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In brief

Parikh et al. use single-cell RNA-seq to

characterize the malignant and stromal

cells in adenoid cystic carcinoma (ACC).

Myoepithelial cells express Notch

ligands, while luminal cells show Notch

signaling, consistent with a paracrine

mechanism and the biphasic nature of

ACC. Recurrent ACC ismore luminal, with

increased Notch signaling.

Parikh et al., 2022, Cell Reports 41, 111743
November 29, 2022 ª 2022 The Authors.
https://doi.org/10.1016/j.celrep.2022.111743 ll

mailto:yotam.drier@mail.huji.ac.il
mailto:sidpuram@wustl.edu
https://doi.org/10.1016/j.celrep.2022.111743
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2022.111743&domain=pdf


Report

Single-cell RNA sequencing identifies a paracrine
interaction that may drive oncogenic notch
signaling in human adenoid cystic carcinoma
Anuraag S. Parikh,1,13 Avishai Wizel,2,13 Daniel Davis,2 Armida Lefranc-Torres,3 Alejandro I. Rodarte-Rascon,3

Lauren E. Miller,3,4 Kevin S. Emerick,3,4 Mark A. Varvares,3,4 Daniel G. Deschler,3,4 William C. Faquin,5,6 Jon C. Aster,6,7

Derrick T. Lin,3,4 Bradley E. Bernstein,6,8,9,10 Yotam Drier,2,14,* and Sidharth V. Puram11,12,14,15,*
1Department of Otolaryngology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
2The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem
9112102, Israel
3Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA 02114, USA
4Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA
5Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
6Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
7Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
8Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
9Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
10Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
11Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA
12Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
13These authors contributed equally
14These authors contributed equally
15Lead contact

*Correspondence: yotam.drier@mail.huji.ac.il (Y.D.), sidpuram@wustl.edu (S.V.P.)
https://doi.org/10.1016/j.celrep.2022.111743

SUMMARY

Salivary adenoid cystic carcinoma (ACC) is a rare, biologically unique biphasic tumor that consists of
malignant myoepithelial and luminal cells. MYB and Notch signaling have been implicated in ACC patho-
physiology, but in vivo descriptions of these two programs in human tumors and investigation into their
active coordination remain incomplete. We utilize single-cell RNA sequencing to profile human head and
neck ACC, including a comparison of primary ACC with a matched local recurrence. We define expression
heterogeneity in these rare tumors, uncovering diversity in myoepithelial and luminal cell expression. We
find differential expression of Notch ligandsDLL1, JAG1, and JAG2 inmyoepithelial cells, suggesting a para-
crine interaction that may support oncogenic Notch signaling. We validate this selective expression in three
published cohorts of patients with ACC. Our data provide a potential explanation for the biphasic nature of
low- and intermediate-grade ACC and may help direct new therapeutic strategies against these tumors.

INTRODUCTION

Adenoid cystic carcinoma (ACC) of the head and neck is a rare

tumor arising from themajor andminor salivary glands. Histolog-

ically, low- and intermediate-grade ACC tumors are biphasic,

with cribriform or tubular regions intermixed with solid compo-

nents.1 At a cellular level, these tumors are characterized by

luminal epithelial cells and abluminal myoepithelial cells.1

A hallmark of ACC is chromosomal translocations involving

MYB (or MYBL1).2,3 A unifying feature of these rearrangements

is that they juxtapose the MYB locus to super-enhancer regions

that are bound by MYB protein, resulting in a positive feedback

loop that drives MYB overexpression.4 MYB is subsequently

able to target cell-cycle regulators CDK6 and GMNN that drive

proliferation, as well as TP63, NOTCH1, Notch activators JAG1

and JAG2, and Notch repressor SPEN, which drive diverse

expression programs across myoepithelial and luminal epithelial

cells in these tumors.4 Recent genomic analyses have uncovered

recurrentNOTCH1mutations inACCandsuggestedacritical role

for oncogenic Notch signaling, particularly among high-grade

and recurrent/metastatic tumors.5–7

Despite progress in identifying MYB and NOTCH1 as critical

regulators in ACC, detailed descriptions of the expression pro-

grams within myoepithelial and luminal cells and mechanisms

by which these two major cell types coordinate to drive onco-

genesis are lacking. Furthermore, although these tumors have

a low mutational burden, they have significant intra-tumoral

genetic heterogeneity,5 suggesting that previously utilized bulk
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methods may be insufficient to adequately profile the cellular

phenotypes present in these tumors.

Here, we utilize single-cell RNA sequencing (scRNA-seq) us-

ing the SMART-seq2 protocol8,9 to profile individual cells from

treatment-naive human head and neck ACC tumors and system-

atically characterize the underlying landscape of expression

heterogeneity.

RESULTS

A single-cell transcriptomic atlas for human salivary
ACC
To systematically explore expression heterogeneity in ACC, we

profiled individual cells from seven treatment-naive patients, as

well as one matched local recurrence (Tables S1 and S2). The

pathologic diagnosis of ACC was confirmed by a head and

neck pathologist (W.C.F.) and a second pathologist with exten-

sive experience with the histopathology of ACC (J.C.A.) based

on the presence of classical cribriform morphology and an

immunohistochemical staining profile consistent with ACC

(Table S1). Freshly resected specimens were dissociated to sin-

gle-cell suspensions using a protocol we optimized (see STAR

Methods), flow sorted to deplete non-viable and CD45-positive

cells, and profiled by SMART-seq2 (Figure 1A), which provided

full-length transcripts for sequencing and analysis.8,9 After qual-

ity control, we retained transcriptomes for a total of 1,702 high-

quality single cells.

Clustering of all cells based on expression revealed 14 groups

(Figure S1A). To identify malignant cell clusters, we inferred

copy-number alterations (CNAs) from the transcriptomic data

(see STAR Methods).11 Cells in clusters exhibiting high CNAs

were classified as malignant (Figures 1B and S1B), and cells

categorized as malignant also expressed a previously described

ACC signature (Figure S1C),12 as well asMYB (Figure S1C), sup-

porting their identity as ACCcells. Themost commonCNAswere

loss of segments of chromosome 12 and gain of segments of

chromosome 18 (Figure 1B). However, there were no coherent

CNAs across tumors, consistent with prior analyses empha-

sizing a high degree of genetic diversity in ACC tumors.5,13 There

were also no significant associations between specific CNAs

and malignant cell clusters. The distinct clustering of malignant

from non-malignant cells (Figure 1C), combined with the high

concordance between these measures, provided confidence in

our classification approach. In total, our dataset included 951

malignant and 751 non-malignant cells.

We then utilized major cell-type markers to classify non-malig-

nant cells as cancer-associated fibroblasts (CAFs; Figure S1D),

endothelial cells (Figure S1E), and white blood cells (Figure S1F),

which did not exhibit CNAs (Figure 1B). Given the large number of

CAFs sequenced, we further investigated CAF diversity by

scoring for signatures of pan-cancer CAF subtypes (Figures 1D

and S1G; Table S3).10 We identified proliferative CAFs express-

ing myosatellite cell markers PAX714 and MYF515 (Figure 1D,

pink) that were present only in tumors originating in the oral cavity

(ACC7, ACC21, and ACC22), consistent with the presence of

submucosal muscle tissue in the oral cavity. We identified myofi-

broblasts (Figure 1D, green) expressing pericyte markers CDH6

and MCAM16 that were seen across tumors. Two other CAF

clusters corresponded to inflammatory CAF subtypes. One

expressed TFAP2A and NTRK3 (Figure 1D, blue), which have

been associated with epithelial-to-mesenchymal transition

(EMT) and poor prognosis in multiple cancer types,17,18 while

the other expressed CHRDL1 and TNXB (Figure 1D, maroon),

which have previously been associated with improved prognosis

and decreased EMT, invasion, and migration in oral and breast

cancers.19–21 The final cluster corresponded to desmoplastic

CAFs expressing adipose stromal cell markers PLPP4 and

COL11A1 (Figure 1D, yellow), which have previously been

associated with poor prognosis.22 Taken together, our findings

begin to characterize the ACC stromal microenvironment that

may contribute to tumor biology and prognosis in previously

unappreciated ways.

Defining in vivo myoepithelial and luminal programs in
ACC
We next explored malignant cell expression heterogeneity.

Globally, malignant cells clustered by patient (Figures 2A and

2B), consistent with other single-cell tumor studies,23–29 except

for two clusters of cells from multiple patients (Figure 2B, clus-

ters 3 and 4). When clusters were annotated based on known

myoepithelial (Figure S2A) and luminal (Figure S2B) markers

from prior studies, as well as global expression along a myoepi-

thelial-luminal axis (Figure 2C), patient-specific clusters scored

highly for myoepithelial markers, while those comprised of cells

from multiple patients scored highly for luminal markers. These

data suggest that myoepithelial cell expression may vary sub-

stantially between patients, while luminal cells are dominated

by a shared expression program. Notably, both patient-specific

and shared clusters have previously been described in breast

cancer.29,30 We also demonstrated that myoepithelial and

luminal markers were inversely related across cells (Figure S2C),

supporting our use of the chosen markers for classification.

Given the prominent inter-tumoral heterogeneity of myoepi-

thelial cells, we then defined expression heterogeneity in each

Figure 1. Single-cell RNA sequencing (scRNA-seq) reveals expression heterogeneity in adenoid cystic carcinoma

(A) Schematic shows scRNA-seq workflow. Freshly resected tumors were dissociated to single-cell suspensions and fluorescence-activated cell sorted (FACS)

into 96-well plates after CD45 depletion. Library prep and sequencing were performed per the SMART-Seq2 protocol.

(B) Heatmap of inferred CNAs across all cells, as predicted by inferCNV, separatesmalignant cells from non-malignant cells. Each row represents a cell, and each

column represents a genomic locus. Non-malignant cells are displayed in the top panel, with numbers in the color bar representing cluster number corresponding

to Figure S1A. Malignant cells are shown in the bottom panel, with numbers in the color bar corresponding to the patient from whom the cells were obtained.

(C) Uniform manifold approximation and projection (UMAP) of all cells that passed quality control (QC) filtering shows distinct clusters of cancer cells, cancer-

associated fibroblasts, endothelial cells, and white blood cells. Cells are colored by patient sample.

(D) UMAP of all cancer-associated fibroblasts (CAFs) that passed QC filtering, annotated by the two most differentially upregulated genes and by previously

reported pan-cancer CAF subtypes,10 shows five putative subtypes of CAFs present across ACC tumors.
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Figure 2. Heterogeneity of the malignant compartment defines in vivo myoepithelial and luminal programs in ACC

(A) UMAP shows malignant cells from primary tumors with cells colored by patient sample, demonstrating that inter-tumoral heterogeneity is prominent.

(B) UMAP shows 10 clusters identified by unsupervised Louvain clustering using the same UMAP coordinates as (A).

(C) UMAP shows all malignant cells from primary tumors colored on a gradient frommyoepithelial (blue) to luminal (yellow), based onmarker expression, using the

same UMAP coordinates as (A) and (B). Luminal cells cluster together regardless of patient of origin.

(D) Heatmap shows expression of the top 200 genes in each of the four NMF programs detected in an individual representative sample, ACC2. Key genes are

annotated on the left, and inferred cell identity is shown on the top. Cells (columns) and genes (rows) are clustered by hierarchical clustering according to Pearson

correlation. Myoepithelial, luminal, and cell-cycle programs are detected by unsupervised NMF analysis of a single tumor.

(legend continued on next page)

4 Cell Reports 41, 111743, November 29, 2022

Report
ll

OPEN ACCESS



tumor independently using unbiased non-negative matrix

factorization (NMF) (Figure 2D, representative tumor, ACC2)

and compared the resulting differential programs across pa-

tients in ametaclustering analysis (Figure 2E). This approach re-

vealed four malignant cell expression programs present across

multiple tumors in our cohort (Figure 2E; Table S3). Gene set

enrichment analysis (Table S4) revealed that one program was

enriched for genes (CLDN3, KRT19, KIT) with preferential

expression in luminal-like cancer cells31 (p < 9 3 10�17) and

developing epithelium (p < 10�5) (‘‘luminal program’’). A second

program included myoepithelial markers (MYLK, ACTA2, TP63,

CAV1) and was enriched for genes involved in EMT

(p < 4 3 10�15) (‘‘myoepithelial program’’). A third program

was enriched for genes (NDUFA1, COX5B, UQCR10) involved

in oxidative phosphorylation (p < 10�24) (‘‘OxPhos program’’).

The final program was enriched for genes expressed during

the cell cycle (p < 4 3 10�28) (‘‘cell-cycle program’’).32 Classi-

fying cells according to these shared programs (Figure S2D),

there was significant overlap between the OxPhos and myoepi-

thelial programs and a lesser degree of overlap between the

OxPhos and luminal programs, suggesting that OxPhos cells

may be myoepithelial or luminal cells undergoing a high degree

of oxidative phosphorylation. We found similar overlaps be-

tween the cell-cycle program and myoepithelial and luminal

programs, suggesting that these are cycling myoepithelial or

luminal cells (Figures 2D and S2D).

To verify consistency between the myoepithelial and luminal

meta-programs and our marker-based classification (Figure 2C),

we plotted cells across a myoepithelial-luminal axis defined by

known markers and examined the expression of the genes

driving the myoepithelial (Figure 2F) and luminal (Figure 2G)

meta-programs, which we identified de novo. There was clearly

higher expression for the corresponding meta-program in the

cells that scored highly for the known markers of each cell type,

validating our classifications.We thus provide a detailed descrip-

tion of in vivomyoepithelial and luminal cell programs in ACC and

demonstrate how they may vary across cells and tumors.29,30

MYB and Notch expression heterogeneity suggest a
paracrine interaction that drives Notch signaling
We next assessed MYB and Notch expression heterogeneity

given their established roles in ACC pathogenesis.4,33 We first

scored malignant cells for expression of MYB (Figure 3A), as

well as MYBL1 and MYBL2 (Figure S3A). MYB was expressed

in a subset of cells in all tumors (Figure 3A), and immunohisto-

chemistry validated diffuse MYB positivity (Figure 3B, brown).

We next scoredmalignant cells for expression ofNOTCH1 and

NOTCH2 (Figure S3B), Notch target genes (Figure S3C), and a

Notch expression signature (NRARP, NOTCH3, HES4, HEY1,

and HEY2) (Figure 3C). Although NOTCH1 and NOTCH2 were

variably expressed, the Notch target genes and expression

signature, indicating active Notch signaling, were primarily ex-

pressed in luminal cells (Figures 3C and S3C). This finding was

supported by higher Notch target expression in cells that were

more luminal and less myoepithelial (Figure S3D), as well as

Notch target expression in a higher fraction of luminal cells,

compared with myoepithelial cells (Figure S3E). Staining for acti-

vated intracellular NOTCH1 (NICD1; Figure 3D, brown)

confirmed localization to luminal cells, substantiating previous

reports that Notch is only activated in luminal cells.36 For refer-

ence, classic ACC morphologies are shown in Figure S3F.

As Notch receptors are typically activated by ligands ex-

pressed on neighboring cells,37 we then performed an unbiased

analysis to identify ligand-receptor interactions and frame Notch

signaling within the context of overall cell-cell communication.

Weuncoveredmultiple putative ligand-receptor pairs (Figure 3E),

suggesting bidirectional signaling between myoepithelial and

luminal cells. Our analysis revealed eight potential Notch

signaling interactions; in seven of these, the ligand was ex-

pressed by myoepithelial cells and the receptor by luminal cells

(Figure 3E, red boxes). To further explore these interactions, we

examined MYB and Notch ligand expression by cell type.

Whereas Notch signaling was primarily detected in luminal cells

(7.6% versus 55%, p < 3 3 10�16, Yates’ chi-squared test), we

discovered a preferential expression of Notch ligands DLL1

(24% versus 10%, p < 6 3 10�4), JAG1 (77% versus 42%,

p < 9 3 10�11), and JAG2 (40% versus 2.5%, p < 2.3 3 10�16)

in myoepithelial cells (Figure 3F). We similarly found higher Notch

ligand expression in cells that were more myoepithelial and less

luminal (Figure S3G). This relative exclusivity between expres-

sion of Notch ligands and active Notch signaling supports a

paracrine interaction between myoepithelial and luminal cells

that drives Notch signaling in the latter. MYB was expressed in

both cell types but in a higher fraction of myoepithelial cells (Fig-

ure 3F; 61% versus 41%, p < 2 3 10�4).

To independently validate selective expression of Notch

ligands by myoepithelial cells, we examined the correlation be-

tweenmyoepithelialmarkers andNotch ligands in bulkRNA-seq

data from three previously published cohorts12,35,34 with a total

of 141 patients with ACC (Figures 3G and S3H). In the largest of

these cohorts (n = 75),34 myoepithelial markers were strongly

positively correlated with expression of DLL1 (r = 0.45,

p < 2 3 10�4) and JAG2 (r = 0.51, p < 9 3 10�6) but not JAG1

(r =�0.036, p = 0.77) (Figure 3G); similar correlationswere found

in the other two cohorts (Figure S3H).12,35 Examining correla-

tions between luminalmarkers andNotch ligands revealed com-

plementary results (Figure S4A). We also assessed the correla-

tions between Notch targets and myoepithelial (Figure S4B)

(E) Heatmap shows Spearman correlations between each NMF metagene from each patient, clustered by hierarchical clustering. This metaclustering analysis

shows consistent luminal, cell-cycle, oxidative phosphorylation, and myoepithelial programs across tumors.

(F) Gene-expression heatmap shows expression of top 200 genes in the myoepithelial NMF program in malignant cells. Genes (rows) are sorted by variation

across myoepithelial cells, and cells (columns) are sorted from myoepithelial to luminal according to myoepithelial and luminal marker scores. The 20 least

variable genes are highlighted, and previously described myoepithelial markers are shown in red.

(G) Gene-expression heatmap shows expression of top 200 genes in the luminal NMF program in malignant cells. Genes (rows) are sorted by variation across

luminal cells, and cells (columns) are sorted frommyoepithelial to luminal. The 20 least-variable genes are highlighted, and previously described luminal markers

are shown in red.
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Figure 3. MYB and Notch expression heterogeneity in the malignant compartment suggests paracrine interaction

(A) UMAP shows malignant cells from primary tumors colored by MYB expression.

(B) 6003 images of MYB immunohistochemistry in four representative tumors show strong and diffuse MYB staining. Scale bars represent 100 mm.

(C) UMAP shows malignant cells from primary tumors colored by Notch activation score.

(D) 6003 images of NICD1 immunohistochemistry (brown) in four representative tumors shows localization of NICD1 to luminal cells. Scale bars represent 100 mm.

(E) Dot plot shows mean expression and significance of all putative ligand-receptor pairs identified in an unbiased fashion using CellPhoneDB. The color of the

circles represents mean expression of the ligand (in myoepithelial cells, left column, or in luminal cells, right column) and the receptor (in luminal cells, left column,

(legend continued on next page)
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and luminal (Figure S4C) markers in these same datasets. We

found significant negative correlations of myoepithelial markers

with HES4 in two datasets and HEY1 in one (Figure S4B);

conversely, we found significant positive correlations of luminal

markers with HEY1 in two datasets and HEY2 in one (Fig-

ure S4C). Together, these results support the selective activa-

tion of Notch in luminal cells and selective expression of Notch

ligands in myoepithelial cells.

Finally, we leveraged our single-cell data to understand previ-

ously described ACC subtypes (ACC-1 and ACC-2) that notably

differed by p63, MYC, and Notch expression, as well as acti-

vating Notch mutations.35 Given that p63 is a canonical myoepi-

thelial marker,4 we sought to understand whether entire tumors

correspond to a single subtype or each tumor is comprised of

different proportions of cell populations, each corresponding to

a given subtype. We found that all tumors contained both

ACC-1 and ACC-2 cells. Luminal cells scored highly for the

ACC-1 signature, while myoepithelial cells scored highly for the

ACC-2 signature, regardless of whether the tumor was higher

in ACC-1 or ACC-2, overall. Accordingly, the ACC-1/ACC-2

score captured the relative fractions of luminal andmyoepithelial

cells across tumors (Figure 3H). Moreover, in our small cohort,

the two patients with the highest ACC-1/ACC-2 score both

exhibited aggressive clinical disease, with distant metastasis

and lower disease-free survival (Table S2), suggesting that pre-

viously demonstrated survival associations35 may, in fact, be

related to luminal cell fraction.

Recurrent ACC demonstrates higher Notch signaling
Although ACC is a rare disease with delayed recurrences,33 our

cohort did include one exceptional case (ACC5) of a patient with

a both primary ACC and local recurrence profiled by scRNA-seq,

offering the opportunity to perform a matched transcriptomic

comparison. Globally, malignant cells from the recurrence clus-

tered separately from cells from the primary tumor (Figures 4A

and S5A), suggesting coherent differences in expression. We

scored cells for luminal and myoepithelial signatures (Figure 4B),

as well as for individual myoepithelial (Figure S5B) and luminal

(Figure S5C) markers and found that these differences reflected

a shift toward a more luminal expression program in the recur-

rence (Figure 4B). Accordingly, we also found significantly higher

Notch signaling (p < 5 3 10�10, one-tailed Mann-Whitney test)

and reduced MYB expression (p < 4 3 10�8, one-tailed Mann-

Whitney test) in the recurrence (Figure 4C), consistent with the

differential expression of Notch signaling in luminal cells.

We next compared overall gene expression in the recurrence

and the primary (Figures 4D and S5D; Table S3). Notably, Notch

target NOTCH3 (log2(fold change) = �2.98, p < 8.4 3 10�29;

Table S3) was a top differentially expressed gene, consistent

with upregulation of Notch signaling in the recurrent setting.

Pathway analysis indicated that estrogen response may play a

role in recurrence, consistent with previous studies describing

a role for the estrogen receptor in ACC biology.38–40

To further explore differences across niches, we examined dif-

ferential expression between the primary tumor and matched

metastatic cervical lymph node (LN) for two patients (ACC7

and ACC22) for whom both samples were captured (Figure S5E;

Table S3). There were several differentially expressed genes

across niches in ACC7 (Wilcoxon test, false discovery rate

[FDR] <5%; Table S3), with COL9A1, APP, and SERPINE2 being

the top upregulated genes in the LN. In ACC22, only seven genes

were differentially expressed (Table S3), and BST2 was the only

upregulated gene in the LN. The only consistently differentially

expressed gene was CRYAB, which was downregulated in the

LN in both samples.

Finally, given the known prognostic importance of solid-type

morphology in ACC,33 we explored expression differences be-

tween tumors in our cohort with solid regions (ACC7 and

ACC19) and all others with cribriform morphology. We found

significantly higher expression of luminal markers in solid-type tu-

mors (Figure S5F; p < 2 3 10�9), consistent with previous

descriptions.4 Given these differences, we separately analyzed

differential expression in myoepithelial and luminal cells in solid

and cribriform tumors. B2M and RPS4Y1 were more highly ex-

pressed in both myoepithelial (Table S3) and luminal (Table S3)

cells in solid-type tumors compared with cribriform tumors.

Among myoepithelial cells specifically, upregulated genes in

solid-type tumors included KRT14 and KRT16P3 (Figure S5G;

Table S3). Overall, there weremore differentially expressed genes

in myoepithelial than luminal cells, consistent with the greater

variability in myoepithelial than luminal cells in our cohort

(Figure 2C).

DISCUSSION

Here, we utilized scRNA-seq using full-length transcriptome

profiling in fresh human head and neck ACC specimens to define

cellular expression heterogeneity in these rare but deadly

tumors. This analysis provides an important insight into the

expression landscape of these human salivary gland tumors

(Figure 1). Utilizing this approach, we defined in vivomyoepithe-

lial and luminal cell programs (Figure 2; Table S3) and demon-

strated distinct clustering of these two cell types (Figure 2),

consistent with the known bicellular differentiation of ACC.While

myoepithelial cells demonstrated considerable inter-tumoral

heterogeneity, luminal cells from multiple patients clustered

together, suggesting a more conserved luminal expression state

across tumors (Figure 2). Interestingly, this finding mirrors previ-

ous results of single-cell profiling in triple-negative breast can-

cer, which also revealed shared luminal cell subpopulations.29

or inmyoepithelial cells, right column), while the size of the circles represents significance. All ligand-receptor pairs that passed FDR <10%are shown. Red boxes

highlight pairs involved in Notch signaling.

(F) Bar plots show percentage of cells expressing Notch ligands DLL1 (p < 5 3 10�4), JAG1 (p < 4 3 10�11), and JAG2 (p < 2 3 10�16), as well as overall Notch

signaling (p < 2.0 3 10�14) and MYB expression (p < 2 3 10�4). While Notch signaling is higher in luminal cells, Notch ligands are preferentially expressed by

myoepithelial cells.

(G) Scatterplots showSpearman correlation betweenmyoepithelial markers andDLL1 (left panel), JAG1 (middle panel), or JAG2 (right panel) in Dou et al. cohort.34

(H) Scatterplot shows strongpositive correlation betweenpreviously describedACC1-ACC2 score35 and fraction of luminal cells present across tumors in the cohort.
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Our data also provide in vivo support for a paracrine interac-

tion between myoepithelial and luminal cells that drives Notch

signaling in the latter. We validated the localization of Notch

signaling to luminal epithelial cells36 and demonstrated a selec-

tive expression of Notch ligands DLL1, JAG1, and JAG2 in

myoepithelial cells (Figure 3F). We further validated this

selective expression in bulk transcriptomic data from three pub-

lished cohorts,12,35,34 demonstrating a strong correlation be-

tween myoepithelial markers and Notch ligands DLL1 and

JAG2 (Figures 3G and S3H). Taken together with the previous

identification of JAG1 and JAG2 as highly ranked putative

MYB targets,4 our results suggest that MYB overexpression

may drive oncogenesis in ACC, in part, via Notch ligand expres-

sion in myoepithelial cells.

A

DC

B

Figure 4. Recurrent tumors may be more luminal and may demonstrate higher Notch signaling

(A) UMAP shows malignant cells from ACC5. Cells from the primary tumor cluster separately from cells from the recurrence.

(B) UMAP shows malignant cells from ACC5 colored by myoepithelial-luminal axis. ACC5 recurrence is more luminal.

(C) Violin plots showMYB expression (left panel) andNotch score (right panel) in ACC5malignant cells. ACC5 recurrence has lowerMYB expression (p < 43 10�8,

one-tailed Mann-Whitney test) and higher Notch signaling (p < 5 3 10�10, one-tailed Mann-Whitney test).

(D) Volcano plot shows differential gene expression across malignant cells in ACC5 primary tumor and recurrence. Genes colored in red had significantly higher

expression (FDR <10%, >2-fold change) in the primary tumor, while genes colored in green had significantly higher expression (FDR <10%, >2-fold change) in the

recurrence. Notch target NOTCH3 is a top upregulated gene in the recurrent setting.
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Importantly, a paracrine myoepithelial-luminal interaction pro-

vides a direct biological explanation for the biphasic nature of

ACC, a phenotype that is well described but poorly understood.

By contrast, in high-grade solid-typeACC,which is strongly asso-

ciated with gain-of-function mutations in NOTCH1 that lead to

ligand-independent Notch activation,5 myoepithelial cells are

largely or completely absent, consistent with the notion that para-

crine signaling may no longer be required for Notch activation.36

Accordingly, our group previously demonstrated that BET inhibi-

tors, which disrupt enhancer function, slowed tumor growth in

low- and intermediate-grade ACC primagraft models but were

ineffective against high-grade ACCs harboring activating Notch

pathway mutations.4 Our data supporting a paracrine interaction

also highlight the power of our approach using scRNA-seq as pre-

vious explorations into this possibility have been restricted by

technical limitations in staining for Notch ligands.

Our cohort included a patient for whomweprofiled both the pri-

mary tumor and a matched local recurrence. This matched tran-

scriptomic comparison of a primary tumor and recurrence in

ACC is notable given the rarity of surgically accessible recurrent

disease. Inour dataset, the recurrent sampledemonstratedhigher

Notch signaling and reducedMYB expression compared with the

primary tumor (Figure 4), consistent with previous reports of

increased Notch signaling and escape mutants with wild-type

MYB in recurrent ACC.5 Collectively, these findings suggest that

MYB-independent Notch signaling may be increased in recurrent

ACC. Furthermore, given that the primary tumor did not highly ex-

press Notch overall (Figure 4), our findings suggest that individual

Notch-expressingcellswithin theprimary tumormayhaveseeded

a local recurrence. Largermatchedcohorts are needed to support

thismodel; however, understandingwhether individual treatment-

resistant ‘‘Notch-high’’ cells exist even in theabsenceof highover-

all Notch signaling is critical as it may support the use of Notch in-

hibitors in tumors without pervasive Notch activation—a strategy

distinct fromwhat is currently employed inmost clinical trials.41,42

Our cohort also included two patients for whom we captured

both the primary tumor and a matched metastatic LN at the time

of surgical resection. Interestingly, there were few coherent

expressiondifferencesacross these twosamples (Figure4D), sug-

gesting that LN metastasis may be more of a passage-drainage

process than a biologically active process in these tumors, similar

to our findings in oral cavity squamous cell carcinoma.23,24

Limitations of the study
Our findings are tempered by the small number of samples pro-

filed. Larger cohorts, with primary tumors matched with recur-

rences or distant metastases, are critical to better understand

the nuances of Notch signaling in these alternate settings.

Computational approaches such as deconvolution of bulk data

using single-cell data may be useful given the rarity of this dis-

ease and may now be possible with our detailed descriptions

of in vivo myoepithelial and luminal programs. Additional func-

tional and spatial characterization of this paracrine interaction

will also be important in investigating its role in driving low- and

intermediate-grade ACC. With the paucity of well-validated

ACC cell lines, other in vitro approaches such as three-dimen-

sional culture models may be useful in capturing the diverse

cell populations present within these tumors.

Still, our data provide an important, highly plausible explana-

tion for the biphasic nature of low- and intermediate-grade

ACC given the frequent, highly conserved role of Notch signaling

in regulating biphasic fate choices during normal development.43

The paracrine interaction we identify suggests there may be po-

tential for therapeutic strategies directed at myoepithelial cells

and their activated pathways, includingMYB-driven overexpres-

sion of Notch ligands, particularly in low- and intermediate-grade

tumors. Our work also highlights the importance of further

studies of matched specimens to guide therapeutic strategies

to prevent local recurrence and regional or distant metastasis,

which remain significant challenges in ACC.

Conclusions
We utilize scRNA-seq in fresh human ACC specimens to define

the landscape of cellular expression heterogeneity in these rare

tumors, including descriptions of in vivo myoepthelial and

luminal programs. Our data validate the known localization of

Notch signaling to luminal cells and demonstrate localization

of Notch ligands to myoepithelial cells, highlighting a potential

oncogenic paracrine interaction between these two cell types.

We also demonstrate a shift toward increased Notch signaling

in recurrent ACC utilizing a comparison of matched primary and

recurrent specimens. Our data provide a potential explanation

for the biphasic nature of low- and intermediate-grade

ACC and indicate the need for further study of matched

primary and recurrent specimens to better guide therapeutic

strategies targeting Notch signaling in low- and intermediate-

grade ACC.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Sidharth

Puram (sidpuram@wustl.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Processed scRNA-seq data were deposited at GEO; raw data will be deposited at dbGaP. Accession numbers are listed in the

key resources table.

d This paper does not report original code.

d Immunohistochemistry data reported in this paper will be shared by the lead contact upon request. Any additional information

required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Institutional review board approval was obtained. Patients undergoing surgical resection of primary head and neck salivary adenoid

cystic carcinoma (ACC) at the Massachusetts Eye and Ear (MEE) were consented preoperatively to take part in the study.

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Monoclonal mouse CD45-vioblue,

clone 5B1

Miltenyi Biotec Cat#130-092-880; RRID:AB_1103220

Monoclonal rabbit c-MYB, clone

EP769Y

Abcam Cat#ab45150; RRID:AB_778878

Monoclonal rabbit cleaved Notch1, clone

D3B8

Cell Signaling Technology Cat#4147; RRID:AB_2153348

Calcein AM ThermoFisher Cat#C3100MP

TO-PRO-3 iodide ThermoFisher Cat#T3605

Biological samples

Human head and neck adenoid cystic

carcinoma patient samples (ACC2, ACC5,

ACC7, ACC15, ACC19, ACC21, ACC22)

Massachusetts Eye and Ear N/A

Critical commercial assays

Human Tumor Dissociation Kit Miltenyi Biotec Cat#130-095-929

BOND Polymer Refine Detection Kit Leica Cat#DS9800

Deposited data

Processed scRNA-seq data GEO GSE210171

Raw scRNA-seq dbGaP phs003070.v1

Software and algorithms

MatLab version 2019b MathWorks N/A

STAR version 2.5.2 https://github.com/alexdobin/STAR N/A

Seurat version 4.0.1 https://github.com/satijalab/seurat N/A

inferCNV version 1.4.0 https://bioconductor.org/packages/

release/bioc/html/infercnv.html

N/A

cellphoneDB version 4 https://github.com/ventolab/CellphoneDB N/A
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Demographic characteristics of human subjects providing samples are summarized in Table S1. Our cohort included seven patients

of the following age/gender: 64/F (ACC2), 81/F (ACC5), 91/M (ACC7), 81/M (ACC15), 52/M (ACC19), 57/M (ACC21), and 50/F

(ACC22). Fresh biopsies of head and neck salivary ACC were collected at the time of surgical resection. Post-operatively, H&E

stained sections were reviewed by a dedicated head and neck pathologist (W.C.F.) and assessed for growth pattern and immuno-

histochemical staining profile to confirm the pathologic diagnosis of ACC, based upon histomorphologic criteria outlined in the WHO

Classification of Head and Neck Tumours.44 Only cases unequivocally classified as ACC were included in the final dataset.

METHOD DETAILS

Tumor dissociation and cell sorting
Samples were minced and dissociated with a Human Tumor Dissociation Kit (Miltenyi Biotec) according to manufacturer guidelines.

Single cell suspensions were filtered, and cells were resuspended in PBS with 1% bovine serum albumin (BSA; Sigma-Aldrich). Try-

pan blue (ThermoFisher Scientific) was used to confirm cell viability of >90% in all samples. Cells were stained with CD45-vioblue

(Miltenyi Biotec), as well as 1 mM calcein AM (ThermoFisher Scientific), and 0.22 mM TO-PRO-3 iodide (ThermoFisher Scientific)

for viability prior to sorting. Fluorescence-activated cell sorting (FACS) was performed on FACSAria Fusion Special Order System

(BD Biosciences) using 488 nm (calcein AM, 530/30 filter), 640 nm (TO-PRO-3, 670/14 filter), and 405 nm (Vioblue, 450/50 filter) la-

sers. We captured singlet viable cells using standard forward scatter height versus area criteria, as well as calceinhigh and TO-PROlow

gates. Subsquently, CD45- cells were captured to enrich for cancer cells and deplete immune cells. Individual cells were sorted into

TCL- buffer (QIAGEN) with 1% b-mercaptoethanol in 96-well plates. Plates were snap frozen and stored at�80�C before cDNA syn-

thesis and library construction.

Library construction and sequencing
Full-length single cell RNA-seq libraries were prepared using the SMART-seq2 protocol,8,9 with the following modifications23: Agen-

court RNAClean XP beads (BeckmanCoulter) were used to purify RNA prior to reverse transcription with Superscript II (ThermoFisher

Scientific) or Maxima (ThermoFisher Scientific) reverse transcriptase. Whole transcriptome amplification was performed using the

KAPA HiFi HotStart ReadyMix (KAPA Biosystems). cDNA libraries were tagmented using the Nextera XT Library Prep Kit (Illumina)

and sequenced as paired-end 38 base reads on a NextSeq 500 (Illumina).

Staining and imaging of tissue sections
Formalin fixed, paraffin-embedded (FFPE) ACC specimens were obtained from the Massachusetts General Hospital (MGH) tissue

archives. 5 mm thick sections were cut by the MGH Histopathology Core. MYB staining was performed by the MGH Histopathology

Core per standard protocols using rabbit monoclonal c-MYB primary antibody clone EP769Y (Abcam) at 1:100 for 30 minutes, visu-

alized with HRP-linked secondary antibodies, followed by diaminobenzidine (DAB; Dako). NICD1 staining was performed per previ-

ously published protocols,36 using rabbit monoclonal antibody clone D3B8 (Cell Signaling Technologies) at 1:50 for 60 minutes. DAB

staining was then developed using the Bond Polymer Refine Detection Kit (Leica), and slides were counterstained with hematoxylin.

All images were captured with a 60X objective and reviewed by a dedicated head and neck pathologist (W.C.F. or J.C.A.).

QUANTIFICATION AND STATISTICAL ANALYSIS

Single cell RNA-sequencing data processing
scRNA-seq data were aligned to GRCh38 with STAR version 2.5.245 and counted with featureCounts.46 Clustering of single cells,

UMAP, violin plots, and marker gene analyses were conducted with Seurat 4.0.1.47 log2(TPM+1) values were used for Seurat ana-

lyses and were normalized by regressing out the number of detected features and the percent of mitochondrial reads. Cells with less

than 2000 transcripts or more than 30% mitochondrial reads were removed from the analysis.

Classification of malignant and non-malignant cells
Copy number profiles were estimated using inferCNV version 1.4.0.11 The copy number aneuploidy score was defined as the square

root of the average of deviation of diploidy squared. Cells were clustered using the Louvain algorithm as implemented in Seurat, tak-

ing into account the first 10 principal components. Cell types were inferred from identified clusters by their expression profiles, and

identity of the ACC cluster was further validated by copy number alterations and Gao et al. ‘‘ACC signature’’. For the latter, specific

ACC markers were taken from Gao et al.12 (Table S1, all genes with FC > 2) and their average normalized expression was used to

define the ‘‘ACC signature’’ (Figure S1C).

Characterizing heterogeneity of CAFs
For the analysis of CAFs, the 7,500 most variable transcripts across all cells in the CAF clusters were normalized again among them-

selves (including regression by number of transcripts and percent of mitiochondrial reads). The cells were then reclustered and pro-

jected to UMAP coordinates using the same algorithms and parameters. Scoring of CAF clusters by signatures described in Galbo

et al.10 was computed by the average expression of the genes in each signature, as described in Table S3 in their manuscript.

Cell Reports 41, 111743, November 29, 2022 e2

Report
ll

OPEN ACCESS



Characterizing heterogeneity of malignant cells
The identified cancer cells from each primary tumor and the 15,000 most variable transcripts across these cancer cells were

normalized again among themselves (including regression by number of transcripts and percent of mitochondrial reads), and

used for downstream analysis. These data were used to recluster cells and compute new UMAP coordinates, using the same al-

gorithm and parameters. For nonnegative matrix factorization,48 we calculated z-scores of the log2(TPM+1) values of all cancer

cells of each primary tumor, omitting genes with over 90% negative z-scores, and setting all negative values to 0. We used

the MATLAB 2019b implementation of nnmf to identify four metagenes (expression programs) for each tumor and normalized

the coefficients to sum to 1. We clustered all metagenes to identify shared programs using hierarchical clustering according to

Spearman correlation and computed the average z-score of the metagenes in each of the four clusters. Gene set enrichment

for the top 200 genes in each shared program (average metagene) was computed against MSigDB49 using fisher exact test as

implemented by HOMER findGO.50

Defining malignant cell subtype scores
Average normalized expression of TP63, TP73,CAV1,CDH3, KRT5, KRT14, ACTA2, TAGLN,MYLK, and DKK3was used as the my-

oepithelial score. Average normalized expression of KIT, EHF, ELF5, KRT7, CLDN3, CLDN4, CD24, LGALS3, LCN2, and SLPI was

used as the luminal score.When the difference between luminal score andmyoepithelial scorewas higher than 1, the cell was defined

as luminal, andwhen it was less than�1 it was defined asmyoepithelial. Average normalized expression ofNRARP,NOTCH3,HES4,

HEY1, and HEY2 was used as the Notch score, and a positive score was considered indicative of active notch signaling.

Cell-cell communication analysis
Cell-cell communication analysis was conducted with cellphoneDB v4.51 Only ligand-receptor interactions with FDR <10% were

selected. Pairs were reordered to show ligand first and receptor second. The Wilcoxon rank sum test was used to detect significant

differently expressed genes, considering all genes expressed in at least 10% of at least one of the compared groups of cells. False

discovery rate (FDR) was controlled by the Benjamini-Hochberg procedure.

Analysis of bulk RNA-seq data
Bulk RNA-seq data of ACCwere obtained fromGao et al.,12 Dou et al.34 and Ferrarotto et al.35 Outliers were identified by hierarchical

clustering of samples by complete linkage according to Euclidean distance and filtering out the smallest first branch. This process

was repeated twice for each dataset. Spearman correlation of myoepithelial score (as defined above) with Notch ligands was calcu-

lated in log2(TPM+1) values (for Dou et al.34 and Ferrarotto et al.35) or RMA values (for Gao et al.12). Scores of ACC-1 and ACC-2 sub-

types were calculated as the average z-score of ACC-1 marker expression minus the average z-score of ACC-2 marker expression.

ACC-1 markers (MYC, SOX6, SOX8, CTNND2, NOTCH3, BCL2) and ACC-2 markers (TP63, COL17A1, PDGFA, DKK3, EGFR, AXL,

PDGFRA) were taken from Figure 3A in Ferrarotto et al.35
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