer in 28,128 non-
NDD individuals (56,256 alleles). We also surveyed the
gnomAD [40] database (v2.1) and observed no CNVs in
the 10,847 individuals contained there (n = 21,694 al-
leles). To avoid possible double counting between gno-
mAD and other datasets, we do not present the
aggregate data. Taken together, these results suggest that
in addition to point mutations, CNVs involving hs737
may play a significant role in NDDs.

Epigenetic characteristics of hs737
Enhancers have well-characterized epigenetic signatures
that are predictive of their activity in specific biological
contexts. Thus, to examine the activity of hs737 in its
native genomic context, we took advantage of available
epigenomic datasets from relevant human samples. We
found that hs737 has several hallmarks of neuronal en-
hancer activity in humans including H3K27ac enrich-
ment in fetal brain tissue [41], DNaseI hypersensitive
sites (DHS) indicative of chromatin accessibility in CNS
tissues [8, 24], and conserved transcription factor bind-
ing sites (TFBS) [8] (HMR conserved transcription factor
binding sites track in the UCSC Genome Browser [42])
(Supplemental Figure S2).
Hs737 was assessed for reporter activity in mouse em-

bryos at E11.5 in the VISTA database. To further exam-
ine the activity of this element during development, we
analyzed the orthologous region in the mouse genome
(mouse ortholog of hs737, or mo-hs737) using epige-
nomic data from a mouse embryonic developmental
time series recently published [43–45]. Consistent with
the reporter expression pattern of hs737, we found that
mo-hs737 has the chromatin signature of an active en-
hancer in the midbrain and hindbrain at E11.5, but not
in the non-neuronal tissues assayed (Fig. 3A).
Strikingly, we found that characteristics of enhancer

activity at mo-hs737 such as H3K27ac and chromatin
accessibility (as measured by ATAC-seq) reach their
height in brain tissue in mid to late gestation and decline
at birth (Fig. 3B). This suggests that hs737/mo-hs737
may exert its regulatory influence specifically during em-
bryonic development, which could explain its involve-
ment in NDDs, and may point to developmental stages
and model systems that are most appropriate for future
studies of this element.

Gene target of hs737
To determine the potential gene target of the hs737 en-
hancer, we first looked at all of the genes residing within
the same topologically associating domain (TAD) (hg38,
chr10:128151746–130191746) [46]. We focused on these
genes since they are the most likely to be the targets of
this enhancer. The genes included C10orf143, CTAG

Fig. 2 Copy number variation over hs737. Displays the counts for
both deletions and duplications over hs737 in individuals with
neurodevelopmental disorders and controls
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E7P, EBF3, GLRX3, LINC01163, LOC728327, MGMT,
and MIR4297; the only gene in this region that is con-
strained in the human population with a gnomAD [3] o/
e value for loss-of-function SNVs of 0.03 is EBF3. To
examine physical interactions between hs737/mo-hs737
and genes in this region, we analyzed two separate high-
resolution Hi-C datasets examining the 3D architecture
of the genome throughout mouse neuronal differenti-
ation and human fetal corticogenesis. The mouse dataset
was generated in a differentiation course from mouse
embryonic stem cells (ESCs) to neural progenitor cells
(NPCs) and then to cortical-like neurons (CNs) [47] with
Hi-C at each of these major cell transition stages. We
found that the Ebf3 promoter makes strong contacts
across a large region encompassing mouse hs737 (mo-
hs737) and that these interactions become stronger dur-
ing differentiation to NPCs and CNs (Fig. 4B). We used
HiCCUPS [48] to call loops at each stage and found that
in CNs there is a ~1.3-Mbp loop that brings mo-hs737
into close proximity with the Ebf3 promoter (loop an-
chors chr7:136,050,000–136,075,000 and chr7:137,300,
000–137,325,000). We did not observe loops between
mo-hs737 and any other genes on the chromosome.

Next, analyzing the human corticogenesis data which
was generated by dissecting three fetal brain samples
into cortical plate (CP) and germinal zone (GZ) layers
[49], we created chromatin contact maps using Juicer
[48] for each dissection layer and called loops again
using HiCCUPS [48]. We find that the EBF3 promoter
interacts with the region of hs737 in both the GZ (loop
anchors chr10:128,535,000–128,540,000) and CP (loop
anchors chr10:128,525,001–128,550,00 and chr10:129,
995,001–129,975,000) samples. We note that there is a
loop in CP between hs737 and a second gene GRLX3
(loop anchors ch10:128,525,001–128,550,000 and chr10:
130,125,001–130,150,000), a gene known to be involved
in multiple mitochondrial dysfunctions syndrome (Fig.
4A). However, the loop between hs737 and GLRX3 is
both weaker and less significant than the one formed be-
tween hs737 and EBF3.
Thus, narrowing in on EBF3, we searched recent lit-

erature on coding DNVs and found EBF3 is the only
gene in this TAD that has known statistical enrichment
for coding DNVs in NDDs [50, 51]. Combining data
from these two previous studies (Fig. 4C, D; Supplemen-
tal Table S8), we also saw genome-wide significance

Fig. 3 hs737 is a prenatal, brain-specific enhancer. A Genome browser view (chr7:136,079,964–136,087,591; mm10) of chromatin states in mouse
from [43] called by chromHMM [44] based on eight histone modifications: H3K4me1, H3K4me2, H3K4me3, H3K27ac, H3K27me3, H3K36me3,
H3K9me3, and H3K9ac. B Genome browser view (chr7:136,079,964–136,087,591; mm10) of ATAC-seq and H3K27ac ChIP-seq signal in midbrain,
hindbrain, and forebrain at multiple developmental mouse stages from E11.5 to the day of birth (P0)
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(chimpanzee-human [50] missense p = 8.12 × 10−35,
chimpanzee-human loss-of-function p = 2.26 × 10−13,
denovolyzeR [52] missense p = 4.79 × 10−13, denovolyzeR
loss-of-function p = 7.97 × 10−22) for coding DNVs using
two different statistical tests. This is also the gene for
the Mendelian phenotype hypotonia, ataxia, and delayed
development syndrome (HADDS [53]) and has been
characterized in detail in a set of ten patients [54].
Searching the GTEx database, we find that EBF3 is
widely expressed throughout the body and in the brain
(Fig. 6A) and similarly find in the Human Protein Atlas
that EBF3 is detected in many tissues including the brain
(Fig. 6B), whereas hs737 displays much more restricted

activity only being active throughout the midbrain and
hindbrain (Fig. 6C).

EBF3 regulates many NDD-significant genes
To assess the global transcriptional control of EBF3, we
analyzed its genome-wide bonding profile from chroma-
tin immunoprecipitation sequencing (ChIP-seq) in the
human neuroblastoma cell line SK-N-SH [55]. We
mapped all EBF3 peaks to promoters to detect EBF3
binding and identified 3100 genes (16% of all genes in
the genome) bound by EBF3. We then focused in on
genes with statistical enrichment for coding DNVs in
NDDs and that were bound by EBF3 (Supplemental

Fig. 4 EBF3 is the gene target of hs737. A Schematic of hs737 and target genes. Gray boxes represent promoters and colored boxes represent
gene bodies and red box represents hs737. Hi-C contact map generated using data from Won et al. [49] visualized with Juicebox [48] at 25 kbp.
Heatmaps are symmetrical across the diagonal, except that HiCCUPS loop calls are shown as black boxes in the upper right half of each heatmap.
B Hi-C contact maps from Bonev et al. [47] visualized with Juicebox [48] at 5-kbp resolution. C EBF3 protein diagram (plotted using the DOG
protein plotter [67]) with DNVs identified in NDDs. Shown in blue are the missense variants and in red are the loss-of-function variants. D 3D
model (plotted using the MuPIT program [68, 69]) of the EBF3 protein with DNVs identified in individuals with NDDs shown in green. E Genes
with promoters bound by EBF3 based on ChIP sequencing in SK-N-SH cells. Enrichment is seen for the promoters of known NDD genesets
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Table S9). Of the 253 significant NDD genes in Coe
et al. [50], 26.9% of them were bound by EBF3 at their
promoter (p = 8.95 × 10−6, OR = 1.93). Of the 285 sig-
nificant genes in another study [51], 26.3% of them were
bound by EBF3 (p = 7.43 × 10−6, OR = 1.87) (Fig. 4E).
Many of these bound NDD genes (Supplemental Table
S8,9) are involved in chromatin regulation (Chromatin
Binding Gene Ontology p = 3.2 × 10−7) and/or transcrip-
tion factor activity (DNA Binding Gene Ontology p =
6.4 × 10−11) (e.g., CHD8, CHD2, ARID1B) indicating that
EBF3 may be a master-regulator of many NDD genes.
Chromatin binding genes account for a sizeable fraction
of DNM attributable cases of autism [12, 14, 56], sug-
gesting that EBF3 disruption could result in a milder
phenotype in the spectrum, as we observe in these cases.
We find further support for this by observing that EBF3
expression is highly correlated (r > |0.6|) with 116 high
confidence SFARI genes (SFARI score < 3) (Fig. 5A).
Within the cluster of genes positively correlated with
EBF3, there is a significant enrichment of genes involved
in nucleosome organization (FDR p = 3.95 × 10−2), regu-
lation of histone modification (FDR p = 2.12 × 10−2),

chromatin remodeling (FDR p = 2.23 × 10−2), chromo-
some organization (FDR p = 3.00 × 10−7), chromatin
organization (FDR p = 6.58 × 10−7), and positive regula-
tion of the cell cycle process (FDR p = 3.68 × 10−2). Per-
forming a network analysis using String-db, we find that
the genes positively correlated with EBF3 have signifi-
cantly more interactions than expected (PPI enrichment
p-value < 1.0 × 10−16, expected edges 95, observed edges
202) (Supplemental Figure 3). However, EBF3 is only
connected in this network using a low confidence
threshold for connectivity, so we also performed a sec-
ond network analysis using GeneMania (https://
genemania.org) and find EBF3 is part of the network
with evidence from genetic interactions (Fig. 5B).

Phenotypes of individuals with DNV in hs737
In order to understand more about the phenotypic con-
sequences of variation in the enhancer, we reviewed de-
identified phenotype information for each of the individ-
uals with autism that had a DNV in hs737. As gene dis-
covery in simplex autism, based on large CNVs and
coding DNVs, has yielded the most findings in females

Fig. 5 EBF3 gene network analysis. A Correlation matrix of EBF3 with other high scoring SFARI genes (score < 3) after performing regression and
hierarchical clustering and having an absolute correlation greater than 0.6. There is a significant enrichment of genes involved in chromatin
binding. B Network analysis of genes from cluster 2 from Genemania where each gene is a node and different forms of supporting evidence for
an interaction are edges
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and in individuals who have intellectual disability (full-
scale IQ < 70) [12], the first two phenotypes that we
assessed were sex and the full-scale IQ scores. All three
individuals were male and their full-scale IQs were 103,
89, and 132, respectively (Fig. 1A), suggesting that none
of the individuals had an intellectual disability. We also
found that all three individuals had evidence of motor
problems and/or hypotonia.
Comparing the individuals with noncoding variants to

14 previously published individuals (13 probands) [54, 55]
and 7 new individuals with coding DNVs in EBF3, we find
that those with coding mutations in EBF3 typically have
more severe phenotypic consequences (Fig. 6D). All indi-
viduals with a coding DNV in EBF3 regardless of position
within the protein presented with an intellectual disability
or global developmental delay, while no individuals with a
DNV in hs737 had either of these phenotypes. Individuals
with DNVs in EBF3 had higher rates of ataxia compared
to all individuals with DNVs in EBF3, while this pheno-
type was also absent in individuals with hs737 DNVs.
Diagnoses of cerebellar vermis hypoplasia were also found
in 4/10 individuals with EBF3 DNVs who had a brain
MRI. Within the EBF3 mutation group, there are signifi-
cantly higher rates of intellectual disability or global devel-
opmental delay compared to the hs737 group (p =
0.00088) and we find significantly higher rates of autism
within the hs737 DNV group when compared to the EBF3
group (p = 0.0088) (Fig. 6D) (Supplemental Table S10).

Discussion
Eleven years ago, the Simons Simplex Collection began
[57] and started its efforts to understand the role of gen-
omic variation in simplex autism. It was hypothesized
that there is a contribution from DNVs in these simplex
autism families [57]. Over the 11 years, microarray [18,
20, 58], WES [12–14, 16], and now WGS data [8–10, 24,
25] have been generated to fuel this discovery. The first
fruits of these efforts were large copy number variants
and coding DNVs. They have turned out to be critical
for explaining ~ 30% of individuals with autism [12]. In-
triguingly, these variants have been found to be enriched
more in females and/or individuals who also had intel-
lectual disability [12]. In particular from this work,
coupled with the study of DNVs in neurodevelopmental
disorders more broadly, there are now > 100 genes with
genome-wide significance for excess of coding variation
[50, 51, 59] including the gene EBF3. Recent ongoing ef-
forts looking at common variation are providing insights
into other aspects of the genetics of autism and explain
~ 50% of autism risk [60]. In our study, we focused on
the elusive noncoding DNVs for which we and others
have seen aggregate evidence for enrichment in pro-
moters and enhancers [8–10]. We assessed VISTA en-
hancers in a discovery cohort of 516 families previously

published [8] and a replication cohort of 2155 new fam-
ilies. Recent work [11] has indicated the importance of
these enhancer regions and we find one reaching nom-
inal significance in the discovery, replication, and com-
bined cohorts (hs737).
We found a hs737 DNV in three different individuals

with autism (one in the discovery cohort, two in the rep-
lication cohort). The individuals with DNVs had shared
phenotypes including being male, intact cognitive func-
tion, and all had hypotonia or motor delay (unlike cod-
ing DNVs which are enriched for females with
intellectual disability [12]). Previous work examining in-
dividuals with mutations in the same gene show shared
phenotypes [61, 62] much like our individuals with en-
hancer DNVs. Each DNV had a quantitative effect on re-
porter gene expression in our in vitro assessment. These
DNVs are at highly conserved nucleotides and are pre-
dicted to affect binding of transcription factors at the en-
hancer. Beyond de novo single-nucleotide variants,
CNVs encompassing hs737 are also enriched in individ-
uals with NDDs. In our assessment of 28,128 non-NDD
individuals, there are none with a deletion or duplication
of this enhancer suggesting that it is dosage sensitive in
the human population. These lines of genetic evidence
support the finding that this enhancer has an important
role in the human genome.
Analysis of epigenetic data shows that this enhancer is

active in the embryonic brain. A major hurdle in the
study of enhancers is determining which gene they regu-
late. This is especially relevant when enhancers are very
distal from the promoter they target. Since hs737 resides
in a large noncoding region, we utilized an innovative
approach of combining constraint information for genes
within the TAD, enrichment of coding DNVs in genes
in the TAD, and chromatin contact data. This analysis
led to our identification of EBF3 as the gene targeted by
hs737, in both embryonic mouse and human fetal brain,
with an interaction across a distance of ~ 1.4 Mbp in the
human fetal brain. EBF3 is a well-established NDD gene
with genome-wide significant enrichment of coding
DNVs and an established syndrome called HADDS that
shares the phenotype of hypotonia with the individuals
with autism in our study that had hs737 noncoding
DNVs. HADDS is a severe phenotype and affects many
parts of the body. This is likely because EBF3 is a tran-
scription factor that is ubiquitously expressed in humans
[63] (Fig. 6A, B). It affects many genes in the genome
and in particular, in neuronal cells, is enriched for regu-
lating other NDD genes involved in further regulation.
We speculate that since hs737 is a brain-specific enhan-
cer that is why we see a less severe phenotype in the in-
dividuals with autism in our study than in HADDS (Fig.
6C–E). Aggregating information from the literature and
from this current study, we can begin to build the gene
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Fig. 6 Consequence of coding and noncoding variation in EBF3. A GTEx expression data of EBF3 with color corresponding to the organ system. B
Human Protein Atlas highlighting where EBF3 expression is detected in the human body. C LacZ staining assay for reporter activity driven by the
hs737 enhancer at mouse E11.5. D Phenotypic analysis comparing the frequency of ataxia, hypotonia, ID and GDD, autism, and having 7 or more
symptoms between all patients, individuals with EBF3 mutations, individuals with mutations specifically in the EBF3 DNA binding domain, and in
the hs737 enhancer. E Gene regulatory network encompassing EBF3 built using current molecular biological knowledge
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regulatory network containing EBF3 (Fig. 6E) and in this
network we can see the importance of genotypic and
phenotypic assessment of individuals. In particular, the
higher the location of the variant in the network, the
more severe the phenotypic consequence (e.g., mutation
in ARX), and the lower in the network, the less severe
the phenotypic consequence (e.g., mutation in the hs737
enhancer). Along with this observation, we point out the
critical work of completing the allelic series for each of
the genome-wide significant NDD genes. For EBF3, we
show that coding and noncoding DNVs result in more
and less severe phenotypic outcomes. This type of gene
regulatory network building that incorporates coding
and noncoding variation is essential for understanding
the etiology of autism. For continued delineation of this
gene regulatory network, it will be critical to move be-
yond the in vitro work to in vivo models as in vitro
models can be a limitation when studying noncoding el-
ements with specific spatiotemporal activity.

Conclusions
We identify hs737 as an enhancer with excess DNVs in
autism and find through several approaches that it is
brain-specific and targets the gene EBF3. This study pro-
vides critical insights into noncoding DNVs in autism
and how they can have similar and differential effects on
phenotypic outcomes. This work provides a framework
for both future studies of noncoding DNVs and consid-
erations of effects at the level of gene regulatory
networks.

Methods
DNVs in 2671 autism families
We accessed DNV data from Wilfert et al. [30] through
SFARI Base (accession: SFARI_SSC_WGS_2a, https://
base.sfari.org/).

Statistical assessment of DNVs
A list of VISTA enhancers driving the expression of
their target genes in the brain was downloaded from the
VISTA enhancer browser [27]. DNVs were annotated to
each enhancer using bedtools [64]. We modified the
fitDNM statistical approach (https://github.com/
TNTurnerLab/fitDNM) [29], a method to assess the ex-
cess mutational load of DNVs using variant-specific mu-
tation rates calculated based on local sequence context,
now applied to noncoding variants in the VISTA brain
enhancers.

Copy number assessment of hs737
To test copy number variant enrichment in morbidity
map [35], we downloaded Supplementary Dataset 1 from
Coe et al. [35] and identified the window in the genome
containing hs737. We report in this paper the case

counts, control counts, and p-values for deletions and
duplications in this window.
The QuicK-mer2 [37] (https://github.com/KiddLab/

QuicK-mer2) workflow was run on WGS data to gener-
ate copy number estimates, in 1-kbp windows across the
genome, in each individual. Briefly, this method utilizes
a kmer-based approach to perform copy number estima-
tion. After running QuicK-mer2, we utilized the bed-
tools [64] map function to calculate the average copy
number across the copy number windows covering
hs737 (b38, chr10:128,568,604–128,569,741). If the copy
number was less than 1.3, we called it as a deletion and
if it was greater than 2.7, we called it as a duplication.
QuicK-mer2 was run on the autism families in this study
and also the high-coverage 1000 genomes project data
available as described at http://ftp.1000genomes.ebi.ac.
uk/vol1/ftp/data_collections/1000G_2504_high_
coverage/.
To assess structural variation in gnomAD v2.1 [40],

we queried for our enhancer region on hg19 (10-
130366868-130368005) and also available at this link
https://gnomad.broadinstitute.org/region/10-13036686
8-130368005?dataset=gnomad_sv_r2_1. There were “No
variants found” in this region.

Statistical testing of coding DNVs in EBF3
DNV data was collected from two recent papers on
NDDs [50, 51]. After overlapping samples between the
two studies were removed, there were a total of 37,692
sequenced parent-child trios. To test for enrichment of
coding DNVs that were loss-of-function or missense, we
applied the chimpanzee-human [50] and denovolyzeR
[52] models as previously described [50, 65].

Mouse ENCODE chromatin state and interaction tracks
Chromatin state and interaction data from mouse devel-
opmental timepoints were assessed in the ENCODE
Regulation, ENC+EPD Enhc-Gene, ENCODE cCREs,
and EPDnew Promoters tracks in the mm10 genome
browser at UCSC [42–45].

ChIP sequencing assessment of data from Harms et al.
[55]
We downloaded ChIP sequencing data from Harms
et al. [55] at the following GEO link https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE90682. To iden-
tify the promoter locations in the human genome, we
looked at sequence 5 kbp upstream of the transcription
start site using the Table Browser feature of the UCSC
Genome Browser [42]. We then used bedtools [64]
intersect to identify which ChIP peaks overlapped with
promoters in the human genome. To determine which
NDD genes were bound at their promoter, we pulled the
genome-wide significant gene lists from Coe et al. [50]

Padhi et al. Human Genomics           (2021) 15:44 Page 11 of 15

https://base.sfari.org
https://base.sfari.org
https://github.com/TNTurnerLab/fitDNM
https://github.com/TNTurnerLab/fitDNM
https://github.com/KiddLab/QuicK-mer2
https://github.com/KiddLab/QuicK-mer2
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/
https://gnomad.broadinstitute.org/region/10-130366868-130368005?dataset=gnomad_sv_r2_1
https://gnomad.broadinstitute.org/region/10-130366868-130368005?dataset=gnomad_sv_r2_1
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90682
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90682


and Kaplanis et al. [51] and compared to our EBF3
bound promoter list. Gene Ontology enrichment was
performed using the Database for Annotation,
Visualization and Integrated Discovery tool version 6.8
(https://david.ncifcrf.gov/) [66].

RNA sequencing at mouse embryonic day 11.5 from
ENCODE
Mouse E11.5 forebrain RNAseq data was downloaded
from https://www.encodeproject.org/files/ENCFF465
SNB/@@download/ENCFF465SNB.tsv, mouse E11.5
midbrain RNAseq data was downloaded from https://
www.encodepro jec t .o rg/ f i l e s /ENCFF359ZOA/
@@download/ENCFF359ZOA.tsv, and mouse E11.5
hindbrain data was downloaded from https://www.
encodeproject.org/files/ENCFF750FTK/@@download/
ENCFF750FTK.tsv. For each file, we retained all
Ensembl gene identifiers and annotated them to HGNC-
approved identifiers using biomart (https://m.ensembl.
org/info/data/biomart/index.html). We used an expres-
sion cutoff of > 2 to call a gene as expressed and < 2 as
not expressed in each region of the brain.

Cell lines
Neuro2a (ATCC CCL-131) were purchased from ATCC
and grown under standard conditions (DMEM + 10%
FBS and 1% penicillin-streptomycin).

Luciferase assays
Five hundred nanograms of firefly luciferase vector (pGL
4.23, Promega Corporation) containing the enhancer se-
quence cloned upstream of luc2 and 9 ng of Renilla lu-
ciferase vector (transfection control) were transiently
transfected into the Neuro2A cell line (1 × 105 cells/
well) using 3μl FuGene HD transfection reagent in 100μl
of OPTI-MEM medium. Neuro2A cells were incubated
for 48 h and luminescence measured using a Dual-
Luciferase Reporter Assay System on a Promega GloMax
luminometer. All assays were performed in triplicate for
a total of six independent readings of each construct.
Significance was calculated by using a two-sided t-test
assuming unequal variance and used in two situations,
first to compare the wild type construct to basal con-
struct and second to compare the variant constructs to
the wild type (Supplemental Table S5).

Transcription factor binding predictions
Transcription factor binding analysis was performed
using QBiC-Pred [34] and selecting all transcription fac-
tor families and using a p-value threshold of 0.0001 and
output to a VCF format. Once predictions were ob-
tained, transcription factors were then cross referenced
with RNA sequencing from mouse embryonic brains at

day 11.5 to identify which transcription factors are
highly expressed.

Brainspan RNAseq analysis
RNAseq data (RNA-Seq Gencode v10 summarized to
gene (n = 52,377 genes)) was downloaded from http://
brainspan.org/static/download.html on 4 February 2021
for the developmental transcriptome which contains
samples from 8 weeks after conception to 40 years. Lin-
ear regression was performed on the data set for age and
brain region using R. Spearman correlations were calcu-
lated for each gene (X) and EBF3 (Y) and SFARI genes
with an absolute correlation greater than 0.6 were
retained for further analysis. Pathway analysis was per-
formed using GeneMania (https://genemania.org) and
String-db (https://string-db.org). GOTERM analysis was
performed using http://geneontology.org where the in-
put genes were those from cluster positively correlated
with EBF3 and SFARI gene list (1/13/21 release) was
used as the background.

Statistical assessment of phenotypes
Phenotypes were assessed by counting the number of in-
dividuals with a given phenotype. Specifically, we
assessed all probands from previous studies for a total of
13 probands in addition to 7 new probands. The 7 or
more symptoms category was calculated as the total
number of neurological abnormalities, other diagnoses,
and the presence of craniofacial abnormalities, where 1
was added to the total number of symptoms if the indi-
vidual had at least one craniofacial abnormality. A minus
(−) value was taken to be the absence of the phenotype
whereas NA was taken to be that the assessment was
missing. Two probands were missing assessments for
ataxia and were excluded from that analysis for a total of
18 individuals rather than 20. A one-sided Fisher’s exact
test was used to calculate significance and odds ratio for
the phenotypes and only probands who had an assess-
ment for that phenotype were included in the
calculation.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s40246-021-00342-3.

Additional file 1: Table S1: Coordinates in the human genome (build
38) of VISTA enhancers driving expression in the brain.

Additional file 2: Fig S1. Polygenic risk scores (PRS) for the three
individuals with hs737 mutations. Fig. S2. Zoom in on the hs737
enhancer with annotations from other datasets. The enhancer is in a
PsychEncode fetal enhancer, contains central nervous system DNaseI
hypersensitive sites, contains conserved transcription factor binding sites,
and is highly conserved across the vertebrate lineage. Also shown are the
locations of the hs737 de novo mutations identified in individuals with
autism. Fig S3. String-db network analysis, predicts interactions between
EBF3 and SPAST, CSNK2A1, HNRNPU, CHD7, KDM6A, KDM6B. Table S2.
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fitDNM results for de novo mutations in VISTA enhancers driving brain ex-
pression. Table S3. Other de novo SNVs/indels seen in individuals with
hs737 enhancer mutations. Table S4. Other copy number variation in in-
dividuals with hs737 de novo mutations. Table S5. Statistical significance
calculations for the luciferase assays. Table S6. Expression of transcription
factors potentially binding at variant locations in the hs737 enhancers.

Additional file 3: Table S7: should have the label "CNVs over hs737 in
the morbidity map dataset.

Additional file 4: Table S8: Protein-coding de novo mutations in EBF3
from Coe et al. 2019, Nature Genetics and Kaplanis et al. 2020, bioRxiv.

Additional file 5: Table S9: should have the label "NDD genes bound
by EBF3.

Additional file 6: Table S10: should have the label "Phenotypes of
individuals with coding and noncoding variants affecting EBF3.
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