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IMC-Denoise: a content aware denoising
pipeline toenhance ImagingMassCytometry

Peng Lu 1,2,3,11, Karolyn A. Oetjen 4,11, Diane E. Bender 5,
MariannaB. Ruzinova6, Daniel A. C. Fisher4, KevinG. Shim4, Russell K. Pachynski4,
W. Nathaniel Brennen 7,8, Stephen T. Oh 4,5,6, Daniel C. Link 4,6 &
Daniel L. J. Thorek 1,2,3,9,10

Imaging Mass Cytometry (IMC) is an emerging multiplexed imaging technol-
ogy for analyzing complex microenvironments using more than 40
molecularly-specific channels. However, this modality has unique data pro-
cessing requirements, particularly for patient tissue specimens where signal-
to-noise ratios for markers can be low, despite optimization, and pixel inten-
sity artifacts can deteriorate image quality and downstream analysis. Here we
demonstrate an automated content-aware pipeline, IMC-Denoise, to restore
IMC images deploying a differential intensity map-based restoration (DIMR)
algorithm for removing hot pixels and a self-supervised deep learning algo-
rithm for shot noise image filtering (DeepSNiF). IMC-Denoise outperforms
existing methods for adaptive hot pixel and background noise removal, with
significant image quality improvement in modeled data and datasets from
multiple pathologies. This includes in technically challenging human bone
marrow; we achieve noise level reduction of 87% for a 5.6-fold higher contrast-
to-noise ratio, and more accurate background noise removal with approxi-
mately 2 × improved F1 score. Our approach enhances manual gating and
automated phenotyping with cell-scale downstream analyses. Verified by
manual annotations, spatial and density analysis for targeted cell groups reveal
subtle but significant differences of cell populations in diseased bonemarrow.
We anticipate that IMC-Denoise will provide similar benefits across mass
cytometric applications to more deeply characterize complex tissue
microenvironments.

Disease states are the result of a complex interplay of many different
cell types interacting in close proximity in the context of often het-
erogeneous tissues. Traditional approaches to study these features at
the tissue scale have been limited in the number of specific markers
that can be acquired to robustly resolve distinct cell types. Flow
cytometry, perhaps the most widely used technique to study cell
populations and states in this milieu, requires single-cell disaggrega-
tion of the tissue resulting in complete loss of spatial context1,2. Highly
multiplexed imaging provides a means to assess these events at

cellular resolution in situ, with extensive protocol development in
progress3, including tissue-based cyclic immunofluorescence
(t-CyCIF)4, co-detection by indexing (CODEX)5, Multiplexed Ion Beam
Imaging (MIBI)6,7, and Imaging Mass Cytometry (IMC)8. In IMC, tissue
sections are stained with a panel of metal-conjugated antibodies, and
data is acquired by UV-laser raster ablation of the section in 1-micron
pixels for cytometry by time-of-flight (CyTOF) mass analyzer. This
novel imaging technology allows for the detection of more than 40
antigens simultaneously to facilitate single-cell, spatially resolved,
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highly multiplexed analysis of solid tissues. This provides essential
information on the distribution of transcripts, proteins, and protein
modifications within single cells, microenvironments, and entire
tissues8–17. The pixel data is processed into an image, thereby allowing
the visualization of phenotypes and incorporation of spatial informa-
tion in subsequent analyses. These propertiesmake it a unique tool for
the evaluation of complex biological systems.

Despite the wide applications in pre- and clinical research using
this state-of-the-artmultiplexed imaging technique, thereexist specific
technical noise sources in IMC, which include hot pixels, channel
spillover and shot noise8–10,15,18,19. Hot pixels are concentrated areas of
high counts which are uncorrelated with any biological structures.
Putatively, these can result from deposition of metal-stained antibody
aggregates. In IMC images, single hot pixels are the most common
outliers, and small hot clusters with several consecutive pixels may
also exist. Channel spillover refers to scenarios where the signal of a
source channel contaminates a target channel or is correlated with
such contamination. The spillover in IMC can occur from a variety of
reasons, such as instrument properties (abundance sensitivity), iso-
topic impurities and oxidation. Finally, shot noise exists because of ion
counting imaging processes, which are pixel-independent, signal-
dependent and usually modeled as a Poisson process. Additionally,
noise levels are related tomultiple other factors, including variations in
conjugated metal isotopes, antibody concentration and arrangement.

Together these noise sources appreciably deteriorate image
quality and distort downstream analyses of IMC data. Differing from
traditional fluorescence-based imaging modalities, there are low
background features and no read-out noises from imaging sensors in
IMC. A number of studies have attempted to address the unique
imaging data features of IMC. Hot pixels can be corrected by thresh-
olding methods10,14,15,20; however, due to the differences between
marker channels and tissues, a threshold needs to be pre-set carefully.
An inappropriate threshold may lead to unsatisfactory results. Post-
acquisition methods10,19 and a bead-based compensation workflow18

have been proposed to correct the channel spillover phenomenon.
However, spillover correction may not be necessary if the marker
panel employed is well-designed and titrated; and the intensity of
channel-overlapping signal is often weak18. Therefore, spillover can be
neglectedwhen using low concentrations of staining antibodies,which
however further lowers signal-to-noise ratio (SNR). To account for the
impact of shot noise, MAUI7,19 and a semi-automated Ilastik-based
method21 have been used for background noise removal. These
approaches require finely tuned parameters or manually annotated
background regions, requiring preprocessing expertize. In tissueswith
low marker signals, highly intermixed cell populations, or difficult
immunostaining defining thresholds can be time consuming with high
inter-user subjectivity, whichmay still result in poor image quality that
complicates further analyses.

In the present work we develop and apply IMC-Denoise, a content
aware denoising pipeline to enhance IMC images through an auto-
mated process. To account for the two major noise sources in this
modality, hot pixels and shot noise, IMC-Denoise invokes novel algo-
rithms for differential intensitymap-based restoration (DIMR) and self-
supervised deep learning-based shot noise image filtering (DeepSNiF).
We demonstrate the flexibility and effectiveness of the proposed
pipeline on publicly available IMC datasets of pancreatic cancer10,
breast cancer12, a MIBI dataset19, and deploy it on a technically chal-
lenging unique human bone marrow dataset. We benchmark our
approach against existing hot pixel removal methods10,14,15,20 and other
advanced biomedical imaging denoising algorithms, such as non-local
means filtering (NLM)22, batch matching and 3D filtering (BM3D)23 and
Noise2Void (N2V)24, which is used in IMC here for the first time. We
demonstrate that the image formation model derived IMC-Denoise
pipeline produces image quality enhancements that are best-in-class
and leads to improved downstream analysis, with limited manual user

manipulation. Qualitative improvements in images enhances their
interpretation, and quantitatively improve molecularly-defined phe-
notyping. Results from the IMC-Denoise pipeline are suitable for fur-
ther downstream analysis, such asMesmer/DeepCell and ark-analysis25

or MCMicro26. The IMC-Denoise software package and the corre-
sponding tutorial have been published on Github (https://github.com/
PENGLU-WashU/IMC_Denoise). We provide this tool to augment stu-
dies that seek to more deeply characterize the complex and diverse
tissue microenvironment.

Results
IMC-Denoise principle
The general principle of IMC-Denoise is schematized in Fig. 1a and
Supplementary Notes 1. To account for hot pixels and shot noise, an
accurate IMC imaging joint model is built as Eq. (1), by considering ion
counting imaging as a Poisson process (Supplementary Notes 1.1).

R =P½X+Xspillover�+Q, ð1Þ

where R is the raw image, X the “clean” signal, Xspillover the spillover
signals without noise, P[x] the Poisson noise with mean x, and Q the
hot pixels. The term Xspillover in Eq. (1) can be omitted if the spillover is
limited, which is often the case. However, the magnitude of image
degradation from hot pixel and shot noise sources is considerable,
resulting in bias and errors in downstream analysis and addressed in
turn, below (Supplementary Notes 1.2).

In IMC-Denoise, the DIMR algorithm (Fig. 1ai and Supplementary
Notes 1.3) builds differential maps to detect the hot pixels by com-
paring adjacent pixels in a 3 × 3 sliding window, as hot pixels are local
maxima. The Anscombe transformation27 is applied to the raw imageR
followed by background removal of intensities lower than 4 (for IMC),
so that the difference between adjacent pixels, Di, can be feasibly
approximated as a generalized Gaussian distribution28, where i is the
neighbor index in the sliding window (i∈ {1, 2, ..., 8}). Additionally, as
with all biomedical imaging acquisition, in IMC datasets the tissue or
backgroundpixels shouldbe continuous.Under these conditions, for a
specific pixel p there must exist several dp

i close to the mean μi of its
corresponding distributionDi, except in the presence of a hot pixel. To
unmix outliers from normal pixels, we consequently calculate the
distances between dp

i and μi as4p
i = ∣d

p
i � μi∣ and sort4p

i for i∈ {1, 2, ...,
8}. Then, the dp

i corresponding to the first l smallest 4p
i are summed,

and the results fromall pixels forma newdistribution,Tl. Compared to
those in the distributions Di, the hot pixels move beyond the right tail
of Tl, while the normal relevant pixels move towards its center (Sup-
plementary Note 1.3.1). To robustly detect the outliers, the kernel
density estimation algorithm29 is applied to Tl afterwards (Supple-
mentary Note 1.3.2). On the fitted curve (x, ĝh(x)), a threshold point xT
is defined so that anypoints x>xT are considered asoutliers andfiltered
by a 3 × 3 median filter. Because outliers are located beyond the right
tail of Tl, it is reasonable to set xT when dĝhðxÞ

dx !0, which means the
current distribution ends. Likewise, the shape of the distribution
should not change from convex to concave on the right tail. Thus, it is
also reasonable to set xT when d2 ĝhðx�4xÞ

dx2
≥0 and d2 ĝhðxÞ

dx2
≤0, where △x

represents a small value. Because the pixel values of the raw images are
discrete, △x is normally set as 1. We operate DIMR for multiple
iterations to adequately remove hot pixels until no outliers are
detected. The hot pixel removed images are transformed to their ori-
ginal scales with the direct algebraic inverse Anscombe
transformation30. The DIMR algoirthm is summarized as Supplemen-
tary Algorithm 1. In the implementation, we use the median eμi of dis-
tribution Di as a robust estimation of the mean μi. In addition, it is
normally assumed that at least half of the neighbors are close to the
center pixel in a 3 × 3 window so that l = 431,32. Validated by simulation
(Supplementary Note 3.3.1), the iteration number is set as 3 to
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adequately remove hot pixels; for a 500 × 500 image, it takes
~0.05–0.4 s to run DIMR, depending on the hot pixel densities.

After hot pixel removal, the imaging model is simplified as:
R =P½X�, for which we have developed DeepSNiF (Fig. 1aii, iii and
SupplementaryNote 1.4) to account for the ion noise in IMC images. By
combining Poisson statistics and detection theory, I-divergence33 is
derived as the loss function to enable the maximized likelihood esti-
mation for the denoising task. Unlike traditional imaging methods for
which noise-free training label images can be generated, commonly
with long exposures, the image formation process in IMC requires
laser ablation. Thus, a tissue can only be imaged once in IMC. Auto-
fluorescence artifacts in immunofluorescence (IF) images, and the
tedious and potentially interfering processes for consecutive IF and
IMC imaging, are further confounds. Therefore, conventional

supervised denoising approaches34–36 or Noise2Noise37 are not
available here.

We overcome these limitations by applying a self-supervised
approach inspired by Noise2Void24 and Noise2Self38. This approach
randomly masks several pixels in the DIMR-processed hot pixel-
removed images by a stratified sampling strategy. Subsequently, the
manipulated images are set as the inputs of the network and the hot
pixel removed ones are the outputs. For this construct, the self-
supervised training is approximately equivalent to a supervised
learning process (Supplementary Note 1.4.1). The network follows
U-Net39 structure with Res-Blocks40 to enable high quality training and
prediction (Methods, Supplementary Fig. 13). Notably, the last activa-
tion function of the network is set as softplus (logð1 + expðxÞÞ) to
restrict non-negativity for the images. Nevertheless, the denoising

Fig. 1 | General principle and validation of IMC-Denoise on the human bone
marrow IMC dataset. a Schematic of IMC-Denoise: (i) the DIMR algorithm: after
the Anscombe transformation, the difference maps calculated from the raw image
are operated to form a histogram. The outliers are detected based on this histo-
gram and removed by a 3 × 3median filter, iteratively. (ii) The training phase of the
self-supervised DeepSNiF algorithm: In the hot pixel corrected images, several
pixels are randomly selected and masked. The hot pixel corrected images before
and after the masking are set as the outputs and inputs of a deep neural network,
respectively. Statistics-derived I-divergence on the masked pixels combined with
the Hessian norm regularization on all the pixels is set as the loss function to
guarantee the optimal denoising performance. (iii) The prediction phase of the
DeepSNiF algorithm: the hot pixel corrected IMC images are fed into the trained
network to account for the shot noise. b The fractions of detected hot pixels by
DIMR in selected channels. c DIMR removes hot pixels in DNA intercalator channel
effectively. Left: Comparison of the raw and DIMR-processed images; and the

difference between the images, in which Residual corresponds to the detected hot
pixels. Upper right: the corresponding histograms of the raw and DIMR-processed
images. Lower right: comparisons between the raw, NTHM, MTHM and DIMR
processed images. d Visual inspection of DeepSNiF and other statistics-based
denoising algorithms on a Collagen III-labeled IMC image. e DeepSNiF performs
significantly better thanother algorithms (n = 12 independent images) on denoising
Collagen III-labeled IMC images in terms of STDB and CNR. f Visual inspection of
DeepSNiF denoised IMC images labeled with other markers. g DeepSNiF improves
the Pearson correlations between Collagen III-labeled IMC images with low and
high SNR significantly (n = 10 independent images). In e and g, box center indicates
median, box edges 25th and 75th percentile, andwhiskersminimum andmaximum
percentile; P values were calculated through two-sided Wilcoxon matched-paired
test (*P <0.05, **P <0.01, ***P <0.001 and ns: no significance). Scale bar: a Upper:
100μm, lower: 125μm. c Whole region: 75μm, sub-region 1–3: 8 μm. d 50μm.
f 45μm. g 100μm.
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performance is still sub-optimal, due to neglected information of the
masked pixels and partially utilized pixels in the self-supervised strat-
egy. To further boost DeepSNiF, the Hessian norm regularization41–43 is
applied in the loss function with the continuity between biological
structures a priori (Supplementary Note 1.4.2). Overall, the loss func-
tion of DeepSNiF is summarized as Eq. (2).

L R,Fθ f ðRÞ½ �� �
=
X
p

Mp � rp log
rp

Fθ½ f ðRÞ�p
� rp +Fθ f ðRÞ½ �p

" #
=
X
p

Mp

+ λHessian
X
p

∣∣RHessianðFθ½ f ðRÞ�Þ∣∣p=
X
p

,

ð2Þ

whereFθ represents the learnt weights of the network, f demonstrates
the random pixel masking approach, rp the p-th pixel of the hot pixel
removed training set R, Mp the pixel mask (Mp∈ {0, 1}), RHessian the
Hessian operator, λHessian the regularization parameter and p the pixel
index. Here, the pixel p is masked only whenMp = 1. Note that the first
term works only on the selected masked pixels, while the second
regularization term utilizes all of the image information. Prior to
training and prediction, the images are normalized between 0 and 1 by
a percentile-normalization approach (Supplementary Note 1.4.3). The
DeepSNiF algorithm is summarized as Supplementary Algorithm 2. As
validated by simulation (Supplementary Note 3.4.2), λHessian is
empirically set as 3e-6 to balance the trade-off between data fidelity
and regularization.

Validation of IMC image quality improvement
We initially tested ourDIMRalgorithmon selectedmarkers of a human
bone marrow dataset. Here, inherently high autofluorescence and
tissue features (fragile haematopoietic stroma intermixed with dense
cortical bone) excluded other spatial biology methods, even after
substantial pre-processing. Figure 1b enumerates the proportion of
hot pixels detected by DIMR for each marker. We then selected DNA
intercalator andCD235a (Fig. 1c and Supplementary Fig. 14) to evaluate
DIMRdue to their high hot pixel density. By comparing the images and
the corresponding histograms, hot pixels are effectively eliminated
by DIMR.

We further compared DIMR with two recent hot pixel removal
methods, neighbor-based threshold hot pixel removal method
(NTHM)14,15,20 and median-based threshold hot pixel removal method
(MTHM)10 with default parameters, to benchmark its performance
(Table 1, Supplementary Note 2.1, Supplementary Algorithms 3 and 4).
From the results, all three methods can remove spurious signal, but
their performances varied from each other. To quantitatively evaluate
these methods, we utilized t-CyCIF data44 to generate simulated IMC
images (Supplementary Note 3.1) with a range of noise levels and hot
pixel densities. The threemethods were then applied on the simulated

datasets, and rootmean squared errors between the hot pixel-free and
processed images were set as the metric to evaluate the accuracy of
hot pixel removal (Supplementary Note 3.2). Note that in simulations,
the thresholds of NTHMandMTHMweremanually tuned to guarantee
their optimal performances,whileDIMRwas configured automatically.

The simulation results indicate DIMR is the best performer among
the threemethods (SupplementaryNote 3.3.2). In fact, the thresholdof
NTHM requires contextual adjustment as different tissues and chan-
nelsmayhave different scales.Moreover, thismethod is not efficient at
removing consecutive hot pixels. MTHM is not locally adaptive and
may overlook hot pixels with similar intensity to that of normal pixels;
or erroneously remove normal pixels located at the border between
tissues and background. Use of a lower search range or threshold for
MTHM may also generate false negatives. In comparison, the outlier
detection of DIMR is based on overall image statistics. Therefore, no
manual threshold adjustment is required for images with different
intensity scales, and a higher detection sensitivity is achieved even for
hot pixels with lower intensities. These features along with the simu-
lation data results demonstrate the versatility and accuracy of DIMR.
The automated DIMR approach also results in the additional benefit of
moderately improved cell segmentation, the result of robust removal
of artifacts caused by hot pixels (Supplementary Fig. 15).

With hot pixels removed from image data, we next benchmarked
the denoising performance of DeepSNiF along with DIMR and other
statistics-based methods including a Gaussian filter with standard
deviation of 1 (GAUSS), NLM, BM3D, N2V, modified N2V (MN2V) and
DeepSNiF with no regularization (DeepSNiF-NR) (Table 1, Supple-
mentary Notes 2.2 and 2.3) on the simulated dataset (Supplementary
Note 3.4). These comparisons were carried out on IMC images labeled
with Collagen III, CD31, CD34 and CD3 from the human bone marrow
dataset (Fig. 1d and Supplementary Fig. 16). First we visually assessed
images with different processing approaches for their overall appear-
ance and in particular for retention of fine cell-level details. We found
all the algorithms enhanced the DIMR data even though variant per-
formances were achieved. GAUSS lowers the noise level by sacrificing
resolution. NLM is effective at background denoising but does not
account adequately for the noise components of signal. BM3D
improves NLM further by its cooperative denoising procedure. How-
ever, we found it tended to over-smooth foreground and distorted cell
shapes. N2V always generates artifacts because of an inappropriate
noise model. DeepSNiF-NR performs better than MN2V because the
Anscombe transformation in MN2V may generate some bias for
extremely low counts; both of which are better than GAUSS, NLM and
BM3D. DeepSNiF further enhances these results by mitigating the
discontinuities in the DeepSNiF-NR output, and furthermore retains
cell morphology features.

We then quantitatively compared the differently processed ima-
ges across a range of different characterization methods. Assessment
of peak SNR (PSNR) and structural similarity (SSIM)45 (Supplementary

Table 1 | Reference denoising algorithm summary

Acronym Full name Algorithm details

NTHM Neighbour-based threshold hot pixel removal method14,15,20 Supplementary Note 2.1

Supplementary Algorithm 3

MTHM Median-based threshold hot pixel removal method10 Supplementary Note 2.1

Supplementary Algorithm 4

N2V Noise2Void24 Supplementary Note 2.2.1

MN2V Modified Noise2Void with Anscombe transformation27 Supplementary Note 2.2.2

N2T Noise2True34, only simulations used Supplementary Note 2.2.3

GAUSS Gaussian filter with kernel size of 5x5 and standard deviation of 0.8 Supplementary Note 2.3.1

NLM Non-local means algorithm22 Supplementary Note 2.3.2

BM3D Batch-matching and 3D filtering algorithm23 with Anscombe transformation Supplementary Note 2.3.3
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Note 3.2) were computed from the simulated data, and the standard
deviation of background (STDB) and contrast-to-noise ratio (CNR;
“Methods” section) were utilized for the IMC images labeled with
Collagen III. All results indicated DeepSNiF enables the optimal
denoising performance among these algorithms (Fig. 1e and Supple-
mentary Note 3.4). In particular, the noise level (STDB) decreased by
87% and CNR increased by 5.6-fold after DeepSNiF (0.9938 to 0.1254
and 1.1749 to 7.8065, median value).

We further visually inspect the denoising results of IMC-Denoise
onmultiple datasets including humanbonemarrow images (Fig. 1f and
Supplementary Fig. 17), human breast cancer (Supplementary Fig. 18),
human pancreatic cancer (Supplementary Fig. 19) and a MIBI dataset
(Supplementary Fig. 20). Image quality improvements that enhance
image interpretation are apparent, for both visual inspection and
quantitative assessment, in particular for low SNR channels. Two
orthogonal staining approaches were pursued in order to provide
further validation of these image quality improvements. Firstly, the
same antibody was conjugated to two different metals and co-stained
on the same tissue for detection in high and low sensitivity channels,
without spillover. IMC-Denoise was employed on the low signal
channel (209Bi) andwas able to restore the image quality tomatch the
high sensitivity channel (173Yb) with the Pearson correlation coeffi-
cient (PCC) improved as high as 0.16, as shown in representative
images (Supplementary Fig. 21 and Fig. 1g). Similar conclusions can
also be drawn from other channels with increased PCC by more than
0.48 and 0.35, respectively (Supplementary Fig. 22). Secondly, tissue
sections stained with metal-conjugated antibodies (for CD3, CD4,
CD61, and CD169) were probed with a fluorophore-conjugated sec-
ondary antibody for IF, individually. We then followed IF imaging by
ablative-IMC (Supplementary Fig. 23). The additional handling and
washing after IF imaging often leads to extremely low remainingmetal
isotope signal; however, enhancement in image quality can still be
observed to restore the image to correlate to the IF. Specifically, the
PCC quantitatively verified the image quality improvement of DeepS-
NiF (CD3: 0.5557–0.7939, CD4: 0.4975–0.7793, CD61: 0.9096–0.9492,
and CD169: 0.4481–0.7726).

IMC-Denoise enhances IMC background noise removal and
downstream analysis
We next evaluated the ability of DeepSNiF in IMC-Denoise to remove
background noise of IMC images. Visual inspection (Supplementary
Fig. 24) reveal DeepSNiF enhances background noise removal of the
examples effectively by a single threshold. To fully evaluate the
enhancement by DeepSNiF, we manually annotated 15 images labeled
with CD34 and 12 IMC images labeled with Collagen III (Fig. 2a). The
single threshold-based method and semi-automated Ilastik-based
method21 were applied on both DIMR and DeepSNiF-processed CD34
and Collagen III images (DIMR_thresh, DeepSNiF_thresh, DIMR_Ilastik
and DeepSNiF_Ilastik, respectively), and MAUI was only applied on
DIMR images (Methods). The results were comparedwith themanually
annotated ground truths (Fig. 2b), and F1 score was set as the accuracy
metric to quantitatively assess the results (Fig. 2c). To guarantee the
best performance of threshold-basedmethods andMAUI, a wide range
of parameters were tested (Supplementary Figs. 25–27). Note that in
threshold-basedmethods, optimal thresholds from1 to 4were selected
for individual DIMR-processed images per marker for fair comparison.
Nevertheless, the single threshold 1 was selected for all the images per
marker for DeepSNiF-processing, without the need of further tuning.

Overlaid masks and F1 scores for both markers indicated DeepS-
NiF_Ilastik achieves the highest accuracy while DIMR_thresh is the
weakest performer (CD34: 0.9143 to 0.4155, and Collagen III: 0.9434 to
0.5378, median value). Surprisingly, DeepSNiF_thresh is a better
method for background noise removal than the semi-automated
DIMR_Ilastik (CD34: 0.9040 to 0.8716, and Collagen III: 0.9345 to
0.9108,medianvalue), and its F1 scorewas improvedby approximately

twofold compared to DIMR_thresh. We infer that DeepSNiF is capable
of unmixing the signal and background, while the shot noise in DIMR
images hinders the performances of the Ilastik-based method. MAUI
was able to account for the background noise at the cost of false
negative generation (CD34: 0.7824 and Collagen III: 0.7305, median
value). Furthermore, we have also visually inspected and manually
annotated marker images from Supplementary Figs. 16–18. All the
results indicate DeepSNiF achieves good background removal per-
formance (Supplementary Figs. 28–30).Indeed, the signal has been
unmixed from background through DeepSNiF because we have
proved a simple thresholding can remove background accurately
(Fig. 2b, c, Supplementary Figs. 28b, 29b, and 30b). These findings
support replacement of tedious semi-automated approaches by
automated DeepSNiF.

Next, we were curious to evaluate the impact of IMC-Denoise on
single-cell profiles. Using segmented cell masks, we extracted the cell
intensities of CD38, MPO, CD14, CD71, CD11b, CD4, CD169, CD20,
CD8a, CD15, CD3, and CD235a markers for 96232 cells in total (Meth-
ods). Please note that segmentation masks were identical for each
comparison, usingmasksgenerated fromDeepSNiF, so that the impact
of variability in segmentation algorithms can be neglected. In Sup-
plementary Figs. 31 and 32a, the comparison of the single-cell profiles
of raw, DIMR and DeepSNiF data show that DIMR has the potential to
correct false positive data, and DeepSNiF corrects all cell profiles. We
have also conducted line fitting for the DIMR and DeepSNiF-processed
single-cell data and calculated their PCC (Supplementary Fig. 32a). The
results indicate DeepSNiF has not changed the single-cell intensity
scale nor biased the overall linearity of the data. Furthermore, larger
mean positive marker expressions lead to lighter corrections by
DeepSNiF (Supplementary Fig. 30b). This follows from the logic that
larger ion counts have lower shot noise levels.

Subsequently, we benchmarked the single-cell data from the raw,
DIMR, DIMR_Ilastik and DeepSNiF-processed images (Fig. 2d). To
achieve this, manual gating approaches with prior knowledge of cell
markerswereapplied toDIMR,DIMR_Ilastik andDeepSNiF on IMCdata
(Fig. 2e–h). For example, among T cells (CD3-positive, CD14-negative),
myeloid (CD11b, CD15) and erythroid (CD71, CD235a) markers should
be absent. However, this condition may not hold because: segmenta-
tion and staining artifacts are unavoidable, and because hot pixels are
present in the rawdata.With the presence of shot noise, the single-cell
data could be further biased (Supplementary Note 1.2.2). In Fig. 2e, f,
the false positivemyeloid anderythroidmarkersdecrease slightly after
DIMR correction (0.8% and 0.4%). DIMR_Ilastik and DeepSNiF further
removed false positive myeloid (3.86% and 6.31%) and erythroid mar-
kers (3.52% and 5.83%) after the slight improvement of DIMR. Similarly,
among B cells (CD20-positive),myeloid and erythroidmarkers (CD11b,
CD15, MPO and CD235a) should be absent as well. In Fig. 2g and h, the
false positive markers decrease slightly after DIMR correction (0.06%
and 0.74%). Compared to DIMR, DIMR_Ilastik and DeepSNiF removed
more false positive markers (DIMR_Ilastik: 6.41% and 7.86%, DeepSNiF:
5.22% and 8.44%). Overall, as expected DIMR could enhance the single-
cell analysis to a limited extent. DeepSNiF and DIMR_Ilastik enable
further enhancement, and overall the former achieves better perfor-
mance than the latter on this task.

To testwhetherDeepSNiF-based segmented cellmasks potentially
favor DeepSNiF data, we have extracted the raw, DIMR, DIMR_Ilastik
and DeepSNiF-processed single-cell data from DIMR-based cell masks.
Both the single-cell data comparisons (Supplementary Fig. 33) and
manual gating results (Supplementary Fig. 34) are similar to that from
DeepSNiF-based cell masks. Therefore, we infer that our IMC-Denoise
pipeline is also robust across different cell segmentation masks.

DeepSNiF in IMC-Denoise enhances automated cell phenotyping
Cell phenotype annotation plays a key role in tissuemicroenvironment
analysis. Indeed, false annotation of cell phenotypes has the potential
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to lead to false biological or clinical conclusions. Hot pixel removal is
normally conducted before automated cell phenotyping14,15,17. There-
fore, we focused on whether DeepSNiF in IMC-Denoise could impact
phenotypic annotation of cell types. Here, the extracted single-cell
data with DeepSNiF-based segmentation masks from the human bone
marrowdataset were used for phenotypic annotation, including CD38,
MPO, CD14, CD71, CD11b, CD4, CD169, CD20, CD8a, CD15, CD3 and
CD235a channels. We clustered the DIMR dataset by the Phenograph
algorithm46 with the Leiden community detection algorithm47 (Meth-
ods). The generated clusters were then annotated as immune cell
subsets (B cell, CD4+ T cell, CD8+ T cell and plasma cell, monocyte/

macrophages), erythroid, myeloid, and other CD4+ cells and others.
To better demonstrate the modifications of DeepSNiF denoising, we
then utilized a weighted KNN approach tomap the DeepSNiF data into
the DIMR-based clusters (Methods). The weights were acquired by
calculating the Jaccard index between each DeepSNiF-processed cell
profilewith all of theDIMR cells (which is identical to the Jaccard graph
construction of Phenograph). For visualization, the cell markers of
DIMRandDeepSNiFwere also compressed into twodimensions by the
fast interpolation-based t-SNE algorithm48 as Supplementary Fig. 35
(Methods). The assigned phenotypes of DIMR and DeepSNiF datasets
are demonstrated in Fig. 3a and the relative changes of each cell sub-

 

Fig. 2 | IMC-Denoise enables background noise removal and enhances down-
stream analysis of the human bone marrow IMC dataset. a Examples of DIMR
and DeepSNiF-processed IMC images labeled with CD34 and Collagen III. b Visual
inspection of background removal results of DIMR and DeepSNiF-processed ima-
ges, in which DIMR_thresh and DeepSNiF_thresh are binarized with the optimal
thresholds (Supplementary Figs. 25 and 26), DIMR_Ilastik and DeepSNiF_Ilastik are
segmented by the Ilastik software package, and MAUI results are the DIMR images
processed by the MAUI software package (Supplementary Fig. 27), respectively.
Manual annotated images are served as ground truths. cAfter DeepSNiF denoising,
the background removal accuracy improves significantly in terms of F1 score, for
both CD34 and Collagen III-labeled images (n = 15 independent images for CD34
and n = 12 independent images for Collagen III). Notably, DeepSNiF_Ilastik achieves

the highest accuracy, while DeepSNiF_thresh performs better than all the back-
ground removal results fromDIMR images. Box center indicatesmedian, box edges
25th and 75th percentile, andwhiskersminimumandmaximumpercentile. P values
were calculated through two-sided Wilcoxon matched-paired test (**P <0.01,
***P <0.001, and ****P <0.0001). d Visual inspection of DeepSNiF and DIMR_Ilastik-
based denoising results on different markers-labeled IMC images. e–h Evaluations
of denoising algorithms with manual gating strategies on single-cell data. The
numbers in these panels are the cell percentages of the corresponding ranges.
DIMR slightly enhances the single-cell analysis over raw data, while DeepSNiF fur-
ther enhances the DIMR results and overall performs better than semi-automated
DIMR_Ilastik-processing. Scale bar: a Top: 50μm, bottom: 35μm. d 107μm.
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Fig. 3 | DeepSNiF enhances automated cell phenotyping on human bone mar-
row IMC data. a t-SNE plots of DIMR and DeepSNiF with cell phenotyping results.
b The relative change in cell phenotypes before and after DeepSNiF.
c, d Comparisons of DIMR and DeepSNiF-processed IMC images labeled with dif-
ferent cell markers, and the corresponding cell annotation results. The sub-panels
(i)–(iv) in c and the bottom row in d correspond to the white dashed box region
selection in their first panels, respectively. The white contours represent the dif-
ferential phenotyping results between DIMR and DeepSNiF. e DeepSNiF enhances
the sensitivity of cell phenotyping. After DeepSNiF processing, the non-specific

marker signals reduce while the specific ones enrich in the cell types, respectively.
The circle size indicates the positive marker percentage in a particular phenotype
of DIMR, and the circle color indicates the relative changes of the positive rate for
the particular markers after DeepSNiF enhancement. f DeepSNiF enhances the
specificity of cell phenotyping. With DeepSNiF denoising, the ratios of specific
phenotypes increase while those of non-specific phenotypes decrease in the posi-
tive markers. The relative change is the difference in percentage composition of
each cell type before and after DeepSNiF enhancement. Scale bar: c 110μm. d Top:
145μm, bottom: 50μm.
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population after DeepSNiF processing is shown in Fig. 3b. After
DeepSNiF processing, B cells, CD8 T cells, plasma cells, CD4 T cells and
other CD4+ cells decrease (20.86%, 3.70%, 13.44%, 18.49%, and 8.23%,
respectively), the monocytes/macrophages increase (4.82%), while
erythroid, myeloid and other cells remain largely unchanged.

The phenotyping results of DIMR and DeepSNiF were mapped
back into their segmentation masks and images (Fig. 3c, d and Sup-
plementary Fig. 36). To highlight cells where DeepSNiF changes the cell
phenotyping results, conflicting annotations between DIMR and
DeepSNiF were labeled with white contours, and the changes were
quantified for cell phenotype andmarker enrichments (Methods). After
DeepSNiF denoising, non-specific markers are reduced, while specific
markers are enriched within the cell phenotypes (Fig. 3e). For example,
we observed the positive rate increased for CD20 in B cells (10.53%),
CD8a in CD8 T cells (2.32%), CD3 and CD4 in CD4 T cells (6.84% and
4.64%), CD38 in plasma cells (6.21%) and CD4 in other CD4+ cells
(4.26%). Conversely, we observed a decrease of non-specific markers,
such as CD38,MPO andCD14 in B cells (5.24%, 8.11%, and 5.64%), CD3 in
erythroid (1.79%) and myeloid (1.62%) cells, and all marker signals in
“other” cells. Furthermore, the identified cell types were enriched in a
marker-specific manner after DeepSNiF (Fig. 3f). For instance, we
observed a post-DeepSNiF enrichment of monocytes/macrophages in
CD14+ cells (2.36%), CD11b+ cells (1.70%) and CD169+ cells (2.21%), and
enrichment of B cells in CD20+ cells (5.42%) and CD8 T cells in CD8a+
cells (3.15%). Similarly,myeloid cellswere enriched inMPO+ (1.26%), and
erythroid cells inCD71+,CD235a+ cells (2.45%and 1.48%).DeepSNiF also
yielded an enriched composition of CD8 and CD4 T cells (3.50% and
2.54%), and reduced composition of myeloid and erythroid cells (2.47%
and 4.27%) in CD3+ cells. However, we noticed the enrichment of ery-
throid cells in CD169+ cells (1.03%), whichmay result from an artifact of
the current segmentation approach due to the close relationship and
irregular morphology at the boundaries between erythroids and mac-
rophages within the bone marrow49.

Cell phenotyping by immunostaining of FFPE tissues is also
inherently limited by antibody specificity and antigen retrieval proto-
cols. In this tissue, CD38+ and CD14+ antibody staining is not strictly
restricted to single lineages, and these markers can be aberrantly
expressed in myeloid neoplasms included in this data set (Supple-
mentary Fig. 37). Onmanual inspection, DeepSNiF improves the ability
to identify co-localization of cell surface markers (Fig. 3c, d and Sup-
plementary Fig. 36). Overall, DeepSNiF enhances the sensitivity and
specificity of cell phenotyping. We have conducted similar analysis for
the single-cell data from the DIMR-based segmentation masks as well
(Supplementary Fig. 38). Likewise, the results are also similar to those
from the DeepSNiF-based segmentation masks, which demonstrates
the robustness of IMC-Denoise.

We observed that the enhancements in cell phenotyping and
marker enrichments in Fig. 3e, f are related to the noise level of the
IMC images. Specifically, DeepSNiF has the highest impact on CD20
and CD3 related phenotypes, improvement for CD15, MPO and
CD235a related phenotypes is limited, with moderate changes for
other cell classes. These findings agree with Supplementary Fig. 32b,
where we plot the STD of the normalized positive marker differences
between DIMR and DeepSNiF against intensity. To investigate the
influence of DeepSNiF on phenotyping results more deeply, we
applied a leave-one-out DeepSNiF strategy for CD20, CD3, CD71,
CD235a, and MPO (“Methods” section and Supplementary
Figs. 39–43). Briefly, this involved processing one marker for hot
pixel removal with DIMR, e.g. CD20, and all the other markers by
both DIMR and DeepSNiF. Then the same weighted KNN approach
was applied on these leave-one-out DeepSNiF datasets. Similar to the
conclusions from Fig. 3e, f and Supplementary Fig. 32b, CD20 and
CD3 denoised by DeepSNiF improve cell phenotyping because of the
high noise level of the corresponding IMC images. DeepSNiF has
moderate impact onCD71 due to better IMC image quality than those

of CD20andCD3, and hasminor impact onMPOandCD235a because
of their good SNRs.

DeepSNiF in IMC-Denoise enhances lymphocyte analysis
Cell-cell interactions of immune cells within the tumor microenviron-
ment is of broad interest for many clinical pathology specimens. In
myeloid malignancies, immune infiltrates are most commonly asses-
sed by flow cytometry and are an active area of interest in therapeutic
clinical trials50. However, in situ spatial context of cell-cell interaction
mediated immune responses cannot be directly measured through
this approach. We quantified the enhancement of lymphocyte spatial
analysis for B cells, CD8+ T cells and CD4+ T cells by DeepSNiF, and
compared these to a manually curated set of image annotations based
on DeepSNiF-based cell masks (Fig. 4a). CD3, CD4, and CD20-stained
images are more easily contaminated by shot noise than others (Sup-
plementary Fig. 32b). Therefore, this approach can further validate the
shot noise accounting ability of DeepSNiF as well. The phenotyping
accuracy of DIMR and DeepSNiF as evaluated by the Jaccard score and
F1 score indicate a significant improvement by DeepSNiF denoising
(Fig. 4b); and DeepSNiF denoised data closely recapitulates gold-
standard but laborious manual annotation. Specifically, the overall
Jaccard scores improve from 0.6785, 0.8229, and 0.6781 to 0.9201,
0.8922, and 0.8860 for B cells, CD8+ T cells and CD4+ T cells,
respectively. Similarly, the F1 scores improve from0.8085, 0.9029, and
0.8082 to0.9584, 0.9430, and0.9396 for these cell types, respectively.
We have also compared the annotation results on the DIMR-based cell
masks (Supplementary Fig. 44). While there are some variations due to
the differences from segmentation masks, this comparison demon-
strates accuracy improvements as well.

Subsequently, the tissues were classified as normal morphology
(Normal), myelodysplastic syndromes (MDS) and acute myeloid leu-
kemia (AML). The improvements in visual quality afforded by DeepS-
NiF denoising facilitated manual review of lymphocyte staining
patterns for annotation annotation of lymphocyte subpopulations
(Supplementary Fig. 45). B and T cell populations are scattered
throughout the bone marrow cellularity in normal and malignant
specimens, and lymphoid aggregates are occasionally present
(Fig. 4c). To characterize the density and distance relationships
between lymphocyte subpopulations, samples were analyzed in
cohorts of extent ofmalignant blast involvement, after exclusionof the
lymphoid aggregate outlier. Nearest neighbor distances between B
cells, CD4 T and B cells, and CD4 and CD8 T cells were calculated for
different disease tissues (Fig. 4d). Overall, the distributions from
DeepSNiF are more concordant with annotated data. By contrast,
those from DIMR are biased, with significant differences to the anno-
tations due to cell misclassifications.

Automated DeepSNiF denoising reveals that as disease develops,
the B cell distances become larger (P <0.01); The distances between
CD4 T and B cells in normal and MDS tissues are greater than those of
AML (P < 0.0001); And CD4 and CD8 T cells in normal tissues trend
towards longer distances than those inMDS (P =0.0916). Interestingly,
the overall distances between CD4 T and B cells in MDS tissues are
greater than those of Normal samples (P <0.01). These findings hold
for DeepSNiF denoised data in distances between B cells fromMDS to
AML (P <0.05), and from Normal to MDS samples for CD4 and CD8
T cells (P = 0.0929) and CD4 T to B cells (P <0.05). However in non-
DeepSNiF denoised DIMR data, the trends between B cells has been
violated fromMDS to AML by DIMR data (P =0.4923), as well as those
from Normal to MDS between CD4 and CD8 T cells (P =0.4762), and
CD4 T to B cells (P =0.6685). From this point, DeepSNiF is able to
correct the distorted cell spatial distributions from less accurate
annotations caused by noise, whichmay further enhance downstream
cell-specific spatial analyses.

We also calculated the cell densities per tissue of these lympho-
cytes (Fig. 4e). TheDeepSNiF results are closer to those annotated data
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for B cell and CD4 T cell. By contrast, the CD8 T cell densities from
DIMR, DeepSNiF and annotated data are close to each other. Addi-
tionally, we observe higher B cell and CD4 T cell densities in Normal
tissues than others, and higher B cell density of MDS than that of AML.
No obvious developing trend for CD8 T cells are observed as the dis-
ease status changes. Furthermore, we have analyzed the correlations
between the densities from different cell types (Fig. 4f, g). Note that in

the reference groups, the B and CD4 T cell densities are generated
from the annotated data, while the monocyte/macrophage density
comes from DeepSNiF data. This is because the relative change of the
monocytes/macrophages byDeepSNiF is smaller compared to thoseof
B and CD4 T cells (Fig. 3b) and because DeepSNiF achieves higher
accuracy than DIMR for the cell phenotyping (Fig. 3e, f). From the
reference group in Fig. 4f, the densities of CD4 T and B cells are
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Fig. 4 | DeepSNiF enhances lymphocyte analysis. a Manual annotations for
lymphocytes and comparisons with DIMR and DeepSNiF phenotyping results with
DeepSNiF-based cell masks. The white contours represent the differential pheno-
typing results between the annotated and DIMR/DeepSNiF results. b Annotation
evaluations of DIMR and DeepSNiF by both Jaccard and F1 scores across all the
tissues (n = 15 biologically independent samples). Box center indicatesmedian, box
edges 25th and 75th percentile, andwhiskersminimum andmaximumpercentile. P
valueswere calculated through two-sidedWilcoxonmatched-paired test (**P <0.01
and ****P <0.0001). c Representative images of lymphocyte markers after DeepS-
NiF denoising from specimens of normal (upper left), myelodysplastic syndromes
(MDS, upper right), acute myeloid leukemia (AML, lower left) and AML with lym-
phoid aggregate (lower right) tissue samples. d Nearest distance comparisons
between different cell types of normal (n = 5 biologically independent samples),
MDS (n = 5 biologically independent) samples and AML (n = 4 biologically inde-
pendent samples) tissues from manual, DIMR and DeepSNiF phentyping results.

Tukey box center indicates median, box edges 25th and 75th percentile, and
whiskers the highest and lowest values that are not outliers. Outliers (single points)
are defined as values that are more than 1.5 times the interquartile range). e Cell
densities comparisons of normal (n = 5 biologically independent samples), MDS
(n = 5 biologically independent samples) and AML (n = 4 biologically independent
samples) tissues frommanual, DIMR and DeepSNiF phentyping results. The center
bars define the mean, and the error bars are 95% confidence interval. P values were
calculated through two-sided Kolmogorov-Smirnov test (*P <0.05, **P <0.01, and
****P <0.0001). f, g Correlation analysis between CD4 T cell and B cell, monocyte/
macrophage densities per tissue from manual, DIMR and DeepSNiF phentyping
results. The data from the reference group in f comes from annotated data; while
that from the reference in g comes from annotated (CD4 T cells) and DeepSNiF
(monocytes/macrophages) results, separately. The solid lines represent the fitting
results with the datawhile the dashed lines represent 95%confidence interval. Scale
bar: a 85μm; c 112μm.
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negatively correlated with each other (PCC: -0.4371). Nevertheless,
DIMR result indicates no correlation between the cell densities (PCC:
0.0090), which demonstrates false annotations hinder true relational
definitionbetweendifferent cell types. Again, the negatively correlated
relationship can be uncovered using automated DeepSNiF (PCC:
−0.2837). Likewise, the DIMR data fails to detect the correlation
between the densities of CD4 T cell andmonocyte/macrophages (PCC:
0.2781; Fig. 4g). Corrected by DeepSNiF, the measured correlation
(PCC: 0.4503) approximates the reference finding (PCC: 0.4310).

Discussion
With the rise of novel multiplexed technologies for the characteriza-
tion of cellular context in health and disease, IMC has emerged as a
valuable tool to investigate immunophenotypes while preserving
spatial information8–16. Differing from traditional multiplexed imaging
approaches based upon fluorescence microscopy, IMC allows for
simultaneous acquisition of more than 40 cell-specific markers with
greatly suppressed channel crosstalk, and avoids tissue and marker
degradation in multi-round staining protocols. Furthermore, it elim-
inates autofluorescence andbackground signal issues that are inherent
in fluorescent microscopy. The high-dimensional datasets then enable
complex microenvironment analysis. However, IMC suffers from
unique hot pixel and shot noise features. Analyzing raw IMC data
without further restoration may lead to distortions, even errors, in
downstream analysis. Contemporary denoising strategies10,14,15,19,21 are
usually not adaptive or effective for these particular noise conditions.
For example, the parameters of some methods must be tuned manu-
ally, which is not suitable for large datasets and may cause subjective,
batch, and channel-specific errors.

In this work, we propose IMC-Denoise to account for the specific
technical noise present in IMC images. In this pipeline, the DIMR
algorithm is first applied to adaptively remove hot pixels. It does not
use a user-defined intensity threshold or range to define hot pixels,
eliminating the impact of the density and intensity variations of hot
pixels in different datasets or markers. Instead, it builds a histogram
from the differential maps of raw images followed by an iterative
outlier detection algorithm. In comparison with other methods, DIMR
achieves more robust hot pixel detection capability and normal pixel
preserving performance. After hot pixel removal, the DeepSNiF algo-
rithm is proposed to restore image quality. I-divergence is derived as
the optimal loss function for this denoising task. Due to the absence of
noise-free IMC images and incompatibility with repeated scanning to
generate training labels8, we applied a masking strategy with stratified
sampling from Noise2Void24. This enabled self-supervised training for
this denoising task, in which multiple pixels are randomly masked and
replaced by its adjacent pixels. With the continuity of antibody signals
in IMC, Hessian norm regularization41–43 is added in the loss function to
boost the denoising performance. In DeepSNiF, we train a single net-
work for a single marker, which reduces the memory allocated for
training. Nevertheless, we note that DeepSNiF also works on multi-
marker training (Supplementary Fig. 46). In another aspect, this
demonstrates that DeepSNiF works on the markers stained for mor-
phologically heterogeneous markers, since the variant features have
been learned in the training process. In addition, monocytes/macro-
phages are morphologically heterogeneous so that the successful
denoising of CD14/CD169 (Fig. 1f) validates the adaptability of
DeepSNiF as well. In fact, the networks are able to learn all the features
existing in the training images but not focus on any specific structures.
As a result, markers with interstitial staining patterns (e.g. vessels,
fibrosis, reticular cytoplasmic projections) can be well restored (CD31,
CD34 and Collagen III in Figs. 1 and 2 and Supplementary Figs. 19 and
20). However, small areas of staining at the size of a sub-cellular
synapse (e.g. 1–2μm diameter) will not be successfully distinguished
by IMC due to its relatively low resolution of 1μm. Therefore, the
network cannot learn the features of such small structures. The trained

network can be employed to other datasets which share similar fea-
tures (Supplementary Fig. 22).

To determine the applicability of our approach, reference
denoising algorithmswere utilized to rigorously evaluate IMC-Denoise
on both simulated data and multiple pathological patient datasets.
Compared to other methodologies, both DIMR and DeepSNiF achieve
the best denoising performance, qualitatively and quantitatively.
Orthogonal approaches that have not been previously tested in eva-
luation of IMC restoration are also used to verify the image quality
improvement by IMC-Denoise. This pipeline can be further extended
by existing analytical processing pipelines includingMesmer/DeepCell
and ark-analysis25 or MCMicro26. If warranted, one may18 address spil-
lover issues after hot pixel removal and shot noise filtering, as indi-
cated in Eq. (1). A related modality, MIBI6,7, shares several image
formation and noise features with IMC, and the denoising pipeline
deployed here may also enhance MIBI datasets.

IMC-Denoise is effective at removing background noise and
enhancing downstream analysis of IMC data with limited, subjective,
user-input. Multiple datasets processed by DIMR and DeepSNiF were
compared with state-of-the-art IMC background removal methods,
including single threshold binarization, semi-automated Ilastik-
based21, and MAUI19, using the F1 score as the accuracy metric to
evaluate the results. The qualitative and quantitative results indicate
DeepSNiF can affect significant background noise removal, and is
superior to tedious semi-automated approaches. In particular,
DeepSNiF is capable of unmixing specific IMC staining signal from
background noise. This means that even the thesholding approach for
background removal is not essential after DeepSNiF denoising.

Conventional workflows typically use manual gating strategies
combined with prior cell marker knowledge to identify and compare
cell types in pathological samples. We used real world data and these
methods to evaluate the IMC denoising algorithm for single-cell ana-
lyses, and compared to DIMR, DIMR_Ilastik, and DeepSNiF. Automated
IMC-Denoise performs equally or superior to the semi-manual Ilastik-
based method in downstream single cell analysis, and DeepSNiF
notably enhances cell clustering and annotation. Quantitative evalua-
tions of cell phenotyping results indicate the improvement of sensi-
tivity and specificity by DeepSNiF denoising. Further validations with
DIMR-based cell masks demonstrate the robustness of IMC-Denoise to
variant cell segmentation results. For lymphocyte annotation, Jaccard
and F1 scores demonstrate thatDeepSNiF performs significantly better
than DIMR on phenotyping of B, CD8-positive T and CD4-positive
T cells. Further, spatial distributionand cell density correlation analysis
indicate less accurate annotations by the data denoised solely by
DIMR, leading to biased conclusions. With the data denoised by
DeepSNiF, such distortions can be corrected and more accurate
downstream analysis is achieved.

As noted, DeepSNiF enhances all the markers and their down-
stream analysis. However, the marker channels with high noise levels
benefit to a larger degree. In theory, there is no maximum noise level
present for denoising algorithms. Even under some extremely noisy
conditions (CD20 andCD3 in Fig. 1f,markers in Supplementary Figs. 18
and 20), DeepSNiF improves the image quality. Nevertheless, lower
SNR in raw images means lower specific information content and thus
the quality of the restored images are lower (Supplementary
Figs. 6–11). Because of the signal-dependent characteristics of shot
noise, the noise components of high SNR channels contribute less to
overall image quality, and thus have lower impact on downstream
analysis. Empirically, we find that denoising by DeepSNiF can be
omittedwhen themeanexpressionsofpositivemarkers are larger than
7 (MPO, CD15, and CD235a), however denoising all marker channels
improves performance and is not computationally intensive.

Limitations of IMC-Denoise include the inability to remove large
hot pixel clusters, as DIMR cannot discriminate these larger areas of
outliers from signal (Supplementary Fig. 47). Further the self-
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supervised DeepSNiF algorithm cannot reach the accuracy of super-
vised denoising methods due to unavailability of ground truths (Sup-
plementary Figs. 8 and 9). Nevertheless, DIMR can remove single hot
pixels and small hot clusters of several consecutive pixels, and
DeepSNiFperformsbetter thanother unsupervised and self-supervised
denoising methods on IMC datasets. To conclude, we have developed
the content aware IMC-Denoise for improved IMC image quality and
quantitative accuracy. Predicated on a novel combination of differ-
ential map-based and self-supervised CNN-based algorithms, this open
source pipeline removes hot pixels and effectively suppresses shot
noise in multiplexed IMC data. Multiple image and cell-based analyses
from different IMC datasets verified the enhancements brought by this
approach, with the ability to resolve significant cellular phenotypic and
spatial information approximating manual annotation. We have pro-
vided tutorials to help users implement IMC-Denoise (Supplementary
Note 4 and https://github.com/PENGLU-WashU/IMC_Denoise). We
expect IMC-Denoise to become a widely used pipeline in IMC analysis
due to its adaptability, effectiveness and flexibility.

Methods
Human bone marrow dataset
Sections were cut in 4-6μm thickness from formalin-fixed paraffin-
embedded (FFPE) blocks of ethylenediaminetetraacetic acid (EDTA)-
decalicifed bone marrow trephine biopsy specimens. Three patients
demonstrated normal morphology, and 4 patients were diagnosed
with myelodysplastic syndromes (MDS), with additional later time-
points obtained at disease progression including acute myeloid leu-
kemia (AML). Useof specimens for secondary analysis in this studywas
approved by the Washington University in St. Louis Institutional
Review Board (#201912110). Informed consent was waived, per IRB-
approved protocol.

Tissue staining and IMC data acquisition
Descriptions of cell markers and isotope tags are provided in Supple-
mentary Tables 2–5. Staining was performed according to Fluidigm
IMC recommendations for FFPE as follows. Briefly, tissue sectionswere
dewaxed in xylene and rehydrated in a graded series of alcohol. Epi-
tope retrieval was conducted in a water bath at 96 °C in Tris-EDTA
buffer at pH 9 for 30 minutes, then cooled and washed in metal-free
PBS. Blocking with Superblock (ThermoFisher) plus 5% FcX TruBlock
(Biolegend) was followed by staining with antibody cocktail prepared
in 0.5% BSA and metal-free PBS overnight at 4 °C. Sections were
washed in 0.02% TritonX100 followed by metal-free PBS, then nuclear
staining was performed using 1:200 or 1:300 dilution of Intercalator-Ir
(125μm, Fluidigm) solution for 30min, followed by ddH2O for 5min.
Slides were air-dried before IMC measurement.

The abundance of bound antibody was quantified using the
Hyperion imaging system (Fluidigm) controlled by CyTOF Software
(version 7.0.8493), with UV-laser set at 200 Hz. Count data were then
converted to tiff image stacks for further analysis using MCD Viewer
(version 1.0.560.6, Fluidigm) or imctools (Bodenmiller lab, https://
github.com/BodenmillerGroup/imctools).

Tissue staining and IF data acquisition
For IF staining, tissue was prepared using the same protocal in IMC
staining, then stained overnight at 4 °C with a single metal-conjugated
primaryantibody (CD3,CD4,CD169, orCD61 in SupplementalTable 5).
The single-stained tissue was washed, then stained with secondary
antibody (donkey anti-rabbit AF647 or goat anti-mouse AF750, Invi-
trogen, 2mg/mL diluted 1:400 in 0.5% BSA in PBS) at room tempera-
ture 1 h, followed by additional washing in PBS and DAPI (1μg/mL)
staining. Slides were mounted with SlowFade Glass antifade reagent
(ThermoFisher) and # 1 1/2 coverslips. Images were acquired using
Leica DMi8 inverted widefield microscope with Lumencor SOLA SE
U-nIR light engine, DAPI/FITC/TRITC/Cy5/Cy7 filters, DFC9000 GT

sCMOS camera, PL APO 20x/0.80 objective and LAS X software (ver-
sion 3.7.3.23245). After image acquisition, coverslips were removed
with gentle agitation in PBS, then Ir-intercalator staining, washing and
drying performed as above for subsequent Hyperion data acquisition.

Humanpancreatic, breast cancer IMCdatasets, andMIBI dataset
Weapplied the humanpancreatic10, breast cancer12 IMCdatasets, and a
MIBI dataset19 to verify the flexibility of IMC-Denoise. All of these
datasets are publicly available. The links are provided in the corre-
sponding papers. In breast cancer dataset, CD3, CD20, CD45, CD68, c-
Myc, EGFR, EpCAM, Ki-67, Rabbit IgG H L, Slug, Twist, and vWF were
selected; in pancreatic cancer dataset, CD3, CD4, CD8, CD11b, CD14,
CD31, CD44, CD45, CD45RO, CD56, Foxp3, and pS6 were selected; and
in the MIBI dataset, CD3, CD4, CD8, CD11b, CD11c, CD14, CD20, CD31,
CD45, CD68, CD206, andHLA-DRwere selected. The two IMCdatasets
were processed by both DIMR and DeepSNiF. The MIBI dataset is only
processed by DeepSNiF because no hot pixels are observed, and the
hot clusters observed in MIBI images can be removed by the MAUI
software package19. Details on software implementation can be found
in the relevant sections below.

Neural network implementation
The DeepSNiF neural network follows the U-Net architecture39 with
Res-block modules40, in which the input and output images share the
same size (Supplementary Fig. 13). U-Net architecture is widely used
for image deblurring and denoising24,34. In general, the network is
composed of an encoder and a decoder. Starting with the input, the
encoder path gradually condenses the spatial information into high-
level featuremapswith growing depths; the decoder path reverses this
process by recombining the information into feature maps with gra-
dually increased lateral details. The information in adjacent feature
maps transfers by convolving with 3 × 3 convolutional filters. The
down-sampling and up-sampling are used in encoder and decoder for
compressing and reconstructing features, performed here by 2 × 2
max-pooling and 2 × 2 up-sampling operations, respectively. Res-
blocks are applied to facilitate efficient training. Each res-block con-
tains a convolution layer, batch normalization and the rectified linear
unit (ReLU) nonlinear activation, in which the batch normalization
layer aims to speed up training process, ReLU could provide non-
linearity in the network. Drop out layers are also added with 0.5
dropout rate after the central two res-blocks to mitigate overfitting.
The skip connections link low-level features and high-level features by
concatenating their feature maps. We use the softplus function
(logð1 + expðxÞÞ) as the activation function of the final layer and Eq. (2)
as the loss function so that the output of the network is guaranteed to
be non-negative.

The hot pixel-removed images are split into multiple 64 × 64
patches. Then, the patches are rotated by 90°, 180°, and 270°, and
flipped as a data augmentation approach. In IMC images, foreground
objects of interest might be distributed sparsely. In this case, the
model might overfit the background areas and fail to learn the struc-
ture of foreground objects if the entire image is used indiscriminately
for training. Therefore, patches from the background regions are
excluded from training. In IMC images, pixels with intensity value 0 are
considered as background. Afterwards, we define the background
pixel ratio r as ratio of the number of background pixels and that of
total pixels in the patch. Patches are considered as the background
regions if r ≤ ρ, where ρ is the threshold and set from 0.2 to 0.99 for
different channels and datasets.We applied a smaller ρ for the datasets
less sparse images and vice versa. For goodgeneralization ability of the
network, we recommend at least 5000 patches for training. Before
training, all the generated patches were percentile normalized
(99.9–99.999, Supplementary Note 1.3.3). The percentile of 99.9 was
applied for those training sets with extremely bright markers and lar-
ger percentile with relatively homogeneous intensity distributions. To
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balance the training efficiency and accuracy, 0.2% pixels of each patch
aremasked and replaced by their neighbors using a stratified sampling
strategy24. Finally, 85%of the patches are set as training set and the rest
as validation set.

All models were trained using Keras51 (version 2.3.1) on a single
NVIDIAQuadro RTX 6000GPUwith 24 GB of VRAM. Adamoptimizer52

was applied as the optimization algorithmwith a initial learning rate of
0.001 for 200 epochs and batch size of 128. Learning rate is multiplied
by 0.6 if validation loss does not improve for 20 epoches. The training
details for all the datasets are summarized as Supplementary
Tables 6–11. Note that the training datasets for N2V, MN2V, and
DeepSNiF-NR are the same as those for DeepSNiF, and the training
timeofN2V,MN2V, andDeepSNiF-NR is approximately equal to thatof
DeepSNiF.

Neural network inference details
Given a trained denoising model, we denoise full-size IMC images to
avoid edge stitching effects. In order to achieve end-to-end prediction,
we pad pixels around each image so their width and height are the
multiples of 16 with reference to the network architecture (Supple-
mentary Fig. 13). The padding pixels are the replications of the border
pixels. Before prediction, the IMC images are normalized by the pre-
calculatedmaximumof the corresponding channels in the training set.
The outputs of the network are re-scaled and set as the denoised
images. Given the trained denoising model, inference is fast. We are
able to denoise IMC images with pixels of 1000 by 1000 less than
1 second per image on a single NVIDIA Quadro RTX 6000 GPU.

Reference hot pixel removal and statistics-based shot noise fil-
tering methods

Semi-automated Ilastik-based background noise removal
The semi-automated strategy in21 utilizes Ilastik segmentation53 to
remove background noise in IMC images. An expert annotates signal
or background regions of IMC images, and then Ilastik trains a random
forest classifier for background noise removal. To achieve good
denoising quality, large areas of background require manual labeling,
which is labor-intensive. Furthermore, low imagequalitymayaffect the
accuracy of thismethod aswell. After background removal, the images
are binarized to solve batch effect issues. Then the single cell infor-
mation is calculated by counting the positive signal frequency rather
than the mean intensity of every single cell. Here, we only utilized
Ilastik (version 1.3.2post1) for background noise removal of IMC ima-
ges, and still applied the mean intensities as the single cell profiles. To
better reveal the enhancement by DeepSNiF, we applied the same
labels for the trainings of DIMR and DeepSNiF-processed images.

MAUI
MAUI software package7,19 includes spillover correction, noise removal
andaggregate removal. All three steps require expert observation,which
is also labor-intensive. Here, we only benchmarked the noise removal
method in MAUI with our DeepSNiF algorithm. Briefly, it calculates the
distancesbetweenanon-zeropixel and itsKnearestnon-zeroneighbors,
thenbuilds a histogrambasedon the summations of the distances for all
the non-zeropixels. Next, a threshold ismanually selected to remove the
pixels with larger summations by observing the distribution of the his-
togram. Thismethod is based on the assumption that noisy regions look
more sparse than normal regions. MAUI was implemented by the soft-
ware package from https://github.com/angelolab/MAUI. The parameter
K and the threshold were manually tuned to guarantee the best per-
formance of MAUI (Supplementary Fig. 27).

Pixel classification and cell segmentation
In single cell segmentation, the pixels in each image were defined as
belonging to the nucleus, cytoplasm, or background compartment

using the pixel classification module of Ilastik53 (version 1.3.2post1) as
described in https://github.com/BodenmillerGroup/ImcSegmentation
Pipeline. In our experiments, the DIMR and DeepSNiF-processed ima-
ges were both set as inputs for cell mask segmentation. The DeepSNiF-
based cell masks were primarily used for further analysis, while those
based on DIMR were validated for robustness in some cases. The
Random Forest classifier was trained on the channels including CD38,
MPO,CD14, CD71, CD11b, CD4, CD20, CD8a, CD15, Ki-67, CD3,CD45RO
CD235a, Histone-H3, and Iridium. This allowed for the generation of
maps that integrate for each pixel the probability of belonging to each
of three compartments. Based on the trained classifier, probability
maps were generated for the whole dataset and exported as tiff files in
batch mode.

Subsequently, CellProfiler54 (version 3.1.8) was used to define cell
masks for marker expression quantification. To define cell borders,
nuclei were first identified as primary objects based on ilastik prob-
ability maps and expanded through the cytoplasm compartment until
either a neighboring cell or the background compartment was
reached. Cell masks were generated for identification of single cells
and used to extract single-cell information from IMC images.

Single-cell marker profile extraction and line fitting
We used HistoCAT55 (version 1.7.6) to extract single-cell marker pro-
files based on the IMC images and their segmentation masks. All the
data were not transformed and used directly.

We conducted bisqaure line fitting for the extracted DIMR and
DeepSNiF-processed single cell data with customized MATLAB
(R2021a, MathWork) scripts.

Positive cell identification
For initial identification of marker-positive cells, we modified the
method described in14. Briefly, univariate Gaussian mixture models
with scikit-learn56 (version 1.0.2) were used to estimate the positive
thresholds of each marker. Before threshold estimation, all data were
99th-percentile normalized so that the impactof extremely bright cells
can be eliminated.

For each channel, we performed model selection with models
with 6–15 mixtures for DIMR data, in order to estimate the positive
threshold accurately.We selected themodel on the basis of theDavies-
Bouldin index57 and identified a positive threshold for a given channel
by considering both the distributions of cell profiles and the overall
IMC image intensities. The estimated positive thresholds of single cell
data from DIMR and DeepSNiF-based cell segmentations are sum-
marized in Supplementary Tables 12 and 13.

Cell-type annotation
A subset ofmarkers extracted fromDeepSNiF-based cell segmentation
masks of the human bone marrow dataset were utilized for cell phe-
notypic annotation, including CD38, MPO, CD14, CD71, CD11b, CD4,
CD169, CD20, CD8a, CD15, CD3, and CD235a. Before analysis, data
were 99th-percentile normalized followed by Z-score normalization.
Then the DIMR data was clustered by the Phenograph algorithm with
20 nearest neighbors of each cell46 with the Leiden community
detection algorithm47 with resolution of 6.0, which resulted in over
clustering with 117 clusters. The generated clusters were manually
labeled with a broad ontogeny and the channels that were most
abundant in each cluster (Supplementary Fig. 35), resulting in 9 cell
types, including immune cell subsets (B cell, CD4+ T cell, CD8+ T cell,
and plasma cell, monocyte/macrophages), erythroid, myeloid, and
other CD4+ cells and others.

The DeepSNiF data clustering and annotation utilized a weighted
K-nearest neighbor (KNN) approach (K=20) to map the DeepSNiF data
into the DIMR clusters. It first constructs a Jaccard graph between each
cell fromDeepSNiFand all theDIMRcells, and thenmaps theDeepSNiF
data into the DIMR clusters with the shortest weighted distance. The
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leave-one-out DeepSNiF data was also annotated with the same
approach. The Phenograph with Leiden algorithms were implemented
by the software packages from https://github.com/jacoblevine/
PhenoGraph and https://github.com/vtraag/leidenalg. DeepSNiF data
annotation was implemented with customized python scripts. The
same markers extracted from DIMR-based cell masks were also ana-
lyzed with the same approach (Supplementary Fig. 38).

Notably, multiple strategies were applied to reduce the noise
impact during DIMR clustering: (1) Z-score normalization is consistent
for handling different sources of noise in multiplexed cell data,
including low intensity signal, high background signal, segmentation
noise, and imaging artifacts, as verified by58; (2) the Jaccard graph
construction in Phenograph is robust to noise, which is verified in46;
and (3) over-clustering could improve the clustering accuracy58.
Besides, we didn’t annotate the DeepSNiF and leave-one-out DeepSNiF
data with the same approach of DIMR because (1) The community
detection results by Leiden algorithm is random so that it is very dif-
ficult to compare the annotations from different data; and (2) the
weighted KNN method for DeepSNiF and leave-one-out DeepSNiF
clustering could clearly reveal the differences before and after the
processing.

The manual cell-type annotation in Fig. 4 was based on the
DeepSNiF-based cell segmentationmasks. Briefly, DIMR andDeepSNiF
images were overlaid with the cell masks in FIJI59. In some extremely
noisy cases, the DIMR images were denoised by Gaussian filters to
improve the annotation accuracy. Based on the signal in each cell
mask, the cells were classified as B, CD8 T, CD4 T cells and other cells.
Some positive signals were identified as hot clusters and discarded.
The annotation results were manually recorded. To test the impact of
segmentationmasks on annotation results, we have also annotated the
lymphocytes on DIMR-based cell masks (Supplementary Fig. 44).

Fast interpolation-based t-SNE algorithm
For visualization, high-dimensional single-cell data of DIMR and
DeepSNiF were reduced to two dimensions using the nonlinear
dimensionality reduction algorithm fast interpolation-based t-SNE48.
This algorithm was implemented by the software package in https://
github.com/KlugerLab/FIt-SNE. Before the analysis, data were 99th-
percentile normalized followed by Z-score normalization. The t-SNE
parameters with perplexity of 50 and theta of 0.5 were used. The
random seeds for the individual runs were recorded.

Enrichment calculation of positive cell markers after DeepSNiF
and leave-one-out DeepSNiF
To evaluate the effect of positive cell marker enrichment after
DeepSNiF and leave-one-out DeepSNiF, the cell-type annotations
before and after the processing were selected, and the percentage of
positivemarkers on each cell types was calculated. The relative change
was then defined as the difference between the percentage of positive
markers after and before the processing.

Enrichment calculation of cell types after DeepSNiF and leave-
one-out DeepSNiF
To evaluate the effect of cell type enrichment after DeepSNiF and
leave-one-out DeepSNiF, the positive cells for a given marker before
and after the processingwere selected, and the percentage of each cell
type based on cell-type annotation was calculated. The relative change
was then defined as the difference between the percentage of cell-type
composition after and before the processing.

Accuracy metrics
In simulation, the accuracymetrics including rootmean squared error,
peak SNR and structural similarity45 are used to access the image
qualities because of the availability of ground truths. They are defined
in Supplementary Note 3.2 in detail.

For the real experimental data, five types of metrics were used
for quantitative evaluations. The standard deviation of back-
ground (STDB) and contrast-to-noise ratio (CNR) were used to
evaluate the noise level and contrast of IMC images. CNR is defined
as Eq. (3),

CNR= ðCsig � CbgÞ=σbg ð3Þ

whereCsig andCbg are themeanof the signal andbackgroundand σbg is
the STDB. In this metric, the signal and background regions of IMC
images are manually annotated.

Pearson’s correlation coefficient (PCC) was used as the metric
to reflect the similarity between two groups of data. The PCC
between measured data Y and the reference Yref is defined as
Eq. (4),

PCCðY,Yref Þ=
E½ðY� μYÞðYref � μYref

Þ�
σYσYref

, ð4Þ

where μY and μYref
are the mean values of images Y and Yref, respec-

tively; σY and σYref
are the standard deviations of Y and Yref, respec-

tively; and E represents arithmetic mean.
Furthermore, F1 score was used to evaluate the accuracy of

background noise removal. F1 score and Jaccard score were used to
evaluate the accuracy of cell annotation of B, CD8 T and CD4 T cells,
which can be formulated as Eqs. (5) and (6), respectively.

F1 score =
2TP

2TP+FP+ FN
, ð5Þ

Jaccard score=
TP

TP+FP+ FN
, ð6Þ

where TP, FP and FN are the pixel number of true positives, false
positives and false negatives, respectively. All of the evaluationprocess
was implemented with customized MATLAB (R2021a, MathWork)
scripts. RMSE, PSNR, SSIM, PCC, F1 score, and Jaccard score were
computed using MATLAB built-in functions.

Statistical analysis
Other than specially stated, quantitative data are presented as box-
and-whisker plots (center line, median; limits, 75% and 25%; whiskers,
maximum and minimum). The two-sided Wilcoxon matched-paired
test was used for the statistical significance determination of repeated
measurements. The two-sided Kolmogorov-Smirnov test was used for
the statistical significance determination of different distributions in
Fig. 4d. All the statistical tests are implemented with Prism 9 (Graph-
Pad Software Inc.). Statistical significance at P <0.05, 0.01, 0.001, and
0.0001 are denoted by *, **, *** and ****, respectively. “ns” means “no
significance”.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The human bone marrow IMC data and simulated data generated in
this study are available from Zenodo https://doi.org/10.5281/zenodo.
653390560. The human pancreatic cancer IMC dataset10 can be down-
loaded fromhttps://hpap.pmacs.upenn.edu/, the human breast cancer
IMC dataset12 can be downloaded from https://doi.org/10.5281/
zenodo.3518284, and the MIBI data set19 can be downloaded from
https://github.com/angelolab/MAUI, respectively. Source data for
Figs. 1b, e, g, 2c, 3b, e, f, 4b, d–g, and Supplementary Figs. 2, 3–11a,
18–20b, 25b, 26b, 28–30b, 32b, 38–43, and 44b are provided in the
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source data file. All the other data supporting the results in this paper
can be accessed from https://doi.org/10.5281/zenodo.733644861.
Source data are provided with this paper.

Code availability
The code used in this study and the corresponding tutorial arepublicly
available at GitHub https://github.com/PENGLU-WashU/IMC_Denoise
and Zenodo https://doi.org/10.5281/zenodo.755942862.
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