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Integrated analysis of genomic and
transcriptomic data for the discovery
of splice-associated variants in cancer

KelsyC.Cotto 1,2,10, Yang-YangFeng 2,10,AvinashRamu3,MeganRichters 1,2,
Sharon L. Freshour1,2, Zachary L. Skidmore1,2, Huiming Xia 1,2,
Joshua F. McMichael 2, Jason Kunisaki2, Katie M. Campbell 1,
Timothy Hung-Po Chen1, Emily B. Rozycki1, Douglas Adkins1,
Siddhartha Devarakonda1, Sumithra Sankararaman1, Yiing Lin 4,
William C. Chapman4, Christopher A. Maher 1, Vivek Arora 1, Gavin P. Dunn5,6,
Ravindra Uppaluri 7,8, Ramaswamy Govindan 1,9, Obi L. Griffith 1,2,3,9,11 &
Malachi Griffith 1,2,3,9,11

Somatic mutations within non-coding regions and even exons may have uni-
dentified regulatory consequences that are often overlooked in analysis work-
flows. Here we present RegTools (www.regtools.org), a computationally
efficient, free, and open-source software package designed to integrate somatic
variants from genomic data with splice junctions from bulk or single cell tran-
scriptomic data to identify variants that may cause aberrant splicing. We apply
RegTools to over 9000 tumor sampleswith both tumorDNAandRNA sequence
data. RegTools discovers 235,778 events where a splice-associated variant sig-
nificantly increases the splicing of a particular junction, across 158,200 unique
variants and 131,212unique junctions. To characterize these somatic variants and
their associated splice isoforms, we annotate them with the Variant Effect Pre-
dictor, SpliceAI, and Genotype-Tissue Expression junction counts and compare
our results to other tools that integrate genomic and transcriptomic data. While
many events are corroborated by the aforementioned tools, the flexibility of
RegTools also allows us to identify splice-associated variants in known cancer
drivers, such as TP53, CDKN2A, and B2M, and other genes.

Alternative splicing of messenger RNA allows a single gene to encode
multiple gene products, increasing a cell’s functional diversity and
regulatory precision. However, splicing malfunction can lead to
imbalances in transcriptional output or even the presence of

oncogenic transcripts1. The interpretation of variants in cancer is fre-
quently focused on direct protein-coding alterations2. However, most
somatic mutations arise in intronic and intergenic regions, and exonic
mutations may also have unidentified regulatory consequences3–6.
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For example, mutations can affect splicing either in trans, by acting on
splicing effectors, or in cis, by altering the splicing signals located on
the affected pre-mRNA transcripts themselves7.

Increasingly,we are identifying the importanceof cis-acting splice-
associated variants in disease processes, including cancer8,9. However,
our understanding of the landscape of these variants is currently lim-
ited, and few tools exist for their discovery. One approach for identi-
fying splice-associated variants has been to predict the strength of
putative splice sites in pre-mRNA fromgenomic sequences, such as the
method used by SpliceAI10–13. With the advent of efficient and afford-
ableRNA-sequencing (RNA-seq),we are also seeing the development of
tools that take the complementary approach of observing products of
alternative splicing directly in RNA sequencing data, such as SUPPA2
and SPLADDER14,15. However, most of these tools have focused on the
role of trans-acting splice-associated variants16. Only a few tools link
products of alternative splicing to specific genomic variants to inves-
tigate their potential cis-acting role in splicing regulation, and these few
tools have limitations that limit their broad application. The sQTL-
based approach taken by LeafCutter17 and others18,19 is designed for
single-nucleotide polymorphisms, which occur with relatively high
frequency, and is thus ill-suited to studying somatic variants, or any
case in which the frequency of a particular variant is very low (often
unique) in a given sample population. Recent tools created for large-
scale analysis of cancer-specific data, such as MiSplice and Veridical,
ignore certain types of alternative splicing, are tailored to specific
analysis strategies and hypotheses, or are otherwise inaccessible to the
end-user due to practical issues such as lack of documentation, diffi-
culty with installation and integration with existing pipelines, limited
computational efficiency, or license restrictions20–22.

In this work, we introduce RegTools23, a free, open-source (MIT
license) software package that is well-documented, easy to use, and
designed to efficiently and flexibly identify potential cis-acting splice-
associated variants in tumors (www.regtools.org). At the highest level,
RegTools contains three sub-modules: a variants module to annotate
genomic variant calls for their potential splicing relevance, a junctions
module to analyze aligned RNA-seq data to extract and annotate splice
junctions, and a cis-splice-effectsmodule that associates these variants
and junctions to identify potential splice-associated variants. Each sub-
module contains one or more commands, which can be used indivi-
dually or integrated together to create customized splice-regulatory
variant analysis pipelines. To demonstrate the ability of RegTools to
identify potential splice-associated variants from tumor data, we ana-
lyze a combination of data available from the McDonnell Genome
Institute (MGI) at Washington University School of Medicine and The
Cancer Genome Atlas (TCGA) project. In total, we apply RegTools to
9173 tumors across 35 cancer types. We compare RegTools with other
tools that integrate genomic and transcriptomic data to identify
potential splice-associated variants, specifically MiSplice20, Veridical21,
and SAVNet24. Junctions identified by RegTools are compared to data
from theGenotype-Tissue Expression (GTEx) project to assesswhether
these junctions are present in normal tissues25. Variants significantly
associated with junctions are processed through VEP and SpliceAI to
compare our findings against splicing consequences predicted based
on variant information alone13,26. We identify splice-associated variants
in known cancer drivers, such as TP53, CDKN2A, and B2M, as well as in
potential drivers, such as RNF145.

Results
The RegTools tool suite supports splice-associated variant dis-
covery by the integration of genome and transcriptome data
RegTools is a tool suite composed of three modules designed to aid
users in a broad range of splicing-related analyses. The variants
module contains the annotate command. The variants annotate
command takes a VCF of somatic variant calls and a GTF of transcript
annotations as input. RegTools has no particular preference for variant

callers or sources of reference transcript annotations. Each variant is
annotated by RegTools with known overlapping genes and transcripts
and is categorized into one of several user-configurable “variant
types”, based on position relative to the edges of known exons. The
variant type annotation depends on the stringency of the splice-
association that the user sets with the “splice variant window” setting.
By default, RegToolsmarks intronic variants within 2 base pairs (bp) of
the exon edge as “splicing intronic”, exonic variants within 3 bp as
“splicing exonic”, other intronic variants as “intronic”, andother exonic
variants as “exonic”. RegTools focuses on “splicing intronic” and
“splicing exonic” in downstream analyses. To allow for the discoveryof
an arbitrarily expansive set of variants, RegTools allows the user to
customize the size of the intronic/exonic windows individually (e.g.,
-i 2 -e 3 for default splice variant window, -i 50 -e 5 for intronic variants
50 bp from an exon edge and exonic variants 5 bp from an exon edge)
or even consider all intronic/exonic variants as potentially splice-
associated (e.g., -I or -E) (Fig. 1A).

The junctions module contains the extract and annotate com-
mands. The junctions extract command takes a BAM/CRAM file con-
taining aligned RNA-seq reads, infers the exon-exon boundaries based
on the CIGAR strings27, and outputs each “junction” as a feature in
BED12 format. The junctions annotate command takes a BED file con-
taining junctions in BED12 format (such as the one produced by junc-
tions extract), a FASTA file containing the reference genome, and aGTF
file containing reference transcriptome annotations and generates a
TSV file, annotating each junction with: the number of acceptor sites,
donor sites, and exons skipped, and the identities of known over-
lapping transcripts and genes. We also annotate the “junction type”,
which denotes if and how the junction is known (i.e., found in the
reference transcriptome). If the donor site is known, but the acceptor
site is not or vice-versa, it is marked as “D” or “A”, respectively. If both
the donor and acceptor sites are known, but their connection is not
known, it is marked as “NDA”. If both the donor and acceptor sites are
unknown, it ismarked as “N”. If the junction is a reference junction (i.e.,
it appears in at least one transcript in the supplied GTF), it is marked as
“DA” (Fig. 1B).

The cis-splice-effects module contains the identify and associate
commands, which identify potential splice-associated variants from
genomic and transcriptomic data. The cis-splice-effects identify com-
mand requires the following files as input: a VCF file containing variant
calls, an alignment file containing aligned RNA-seq reads, a reference
genome FASTA file, and a reference transcriptome GTF file. The identify
pipeline internally relies on variants annotate, junctions extract, and
junctions annotate to output a TSV containing junctions proximal to
putatively splice-associated variants. The identify pipeline can be cus-
tomized using the same parameters as in the individual commands.
Briefly, cis-splice-effects identify first performs variants annotate to
determine the splicing relevance of each variant in the input VCF. For
each variant, a “splice junction region” is determined by finding the
largest span of sequence space between exons that flank the variant-
containing exon. From here, junctions extract identifies splicing junc-
tions present in the RNA-seq alignment. Next, junctions annotate labels
each extracted junction with information from the reference tran-
scriptome as described above and its associated variants basedon splice
junction region overlap (Fig. 1C). To enable the association of variants
with pre-extracted junctions, cis-splice-effects associate performs the
same pipeline as cis-splice-effects identify, but takes junctions from an
existingBED12file, such as onepreviously createdby the junction extract
command, instead of re-extracting from the alignment file.

For our analysis, we annotated the pairs of variants and asso-
ciated junctions identified byRegTools, whichwe refer to as “events”,
with additional information such as whether this association was
identified by a comparable tool, whether the junction was found in
GTEx, and whether the event occurred in a cancer gene according to
the Cancer Gene Census (CGC) (Fig. 1C)25,28. Finally, for each event
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identified by RegTools, we created an IGV session that showed a BED
file with the junction, a VCF file with the variant, and BAM files with
DNA alignments for all samples that contained the variant29. These
IGV sessions were used tomanually review candidate events to assess
whether the association between the variant and junction was bio-
logically plausible.

Overall, RegTools is designed for broad applicability and com-
putational efficiency. By relying on well-established and widely adop-
ted standards for sequence alignments (BAM/CRAM), annotation files
(GTF), and variant calls (VCF) and by remaining agnostic to down-
streamstatisticalmethods and comparisons, our tool canbe applied to
a broad set of scientific queries and datasets. Moreover, performance
tests show that cis-splice-effects identify canprocess a typical candidate

variant list of 1,500,000 variants and a corresponding RNA-seq BAM
file of 82,807,868 reads in just ~8min (Supplementary Fig. 1). Run time
increases approximately linearly with increasing numbers of junctions
and variants.

Pan-cancer analysis of 35 tumor types identifies somatic variants
that alter canonical splicing
RegTools was applied to 9173 samples over 35 cancer types. Thirty-two
of these cohorts came fromTCGAwhile the remaining 3wereobtained
fromother projects being conducted atMGI. Cohort sizes ranged from
21 to 1022 samples. In total, 6,370,631 somatic variants (Supplemen-
tary Fig. 2A) and 2,387,989,201 junction observations (Supplementary
Fig. 2B)were analyzedbyRegTools. By comparing the number of initial

Fig. 1 | RegTools features individual modules and an integrated pipeline for
flexible, streamlined discovery of cis-acting splice-associated variants. A A
schematic depicting how variants (red dots) are associated to exon-exon junctions
(curves). Bydefault, variants annotatemarks variantswithin 3 bpon the exonic side
(green box) and 2 bp on the intronic side (purple box) of an exon edge as poten-
tially splice-associated. Within cis-splice-effects identify, a “splice junction region” is
determined by finding the largest span of sequence space between exons that flank
the exon associated with the splicing-relevant variant. Junctions overlapping the
splice junction region are associated with the variant. Using the “-E” or “-I” option
considers either all exonic variants or all intronic variants, respectively, as poten-
tially splice-associated. B A schematic depicting how RegTools annotates exon-
exon junctions with respect to known transcripts. Cis-splice-effects identify and the
underlying junctions annotate command annotate junctions based on whether the
donor and acceptor site combination is found in the reference transcriptome GTF.
In this example, there are two known transcripts (shown in blue) that overlap a set
of junctions observed in RNAseq data (depicted as junction supporting reads in
red). RegTools checks to see if the observed donor and acceptor splice sites are

found in any of the reference exons and counts the number of exons, acceptors,
anddonors skippedby a particular junction. Doubleblue arrows representmatches
between observed and reference donor/acceptor sites, while single red arrows
show non-reference splice sites. Junctions with a known donor but unknown
acceptor or vice-versa are annotated as “D” or “A”, respectively. If both sites are
known but do not appear in combination in any transcripts, the junction is anno-
tated as “NDA”, whereas if both sites are unknown, the junction is annotated as “N”.
If the junction is known to the reference GTF, it is marked as “DA”. C A schematic
depicting the overall RegTools analysis workflow. The cis-splice-effects identify
command relies on the variants annotate, junctions extract, and junctions annotate
submodules. This pipeline takes variant calls and RNA-seq alignments along with
genome and transcriptome references andoutputs information about events (pairs
of variants and associated junctions). Sourcedata are provided as a SourceDatafile.
‘BAM’ refers to a binary alignmentmap file. ‘GTF’ refers to the gene transfer format.
‘VCF’ refers to the variant call format. ‘FA’ refers to fasta format. ‘BED’ refers to
browser extensible data. ‘TSV’ refers to tab separated value format.
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variants to the number of statistically significant variants, we see that
RegTools produces a highly prioritized list of potential splice-
associated variants (Supplementary Fig. 3). In addition, when analyz-
ing the junctions within each sample, we found that known junctions
present in the reference transcriptome are frequently seen within
GTEx data while non-reference junctions are rarely seen within GTEx
(Supplementary Fig. 4). These represent potential tumor-specific
junctions. We identified 235,778 significant events for non-reference
junctions that use a known donor and unknown acceptor (D),
unknown donor and known acceptor (A), or a unknown combination
of a known donor and a known acceptor (NDA) (“Methods”, Supple-
mentary Fig. 2C, Supplementary Files 1 and 2). In addition, we identi-
fied 5157 events for known (DA) junctions (Supplementary Files 3 and
4). Thus, while splice-associated variants usually result in a non-
reference junction occurring, they may also alter the relative amounts
of known junctions. Generally, significant events were evenly dis-
tributed among thenon-reference junction types considered (D, A, and

NDA). The number of significant events increased as the splice variant
window size increased, with both the E and I results being comparable
in number. Notably, hepatocellular carcinoma (HCC) was the only
cohort that had whole genome sequencing (WGS) data available and,
as expected, it exhibited amarked increase in thenumber of significant
events for its results within the “I” splice variant window. This obser-
vation highlights the low sequence coverage of intronic regions that
occurs with whole exome sequencing (WES), which reduces the
potential for the discovery of splice-associated variants within introns.

Variants were analyzed across tumor types for how often each
resulted in either single or multiple non-reference junctions (Fig. 2A).
While variants were most commonly associated with a single non-
reference junction (72.3–83.8%), they could also be associated with
multiple junctions, either of the same type (6.6–10.9%) or of different
types (9.7–16.8%) (Fig. 2B). Variants that are associated with multiple
non-reference junctions of different types were further investigated to
identify how often a particular junction type occurred with another
(Fig. 2C). Most commonly, variants were associated with either
unknown donor or acceptor site usage (A or D) and with an exon-
skipping junction (NDA). These kinds of events were particularly
commonwithin the default window (2 intronic bases or 3 exonic bases
from the exon edge), potentially due to variants within these positions
having a high probability of disrupting the natural splice site, thus
causing the splicing machinery to use a cryptic splice site nearby or
skip the exon entirely. The next most common co-occurrence was a
variant being associated with both unknown donor site usage leading
to A junctions and acceptor site usage leading to D junctions. The
occurrence of a variant associated with the combination of a unknown
donor, unknown acceptor, and exon-skipping was low, and remained
low, even as the search space increased with the larger splice variant
windows. Overall, this analysis highlights that there is evidence that a
single variant can lead to multiple non-reference junctions being
expressed. Tools such as SpliceAI only allow for a single junction to be
associated with a variant and therefore may not completely describe
the splicing effects of the variant in question for up to ~27% of cases.

Orthogonal validation of RegTools using clinical data and ver-
ified splice-associated variants
We tested RegTools against multiple datasets to further validate this
tool suite. The first dataset that we compared againstwas the 10 splice-
site-creating variants that Jayasinghe et al. validated using mini-gene
functional assays20. They selected 11 variants that their tool, MiSplice,
originally identified from TCGA data. These mutations were then
compared to wild-type sequences using a pCAS2.1 splicing reporter
mini-gene functional assay and 10 were validated through sequencing
of alternatively spliced products. These 10 variants were run through
RegTools using corresponding aligned transcriptomic reads for each
sample. RegTools identified an association between all 10 variants and
an aberrant splice junction (Supplementary File 5).

The next dataset that we used to validate RegTools was
MutSpliceDB30. This is a public database that contains manually
reviewed RNA-based evidence of the effects of splice site variants on
splicing. Currently, data is curated fromTCGAand theCancer Cell Line
Encyclopedia31–33. When we accessed MutSpliceDB, there were 211
entries. Out of these 211 entries, 208 were annotated by MutSpliceDB
as either intron inclusion or exon skipping events. We used the
mutations provided and the correspondingRNAalignments toprocess
each of these mutations through RegTools. We detected all 211
manually reviewed splice site variants (Supplementary File 6).

We also validatedRegToolsusing clinical sequencingprojects that
allowed us to directly test the effects of somatic variants between
multiple tumors within individuals. The first dataset utilized investi-
gated the impact of spatial heterogeneity on genomic characteristics
of gliomas and brain metastases34. For this study, tumor tissue was
surgically resected from 30 patients. Immediately following resection,

Fig. 2 | Splice-associated variants may result in multiple non-reference junc-
tions. A A single splice-associated variant can result in a single non-reference
junction, multiple non-reference junctions of the same junction type, or multiple
non-reference junctions of different junction types. Depicted is a variant (colored
dots) resulting in a single non-reference junction (orange), a variant resulting in two
non-reference junctions that both use alternate donor sites (purple), and a variant
resulting in multiple junctions of different types (green). B Stacked bars showing
how often significant splice-associated variants are associated with only one junc-
tion (orange), multiple junctions of the same type (purple), ormultiple junctions of
different types (green). C Bar chart showing how often each junction combination
occurs when a single splice-associated variant results in multiple junctions of dif-
ferent types in each of the RegTools splice variant windows used. Source data are
provided as a Source Data file. ‘A’ refers to a junction that matches a known splice
acceptor site but has an unknown donor site. ‘D’ refers to a junction that matches a
known donor but an unknown acceptor. ‘NDA’ refers to an unknown connection of
known donors and acceptor sites. ‘E’ refers to exonic. ‘I’ refers to intronic.
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each sample was dissociated into multiple (2–4) spatially distinct
tumor regions that then underwent WES and RNA sequencing. We ran
RegTools to identify splice-associated variants within each distinct
tumor region. A benefit of the heterogeneity of these samples and the
multisector approach that was used is that we were able to interrogate
many examples of clonal and subclonal splice variants. This allowed us
to validate associations within other tumor regions based on whether
the variant was also present within those regions. Through this
approach, we validated 134 out of 146 splice-associated variants in
samples where multiple sectors shared the same variant and aberrant
junction. Conversely, we found 142 splice-associated variants out of
212 in which one sector contained a variant and non-reference splice
junction but other regions in which both the variant and associated
junction were absent (Supplementary File 7). In other words, the
events predicted by RegTools in the RNA data reflected the spatial
heterogeneity of somatic mutations observed in the DNA. This pro-
vides a formof biological validation that ismore representative of true
splicing biology than a typical mini-gene assay approach.

Another dataset that we employed for a conceptually similar
biological validation was treatment-matched naive and post-treatment
recurrence samples of small cell lung cancer (SCLC)35. By applying
RegTools to these samples, we found splice-associated variants that
persisted from the treatment-naive sample to the recurrence sample
(0–36.0%). In addition,we identified sampleswhere a splice-associated
variant was lost due to treatment or arose post-treatment, either
through the growth of a previously existing subclone or the emer-
gence of a splice-associated variant (64.0–100%) (Supplementary
File 8). In this analysis, the RegTools results reflected the temporal
heterogeneity of the tumors under treatment.

We also validated RegTools using long-read sequencing data to
confirm the full-length structure of alternatively spliced isoforms
inferred from short-read data. For this analysis, we used a well-
described breast cancer cell line, HCC1395. For a normal comparator,
we used HCC1395’s matched lymphoblastoid cell line, HCC1395BL. For
each of these samples, whole genome, exome, and RNA-seq were
performed. For HCC1395, Oxford Nanopore Technologies long-read
sequencing was performed using the Direct RNA Sequencing Kit and
Direct cDNA Sequencing Kit. After applying RegTools to the bulk
genomic and transcriptomic data and obtaining candidate splice-
associated variants, we validated 80% of non-reference junctions
observed within the short-read data and confirmed the resulting
transcript sequences (Supplementary File 9).

Finally, we validated RegTools on a single-cell RNA (scRNA)
sequencing dataset from a study investigating the mechanisms of
response to immune checkpoint blockade (ICB) using MCB6C, a
transplantable organoid model of urothelial carcinoma with features
of human basal-squamous urothelial carcinoma36. This model had also
been subjected toWES of DNA isolated from tumor cells andmatched
normal cells from the tail of the mouse originally used to create the
tumor. Analysis of the tumor/normal WES DNA was performed to
identify somatic variants. We then identified single cells from three
conditions and surveyed their expressed transcripts for evidence of
the somatic variants. Each cell was then classified as either tumor or
normal, based on somatic variant expression, and separated into cor-
responding alignment files. More specifically, to identify a tumor cell,
we used the following criteria: two or more somatic variants detected
with >20X total coverage, >5 variant reads, and >10% variant allele
fraction (VAF). To identify a normal cell, we used the following criteria:
no variants detected and two or more of the variant positions with
>20X total coverage. Using these criteria, we defined 5587 tumor cells
and 17,022 normal cells for a total of 22,609 single cells. We processed
these cells through an updated version of RegTools modified to sup-
port single-cell data, treating each cell as an individual sample. This
approach allowed us to greatly increase our power for determining
tumor-associated splice-associated variants due to all mutations being

tumor-specific and each cell representing an independent readout of
the splicing machinery. We were able to identify over 300 splice-
associated variants that hadmultiple cells of support, including within
Trp53 and Bin1 (Fig. 3, Supplementary Fig. 5). Within Trp53, we identify
an intronic variant (mm10, chr11:g.69589711T>G; c.1067 + 2 position of
intron 8of transcriptNM_011640.3) that is associatedwith the skipping
of exon 8. This exon contains important domains such as binding
domains for DNA and Axin in addition to a bipartite nuclear localiza-
tion signal (UniProt: P02340)37,38. Similarly, we identify an intronic
variant in Bin1 (mm10, chr18:g.32432427T>C, c.1516 + 2 position of
intron 14 of transcript NM_001083334.1) that is associated with an
alternate donor site being used and partial retention of intron 14. Bin1
has been shown to have tumor suppressor properties and shown to be
dysregulated in breast cancer, neuroblastoma, prostate cancer, and
melanoma39–43. The ability to identify such events at a single-cell
resolution may provide insights into how splice-associated variants
contribute to tumorigenesis and tumor progression in ways that are
not possible through bulk sequencing approaches.

Through the application of RegTools to the aforementioned
datasets, we were able to identify high-quality, validated splice-
associated variants. In addition, we utilized well-designed clinical and
scRNA datasets to identify tumor-specific splice-associated mutations
more stringently. These results demonstrate the broad utility of
RegTools and its ability to identify splice-associated somatic variants
robustly.

Pan-cancer analysis reveals splice-associated variants within
known cancer genes and potential cancer drivers
While efforts have beenmade to associate variants with specific cancer
types, there has been little focus on identifying cancer-specific splicing
variants, even those in known cancer genes. TP53 is a rare example of a
driver whose splice-associated variants are well-characterized in
numerous cancer types44. To investigate the impact of variants on
splicing disruption in cancer genes across different cancer types, we
further analyzed significant events to identify genes that had recurrent
splice-associated variants.Within each cohort, we looked for recurrent
genes using two separate metrics: a binomial test p-value and the
fraction of samples (see “Methods”). For ranking and selecting the
most recurrent genes, eachmetric was computed by pooling across all
cohorts. For assessing cancer-type specificity, each metric was then
also computed using only results froma given cancer cohort. Since the
mechanismsunderlying the creation of non-reference junctions versus
the disruption of existing splicing patterns may be different, analysis
was performed separately for D/A/NDA junctions (Fig. 4, Supplemen-
tary Files 10–13) and DA junctions (Supplementary Fig. 6, Supple-
mentary File 14), which allowedmultiple test correction in accordance
with the noise of the respective data. We identified 6954 genes in
which there was at least one variant predicted to influence the splicing
of a D/A/NDA junction. The 99th percentile of these genes, when
ranked by either metric, is significantly enriched for known cancer
genes, as annotated by the CGC (ranked by binomialp-values:p = 1.26E
−19, 31/70 = 0.44 (0.32,0.57 95%CI); ranked by the fraction of samples:
p = 2.97E−24, 35/70 = 0.50 (0.39,0.62 95% CI); hypergeometric test,
one-tailed). We also identified 3643 genes in which there was at least
one variant predicted to influence the splicing of a DA (known) junc-
tion. The 99th percentile of these genes, when ranked by eithermetric,
is also significantly enriched for known cancer genes, as annotated by
the CGC (ranked by binomial p-values: p = 1.20E−04, 10/37 = 0.27
(0.14,0.44 95% CI); ranked by the fraction of samples: p = 4.03E−07,
13/37 = 0.35 (0.20,0.53 95% CI); hypergeometric test, one-tailed). We
also performed the same analyses using either the TCGA or MGI
cohorts alone. The TCGA-only analyses gave similar results to the
combined analyses,with the 99th percentile of genes found in theD/A/
NDA and DA analyses again enriched for cancer genes (Supplementary
Figs. 7 and 8). Due to small cohort sizes, in the MGI-only analyses, we
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identified only 329 and 208 genes in the D/A/NDA and DA analyses,
respectively. The 99th percentile of genes was not significantly enri-
ched for cancer genes in either of these analyses (Supplementary
Figs. 9 and 10).

When analyzing D, A, and NDA junctions, we saw an enrichment
for known tumor suppressor genes among the most splice-disrupted
genes, including several examples where splice disruption is a known

mechanism such as TP53, PTEN, CDKN2A, and RB1. Specifically, in the
case of TP53, we identified 428 variants that were significantly asso-
ciated with at least one non-reference junction. One such example is
the intronic SNV (GRCh38, chr17:g.7673609C>A) that was identified in
an OSCC sample and was associated with exon skipping and non-
reference acceptor site usage, with 23 and 41 reads of support,
respectively (Supplementary Fig. 11). The cancer types in whichwe find

Fig. 3 | Intronic SNV in Trp53 associated with exon 8 skipping. A Schematic of a
single nucleotide splice donor variant (yellow star; mm10, chr11:g.69589711T>G;
c.1067+2 position of intron 8 of transcript NM_011640.3) within intron 8 of Trp53
(depicted as a series of boxes representing exons 7–11 with curved lines repre-
senting RNA splicing events). The variant appears to cause skipping of an exon (red
curve). This result was found using the default splice variant window parameter
(i2e3). B UMAP projection of single cells from MCB6C organoid-derived tumors

with high confidence tumor cells (orange) and high confidence normal cells (blue)
highlighted. C UMAP projection of single cells from MCB6C organoid-derived
tumorsoverlaidwith log2 expression values for Trp53.DZoomedviewof theUMAP
projection showing cells containing the Trp53 exon skipping event (red dots).
E Violin plots comparing the normalized junction score of the non-reference exon
skipping event in cells with andwithout the Trp53 variant. Source data are provided
as a Source Data file.
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splice disruption of TP53 and other known cancer genes is in con-
cordancewith associations between genes and cancer types described
by CGC and CHASMplus28,45. Our identification of known drivers, many
with known susceptibilities to splicing dysregulation in cancer, indi-
cates the ability of our method to identify true splicing effects that are
likely cancer-relevant. Additional splice-associated variants were
found in genes not currently known to be linked to cancer. Some of

these genes, such as IGHG1 and IGHG2, are located in regions of the
genome with high genetic variability in the population and are at loci
where the reference genome may not represent structural diversity.
These regions tend to result in false positive somatic variant calls and
misalignment of short reads. These factors will complicate the identi-
fication of true splice regulatory variants in these regions. These
regions also undergo V-D-J recombination in B cells, and some aligned

Article https://doi.org/10.1038/s41467-023-37266-6

Nature Communications |         (2023) 14:1589 7



reads could correspond to DNA from infiltrating immune cells. Some
studies exclude immune-related regions of the genome entirely
because of these kinds of complexities20. However, disruption of these
genes may still be relevant to tumor biology and certainly tumor
immunotherapy46–49.

Another cancer gene that had a recurrence of splice-associated
variants was B2M. Specifically, we identified six samples with intronic
variants on either side of exon 2 (Fig. 5). These mutations were iden-
tified by VEP to be either splice acceptor or splice donor variants and
were also identified by Veridical. SpliceAI identified one of the non-
reference junctions for each variant but failed to identify additional
non-reference junctions, as SpliceAI only identifies one non-reference
acceptor and donor site per variant. Notably, 4 out of the 6 samples
that these variants were found in are Microsatellite instability-high
(MSI-H) tumors50. Mutations inB2M, particularly within colorectalMSI-
H tumors, have been identified as a method for tumors to disable HLA
class I antigen-mediated presentation51. Furthermore, in a study of
patients treated with immune checkpoint blockade (ICB) therapy,
defects affecting B2M were observed in 29.4% of patients with pro-
gressing disease52. In the same study, B2M mutations were exclusively
seen in pre-treatment samples from patients who did not respond to
ICB or in post-progression samples after the initial response to ICB52.
There are several genes responsible for the processing, loading, and
presentation of antigens that are mutated in cancers53. However, no
proteins can be substituted for B2M in HLA class I presentation, thus
making the loss of B2M a particularly robust method for ICB
resistance54. We also observed exonic variants and variants further in
intronic regions that may disrupt canonical splicing of B2M. These
findings raise the possibility that intronic variants may enable tumor
immune escape by disrupting B2M splicing.

We also identified recurrent splice-associated variants in genes
not currently known to be cancer genes (according to CGC), such as
RNF145. RegTools identified a recurrent single base pair deletion that
results in the skipping of exon 8 (Supplementary Fig. 12). This gene is a
paralog of RNF139, which is mutated in several MSI-H cancer types55.
This event was found in STAD, UCEC, COAD, and ESCA tumors, all of
which are considered to beMSI-H tumors50. Analyzing the effect of the
skipping of exon 8 on the mRNA sequence, we observed that the
reading frame remains intact, possibly leading to a gain of function
event. In addition, the skipping of exon 8 leads to the removal of a
transmembrane domain and a phosphorylation site, S352, which could
be important for the regulation of this gene56. Based on these findings,
splicing disruption of RNF145 warrants further investigation as a
potential driver mechanism underlying MSI-H cancers.

While most of our analysis focused on splice-associated variants
that resulted in non-reference junctions, we also investigated variants
that shifted the relative amounts of known junctions. We identified
several variants that led to alternate donor usage in CDKN2A, a key
tumor suppressor gene57 (Supplementary Fig. 13). When these variants
are present, an alternate known donor site is used that leads to the
formation of the transcript ENST00000579122.1 instead of
ENST00000304494.9, the transcript that encodes for p16ink4a, a known
tumor suppressor. The transcript that results from the use of this
alternative donor site is missing the last 28 amino acids that form the
C-terminal end of p16ink4a. Notably, this removes two phosphorylation

sites within the p16 protein, S140 and S152, which could disrupt the
association of p16ink4a with CDK458. This highlights the importance of
including known transcripts in alternative splicing analyses, as variants
may alter splice site usage in a way that results in a known, but still
potentially oncogenic transcript product.

RegTools provides usability and flexibility in integrating geno-
mic and transcriptomic data to identify splice-associated
variants
To evaluate the performance of RegTools, we compared our results to
those of SAVNet, MiSplice, Veridical, VEP, and SpliceAI13,20,21,24,26. These
tools vary in their inputs and methodology for identifying splice-
associated variants (Fig. 6A). Like RegTools, SAVNet, MiSplice, and
Veridical integrate genomic and transcriptomic data to identify splice-
associated variants and have also been utilized in pan-cancer analyses
that have demonstrated the utility of this integrative approach. How-
ever, there are practical and methodological limitations of these tools
that impede their broad application. MiSplice and Veridical have
varying levels of code availability or portability.MiSplice is available via
GitHub as a collection of Perl scripts built to run via Load Sharing
Facility (LSF) job scheduling. To run MiSplice without an LSF cluster,
code changes are required. Veridical is only available via a subscription
through CytoGnomix’s MutationForecaster. Similar to RegTools,
SAVNet is available via GitHub or a Docker image. However, unlike
Regtools, SAVNet relies on splicing junction files generated by STAR59

whereas RegTools can use RNA-seq alignment files from HISAT260,
TopHat261, or STAR, thus allowing it to be easily integrated into
bioinformatics workflows that use any of these popular aligners or to
use pre-existing alignments. To demonstrate the time needed to gen-
erate the STAR splicing junction files to run SAVNet, we benchmarked
RegTools and SAVNet using LUAD samples from TCGA (Supplemen-
tary Fig. 14). On average, Regtools was 3.2x faster, taking into account
the unalignment and realignment SAVnet required to generate the
necessary starting files from STAR. Moreover, these tools prescribe
certain analytical and methodological frameworks, whereas Regtools
is designed to offer greater usability and flexibility to control how
genomic and transcriptomic data is integrated. SAVNet, MiSplice, and
Veridical employ particular statistical methods for the identification of
splice-associated variants, whereas Regtools can be integrated at any
step in the pipeline. In addition, some of these tools filter out any
transcripts found within the reference transcriptome, precluding the
investigation of canonical splicing patterns as can be done by exam-
ining DA junctions with RegTools, and do not allow the user to set a
custom window in which they wish to focus splice-associated variant
discovery (e.g., around the splice site, all exonic variants, etc.). Fur-
thermore, MiSplice does not include exon-skipping events. RegTools
addresses these limitations by identifying what pieces of information
to extract from a sample’s genome and transcriptome in a basic, easily
configurable way that allows for generalization.

The set of splice-associated variants identifiedusingRegtoolswith
its default splice variant window (-i 2 -e 3) are most similar to MiSplice
and SAVNet. These three result sets contain fewer splice-associated
variants compared to Veridical due to the more tightly constrained
search space for variants to be associated with splicing alterations.
Thus, we primarily focused our comparison to MiSplice and SAVNet

Fig. 4 | Pan-cancer analysis of cohorts from TCGA and MGI reveals genes
recurrently disrupted by variants that are associated with non-canonical
splicing patterns. Heatmaps showing how often genes are disrupted by variants
associated with non-canonical splicing patterns across samples in a given cohort.
A Rows correspond to the 40 most frequently recurring genes, as ranked by
binomial p-value across cohorts (see Methods, “Identification of genes with
recurrent splice-associated variants”). Genes are clustered by whether they were
annotated by the CGC as an oncogene (red), an oncogene and tumor suppressor
gene (yellow), or a tumor suppressor gene (green). Shading corresponds to

−log10(p-value) and columns represent cohorts. Blue marks within cells indicate
that the genewas annotated byCHASMplus as a driver within a given TCGA cohort.
B Rows correspond to the 40 most frequently recurring genes, as ranked by the
fraction of samples across cohorts. Shading corresponds to the fraction of samples
and columns represent cohorts. Blue dots within cells indicate that the gene was
annotated by CHASMplus as a driver within a given TCGA cohort. These results
were obtained using the default splice variant window parameter (i2e3). Source
data are provided as a Source Data file.
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Fig. 5 | Several SNVs in B2M are associated with alternate acceptor and
alternate donor usage. A IGV snapshot of three intronic variant positions
(GRCh38—chr15:g.44715421A>G, chr15:g.44715422G>T, chr15:g.44715702G>C)
found to be associated with alternate acceptor and donor usage that leads to the
formation of unknown transcript products. This result was found using the default
splice variant windowparameter (i2e3).B Zoomed in view of the variants identified

by RegTools that are associated with alternate acceptor and donor usage. Two of
these variant positions flank the acceptor site and one variant flanks the donor site
of the area that is being affected. C Sashimi plot visualizations for samples con-
taining the identified variants that show (1) alternate acceptor usage (red) or (2)
alternate donor usage (orange).
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(Fig. 6B). Compared to Regtools and SAVNet, MiSplice finds fewer
splice-associated variants, which could be due to MiSplice not exam-
ining exon skipping junctions, starting with only the subset of variants
in the Multi-Center Mutation Calling inMultiple Cancers (MC3) MAF62,
and limiting junctions to those within 20 bp of the variant. However,
MiSplice also detected many splice-associated variants that were not
detected by Regtools or SAVNet, which could be due to these tools
focusing on variants only within a limited distance from exon edges
(Fig. 6A). The concordance between Regtools and SAVNet was rela-
tively high, and their respective concordances with MiSplice were
comparable. These results illustrate that distinct methodologies will
lead to distinct findings, which will be necessary to address the mani-
fold goals and challenges of studying cis-splicing regulation. Focusing
on variants closer to the exon edge may lead to a higher rate of true
discoveries, given the established mechanistic relationship between
splice site disruption and alternative splicing. However, there are also
more distal splice regulatory elements, such as splicing enhancers and
silencers or genomic sequences that resemble splice site motifs that
can have effects on splicing patterns. Therefore, one may wish to
expand the genomic area in which to identify splice-associated var-
iants. An example that illustrates the importance of this is the identi-
fication of several breast cancer samples that have splice-associated
variantswithinGATA3byRegTools. In our i50e5 analysis, wedetected a
set of highly recurrent GATA3 mutations. Specifically, when focusing

on mutations that occur within the RegTools splice variant window of
i50e5 but outside the default window, we found 20 samples that
contained the same 2 bp deletion (rs763236375), with 19 of these
samples having alternative donor site usage for exon 5 of GATA3
leading to a frameshifted protein product that lacks one of two zinc
finger DNA binding domains. Within these samples, the non-reference
junction becomes the dominant splice product compared to the
canonical splice junction. Interestingly, this is a highly tumor-specific
event, with this splice-associated variant only being found within
breast cancer (Supplementary File 11). GATA3 is a transcription factor,
and its expression in breast cancer strongly correlates with estrogen
receptor (ER) expression. This gene is mutated in approximately
10–15% of breast cancer cases, suggesting these are driver mutations,
and during progression tometastatic breast cancer, GATA3 expression
decreases63,64. These results highlight the value of a tool such as
Regtools, which offers methodological flexibility to meet the diverse
goals and challenges of studying splicing regulation.

In their recent publications, SAVNet24, MiSplice20, and Veridical21,22

also analyzed data from TCGA, with only minor differences in the
number of samples included for each study. We also compared the
results of these studies with the results obtained by RegTools when
expanding the set of variants to include all exonic and intronic space.
In this comparison, Veridical and RegTools identify a large number of
splice-associated variants (Fig. 6C). While this approach is the least

Fig. 6 | Comparison of RegTools with other tools for identifying cis-acting
splice-associated variants. A Conceptual diagram of contrasting approaches
employed by various tools for identifying cis-acting splice-associated variants (red
dots). For this example, the splice variant window (purple boxes) for RegTools is its
default splice variant window employed for our main analyses. An italicized tool
name indicates that the tool only considers genomic data for making its calls,
instead of a combination of genomic and transcriptomic data. B Venn diagram
comparing the splice-associated variants identified by RegTools, using its default
splice window parameter, MiSplice, and SAVNet. C UpSet plot comparing splice-

associated variants identified by RegTools using both the -E and -I splice variant
window parameters to those identified by other splice variant predictors and
annotators using their default settings. Each tool’s total number of variant pre-
dictions is shown on the left sidebar graph. The number of variants specific to each
tool or shared between different combinations of tools is indicated by the bar
graph along the top, with the individual or connected dots indicating the tools.
Source data are provided as a Source Data file. ‘VEP’ refers to the Variant Effect
Predictor.
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biased, it is undoubtedly hindered by specificity and multiple testing
challenges. This is due not just to the larger number of candidates, but
also to the biology of splicing regulation—the density of true cis-
regulatory splicing elements is not uniform in the genome and is, for
example, higher around exon edges65. While we do know that some
splicing regulatory elements such as exonic splicing silencers (ESSs),
exonic splicing enhancers (ESEs), intronic splicing silencers (ISSs), and
intronic splicing enhancers (ISEs) can be quite distal66–68, running
RegTools or any tool in a mode that is capable of detecting these
certainly creates a signal to noise challenge and will lead to candidate
event lists with a higher false positive rate. Still, the identification of
these distal splicing regulatory sequences and variants that modify
their effects will ultimately be required to fully uncover the underlying
mechanisms of diseases, such as cancer.

BothVEP andSpliceAI only consider information about the variant
and its genomic sequence context and do not consider information
from a sample’s transcriptome. A variant is considered to be splice-
associated according to VEP if it occurs within 1–3 bases on the exonic
side or 1–8 bases on the intronic side of a splice site. SpliceAI does not
have restrictions on where the variant can occur in relation to the
splice site, but by default, it predicts one alternate donor and acceptor
site within 50bp of the variant, based on reference transcript
sequences from GENCODE. VEP and SpliceAI results were obtained by
running each tool on all starting variants for the 35 cohorts included in
this study. SpliceAI and VEP called a large number of variants either
alone or in agreement with each other that none of the tools that
integrate transcriptomic data from samples identified (Fig. 6C). This
indicates the limited reliability of approaches that make predictions
based on genomic data alone without interrogating sample-matched
transcriptomic data, particularly in a disease context featuring non-
reference junctions.

Discussion
Splice-associated variants are often overlooked in traditional genomic
analysis. Of the tools that exist, someonly analyze genomic data, focus
on junctions where either the canonical donor or acceptor site is
affected (missing junctions that result from complete exon skipping),
or consider only those variants within a narrow distance from known
splice sites. To address these limitations, we created RegTools, a
software suite for the analysis of variants and junctions in a splicing
context. By relying on well-established standards for analyzing geno-
mic and transcriptomic data and allowing flexible analysis parameters,
we enable users to apply RegTools to a wide set of scientific meth-
odologies and datasets. RegTools can include any kind of junction
type, including exon-exon junctions that have ends that are not known
donor/acceptor sites according to theGTFfile (N junction according to
RegTools), and any splice variant window size. To facilitate the use,
portability, and integration of RegTools into analysis workflows, we
provide documentation and example workflows via (regtools.org) and
provide a Docker image with all necessary software installed.

In order to demonstrate the utility of our tool, we applied
RegTools to 9173 tumor samples across 35 tumor types to profile the
landscape of this category of variants. From this analysis, we report
133,987 variants that are associated with non-reference junctions that
were missed by VEP or SpliceAI. We found splice-associated variants
beyond the splice site consensus sequence, shift transcript usage
between known transcripts, or result in non-reference exon-exon
junctions. Specifically, we describe notable findings within B2M,
CDKN2A, and RNF145. These results demonstrate the utility of
RegTools in discovering putative splice-associated variants and con-
firm the importance of integrating RNA and DNA sequencing data in
understanding the consequences of somatic mutations in cancer. To
allow for validation and further investigationof these identifiedevents,
wemake all of our annotated result files (Supplementary Files 1–4) and
recurrence analysis files (Supplementary Files 10–14) available.

For certain RegTools results, such as those from E and I splice
variant windows, there are higher numbers of splice-associated var-
iants identified because of the broader region of consideration. One
must be careful in comparing these results to other tools that have a
more focused region of consideration. The increased number of
events identified by RegTools in these comparisons does not neces-
sarily suggestpoor sensitivity of theother tools, but rather reflects that
RegTools is being run in a mode that casts a wider net in order to
identify more distal splice-associated variants, such as those in distal
splice regulatory elements. This consideration highlights and rein-
forces that RegTools is highly configurable, and certain parameters
that one can modify will impact sensitivity and specificity. For users
that are concernedwith avoiding falsepositives and lessworried about
maximizing sensitivity, we provide guidance on best practices for use
of RegTools via our documentation at regtools.org. This includes the
type of alignments RegTools supports, how to set the region of con-
sideration, which junction types to focus on (e.g., NDA, DA, etc.), how
to interpret the statistics results, recommended count thresholds, how
to annotate with supporting information from GTEX, SpliceAI, and
VEP, and much more. Because of the versatility and modularity of
RegTools, we believe that it can be implemented into a variety of
bioinformatics workflows to aid in the processing of sequencing data
in disease studies or to answer specific questions about splicing
biology.

Understanding the splicing landscape is crucial for unlocking
potential therapeutic avenues in precision medicine and elucidating
the basic mechanisms of splicing and cancer progression. The
exploration of non-reference tumor-specific junctions will undoubt-
edly lead to translational applications, fromdiscovering tumor drivers,
diagnostic and prognostic biomarkers, and drug targets, to identifying
a previously untapped source of neoantigens for personalized immu-
notherapy. While our analysis focused on splice-associated variants in
cancer, we believe RegTools will play an important role in answering a
broad range of questions across different disease states and biological
processes by helping users extract splicing information from tran-
scriptome data and linking it to somatic or germline variant calls. The
computational efficiency of RegTools and the increasing availability of
genomic and transcriptomic datasets will enable the investigation of
splice regulatory motifs that have proven difficult to define such as
exonic and intronic splicing enhancers and silencers. Any group with
paired DNA- and RNA-seq data stands to benefit from the functionality
of RegTools.

Methods
The research reported in this manuscript complies with all relevant
ethical regulations relating to animal studies, genomic sequencing,
and human subjects research as specified by the Washington Uni-
versity School of Medicine Institutional Animal Care and Use Com-
mittee (#20-0115), Human Research Protections Office and
Institutional Review Board (IRB #201810230 and #202001196).

Software implementation
RegTools is written in C++. CMake is used to build the executable from
the source code. We have designed the RegTools package to be self-
contained to minimize external software dependencies. A Unix plat-
form with a C++ compiler and CMake is the minimum prerequisite for
installing RegTools. Documentation for RegTools ismaintained as text
files within the source repository to minimize divergence from the
code. We have implemented common file-handling tasks in RegTools
with the help of open-source code from Samtools/HTSlib27 and
BEDTools69 in an effort to ensure fast performance, consistent file
handling, and interoperabilitywith any aligner that adheres to the BAM
specification. Statistical tests are conducted within RegTools using
the RMath framework. GitHub actions and Coveralls are used to
automate and monitor software compilation and unit tests to ensure
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software functionality. We utilized the Google Test framework to write
unit tests.

RegTools consists of a core set of modules for variant annotation,
junctionextraction, junction annotation, andGTFutilities. Higher-level
modules such as cis-splice-effects use the lower level modules to per-
formmore complex analyses. We hope that bioinformaticians familiar
with C/C++ can re-use or adapt the RegTools code (released under the
open-source MIT license) to implement similar tasks.

Benchmarking
Performancemetricswere calculated for all RegTools commands. Each
command was run with default parameters on a single blade server
(Intel(R) Xeon(R) CPU E5-2660 v2@ 2.20GHz) with 10 GB of RAM and
10 replicates for eachdata point (Supplementary Fig. 1). Specifically for
cis-splice-effects identify, we started with random selections of somatic
variants, ranging from 10,000–1,500,000, across 8 data subsets. Using
the output from cis-splice-effects identify, variants annotatewas run on
somatic variants from the 8 subsets (range: 0–17,742) predicted to
have a splicing consequence. The function junctions extract was per-
formed on the HCC1395 tumor RNA-seq data aligned with HISAT to
GRCh37 and randomly downsampled at intervals ranging from
10–100%. Using output from junctions extract, junctions annotate was
performed for 7 data subsets ranging from 1000–500,000 randomly
selected junctions.

Benchmark tests revealed an approximately linear performance
for all functions. Variance between real and CPU time is highly
dependent on the I/O speed of the write-disk and could account for
artificially inflated real-time values given multiple jobs writing to the
same disk simultaneously. The most computationally expensive
function in a typical analysis workflowwas junctions extract, which on
averageprocessed 33,091 reads/second (CPU) and took an averageof
43.4 real vs 41.7 CPU minutes to run on a full bam file (82,807,868
reads total). The function junctions annotate was the next most
computationally intensive function and took an average of 33.0 real/
8.55 CPU minutes to run on 500,000 junctions, processing 975
junctions/second (CPU). The other functions were comparatively
faster with cis-splice-effects identify and variants annotate able to
process 3105 and 118 variants per second (CPU), respectively. To
process a typical candidate variant list of 1,500,000 variants and a
corresponding RNA-seq BAM file of 82,807,868 reads with cis-splice-
effects identify takes ~8.20 real/8.05 CPU minutes (Supplemen-
tary Fig. 1).

Performance metrics were also calculated for the statistics script
and its associated wrapper script that handles dividing the variants
into smaller chunks for processing to limit RAMusage. This command,
compare_junctions, was benchmarked in January 2020 using Amazon
Web Services (AWS) on a m5.4xlarge instance, based on the Amazon
Linux 2 AMI, with 64Gb of RAM, 16 vCPUs, and a mounted 1 TB SSD
EBS volume with 3000 IOPS. These data were generated from running
compare_junctions on each of the included cohorts, with the largest
being our BRCA cohort (1022 samples) which processed 3.64 events
per second (CPU).

For the benchmarking comparison between RegTools and SAV-
Net, we utilized fifty LUAD samples from TCGA. For our comparison,
we imagined a use case where an individual would start by down-
loading alignment files from the Genomic Data Commons (GDC) Data
Portal. For RegTools CPU and real-time measurements, regtools junc-
tions extract, regtools cis-splice-effects associate, and compare_junctions
were run for each sample. For SAVNet’s CPU and real-time measure-
ments, alignment files were first unaligned using SamToFastq and then
realigned using STAR to get each sample’s splice junction file, which is
unavailable from the GDC Data Portal. Following these steps, SAVNet
was then run and the timewas added to that from the unalignment and
realignment step. On average, it took SAVNet 3.2 times (real-time) as
long as RegTools to run on the same samples when considering the

unalignment and realignment required to generate the necessary
starting files (Supplementary Fig. 14).

Using RegTools to identify cis-acting, splice-associated variants
RegTools contains three sub-modules: “variants”, “junctions”, and “cis-
splice-effects”. For complete instructions on usage, including a
detailed workflow for how to analyze cohorts using RegTools, please
visit regtools.org.

Variants annotate
This command takes a list of variants in VCF format. The file should be
gzipped and indexedwith Tabix70. The usermust also supply a GTF file
that specifies the reference transcriptome used to annotate the
variants.

The INFO column of each line in the VCF is populated with
comma-separated lists of the variant-overlapping genes, variant-
overlapping transcripts, the distance between the variant and the
associated exon edge for each transcript (i.e., each start or end of an
exon whose splice variant window included the variant) defined as
min(distance_from_start_of_exon, distance_from_end_of_exon), and the
variant type for each transcript.

Internally, this function relies on HTSlib to parse the VCF file and
search for features in the GTF file which overlap the variant. The splice
variant window size (i.e., the maximum distance from the edge of an
exon used to consider a variant as splice-associated) can be set by the
options “-e <number of bases>” and “-i <number of bases>” for exonic
and intronic variants, respectively. The variant type for each variant
thus depends on the options used to set the splice variantwindow size.
Variants captured by the window set by “-e” or “-i” are annotated as
“splicing_exonic” and “splicing_intronic”, respectively. Alternatively,
the “-E” and “-I” options can be used to analyze all exonic or intronic
variants. These options do not change the variant type annotation, and
variants found in these windows are labeled simply as “exonic” or
“intronic”. By default, single exon transcripts are ignored, but they can
be included with the “-S” option. By default, output is written to
STDOUT in VCF format. To write to a file, use the option “-o <PATH/
TO/FILE>”.

Junctions extract
This command takes an alignment file containing aligned RNA-seq
reads and infers junctions (i.e., exon-exon boundaries) based on
skipped regions in alignments as determined by the CIGAR string
operator codes. These junctions are written to STDOUT in BED12 for-
mat. Alternatively, the output can be redirected to a file with the “-o
<PATH/TO/FILE>”. RegTools ascertains strand information based on
the XS tags set by the aligner, but can also determine the inferred
strand of transcription based on the BAM flags if a stranded library
strategy was employed. In the latter case, the strand specificity of the
library canbe provided using “-s <INT>”where0 = unstranded, 1 = first-
strand/RF, 2 = second-strand/FR. We have tested RegTools with
alignment files from HISAT260, TopHat261, STAR59, kallisto71, or
minimap272, though we recommend HISAT2 or STAR for short read
data and minimap2 for long read data. We have tested RegTools with
data from the following sequencing platforms: Illumina, Oxford
Nanopore Technologies, and 10X Genomics.

Users can set thresholds for minimum anchor length and mini-
mum/maximum intron length. The minimum anchor length deter-
mines howmany contiguous,matched base pairs on either side of the
junction are required to include it in the final output. The required
overlap can be observed amongst separated reads, whose union
determines the thickStart and thickEnd of the BED feature. By
default, a junction must have 8 bp anchors on each side to be
counted but this can be set using the option “-a <minimum anchor
length>”. The intron length is simply the end coordinate of the
junction minus the start coordinate. By default, the junction must be
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between 70 bp and 500,000bp, but theminimumandmaximumcan
be set using “-i <minimum intron length>” and “-I<maximum intron
length>”, respectively.

For efficiency, this tool can be used to process only alignments in
a particular region as opposed to analyzing the entire BAM file. The
option “-r <chr>:<start>-<stop>” can be used to set a single contiguous
region of interest. Multiple jobs can be run in parallel to analyze
separate non-contiguous regions.

Junctions annotate
This command takes a list of junctions in BED12 format as input and
annotates them with respect to a reference transcriptome in GTF for-
mat. The observed splice-sites used are recorded based on a reference
genome sequence in FASTA format. The output is written to STDOUT
in TSV format, with separate columns for the number of splicing
acceptors skipped, number of splicing donors skipped, number of
exons skipped, the junction type, whether the donor site is known,
whether the acceptor site is known,whether this junction is known, the
overlapping transcripts, and the overlapping genes, in addition to the
chromosome, start, stop, junction name, junction score, and strand
taken from the input BED12 file. This output can be redirected to a file
with “-o /PATH/TO/FILE”. By default, single exon transcripts are
ignored in the GTF but can be included with the option “-S”.

Cis-splice-effects identify
This command combines the above utilities into a pipeline for identi-
fying variants that may cause aberrant splicing events by altering
splicing motifs in cis. As such, it relies on essentially the same inputs: a
gzipped and Tabix-indexed VCF file containing a list of variants, an
alignment BAM/CRAM file containing alignedRNA-seq reads, a GTF file
containing the reference transcriptome of interest, and a FASTA file
containing the reference genome sequence of interest.

First, the list of variants is annotated. The splice variant window
size is set using the options “-e”, “-i”, “-E”, and “-I”, just as in variants
annotate. The splice junction region size (i.e., the range around a
particular variant in which an overlapping junction is associated with
the variant) can be set using “-w <splice junction region size>”. By
default, this range is not a particular number of bases but is calculated
individually for each variant, depending on the variant type annota-
tion. For “splicing_exonic”, “splicing_intronic”, and “exonic” variants,
the region extends from the 3’ endof the exondirectly upstreamof the
variant-associated exon to the 5’ end of the exon directly downstream
of it. For “intronic” variants, the region is limited to the intron con-
taining the variant. Single-exons can be kept with the “-S” option. The
annotated list of variants in VCF format (analogous to the output of
variants annotate) can be written to a file with “-v /PATH/TO/FILE”.

The BAM file is then processed based on the splice junction
regions to produce the list of junctions present within these regions. A
file containing these junctions in BED12 format (analogous to the
output of junctions extract) can be written using “-j /PATH/TO/FILE”.
The minimum anchor length, minimum intron length, and maximum
intron length can be set using “-a”, “-i”, and “-I” options, just as in
junctions extract.

The list of junctions produced by the preceding step is then
annotated with the information presented in the junctions annotate
section above. In addition, each junction is annotated with a list of
associated variants (i.e., variants whose splice junction regions over-
lapped the junction). The final output is written to STDOUT in TSV
format (analogous to the output of junctions annotate) or can be
redirected to a file with “-o /PATH/TO/FILE”.

Cis-splice-effects associate
This command is similar to cis-splice-effects identify, but takes the BED
output of junctions extract in lieu of an alignment file with RNA align-
ments. Aswith cis-splice-effects identify, each junction is annotatedwith

a list of associated variants (i.e., variants whose splice junction regions
overlapped the junction). The resulting output is then the same as cis-
splice-effects identify, but limited to the junctions provided as input.

Analysis
Dataset description. 32 cancer cohorts were analyzed from TCGA.
These cancer types are Adrenocortical carcinoma (ACC), Bladder
Urothelial Carcinoma (BLCA), Brain Lower Grade Glioma (LGG), Breast
invasive carcinoma (BRCA), Cervical squamous cell carcinoma and
endocervical adenocarcinoma (CESC), Cholangiocarcinoma (CHOL),
Colon adenocarcinoma (COAD), Esophageal carcinoma (ESCA), Glio-
blastomamultiforme (GBM), Head and Neck squamous cell carcinoma
(HNSC), Kidney Chromophobe (KICH), Kidney renal clear cell carci-
noma (KIRC), Kidney renal papillary cell carcinoma (KIRP), Liver
hepatocellular carcinoma (LIHC), Lung adenocarcinoma (LUAD), Lung
squamous cell carcinoma (LUSC), LymphoidNeoplasmDiffuse Large B
cell Lymphoma (DLBC), Mesothelioma (MESO), Ovarian serous cysta-
denocarcinoma (OV), Pancreatic adenocarcinoma (PAAD), Pheochro-
mocytoma and Paraganglioma (PCPG), Prostate adenocarcinoma
(PRAD), Rectum adenocarcinoma (READ), Sarcoma (SARC), Skin
Cutaneous Melanoma (SKCM), Stomach adenocarcinoma (STAD),
Testicular Germ Cell Tumors (TGCT), Thymoma (THYM), Thyroid
carcinoma (THCA), Uterine Carcinosarcoma (UCS), Uterine Corpus
Endometrial Carcinoma (UCEC), and Uveal Melanoma (UVM). Three
cohorts were derived from patients at Washington University in St.
Louis. These cohorts are Hepatocellular Carcinoma (HCC), Oral
SquamousCell Carcinoma (OSCC), and Small Cell LungCancer (SCLC).

Data processing for cohorts with bulk transcriptome data. We
applied RegTools to 35 tumor cohorts. Genomic and transcriptomic
data for 32 cohorts were obtained from The Cancer Genome Atlas
(TCGA). Information regarding the alignment and variant calling for
these samples is described by the Genomic Data Commons data
harmonization effort73. Whole exome sequencing (WES) mutation
calls for these samples from MuSE74, MuTect275, VarScan276, and
SomaticSniper77, were left-aligned, trimmed, and decomposed
to ensure the correct representation of the variants across the mul-
tiple callers.

Samples for the remaining three cohorts, HCC78, SCLC35, and
OSCC79, were sequenced at Washington University in St. Louis. Geno-
mic data were produced by WES for SCLC and OSCC and whole gen-
ome sequencing (WGS) for HCC. Normal genomic data of the same
sequencing type and tumor RNA-seq data were also available for all
subjects. Sequence data were aligned using the Genome Modeling
System (GMS)80 using TopHat2 for RNA and BWA-MEM81 for DNA. HCC
and SCLCwere aligned to GRCh37while OSCCwas aligned to GRCh38.
Somatic variant calls were made using Samtools v0.1.127, SomaticSni-
per2 v1.0.277, Strelka V0.4.6.282, and VarScan v2.2.676,82 through the
GMS. High-quality mutations for all samples were then selected by
requiring that a variant be called by two of the four variant callers.

Additional samples from previously published projects at
Washington University in St. Louis were used for the orthogonal vali-
dation analysis. Samples included in this analysis were of the following
cancer types: SCLC35 and brain tumors corresponding to GBM or lung/
breastmetastases to the brain34. Processing of the SCLC sequence data
was described above. Methods for the processing of the brain tumor
sequencedatawere as follows.All fastq fileswere aligned to the human
reference genome build GRCh38 with HISAT260 for RNA and BWA-
MEM81 for DNA. Somatic variant calling was performed using Strelka82,
VarScan76, Mutect75, and Pindel83. To remove any false-positive variants
and discover TERT promoter mutations, custom capture validation
sequencing was performed to an average depth of 582× for all unique
variant sites using NimbleGen SeqCap EZ Prime Choice Probes (12,388
total probes created from 11,425 variants and 51 genes; 1.49Mb of
sequence targeted for capture).
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Mice used for MCB6C experiments. All animal experiments were
carried out according to the guidelines of theAmericanAssociation for
Laboratory Animal Science under a protocol approved by the Institu-
tional Animal Care and Use Committee at Washington University and
performed in Association for Assessment and Accreditation of
Laboratory Animal Care International (AAALAC)-accredited specific
pathogen-free facilities at Washington University School of Medicine
in St. Louis. Forty-five 5- to 6-week-old Black 6 (B6NTac) male mice
were purchased from Taconic Biosciences and were allowed to accli-
mate for a week before in vivo experiments were performed. The
maximal tumor size/burden permitted by our institutional review
board is 15% of body weight (combined burden if more than one mass
present) and mean tumor diameter = or >20mm in adult mice (~25 g).
The maximal tumor size/burden permitted by our institutional review
board was not exceeded.

Mousebladderorganoidculture formouse injection. Onepreviously
archived frozen vial of singly suspendedMCB6C organoid was thawed
at least 2 weeks before mouse injection and expanded weekly in cul-
ture at least 2 times. For MCB6C organoid culture expansion, growth
factor reducedMatrigelwas thawedon ice forminimally 1½h. Pelleted
MCB6C cells were washed and resuspended in 1ml of Advanced
DMEM/F12+++ medium (Advanced DMEM/F12 medium [125634028,
Gibco] supplemented with 1% penicillin/streptomycin, 1% HEPEs, and
Glutamax) and cell concentration was determined by automated cell
counter. To establish organoid culture, 50 µl Matrigel tabs with 10,000
cells/tab were generated and plated on 6-well suspension culture
plates, 6 tabs wells. Tabs were incubated at 37 °C for 15min until
Matrigel was hardened, returned to tissue culture incubator, and cul-
tured with mouse bladder organoid medium (MBO medium -
Advanced DMEM/F12+++ medium supplemented with EGF, A-83-01,
Noggin, R-Spondin, N-Acetly-L-cysteine, andNicotinamide).Organoids
were replenishedwith freshMBOmedium every 3–4 days and also one
day before mouse injection.

Mouse injectionwithMCB6Corganoid cells. A single cell suspension
of MCB6C organoid was generated by TrypLE Express (12605010,
Gibco) digestion organoid Matrigel tabs at 37 °C for 15min. After
digestion, pelleted cells were washed and resuspended in PBS to
determine cell concentration. After cell concentration was adjusted to
20 million/ml in PBS, organoid cells were mixed with growth factor
reducedMatrigel at 1:1 ratio before being injected subcutaneously into
the left flank of the mouse (1 million/100 µl cells each mouse). Tumor
developmentwasmonitored using digital calipers to assess the length,
width, and depth of each tumor. For ICB, each mouse was injected
intraperitoneally with 250 µg anti-PD1 (BioXcell, catalog #BE0146,
clone #RMP1-14) and 200 µg anti-CTLA-4 (BioXcell, catalog #BE0164,
clone 9D9) day 9 and 12 after organoid implantation. For isotype
controls, each mouse was injected with 250 µg rat IgG2a (BioXcell,
catalog #BE0089, clone 2A3) and 200 µg IgG2b (BioXcell, catalog
#BE0086, clone #MPC-11). For CD4+ T cell depletion, each mouse was
injected with 250 µg anti-CD4 (BioXcell, catalog #BE0003-1, clone
#GK1.5) day 0 and 7 after organoid depletion. Rat IgG2b (BioXcell,
catalog #BE0090, clone #LTF-2) was used as an isotype control for
anti-CD4.

Harvesting MCB6C tumors for single-cell RNA-seq analysis. Based
on 10x Genomics Demonstrated Protocols, 14 days after organoid
implantation, tumors were dissected from euthanized mice, cut into
small pieces of ~2–4 mm3, and further processed into dead-cell
depleted single cell suspension following manufacturer’s protocol
using Tumor Dissociation Kit and MACS Dead Cell removal Kit (Mil-
tenyi Biotec). Briefly, tumor tissue pieces were transferred to gentle-
MACS C tube containing enzyme mix before loading onto a
gentleMACSOctoDissociatorwith Heaters for tissue digestion at 37 °C

for 80min. After tissue dissociation was completed, cell suspension
was transferred to a new 50ml conical tube, and supernatant was
removed after centrifugation. Cell pellet was resuspended in RPMI
1640 medium, filtered through a prewetted 70 µM cell filter, strained,
pelleted, and resuspended in red cell lysis buffer and incubated on ice
for 10min. After adding thewashbuffer, the cell suspensionwaspelted
and resuspended in the wash buffer. To remove dead cells, Dead Cell
RemovalMicrobeadswere added to resuspend cell pellet (100 µl beads
per 107 cells) using a wide-bore pipette tip. After incubation for 15min
at room temperature, the cell-microbead mixture was applied onto a
MS column. Dead cells remained in the column and the effluent
represented to the live cell fraction. The percentage of viable cells was
determined by an automated cell counter. Dead cell removal was
repeated if the percentage of viable cells did not reach above 90%. Two
rounds of centrifugation/resuspension were carefully performed for
two rounds in 1xPBS/0.04% BSA using a wide-bore tip. To submit cell
samples for single-cell RNA-seq analysis, cell concentration was
determined accurately by sampling cell suspension twice and counting
each sampling twice and adjusted to 1167 cells/µl.

Single-cell RNA-seq analysis of MCB6C cells. 40μl of each cell
suspension was submitted to the Genome Technology Access Center/
McDonnell Genome Institute (GTAC/MGI) for single-cell RNA-seq
analysis using the 5’v2 library kit (10x Genomics catalog #PN-1000263)
with BCR and TCR V(D)J enrichment kits (10x genomics catalog #PN-
1000016 and #PN-1000005, respectively). FASTQs and Cell Ranger
outputs were generated. Alignment and gene expression quantifica-
tion was done using CellRanger count (v5.0). Matrices were imported
into Seurat84 (v4.0.1) for filtering cells, QC, clustering, etc. To filter
suspected dying cells, cells were clustered before filtering and cells
clustering based on high mitochondrial gene expression were identi-
fied. The cutoff of mitochondrial expression was based on the
expression level that captures most of these cells. Doublets were fil-
tered based on high UMI expression, with the top 0.9% of genes
removed fromeach condition in each replicate. Cutoffs for thefiltering
of cells with low feature detection were done by assigning cell type to
each cell with CellMatch, identifying cells that did not have enough
features for their cell type to be predicted, and identifying average
feature expression in these cells. Aftering filtered cells were removed,
the remaining cells were scaled, normalized, and clustered following
Seurat’s vignette.

Tissue culture and nucleic acid isolation of HCC1395/HCC1395BL.
HCC1395 (catalog #CRL-2324) and HCC1395BL (catalog #CRL-2325)
cell lines were purchased from the American Type Culture Collection
(ATCC,Manassas, VA). The cells were grown at 37 °C in95%O2–5%CO2.
HCC1395BL cells were cultured in Iscove’s modified Dulbecco’s med-
ium (IMDM) with 20% fetal bovine serum (FBS), and 1% penicillin/
streptomycin (P/S). HCC1395 cells were cultured in RPMIwith 10% FBS,
and 1%P/S. Cellswereminimally passaged fromthe timeofpurchase to
reach desired cell numbers. GenomicDNA andRNAwere isolated from
cells of the same passage. RNA was isolated using RNeasy Mini Kit
(Qiagen, Valencia, CA) following the manufacturer’s instructions with
the recommended on-column DNase I (Qiagen) digestion. Genomic
DNA was isolated with the DNA Blood and Tissue Kit (Qiagen) with an
RNase A digestion (40 µg/uL). All RNA and DNA were eluted in water.

Long read sequencing of HCC1395 cell line. The HCC1395 cell line is
described as being of tissue origin: mammary gland; breast/duct. The
patient’s cancer was described as: TNM stage I, grade 3, primary ductal
carcinoma. The patient received chemotherapy prior to isolation of
the tumor85. This tumor is considered “Triple-Negative” by classic
typing: ERBB2-negative (aka HER2/neu), PR-negative, and ER-negative.
Otherwise, it is one of those difficult to classify by expression-based
molecular typing but is likely of the “Basal” sub-type86. For a normal
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comparator, we used HCC1395’s matched lymphoblastoid cell line,
HCC1395BL. The HCC1395BL cell line was created from a B lympho-
blast thatwas transformed by the EBV virus. For eachof these samples,
WGS, WES, and bulk RNA-seq were performed. Whole-genome
sequencing was performed to a target median coverage depth of
~30x for the normal samples and ~50x for the tumor sample. Exome
sequencing was performed to a target median coverage depth of
~100x. RNA-seq was performed for both tumor and normal. In addi-
tion, Oxford Nanopore Technologies long-read sequencing was per-
formed using both the Direct RNA Sequencing Kit (catalog #SQK-
RNA002) and Direct cDNA Sequencing Kit (catalog #SQK-DCS109).
TheDirect RNA Sequencing Kit yielded 1.1million readswith 1.07Gb of
passed bases and read lengths ranging from ~500 basepairs (bp) to
~8 kilobases (kb). The Direct cDNA Sequencing Kit was run twice. The
first run used the RNA from the same mRNA enrichment as the RNA
Direct library. This sequencing run yielded 2.48 million reads with
2.36 Gb of passed bases and read lengths ranging from ~500bp to
~9.6 kb. The second Direct cDNA Sequencing Kit was applied to a new
RNA extraction, so a separate mRNA enrichment from the first two
runs. This run yielded 6.6 million reads with 4.05 Gb passed bases and
read lengths ranging from ~500bp to ~8 kb. These data were aligned to
GRCh38 using recommended settings for minimap272. To confirm
junctions identified by Illumina sequencing, junctions were extracted
from ONT alignment files and combined for the three libraries. For
each junction we were attempting to validate, we required that there
be at least one read of support that utilized either the donor or the
acceptor site of the junction of interest. If there was no evidence of
either donor or acceptor site being used, we concluded that we had
insufficient coverage to validate that particular junction.

Candidate junction filtering. To generate results for 4 splice variant
window sizes, we ran cis-splice-effects identify with 4 sets of splice
variant window parameters. For our “i2e3” window (RegTools
default), to examine intronic variants within 2 bases and exonic
variants within 3 bases of the exon edge, we set “-i 2 -e 3”. Similarly,
for “i50e5”, to examine intronic variants within 50 bases and exonic
variants within 5 bases of the exon edge, we set “-i 50 -e 5”. To view all
exonic variants, we simply set “-E”, without “-i” or “-e” options. To
view all intronic variants, we simply set “-I”, without “-i” or “-e”
options. TCGA samples were processed with GRCh38.d1.vd1.fa
(downloaded from the GDC reference file page at https://gdc.cancer.
gov/about-data/gdc-data-processing/gdc-reference-files) as the
reference fasta file and gencode.v29.annotation.gtf (downloaded via
the GENCODE FTP) as the reference transcriptome. OSCC was pro-
cessed with Homo_sapiens.GRCh38.dna_sm.primary_assembly.fa and
Homo_sapiens.GRCh38.79.gtf (both downloaded from Ensembl).
HCC and SCLC were processed with Homo_sapiens.GRCh37.dna_
sm.primary_assembly.fa and Homo_sapiens.GRCh37.87.gtf (both
downloaded from Ensembl).

Statistical filtering of candidate events. We refer to a statistical
association between a variant and a junction as an “event”. For each
event identified by RegTools, a normalized score (norm_score) was
calculated for the junction of the event by dividing the number of
reads supporting that junction by the sum of all reads for all junctions
within the splice junction region for the variant of interest. This metric
is conceptually similar to a “percent-spliced in” (PSI) index, but mea-
sures the presence of entire exon-exon junctions, instead of just the
inclusion of individual exons. If there were multiple samples that
contained the variant for the event, then the mean of the normalized
scores for the samples was computed (mean_norm_score). If only one
sample contained the variant, its mean_norm_score is equal to its
norm_score. This value was then compared to the distribution of
samples which did not contain the variant to calculate a p-value as the
percentage of the norm_scores from these samples which are at least

as high as the mean_norm_score computed for the variant-containing
samples. We performed separate analyses for events involving known
junctions (DA) and those involvingnon-reference junctionswhichused
at least one known splice site (D/A/NDA), based on annotations in the
corresponding reference GTF. For this study, we filtered out any
junctions which did not use at least one known splice site (N) and
junctionswhichdid not have at least 5 reads of evidence across variant-
containing samples. The Benjamini–Hochberg procedure was then
applied to the remaining events. Following correction, an event was
considered significant if its adjusted p-value was ≤0.05.

Annotation with GTEx junction data and other splice prediction
tools. Events identified by RegTools as significant were annotatedwith
information from GTEx, VEP, CTAT splicing, SpliceAI, MiSplice, and
Veridical. GTEx junction information was obtained from the GTEx
Portal. Specifically, the exon-exon junction read counts file from the v8
release was used for data aligned to GRCh38 while the same file from
the v7 release was used for the data aligned to GRCh37. Mappings
between tumor cohorts and GTEx tissues can be found in Supple-
mentary File 15. We annotated all starting variants with VEP in the
“per_gene” and “pick”modes. The “per_gene” setting outputs only the
most severe consequence per gene while the “pick” setting picks one
line or block of consequence data per variant. We considered any
variant with at least one splice-associated annotation to be “VEP sig-
nificant”. All variants were also processed with SpliceAI using the
default options. A variant was considered to be “SpliceAI significant” if
it had at least one score greater than 0.2, the developers’ recom-
mended value for high recall of theirmodel. Instructions and scripts to
annotate with GTEx and SpliceAI are available at regtools.org and in
the RegTools GitHub repository. Variants identified byMiSplice20 were
obtained from the paper’s supplemental tables and were lifted over to
GRCh38. Variants identified by SAVNet24 were obtained from the
paper’s supplemental tables and were lifted over to GRCh38. Variants
identified by Veridical21,22 were obtained via download from the link
referenced within the manuscript and lifted over to GRCh38.

Visual exploration of statistically significant candidate events. IGV
sessions were created for each event identified by RegTools that was
statistically significant. Each IGV session file contained a bed file with
the junction, a vcf file with the variant, and an alignment file for each
sample that contained the variant. Additional information, such as the
splice sites predictedbySpliceAI,were also added to these sessionfiles
to enhance the exploration of these events. Events of interest were
manually reviewed in IGV to assess whether the association between
the variant and junction made sense in a biological context (e.g.,
affected a known splice site, altered a genomic sequence to lookmore
like a canonical splice site, or the non-reference junction disrupted
active or regulatory domains of the protein product). An extensive
reviewof literature and visualizations of junctionusage in the presence
and absence of the variant were also used to identify biologically
relevant events.

Identification of genes with recurrent splice-associated variants.
For each cohort, we calculated a p-value to assess whether the splicing
profile fromaparticular genewas significantlymore likely to be altered
by somatic variants. Specifically, we performed a 1-tailed binomial test,
considering the number of samples in a cohort as the number of
attempts. Success was defined by whether the sample had evidence of
at least one splice-associated variant in that gene. The null probability
of success, pnull was calculated as follows:

pnull = 1� ð1� Pr V ^ Að ÞÞs ð1Þ

where s is the total number of base positions residing in any of the
gene’s splice variant windows, V is the event that a somatic variant
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occurred at such a base position, andA is the event that this variant was
significantly associated with at least one junction in our analysis. The
joint probability that both V and A occurred was estimated by dividing
the total number of splice-associated variants across all cohort samples
by the total number of base positions residing in any splice variant
window (analogous to s, but across all genes). The value of s was
computedbased on the exon and transcript definitions in the reference
GTF used for performing RegTools analyses on a given cohort.

We also calculated overall metrics, in order to rank genes. For
each set of cohorts (e.g., TCGA-only, MGI-only, combined), an overall
p-value was computed for each gene according to the above formula,
pooling all of the samples across the included cohorts, and the fraction
of samples was simply calculated by dividing the number of samples in
which an event occurred within the given gene by the total number of
samples, pooled across the included cohorts. The reference GTF used
for analyzing the TCGA samples (i.e., gencode.v29.annotation.gtf) was
used for all sets of cohorts.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Sequence data for each cohort analyzed in this study are available
through the Database of Genotypes and Phenotypes (dbGaP) at the
following accession IDs: phs000178 for TCGA cohorts, phs001106 for
HCC, phs001049 for SCLC, phs001623 for OSCC, and phs002612 for
GBM/Brainmetastases. Both short read and long readRNA sequencing
data for the HCC1395 cell line are available in the Sequence Read
Archive (SRA) under the following accession IDs: SRX278519 and
PRJNA934933. Single-cell RNAexpressiondata is available in the SRA at
the accession: PRJNA934380 Statistically significant events for D, A,
and NDA junctions across the four variant splicing windows used are
available via Supplementary Files 1 and2. Statistically significant events
for DA junctions are available as Supplementary Files 3 and 4. Com-
plete results of gene recurrence analysis are available as Supplemen-
tary Files 10–14. Source data are provided with this paper.

Code availability
RegTools23 is open source (MIT license) and available at https://github.
com/griffithlab/regtools/. All scripts used in the analyses presented
here are also provided. For ease of use, a Docker container has been
createdwith RegTools, SpliceAI, R, and Python 3 installed (https://hub.
docker.com/r/griffithlab/regtools/). This Docker container allows a
user to run theworkflowwe outline at https://regtools.readthedocs.io/
en/latest/workflow/. Docker is an open-source software platform that
enables applications to be readily installed and run on any system. The
availability of RegTools with all its dependencies as a Docker container
also facilitates the integration of the RegTools software into workflow
pipelines that support Docker images.
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