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multiplex visibility graphs and deep learning 
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A B S T R A C T   

Background: Wide-field calcium imaging (WFCI) allows for monitoring of cortex-wide neural dynamics in mice. 
When applied to the study of sleep, WFCI data are manually scored into the sleep states of wakefulness, non-REM 
(NREM) and REM by use of adjunct EEG and EMG recordings. However, this process is time-consuming and often 
suffers from low inter- and intra-rater reliability and invasiveness. Therefore, an automated sleep state classi
fication method that operates on WFCI data alone is needed. 
New method: A hybrid, two-step method is proposed. In the first step, spatial-temporal WFCI data is mapped to 
multiplex visibility graphs (MVGs). Subsequently, a two-dimensional convolutional neural network (2D CNN) is 
employed on the MVGs to be classified as wakefulness, NREM and REM. 
Results: Sleep states were classified with an accuracy of 84% and Cohen’s κ of 0.67. The method was also 
effectively applied on a binary classification of wakefulness/sleep (accuracy=0.82, κ = 0.62) and a four-class 
wakefulness/sleep/anesthesia/movement classification (accuracy=0.74, κ = 0.66). Gradient-weighted class 
activation maps revealed that the CNN focused on short- and long-term temporal connections of MVGs in a sleep 
state-specific manner. Sleep state classification performance when using individual brain regions was highest for 
the posterior area of the cortex and when cortex-wide activity was considered. 
Comparison with existing method: On a 3-hour WFCI recording, the MVG-CNN achieved a κ of 0.65, comparable to 
a κ of 0.60 corresponding to the human EEG/EMG-based scoring. 
Conclusions: The hybrid MVG-CNN method accurately classifies sleep states from WFCI data and will enable 
future sleep-focused studies with WFCI.   

1. Introduction 

Wide-field calcium imaging (WFCI) with genetically encoded cal
cium indicators enables recording of regional neuronal depolarization in 
mice across the entire cortex on a sub-second temporal scale with 
simultaneous examination of neurovascular coupling and cell type 
specificity (Ma et al., 2016a; Kozberg et al., 2016; Ma et al., 2016b; 
Matsui et al., 2016). Given these capabilities, WFCI has been employed 
to study mouse brain physiology during quiet wakefulness (Ma et al., 
2016b), decision-making behavior (Allen et al., 2017), anesthesia 

(Wright et al., 2017) and under disease states (Balbi et al., 2019). 
Recently, it has also been employed to characterize the dynamics of 
neural activity during sleep (Brier et al., 2019). In these studies, WFCI 
has revealed several novel findings including sleep slow-oscillations 
during non-rapid eye movement (NREM) linked to changes in func
tional connectivity (Brier et al., 2019), selective increases in cerebral 
blood volume during NREM (Turner et al., 2020), and highly active 
neuronal subpopulations (Niethard et al., 2018; Niethard et al., 2021). 
Thus, WFCI is a powerful new tool to uncover the neural correlates of 
sleep. 
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To effectively apply WFCI to the study of sleep, brain neural activity 
must be classified into various sleep-wake states such as wakefulness, 
NREM and REM. Currently, sleep state classification of WFCI data relies 
on the simultaneous recording of electroencephalogram (EEG) and 
electromyogram (EMG) signals. These signals provide information on 
the electrical activity of the brain and on muscle tone that together allow 
for the unambiguous determination of sleep-wake states (Mang et al., 
2014). Unfortunately, acquisition of the EEG signal requires meticulous 
placement of electrodes near the surface of the mouse cortex under deep 
anesthesia, which is invasive, increases the risk of infection, and ob
scures the imaging field of view. Additionally, sleep scoring by 
EEG/EMG is time-consuming because it requires trained professionals to 
manually inspect EEG/EMG signals and subjectively assign brain states, 
with low inter- and intra-rater reliability (Bliwise et al., 1984; Collop, 
2002; Danker-Hopfe et al., 2009; Drinnan et al., 1998; Lord et al., 1989; 
Loredo et al., 1999; Norman et al., 2000; Rosenberg et al., 2013; Silber 
et al., 2007; Whitney et al., 1998). As a result, it is highly desirable to 
eliminate the need for adjunct EEG/EMG data by developing a method 
that can classify sleep states from WFCI data alone. However, there are 
currently no established rules governing sleep state classification based 
on WFCI data, and human scoring of WFCI data is impractical due to the 
high number of measurements (up to thousands of pixels per time point). 
Therefore, an automated sleep state classification method for use with 
WFCI data is desired to advance sleep research with WFCI. 

Sleep state scoring by human experts is based on the occurrence of 
discrete neuronal events such as K-complexes, spindles, theta rhythms 
and slow waves that are known to spread spatially and temporally across 
the cortex (Buzsaki, 2006; De Gennaro and Ferrara, 2003; Halász, 2016). 
As such, the establishment of a sleep state classification method that 
exploits discriminative features regarding spatiotemporal calcium dy
namics obtained through WFCI and avoids the complexities of training 
deep spatial-temporal neural networks could be beneficial to accurate 
sleep state classification. One approach to describe the dynamics of 
multivariate time series is the multiplex visibility graph (MVG) intro
duced by Lacasa et al. (Lacasa et al., 2015; Lacasa et al., 2008). When 
applied to neural activity, a visibility graph focuses on visible peaks 
within time series and, therefore, can capture discrete neuronal events 
over time. As each layer of a visibility graph is combined across brain 
regions into a multiplex, the method effectively incorporates the spatial 
nature of the data. Several recent neuroimaging applications have 
employed MVGs within a feature extraction procedure to build feature 
vectors that can be used to accurately classify neurological disorders and 
brain states in modalities such as functional magnetic resonance imag
ing (fMRI), function near-infrared spectroscopy (fNIRS), and WFCI 
(Sannino et al., 2017; Zhu et al., 2018a; Zhu et al., 2018b). 

Designing optimal MVG-based features for use in performing specific 
inferences that have been manually selected can be tedious and time- 
consuming. Fortunately, deep learning is capable of extracting impor
tant features from raw input data and eliminates the need for manual 
feature extraction. Deep learning methods such as convolutional neural 
networks (CNNs) and long short-term memory (LSTM) networks have 
been developed to automatically and adaptively learn hierarchical fea
tures of sleep EEG/EMG recordings to classify sleep states in mice 
(Barger et al., 2019; Cai, 2021; Svetnik et al., 2020; Yamabe et al., 
2019). While deep learning-based methods hold promise for 
wide-spread application in sleep research, a deep learning-based sleep 
state classification method for use with WFCI data alone has not yet been 
implemented. 

In this work, we propose a hybrid MVG-CNN method for automated 
sleep state classification from WFCI data that avoids the use of adjunct 
EEG/EMG data. The spatial-temporal WFCI data are first mapped to 
MVGs, where each layer of MVG corresponds to a single brain region. 
Subsequently, a two-dimensional (2D) CNN is employed with the MVGs 
to classify the sleep state as wakefulness, NREM or REM. To investigate 
the temporal characteristics of MVGs that are important for sleep state 
classification, gradient-weighted class activation maps (Grad-CAM) 

(Selvaraju et al., 2020) were computed. Taking advantage of the 
spatial-temporal nature of WFCI, the effect of the epoch duration and the 
amount of spatial information on sleep state classification performance 
was evaluated. We find that the proposed hybrid MVG-CNN method 
accurately identifies sleep states by use of spatial-temporal information 
afforded by WFCI data. 

2. Materials and methods 

2.1. Mice 

This study was approved by the Washington University School of 
Medicine Institutional Animal Care and Use Committee and performed 
in accordance with National Institutes of Health Guide for the Care and 
Use of Laboratory Animals. Transgenic mice (12–16 weeks of age) 
expressing GCaMP6f in excitatory neurons (driven by a Thy1 promotor) 
were acquired from Jackson Laboratories (JAX strain: C57BL/6J-Tg 
(Thy1-GCaMP6f)GP5.5Dkim; stock: 024276) and used for experi
mental studies (total n = 17, all males; n = 12 in Section 2.1.1, n = 5 in 
Section 2.1.2). Mice were housed in 12-hour light/dark cycles with 
lights on at 6:00 AM and given ad lib access to food and water. 

2.1.1. Experiment 1: Wakefulness, NREM, and REM imaging 
The first experiment recorded WFCI data with simultaneous EEG/ 

EMG of head-fixed mice during wakefulness, NREM and REM. Similar to 
other experimental paradigms (Bojarskaite et al., 2020; Niethard et al., 
2018, 2021; Turner et al., 2020; Yüzgeç et al., 2018), mice were accli
mated to head fixation while secured in a black felt hammock for one to 
three sessions ranging from 30 to 180 min until the EEG/EMG signals 
showed the presence of sleep. Once sleep was established in the 
head-fixed position, the mouse then underwent a three-hour undis
turbed WFCI session. All recordings occurred between 9:00 AM and 1:00 
PM during the mice’s normal sleeping hours in order to maximize the 
chance of recording sleep. After the recording, human experts scored 
WFCI recordings as wakefulness, NREM, or REM by use of adjunct 
EEG/EMG. 

2.1.2. Experiment 2: Wakefulness, sleep and anesthesia imaging 
The second experiment used simultaneous WFCI and EEG/EMG from 

a previously published study (Brier et al., 2019). Briefly, mice were 
placed in the black felt hammock with their heads fixed in place. The 
mice were left undisturbed for 30 min of simultaneous WFCI and 
EEG/EMG recordings followed by intraperitoneal injection of ketami
ne/xylazine anesthetic (86.9 mg/kg ketamine and 13.4 mg/kg xylazine) 
and recording for another 60 min. After the recordings, the mice were 
placed in their home cages and monitored until they resumed normal 
behavior (grooming, exploration, resting, eating). Offline, experts 
manually scored sleep states of WFCI data based off the EEG/EMG signal 
as either wakefulness, sleep, or anesthesia. With the same mice, but in a 
separate session a week apart, mice were sleep-deprived for three hours 
using a novel environment (Tobler and Borbély, 1990) and then placed 
in a black felt hammock with their heads fixed under the imaging sys
tem. Then the mice were left undisturbed and simultaneous WFCI and 
EEG/EMG data were recorded for 60 min. Offline, experts scored 
sleep-wake states of WFCI data based off the EEG/EMG signal as either 
wakefulness or sleep. 

2.2. Surgical techniques 

Following anesthesia induction with isoflurane (3% induction, 1.5% 
maintenance), mice were head-fixed in a stereotactic frame. The head of 
each mouse was shaven, and a midline incision was made to expose the 
skull. EEG and EMG electrodes were implanted (described below) and a 
Plexiglass head cap was fixed with a translucent adhesive cement (C&B- 
Metabond, Parkell Inc., Edgewood, New York) to allow for repeated 
imaging (Wright et al., 2017). Mouse were allowed to recover for seven 
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days in light-controlled conditions (12-hour light-dark schedule). 
EEG and EMG electrode implantation was performed with different 

surgical techniques for the two experiments. For Experiment 1, copper 
EEG pins (Newark Electronics, catalog # 89H8939) were placed at the 
surface (0.7 mm cranial burr holes) of the brain overlying the lateral 
somatosensory cortex (− 0.7 mm posterior to bregma, and +4.5 mm 
lateral to bregma) and fixed with Fusio dental cement. An EEG pin 
placed on the surface of the cerebellum served as a bipolar reference. To 
record muscle activity, two 23-gauge stainless steel needles were 
attached to the posterior aspect of the Plexiglass headcap and inserted 
bilaterally into the neck muscles. For Experiment 2, stainless steel EEG 
self-tapping screws (BASI Inc., West Lafayette, IN, USA) were fixed at the 
surface (1.0 mm cranial burr holes) of the brain at approximately − 1 
mm posterior to bregma, and + /- 4.5 mm lateral to bregma (near 
barrel/auditory cortex) and referenced to a cerebellum screw. To record 
muscle activity, a 203 micrometer Teflon coated EMG wire (A-M Sys
tems, Sequim, Washington, catalog #792100) was threaded into the 
neck muscle and referenced to the cerebellum. 

2.3. Wide field optical imaging acquisition and processing 

GCaMP6f-expressing mice were placed in a black felt hammock with 
their heads secured in place with a small bracket (using the plexiglass’ 
pre-tapped holes). During the imaging session, the mouse was able to 
move freely while its head was secured, preventing the awake or 
sleeping mouse from applying torque on their restrained head and op
tical window. The secured mouse was then placed approximately 8 cm 
(working distance 14 cm) under an overhead EMCCD camera (iXon 897, 
Andor Technologies, Belfast, Northern Ireland, United Kingdom) and 
four collimated LEDs, as previously described (Wright et al., 2017; Brier 
et al., 2019). Sequential illumination was provided by four LEDs: 454 
nm (blue, GCaMP6 excitation), 523 nm (green), 595 nm (yellow), and 
640 nm (red) for hyperspectral oximetric imaging. The LEDs were 
sequentially triggered at 16.8 Hz per LED. The CCD framerate (67.2 Hz) 
and exposure times were synchronized through MATLAB via a DAQ 
device (PCI-6733, National Instruments, Austin, TX, USA). To discard 
GCaMP6 excitation light and capture emission, a 515 nm longpass filter 
was used. The field of view was ~1 cm2 and covered the dorsal surface of 
the brain (78 µm x 78 µm pixel size). 

Image processing occurred offline using a custom MATLAB package 
(Brier and Culver, 2021) as follows. First, a binary mask was manually 
drawn around all brain tissue and affine transformed to Paxinos space 
using the positions of bregma and lambda (Paxinos and Franklin, 2019). 
Then, the signal was temporally and spatially detrended, smoothed, and 
global signal regressed. The modified Beer-Lambert law used reflectance 
changes in the 523 nm, 595 nm, and 640 nm LED channels to solve for 
relative fluctuations of oxygenated-hemoglobin (HbO2) and 
deoxygenated-hemoglobin (HbR). The recorded GCaMP6 emission was 
corrected for absorptions by HbO2 and HbR using a ratiometric 
approach and the 523 nm reflectance channel (approximate GCaMP6 
wavelength) as a reference: 

y(t) =
Iem(t)
Iref (t)

∙
Iref

0

Iem
0

.

y(t) is the final corrected GCaMP6 time series for a given pixel, Iem refers 
to the detected fluorescent emission intensity. Iref describes the 
measured reflectance changes at the emission wavelength. The power 
spectrum of each pixel in the GCaMP6 signal (%dF/F) was computed 
using the MATLAB toolbox Chronux function ‘mtspecgramc’ (Mitra and 
Bokil, 2007; Chronux Home, 2021) using a window size of 16.81, 
step-size of 10 s, and time-width product of 3 and 5 tapers. 

2.4. Expert behavioral state scoring 

Time-locked EEG and EMG signals were recorded at 1000 Hz using 

the AD Instruments (Dunedin, New Zealand) Dual Bio Amplifier (Cata
log# FE232) and PowerLab data acquisition system (Catalog# PL2604). 
Offline, the EEG and EMG signals were band-pass filtered (0.5–35 Hz for 
EEG and 25–50 Hz for EMG) and the spectrogram (Hann window with 
cosine-bell and 50% overlap) was computed. Using the combination of 
the filtered EEG/EMG signal and spectrogram, behavioral states 
(wakefulness, NREM, REM, anesthesia and movement) were manually 
scored in 10-second (10-s) epochs by the author E.L., a certified sleep 
specialist with over 15 years of experience scoring sleep. Wakefulness 
was characterized by mixed frequencies in the EEG with increased EMG 
tone. NREM sleep was defined as having large amplitude 1–3 Hz (delta) 
activity in the EEG with relative attenuation of the EMG. REM sleep was 
defined as having 6–8 Hz predominance with EMG atonia. Supplemental 
Figure 1 shows examples of 10-s EEG/EMG signals scored as the 
different sleep states by a human annotator. Anesthesia was defined as 
the presence of uniform 1 Hz activity with absence of EMG activity. 
Movement artifact was defined by movement causing the inability to 
discern the EEG waveforms. If a single 10-s epoch contained a mixture of 
both states, then the predominant state was scored. The details of the 
data split and data source for various classification tasks conducted in 
this study are shown in Table 1. 

2.5. Construction of multiplex visibility graphs 

2.5.1. Multiplex visibility graphs 
Visibility graphs were first proposed by Lacasa et al. as a method to 

map time series into networks, in which the underlying dynamics are 
inherited in the topology (Lacasa et al., 2008). Given a time series p =

f(t), two time points (ti,pi), (tj, pj) are connected if any other time points 
(tk, pk) between them satisfies the natural visibility criterion: 

pk < pi +(pj − pi)
k − i
j − i

.

The time series can be mapped into an undirect and unweighted 
natural visibility graph (NVG). The single-layer NVG was implemented 
by the open-source MATLAB software package Fast NVG (Iacobello 
et al., 2018; Iacobello et al., 2019). The NVG is represented by a 
two-dimensional (2D) binary adjacency matrix D ∈ Rn×n, where Dij = 1 
if a connection exists between time points (ti,pi) and (tj, pj) according to 
the visibility criteria. Furthermore, a multivariate time series containing 
m components yields a multiplex visibility graph (MVG) that comprises 
m-layers (Lacasa et al., 2015), which can be represented by a concate
nation of 2D adjacency matrices. 

2.5.2. Mapping wide-field calcium imaging data to multiplex visibility 
graphs 

To map WFCI data to an MVG, the WFCI data were first split into 10- 
second epochs according to the manual EEG/EMG-based scoring. Let the 
tensor X ∈ Rn×m×k denote a 10-s epoch of WFCI data, where n = m =

128 denotes the number of pixels in each spatial dimension and k = 168 
is the number of frames per 10-s epoch. Next, using a total of 36 brain 
regions defined by the Paxinos atlas (Paxinos and Franklin, 2019) 
(Fig. 1a), the average time series for all pixels within each region was 
calculated (Fig. 1c). The average time series for the 36 brain regions will 
be represented as T ∈ R168×36. Select regions (olfactory, prelimbic, 

Table 1 
Data source of different classification tasks and the corresponding number of 
epochs for training, validation and testing.  

Classification task Data source Training Validation Testing 

Wakefulness/NREM/REM Experiment 1 8592 1074 1075 
Wakefulness/sleep/ 

anesthesia/movement 
Experiment 2 4704 588 588 

Wakefulness/sleep Experiment 
1 + 2 

10800 1350 1351  
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colliculi, and cerebellum) were excluded because they were outside the 
field of view. The average time series corresponding to a single brain 
region was mapped to an adjacency matrix D by the use of natural vis
ibility criteria and then the concatenation of the 36 adjacency matrixes 
led to the formation of the MVG M ∈ R168×168×36 for a single 10-s epoch 
of WFCI data (Fig. 1d). 

2.6. Classification with 2D convolutional neural network 

After the WFCI data were mapped to MVG representations in 10-s 
increments, a 2D multi-channel CNN was employed to classify sleep 
states via supervised deep learning (Fig. 1e, Fig. 2). A compact 2D CNN 
consisting of three convolutional layers was employed, where each layer 
had a number of 32, 64 and 128 kernels, respectively, with a kernel size 
3. Kernels were shifted with a stride of 1 in all three layers. Leaky 
Rectified Linear Units (Leaky ReLU) were used after each convolutional 
layer as nonlinearities. A max pooling operation with a pool size of 2 and 
a stride size of 2 was applied after the first two convolutional layers. The 
last convolutional layer was followed by a global average pooling (GAP) 
layer to minimize the risk of overfitting by reducing the number of pa
rameters in the model. One densely connected layer with either softmax 
function for multi-class classification or sigmoid function for binary 
classification was applied to yield the classified states. The network was 
implemented in Python 3 with TensorFlow 2.2.0 using NVIDIA GPUs. 

Each layer of the MVG was considered as a channel of input to the 2D 
CNN. The kernels of the network share weight across all 36 channels 
corresponding to various brain regions. MVGs of different states were 
randomly shuffled during network training. The network was trained to 
minimize the focal loss (Appendix A.) by use of Adam optimizer 
(Kingma and Ba, 2017) with a learning rate of 0.0001 for 100 epochs 
and the CNN model with the best validation accuracy was selected. 

2.7. Statistical analysis 

The models were evaluated on test data consisting of unseen epochs 
from the same group of training subjects as well as on an independent 
subject. Metrics including precision = TP

TP+FP, recall = TP
TP+FN, accuracy =

TP+TN
TP+TN+FP+FN, where TP,TN, FP, FN are the numbers representing true 

Fig. 1. The proposed hybrid framework using MVG and 2D CNN to automatically classify sleep states with WFCI data in mice. (a) The 36 brain regions defined by the 
Paxinos atlas (Paxinos and Franklin, 2019) within the field of view used in constructing the MVG. (b) Examples of single-layer visibility graphs from visual cortex 
during wakefulness, NREM and REM, represented in a binary adjacency matrix (white=visible, black=non-visible). (c)-(e) Schematic using 3 sample brain regions 
showing the construction of the MVG for a 10-s epoch of WFCI data. (c) First, an average time series is created for each brain region. (d) Then, a visibility graph 
associated with each average time series is constructed and represented in its adjacency matrices. The MVG is constructed by stacking the adjacency matrices of each 
brain region. (e) The adjacency matrices for MVGs are taken as input to a 2D CNN to classify sleep states. 

Fig. 2. Illustration of the architecture of the 2D CNN. Three convolutional 
layers (blue) with parameters (number of filters, kernel size and stride size) are 
employed with Leaky ReLU. Max-pooling layers (gray) with parameters (pool 
size, stride size) were included after the first two convolutional layers. A global 
average pooling layer (orange) is placed after the final convolutional layers. 
Following the convolutional blocks, a softmax/sigmoid function (green) is 
applied to classify sleep states. 
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positive, true negative, false positive and false negative, respectively, 
were utilized to evaluate the model performance. The Cohen’s kappa 
statistic, κ (Cohen, 1960), was computed to assess the inter-rater reli
ability between manual EEG/EMG-based scoring and the proposed 
automated WFCI-based MVG-CNN classification results. The kappa sta
tistic is thought to be a more robust measure than percent agreement 
and a kappa magnitude between 0.61 and 0.80 indicates a substantial 
agreement between the two raters (McHugh, 2012). A confusion matrix 
for each classification task was formed to provide a direct interpretation 
of the classification results. 

2.8. Data and source code availability 

The WFCI data are available on PhysioNet (Goldberger et al., 2000; 
Landsness and Zhang, 2021) and the pre-processing code is available via 
https://github.com/brierl/Mouse_WOI (Brier and Culver, 2021). All 
model training and testing code are available at https://github.com/c 
omp-imaging-sci/MVG-CNN. 

3. Results 

3.1. MVG-CNN classifies sleep states as wakefulness, NREM and REM 

To automatically classify sleep states as wakefulness, NREM, and 
REM, WFCI data from mice (n = 11) were mapped to MVGs and a 2D 
CNN was trained on MVG representations (Fig. 1). The sleep state 
classification results of the MVG-CNN on WFCI alone were compared to 
human-scored EEG/EMG that were simultaneously collected with the 
WFCI data to assess the performance. For the individual sleep states in 
the test set consisting of 10% of the data in Experiment 1 (Table 1), the 
precision (recall) was 0.87 (0.91) for wakefulness, 0.80 (0.72) for NREM 
and 0.76 (0.77) for REM (Table 2, Fig. 3). The MVG-CNN achieved an 
overall accuracy of 84% and Cohen’s κ value of 0.67, where a κ value 
> 0.6 is indicative of substantial agreement (Table 2). 

To further demonstrate the ability of the MVG-CNN to classify sleep 
states from WFCI data, sleep states of an unseen 3-hour WFCI recording 
were classified. The MVG-CNN achieved a κ of 0.65, indicating a sub
stantial agreement between EEG/EMG-based scoring and the MVG-CNN 
classification. To further compare EEG/EMG-based scoring and MVG- 
CNN classification, we analyzed measures of sleep fragmentation, 
sleep-state organization and spectral power. The MVG-CNN method 
caused shorter sleep state durations and an increased number of state 
transitions (Table 3), suggesting increased sleep fragmentation. As 
depicted by the hypnogram (Fig. 4a, b), there was substantial agreement 
in the temporal pattern (sleep cycles) of transitions between wakeful
ness, NREM and REM. In addition, both EEG/EMG scored by a human 
and WFCI classified by the MVG-CNN showed an increase in delta 
(0.4–4.0 Hz) spectral power of the calcium signal exclusive to NREM 
and an increase in theta (6.0–8.0 Hz) exclusive to REM (Fig. 4c, d), 
confirming the effective classification of sleep states by both methods. 
Further, this agreement between EEG/EMG-based human scoring and 
WFCI-based MVG-CNN classification is comparable to the inter-rater 
reliability of two human experts with a κ of 0.60 (Supplemental 
Figure 2). These results show that sleep states classified by the MVG- 
CNN using WFCI data alone are highly similar to EEG/EMG-based 
human scoring. 

3.2. MVG-CNNs can also be effectively applied to different behavioral 
and experimental conditions 

While the MVG-CNN was able to accurately classify sleep state when 
a single WFCI dataset was employed, applicability to other WFCI data
sets with different animals, behavioral states or experimental conditions 
is desired for automated classification of WFCI data. Therefore, the 
MVG-CNN method was trained for two additional classification tasks 
that aimed to classify wakefulness versus sleep or wakefulness/sleep/ 
anesthesia/movement by use of an additional dataset collected during 
Experiment 2 (Table 1). In the binary classification, a pooled dataset 
consisting of epochs of wakefulness and sleep from Experiment 1 and 2 
(Table 1) was used. The MVG-CNN achieved a precision (recall) of 0.86 
(0.85) for wakefulness and 0.76 (0.78) for sleep (Table 4, Fig. 5a). The 
accuracy was 0.82 with a Cohen’s κ value of 0.62 (Table 4). In the four- 
class classification among wakefulness/sleep/anesthesia/movement, 
the MVG-CNN achieved an accuracy of 0.74 and a Cohen’s κ value of 
0.66 (Table 5), with precision (recall) of 0.63 (0.45) for wakefulness, 
0.70 (0.86) for sleep, 0.95 (0.94) for anesthesia and 0.68 (0.75) for 
movement (Table 5, Fig. 5b). These results demonstrate that the MVG- 
CNN can be effectively applied to datasets with different experimental 
conditions and classification problems. 

3.3. MVG-CNN reveals temporal characteristics for sleep state 
classification 

3.3.1. MVG-CNN uses short- and long-range visibility connections to 
classify sleep 

Understanding how the MVG-CNN makes a decision to classify WFCI 

Table 2 
Metrics to evaluate the three-state classification performance on test data 
(n = 1075 epochs). MVG-CNN achieved substantial agreement of κ = 0.67 
compared to manual EEG/EMG-based scoring. Prec., precision; Rec., recall; κ, 
Cohen’s Kappa statistic.  

Wakefulness NREM REM Accuracy κ 

Prec. Rec. Prec. Rec. Prec. Rec.  

0.87  0.91  0.80  0.72  0.76  0.77  0.84  0.67  

Fig. 3. Confusion matrix for the MVG-CNN on three-state sleep classification of 
wakefulness, NREM, and REM in test set (n = 1075 epochs). Manual EEG/EMG- 
based scoring is on the x-axis and MVG-CNN predictions are on y-axis. The 
diagonal cells in blue correspond to the numbers of correctly classified epochs 
and precision rate (%) across wakefulness, NREM and REM states. Non-diagonal 
cells indicate misclassified epochs for each state. 

Table 3 
Comparison of sleep fragmentation between WFCI-based MVG-CNN classifica
tion and EEG/EMG-based human scoring.  

Scoring method Average sleep state length (s) Number of state 
transitions 

Wakefulness NREM REM 

WFCI-based MVG-CNN 
classification  

28  54  30  272 

EEG/EMG-based 
human scoring  

47  66  81  180  

X. Zhang et al.                                                                                                                                                                                                                                   
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data into various sleep-wake states could lead to a better understanding 
of the neural correlates of sleep. Therefore, a way to visualize how the 
CNN identifies the class-discriminative features of the MVG is needed. 
One method, Grad-CAM (Appendix B.) (Selvaraju et al., 2020), uses 
class-specific gradient information flowing into the final convolutional 
layer of a CNN to produce a coarse localization map of regions of 
emphasis. When applied to the adjacency matrices of MVG, Grad-CAM 
identified regions of interest contributing to a classification decision 
and showed different patterns of emphasis for various sleep states 
(Fig. 6). For instance, in the wakefulness state, the adjacency matrices 
have a nearly continuous focusing band along the main diagonal which 
indicates that the network focuses on the visible connections on a short 
time scale over the entire epoch. Similarly, NREM focuses on short 
visible connections, but in a more clustered pattern, which characterizes 
a local convexity property over a small range of time in a given epoch 
(Donner and Donges, 2012). In contrast, REM sleep shows a different 
characterization with the network emphasizing the off-diagonal ele
ments that correspond to visible connections at a longer time scale. 
Taken together, these results show the MVG-CNN model classifies 
wakefulness and NREM sleep based on short-range visible connections, 
whereas REM is classified on longer time scale visibilities. 

3.3.2. Varying epoch duration impacts sleep state classification 
performance 

Human experts conventionally score sleep EEG/EMG signals from 
mice with an arbitrary 10-second epoch duration. Often, human-defined 
sleep epochs contain a mixture of sleep states with the predominant state 
being classified. This mixture of states raises the question of whether 
shorter epoch durations would lead to better sleep state classification 
performance of WFCI data (Yan et al., 2011). Here, the epoch duration 
was varied from 1 to 20 s to investigate the effect of temporal infor
mation incorporated from WFCI epoch data on sleep state classification 
performance (Fig. 7). As the epoch duration was increased from 1 s to 
7 s, the classification accuracy and Cohen’s κ improved. At an epoch 
duration of 8 s and higher, accuracy plateaued at ~0.85 with Cohen’s κ 
of ~0.70. These results suggest that shortening epochs below 8 s or 
increasing beyond 10 s may not benefit sleep state classification per
formance by the MVG-CNN for the WFCI dataset being classified. 

3.4. MVG-CNN identifies spatial characteristics for sleep state 
classification 

The spatial-temporal nature of WFCI offers the possibility to alter the 
amount the spatial information in order to understand how individual 
brain regions affect the sleep state classification performance of the 
MVG-CNN. Therefore, visibility graphs built from each single brain re
gion were given as input to CNNs, and the spatial distribution of sleep 
state classification accuracies and Cohen’s kappa values were mapped to 
the Paxinos atlas of the left hemisphere of a mouse brain (Fig. 8). When 
classifying sleep by use of WFCI data from a single brain region alone, 
posterior regions including visual and retrosplenial cortex show the 
highest accuracy as compared to other regions such as somatosensory 
and motor cortex. Furthermore, MVGs consisting of a different number 
of layers from various brain regions were taken as input to the network 
to classify sleep states. As more brain regions from across the cortex 

Fig. 4. Comparison of sleep state classification between human annotator and MVG-CNN on a 3 h recording of a mouse. Hypnograms corresponding to (a) human 
EEG/EMG-based scoring and (b) MVG-CNN classification based on WFCI recording. Average power spectra of the calcium signal plotted for wakefulness, NREM and 
REM based on the (c) true scoring produced by a human annotator or (d) predictions from MVG-CNN. Shaded gray areas represent the delta (δ, 0.4–4.0 Hz) and theta 
(θ, 6.0–8.0 Hz) frequency ranges. 

Table 4 
Metrics to evaluate the binary wakefulness/sleep classification performance 
with MVG-CNN on test data (n = 1351 epochs). Prec., precision; Rec., recall; κ, 
Cohen’s Kappa statistic.  

Wakefulness Sleep Accuracy κ 

Prec. Rec. Prec. Rec.  

0.86  0.85  0.76  0.78  0.82  0.62  
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Fig. 5. Confusion matrix that summarizes the MVG-CNN classification performance on (a) binary classification for distinguishing wakefulness and sleep, and (b) 
four-state classification for distinguishing among wakefulness, sleep, anesthesia (ketamine/xylazine, K/X) and movement. Manual EEG/EMG-based scoring on x-axis 
and MVG-CNN predictions on y-axis. The diagonal cells in blue correspond to the numbers of correctly classified epochs across different states, with the precision 
percentages in the parentheses. Non-diagonal cells indicate misclassified epochs for each state. 

Table 5 
Metrics to evaluate the four-state classification of wakefulness, sleep, anesthesia, and movement with MVG-CNN on test data (n = 588 epochs). Prec., precision; Rec., 
recall; κ, Cohen’s Kappa statistic.  

Wakefulness Sleep Anesthesia Movement Accuracy κ 

Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.  

0.63  0.45  0.70  0.86  0.95  0.94  0.68  0.75  0.74  0.66  

Fig. 6. Representative Grad-CAM examples of wakefulness, NREM and REM from three mice. A higher intensity with the color gradients (i.e., red, value 1) reveals 
that the 2D CNN focuses more on such regions of interest of adjacency matrices when making corresponding decisions. 

X. Zhang et al.                                                                                                                                                                                                                                   
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were incorporated into MVGs, sleep classification performance 
improved (Table 6). Taken together, these results suggest that using 
larger amounts of spatial WFCI data improves sleep state classification 
accuracy. 

4. Discussion 

In this study, we proposed a hybrid method that combines a multi
plex visibility graph and a 2D convolutional neural network (MVG-CNN) 
to accurately classify sleep states from WFCI data alone. Unique class 
activation patterns focusing on short- and long-range visibility were 
identified by the CNN when classifying WFCI data as wakefulness, 
NREM and REM. Additionally, regional information and epoch duration 
influenced sleep classification performance and accuracy. These results 
support that the spatial-temporal nature of the neuronal activity 
captured by WFCI plays an important role for characterizing sleep. 

Accurate, automated sleep state classification methods are needed 
for sleep research. EEG/EMG-based methods have been successfully 
developed to automatically classify sleep in rodents (Barger et al., 2019; 
Yamabe et al., 2019). While classification of sleep based on other bio
signals such as photoplethysmogram (PPG) (Korkalainen et al., 2020; 
Wu et al., 2020), heart rate and movement (Gaiduk et al., 2018; Sridhar 
et al., 2020) have been proposed, their performance is generally not as 
good as that based on EEG/EMG. Here, we successfully applied an 
MVG-CNN model to a new imaging tool, WFCI, to classify sleep states in 
mice. Although the MVG-CNN did not perform as well as automated 
EEG/EMG-based methods (Barger et al., 2019; Yamabe et al., 2019), 
MVG-CNN classification of WFCI data compares favorably with the 
published gold standard of inter-rater reliability among human expert 
scorers of EEG/EMG (Rosenberg et al., 2013), and that of two human 
experts scoring the simultaneously acquired EEG/EMG of this dataset. 
Additionally, the MVG-CNN method is superior to other automated sleep 
state classification methods with non-EEG/EMG biosignals (Korkalainen 
et al., 2020; Wu et al., 2020; Gaiduk et al., 2018; Sridhar et al., 2020). 
Thus, the hybrid MVG-CNN method is an effective, accurate tool for 
automatically classifying sleep states in WFCI. 

One unique aspect of sleep is the sequential and temporal de
pendency of sleep stage transitions (wakefulness followed by NREM and 
then REM sleep). To account for this temporal dependency, human 
scorers sequentially interrogate EEG/EMG recordings integrating the 
evidence with each epoch into the broader context. In contrast, the 
MVG-CNN model classifies sleep states in a temporally independent 
manner, which likely leads to an overestimation of the number of state 
transitions and shorter sleep state lengths. In the future, either recurrent 
neural networks that use future and past states, such as a bidirectional 
LTSM (Yamabe et al., 2019), or a post-processing algorithm, such as a 
hidden Markov model, that uses contextual information to estimate the 
probability to change to a different sleep-wake state from one epoch to 
the next (Brodersen et al., 2021) could be employed to reduce sleep 
fragmentation and increase accuracy. In addition, different variations of 
visibility graphs, such as the weighted visibility graph to increase 
sensitivity to state changes (Cai et al., 2018) and limited penetrable 
visibility graph to reduce the influence of noise (Wang et al., 2018), 
could be employed to further improve accuracy. 

Sleep has traditionally been defined based on the presence or 
absence of discrete features such as slow waves, spindles, K-complexes, 
rapid eye movements and muscle tone. One recent automated sleep state 
classification study using EEG found that the convolutional filters in a 
CNN use hierarchical feature formation to extract features that closely 
resemble the same discrete neuronal events used by human experts (Li 
and Guan, 2021). To better understand how the CNN assigned specific 
sleep states to an MVG, Grad-CAMs were computed to visualize the 
corresponding class activation patterns. Unique activation patterns on 
MVGs for classifying different sleep states were identified. For example, 
the CNN characterized NREM by focusing on short time-frame visibility 
corresponding to clustered patterns with high intensity on Grad-CAMs, 
indicating a local convexity on the spatial-temporal multivariate time 
series of WFCI data that could be consistent with slow waves observed in 
NREM and the relatively higher spectral power of the calcium delta 
oscillations seen in Fig. 4. In contrast, during REM, off-diagonal 
(long-scale) visibility was identified as a key discriminative feature 

Fig. 7. The sleep state classification performance with respect to the epoch 
durations used in the MVG-CNN. As epoch duration was varied, accuracy (left 
y-axis, solid blue line) and the Cohen’s Kappa statistic (right y-axis, dotted red 
line) were compared. 

Fig. 8. The sleep state classification performance with respect to using single- 
layer visibility graphs from individual brain regions in the left hemisphere. The 
Cohen’s κ value of each brain region is mapped to the atlas (Fig. 1a) to reveal 
the spatial importance in classifying WFCI data as wakefulness, NREM 
and REM. 

Table 6 
The sleep state classification performance using different amounts of spatial 
information in MVG-CNN. L: left hemisphere, V1: primary visual cortex, Barrel: 
somatosensory barrel cortex, M1: primary motor cortex.  

Brain regions (n) Accuracy κ  

L-V1 (1)  0.72  0.33  
L-Barrel (1)  0.69  0.23  
L-M1 (1)  0.71  0.30  
L-M1 +L-Barrel+L-V1 (3)  0.78  0.49  
Left hemisphere (18)  0.83  0.64  
Whole brain (36)  0.84  0.67  
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which may be consistent with the characteristic higher frequency 
(theta), low amplitude activity observed in the spectral analysis of the 
calcium signal. These MVG findings affirm the presence of slow waves as 
the key defining feature of NREM, whereas REM was characterized by 
relatively higher frequency, uniform activity. Future studies will allow 
for the identification of learned MVG patterns that could lead to 
improvement in defining the neural correlates of sleep and their relation 
to disease. 

A major question in the sleep field is whether sleep is a cortically 
global phenomenon or whether it can occur locally in confined regions 
of the cortex (Krueger et al., 2019). Traditionally, NREM is classified by 
the presence of slow waves and spindles throughout the cerebral cortex 
and REM as a homogenous “activated” low-voltage activity. However, 
recent research suggests that sleep slow waves can occur in a subset of 
brain regions rather than occurring synchronously across all cortical 
areas (Vyazovskiy et al., 2011; Nir et al., 2011; Siclari and Tononi, 
2017), and can be found outside of NREM during wakefulness (Vya
zovskiy et al., 2011; Hung et al., 2013; Bernardi et al., 2015; Quercia 
et al., 2018; Andrillon et al., 2021) or REM (Funk et al., 2016; Bernardi 
et al., 2019). In support of the idea of sleep as a global phenomenon 
(Sejnowski and Destexhe, 2000), we found that sleep state classification 
performance improved as wider areas of the cortex were incorporated 
into the sleep state classification model. However, taking advantage of 
the high spatial resolution afforded by WFCI, we found that individual 
areas of the cortex varied in the degree of accuracy to classify sleep 
states. For instance, posterior regions demonstrated relatively high ac
curacy versus anterior and lateral brain areas (motor and somatosen
sory) having lower accuracy. This spatial heterogeneity in sleep state 
classification accuracy may be the result of these subregions having 
isolated episodes of local slow waves while the rest of the cortex is in a 
state of wakefulness or REM sleep and is consistent with existing studies 
showing that local slow waves occur predominantly in both frontal and 
parietal regions (Vyazovskiy et al., 2011; Hung et al., 2013; Quercia 
et al., 2018). Taken together, the spatial information provided by WFCI 
confirms that sleep is not a unitary, homogeneous state but is spatially 
diverse across the cortex. Future studies utilizing WFCI to better char
acterize the presence of local slow wave sleep are needed not only for 
sleep state classification, but also in normal physiology and disease 
(Terzaghi et al., 2009; Dodet et al., 2015; Castelnovo et al., 2016; 
Riedner et al., 2016). 

In sleep state classification of rodent EEG/EMG signals by humans, a 
conventional 10-second epoch duration is commonly used to inspect the 
signal and assign sleep states. Studies have suggested that the optimal 
choice of epoch duration should accurately illustrate animals’ sleep- 
wake profiles with epochs as short as 4 s being ideal for capturing 
state transitions (Yan et al., 2011) but 8–10 s being best for sleep clas
sification algorthms (Brankačk et al., 2010). Consistent with previous 
studies, by altering epoch duration of the WFCI data prior to input into 
the MVG-CNN, we found that accuracy significantly declined at 4 s, and 
performance was optimal with epoch durations of 8–10 s. The decrease 
in accuracy with shorter epoch durations might be explained by the fact 
that EEG/EMG-based scoring to train the network is fixed at 10 s while 
the MVG-CNN epoch duration can be varied from one second to 20 s. 
The difference in epoch duration between EEG/EMG scoring and WFCI 
classification could be resolved by manually re-scoring the entire 
EEG/EMG dataset at a shorter temporal resolution (e.g., four seconds) 
and re-training the MVG-CNN, but comes at the cost of tedious, 
labor-intensive work and may result in the inability to integrate longer 
timescale trends into the MVG-CNN model. Indeed, for the WFCI dataset 
considered in our study, the MVG-CNN emphasized long-range temporal 
connections when classifying REM sleep (Fig. 6), which may explain 
why at least 8 s of data is necessary for sleep state classification while 
shorter epoch duration could lead to worse performance. Moreover, 
recent findings using multiunit activity (MUA) recordings suggest that 
the brain is able to “flicker” into different sleep states at the microsecond 
timescale (Schneider et al., 2021; Parks et al., 2021), and future studies 

combining the high spatial resolution of WFCI with high temporal res
olution of MUA may elucidate how quickly sleep states change across 
the cortex and the optimal epoch duration for sleep state classification. 

To the best of our knowledge, this study is the first to develop a deep 
learning-based automated sleep state classification method for WFCI. 
Beyond the inherent advantages of automated sleep state classification 
(decreased need for laborious human scoring, improved test, re-test 
reliability on repeated recordings), the proposed MVG-CNN method 
could be applied to a wide range of other uses to understand not just the 
neural correlates of sleep but other brain states as well. Some interesting 
topics remain to be investigated in future research. For instance, deep 
learning methods could use WFCI data to characterize functional brain 
networks in sleep (Li et al., 2021; Dong et al., 2020). Or, if larger 
(>1000) WFCI recordings become available, 3D CNNs (Tran et al., 
2015) could be employed to characterize sleep states and gain a deeper 
insight of the spatiotemporal features in raw data space. Last but not 
least, it is also desirable to enhance the generalization of sleep state 
classification methods so that the method is more robust against 
experimental variability. For example, advanced standardization ap
proaches such as mixture z-scoring that disentangles nuisances and class 
prevalence variability (Barger et al., 2019) can be applied on the data, 
and more generalized models trained on large numbers of cohorts could 
be options (Yamabe et al., 2019). 

5. Conclusions 

In this study, we describe an automated sleep state classification 
method using WFCI data alone by mapping spatial-temporal data to 
MVG representations and classifying sleep states with a CNN. The MVG- 
CNN achieved substantial agreement with manual EEG/EMG-based 
scoring and was effectively applied to different WFCI datasets and 
experimental conditions. The MVG-CNN model accurately distinguished 
wakefulness, NREM and REM by using short- and long-scale temporal 
features. Furthermore, temporal data was combined with spatial infor
mation provided by WFCI to identify a regionally diverse series of 
temporal events throughout the mouse cortex. This study supports the 
use of MVG-CNN to better understand the neural correlates of sleep with 
WFCI and holds promise for the application to other research fields. 
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Appendix A 

Focal loss 

An important issue to be considered when applying deep learning in classification problems is the class prevalence in the data (Johnson and 
Khoshgoftaar, 2019). In rodent sleep recordings, NREM and wakefulness states often account for over 90% of total recording time with relatively less 
REM sleep. In such circumstances, the major class overwhelms the cross-entropy loss in multi-class classification and dominates the gradient. Thus, a 
modified cross-entropy loss called focal loss (Lin et al., 2020) was used in training the neural network to classify sleep states. Focal loss introduces a 
tunable focusing parameter γ ≥ 0 to allow hard-to-classify examples to be penalized more heavily relative to easy-to-classify examples (Lin et al., 
2020): 

Lfocal(y, p̂) = − (1 − p̂y)
γlog(p̂y)

where y ∈ {0,…,K − 1} is an integral class label in K classes, and p̂ = (p̂0, p̂1,…, p̂K− 1) ∈ [0, 1]K denotes a vector of the model estimated probability 
over K the classes. In our study, γ = 2 was considered. 

Appendix B 

Visualizing CNN with gradient-weighted class activation maps (Grad-CAM) 

To identify the features of the MVGs that were important for accurate classification of different brain states, gradient-weighted class activation 
maps (Grad-CAMs) (Selvaraju et al., 2020) were computed. The Grad-CAMs were created by using the gradient information flowing into the last 
convolutional layer of the CNN to identify the parts of an input image that most impact the classification score. First, for a class c, the gradient of the 
corresponding score yc with respect to the feature map activations Ak of a convolutional layer was computed as ∂yc

∂Ak. A global average pooling operation 
over the spatial dimension indexed by i and j is applied on these gradients flowing back to obtain the importance weights of a feature map k of class c: 

αc
k =

1
Z

∑

i

∑

j

∂yc

∂Ak
ij
,

Finally, Grad-CAM performed a weighted combinations of forward activation maps with ReLU: 

Lc
Grad− CAM = ReLU

∑

k
αc

kAk,

and upsampled to the input resolution to produce a heatmap of class-discriminative localization of the regions. 

Appendix C. Supporting information 

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jneumeth.2021.109421. 
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