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ABSTRACT
Animal toxins that are used to subdue prey and deter predators act as the key drivers in natural food chains
and ecosystems. However, the predators of venomous animals may exploit feeding adaptation strategies to
overcome toxins their prey produce. Much remains unknown about the genetic and molecular game
process in the toxin-dominant food chain model. Here, we show an evolutionary strategy in different
trophic levels of scorpion-eating amphibians, scorpions and insects, representing each predation
relationship in habitats dominated by the paralytic toxins of scorpions. For scorpions preying on insects, we
found that the scorpion α-toxins irreversibly activate the skeletal muscle sodium channel of their prey
(insect, BgNaV1) through a membrane delivery mechanism and an efficient binding with the Asp/Lys-Tyr
motif of BgNaV1. However, in the predatory game between frogs and scorpions, with a single point
mutation (Lys to Glu) in this motif of the frog’s skeletal muscle sodium channel (fNaV1.4), fNaV1.4 breaks
this interaction and diminishes muscular toxicity to the frog; thus, frogs can regularly prey on scorpions
without showing paralysis. Interestingly, this molecular strategy also has been employed by some other
scorpion-eating amphibians, especially anurans. In contrast to these amphibians, the Asp/Lys-Tyr motifs
are structurally and functionally conserved in other animals that do not prey on scorpions. Together, our
findings elucidate the protein-protein interacting mechanism of a toxin-dominant predator-prey system,
implying the evolutionary game theory at a molecular level.

Keywords: toxin, receptor, molecular game, amphibian, scorpion

INTRODUCTION
Evolution has fine-tuned the ability of venoms in
many venomous animals, such as snakes, spiders,
centipedes and scorpions, to rapidly incapacitate
both prey and predators—especially for fast-moving
targets—as a mechanism for hunting prey or de-
terring predators [1–4]. To achieve a paralytic en-
venomation, targeting skeletal muscle sodium chan-
nel NaV1.4 in mammals or its counterpart receptor
BgNaV1 in insects is an efficient strategy, because
this channel is crucial for skeletalmuscle contraction
as it regulates the generation and propagation of ac-
tion potentials [5–8]. During the long evolutionary
game process of natural selection, the formation of
food chains containing venomous animals was likely

dominated by venom components that elicitedmus-
cular toxicity [9,10].

Scorpions (Mesobuthus martensii Karsch) inflict
potentially paralytic and lethal stingsmainly through
their α-toxins acting on the skeletal muscle sodium
channel [11–13]. Scorpion α-toxins slow or inhibit
the inactivation process of NaV channels and thus
induce prolongation of action potentials [14–16].
For scorpions, causing the dysfunction of the mus-
cular systembyα-toxins is a unique evolutionary and
molecularmechanism that rapidly renders prey inca-
pable of retaliation or escape. Although toxins have
been underlined by their powerful bioactivities and
were thought to be crucial for predation, venomous
animals are not located at the top of the food chain in

C©TheAuthor(s) 2019. Published byOxfordUniversity Press on behalf of China Science Publishing&Media Ltd.This is anOpen Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original
work is properly cited.
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Figure 1. Frogs exhibit significant tolerance to α-toxins. (A) Image of a frog (Pyxi-
cephalus adspersus) preying on a scorpion (Mesobuthus martensii). (B) Isolation of na-
tive BmK-M9 (blue arrow) from the pooled protein fractions by a C18 RP-HPLC column.
(Inset) The purity and molecular weight of BmK-M9were identified byMALDI-TOF anal-
ysis. (C) Representative BgNaV1 currents from a two-electrode voltage-clamp record-
ing in the presence of 10μMBmK-M9. (D) Association and dissociation analysis of the
interaction between BmK-M9 and BgNaV1. The association trace was plotted by apply-
ing 10 μM BmK-M9 and dissociation trace was plotted by washing with bath solution
within 30 minutes. The oocytes were perfused by 10 μM BmK-M9 for 30 seconds to
ensure the saturated concentration of the toxin on the channel. (E) The structural model
of BmK-M9 with the electrostatic potential distribution shown in color (red= negative,
blue = positive) on the right. The location of two key residues Y42 and K62 are shown
on the BmK-M9 structure. (F) A dose-response curve for the lethal effect of BmK-M9
determined 24 hours after injecting into two kinds of cockroaches (Blattella germanica,
Bg, and Periplaneta americana, Pa) and two kinds of frogs (Pyxicephalus adspersus, Pya,
and Lithobates catesbeianus, Lc). Data points were fitted according to the Hill equation.
Average values are given as mean ± SEM; n = 30 cockroaches per group and n = 5
frogs per group. n = 3 groups per data point. (G) Comparison of the I5 ms/Ipeak values
of BmK-M9 treated NaV1.4 channels of cockroach (BgNaV1), tree shrew (tsNaV1.4), rat
(rNaV1.4), bat (bNaV1.4) and camel (cNaV1.4).

most ecosystems [17–19]. This raises questions re-
garding how the higher players maintain their domi-
nance in the food chain andhow they invalidate their
preys’ toxins.

Interestingly, as predators of scorpions, someam-
phibians might have evolved a tolerance to the as-
sault of scorpion toxins on themuscular system[20].
Anuran species, such as Leptodactylus pentadacty-
lus, plethodantohyla inguinalis [21,22], have been
recorded to prey on scorpions and this evolutionary
phenomenon is supported by several physiological
mechanisms at a molecular level. Based on these ob-

servations, we questioned whether the frog or toad
employs certain resistance mechanisms to the para-
lytic toxins of scorpion and whether thesemolecular
strategies are crucial for this predator-prey relation-
ship. Our observations showed that the frog (Pyx-
icephalus adspersus) exhibited resistance to stings
of the scorpion (Mesobuthus martensii), preyed and
consumed the scorpion without a paralytic response
(Supplementary Movie S1, available as Supplemen-
tary Data atNSR online).This suggests that the frog
evolved to reduce sensitivity to the paralytic tox-
ins. By contrast, these toxic stings play an extremely
successful defensive or lethal role in other verte-
brates and insects [23–25]. Are scorpion α-toxins
invalidated by encountering a detoxification mech-
anism in frogs? In the present study, we unraveled
the molecular strategies and the evolutionary game
theory in a food cycle composed of anuran species,
scorpions and insects through integrating the results
from animal tests, electrophysiology, mutagenesis,
fluorescent dynamics and computational modeling.

RESULTS
Significant tolerance of frog-to-scorpion
stings and α-toxin
As shown in Fig. 1A and Supplementary Movie S1
(available as Supplementary Data at NSR online),
although the scorpion displayed a powerful chemi-
cal defense via several toxic stings, these stings had
no impact on the frog during the predatory process.
By contrast, scorpion stings exhibited a successful
defensive role in laboratory mice (Supplementary
Movie S2, available as Supplementary Data at NSR
online). Therefore, frogs may possess some molec-
ular strategies to diminish the physiological effects
induced by these toxins. To obtain a representa-
tive muscle-paralytic α-toxin, considered as a major
component for subduing prey and deterring preda-
tors, we purified an α-toxin (BmK-M9) in abun-
dance (Fig. 1B and Supplementary Fig. S1A, avail-
able as Supplementary Data at NSR online) [26]
from the crude venom of the scorpion (Mesobuthus
martensii). Functional tests indicated a potent bioac-
tivity of BmK-M9 on the insect muscular sodium
channel (BgNaV1), with complete elimination of
fast inactivation of the channel (Fig. 1C). The in-
teraction between BmK-M9 and BgNaV1 is dis-
tinctly strong, yielding an extremely slow dissocia-
tion (Fig. 1D). Due to the high affinity and bioac-
tivity of BmK-M9 on insects among knownα-toxins
(Supplementary Table S1 and Fig. S1B–E, available
as Supplementary Data atNSR online), we used this
toxin as a prototypic α-toxin and established the ho-
mologousmodel ofBmK-M9(Fig. 1E).As expected,
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Figure 2. DIV of fNaV1.4 possesses the resistance property to α-toxins. (A) Repre-
sentative whole-cell currents of fNaV1.4 and rNaV1.4 before and after 10 μM BmK-
M9 application. The cells were perfused by 10 μM BmK-M9 for 30 seconds to en-
sure a saturated concentration of the toxin on the channel. (B) The I5 ms/Ipeak value of
each sodium channel following application of 10μMBmK-M9. The statistical values
are given as mean ± SEM (n = 3 cells). (C) Comparison of binding affinity of BmK-
M9 on rNaV1.4 and fNaV1.4. The association traces were plotted by application of
10μM BmK-M9 and dissociation traces were plotted by washing with bath solution
within 40 seconds. (D) The toxin dissociation rate was recorded following a series
of images from rNaV1.4-expressing (top row) and fNaV1.4-expressing (bottom row)
HEK293T cells incubated with F-BmK-M9 (10 μM). (E) Schematic representation of
the chimeras between rNaV1.4 (blue) and fNaV1.4 (red). (F) Representative whole-cell
currents of DIV chimeric channel before and after 10 μM BmK-M9 application. (G)
Schematic representation of the chimeras between BgNaV1 (blue) and Shaker (grey).
(H) Representative whole-cell currents of Shaker˙D4 chimeric channel were recorded
before and after 10 μM BmK-M9 application. (I) Diagram of BgNaV1 channels indi-
cating the location of mutated cysteine labeled with TAMRA-MTS (up); Fluorescence
signals evoked at −180 mV, −80 mV, −20 mV, 40 mV were recorded from channel
mutant S1678C before (left panel) and after (right panel) 10μMBmK-M9 application
(middle); The changes in fluorescence signals (at 40 mV) for the four fluorescence-
labeled channel mutants were analysed in the presence of 10 μM BmK-M9. The
statistical values are given as mean ± SEM (n = 3 cells) (down). (J) The voltage-
dependent fluorescence (circle) and conductance-voltage relationship (dash line) of
channel mutant S1678C were analysed before and after 10μMBmK-M9 application.
The statistical values are given as mean ± SEM (n = 3 cells).

by calculating the lethal dosage, we found that cock-
roaches exhibited more than 100,000-fold sensitiv-
ity to BmK-M9 compared to frogs (Fig. 1F). Given
that the skeletal muscle sodium channels are the
general main target of scorpion α-toxins (Fig. 1G)
[12,13,27–29], we hypothesized that the counter-
part receptor (frogNaV1.4, fNaV1.4) of the BgNaV1
channel may be the molecular basis of frog’s detox-
ification mechanism, thus making the frog a higher-
level predator in this food chain.

Domain IV of fNaV1.4 and BgNaV1
determines the sensitivity to α-toxin
To test our hypothesis, we first cloned fNaV1.4
from a frog (Pyxicephalus adspersus) and expressed
it in HEK293 cells. As shown in Supplemen-
tary Fig. S2A (available as Supplementary Data
at NSR online), the steady activation of fNaV1.4
(Va1/2 =−28.1mV) is similar to that of the BgNaV1
channel (Va1/2 = −26.5 mV). By comparing the
fraction of remaining current at 5 milliseconds after
the peak versus the peak current amplitude (Table
S2, available as Supplementary Data atNSR online),
fNaV1.4 possesses unique molecular mechanisms
that significantly resist BmK-M9, unlike BgNaV1
(Fig. 2A–C). In agreement with our electrophys-
iological results, fluorophore-linked BmK-M9 (F-
BmK-M9) revealed the fast dissociation of BmK-
M9 on toxin-insensitive fNaV1.4-expressing cells
(Fig. 2D).To focuson the structural basis of fNaV1.4
containing the resistance, a series of chimeric chan-
nels were made between fNaV1.4 and mammalian
NaV1.4 (Fig. 2E and F). We found that only the
homologous domain IV (DIV) of fNaV1.4 retained
its resistance properties to BmK-M9 (Fig. 2F and
Supplementary Fig. S2B, (available as Supplemen-
tary Data atNSR online). A previously reported ap-
proach [30] helped us to further confirm the interac-
tion between BmK-M9 and the voltage-sensing do-
mains (VSDs), in which specific VSD paddles from
each homologous domain of BgNaV1 channel were
transplanted into a Shaker channel (Fig. 2G). Con-
sistently, 1μMBmK-M9 exclusively interactedwith
the DIV-VSD construct (Shaker˙D4), whereas do-
main I, II, III constructs and WT Shaker were un-
affected (Fig. 2H, Supplementary Fig. S2C and D,
available as Supplementary Data at NSR online).
Saturated BmK-M9 partially inhibited the gating
current of BgNaV1 and completely suppressed that
of Shaker D4 (Supplementary Fig. S3A and B, avail-
able as SupplementaryData atNSR online).We also
labeled a fluorophore (TAMRA-MTS) onto four
VSDs (L224C, S870C, I1361C and S1678C, Fig. 2I,
Supplementary Fig. S3C and D, available as Supple-
mentary Data at NSR online) of BgNaV1 to track
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Figure 3. A glutamic acid mutation in the Asp/Lys-Tyr motif provides the species se-
lectivity for α-toxins. (A) Screening τ off values of 17 single-point toxin mutants on
rNaV1.4. (B) Dissociation of BmK-M9 on rNaV1.4 and three single-point channel mu-
tants. (C) Comparison of the dissociation traces of BmK-M9 on single-point mutant
K1432A and double-point mutant K1432A/Y1433A (left); single point-mutant D1428A
and double-point mutant D1428A/Y1433A channel (right). (D) Sequence alignment of
the Asp/Lys-Tyr motif of rNaV1.4 (r1.4), BgNaV1 (Bg1), fNaV1.4 (f1.4) and hNaV1.7 (h1.7).
The corresponding τ off values of BmK-M9 on these channels are shown. (E, F) The dis-
sociation traces of toxin (T in red) mutants on channel (C in red) mutants. (G) Comparison
of the I5 ms/Ipeak values on BmK-M9 treated BgNaV1 and fNaV1.4 with a single amino
acid change.

their movements during the channel-gating process
[31–33]. Similarly, 1 μM BmK-M9 notably de-
creased the fluorescence signals of S1678C labeled
channel mutants and shifted the fluorescence curve
to depolarized potentials by about 25 mV (Fig. 2I
and J). These results together suggest that BmK-
M9 occludes the movement of insect or mammal-
derived DIV-VSD, which is expected not to occur in
fNaV1.4.

A point mutation bestows fNaV1.4 with
resistance to paralytic α-toxin
Additionally, glycine/alanine screening revealed the
key residues in the toxin-channel interaction. Two
residues (42Y and 62K) were identified as the key
sites of the toxin by the washing-out time-course

analysis, yielding τ -off values of 25.82 and 15.07 sec-
onds, respectively (Fig. 3A). Asp/Lys-Tyr motif
was identified as the binding pocket of BmK-M9,
given that the three residues located in this mo-
tif of mammalian DIV-VSD were found to be im-
portant for the toxin-channel interaction (Fig. 3B–
D). To experimentally test the site-to-site interac-
tion, we employed an analysis based on thermody-
namicmutant cycling [34,35]. Briefly, if one of these
two residues specifically interacts with one residue
in the Asp/Lys-Tyr motif, then the τ -off value of
double mutation should be nonadditive compared
with that of a single mutation. Otherwise, the ef-
fects of accelerating the decrease in I5ms/Imax value
by mutating these residues would be additive. Ex-
cept for fNaV1.4, the tyrosine (42Y) of BmK-M9 di-
rectly interacts with the lysine located in Asp/Lys-
Tyr motif (Fig. 3E and F), which likely provides
the species selectivity for BmK-M9 (Supplemen-
tary Fig. S4A, available as Supplementary Data at
NSR online). Based on these understandings of the
site-to-site interaction, it is hardly surprising that a
single-point mutation could largely alter the bioac-
tivity of BmK-M9 on both fNaV1.4 and mammalian
NaV1.4 (Fig. 3G). Compared to the skeletal mus-
cle sodium channels of other animals, a glutamic
acidin the Asp/Lys-Tyr motif of fNaV1.4 acts as the
molecular determinant and reverses the charge by
replacing lysine in this motif, which may bestow
the frog with biological resistance to the paralytic
α-toxin.

Structural and molecular strategies of
the predatory game process
We used Rosetta to simulate the resting state of
DIV-VSD by aligning the first arginine (R1448) re-
solved in the activated state (PDB: 6AGF) to the
fourth arginine (R1457) and rebuild the loop be-
tween transmembrane segment 3 and 4. As shown
in Supplementary Fig. S4B (available as Supple-
mentary Data at NSR online), the Asp/Lys-Tyr
motif is embedded in the lipid membrane in the
resting state model, suggesting a lipid-dependent in-
teraction between toxin and DIV-VSD. BmK-M9
was incorporated into the cell membrane in our
partition experiments (Fig. 4A and B). In agree-
ment with the toxin-membrane interaction, BmK-
M9 showed effective bioactivity when applied from
the intracellular side (Fig. 4C). When BmK-M9
was docked into this resting state model, the toxin
largely resided within the membrane (Fig. 4D).The
docking model is fully consistent with our results
from point-mutation screening, toxin-lipid partition
experiments and patch-clamp recordings. In the
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Figure 4. The detoxification receptor fNaV1.4 repels the binding of α-toxins. (A) The
RP-HPLC detection of BmK-M9 in DMEMmedium supernatant with HEK293T cells (red)
and without (grey) HEK293T cells. BmK-M9 was detected after 24 hours of toxin ap-
plication. (B) The interaction between BmK-M9 and lipid membranes. The bands rep-
resent the toxin extracted from liposome and lipid-bilayer membranes of HEK293T
cells, which were incubated with 10 μM BmK-M9, respectively. The 10 μM BmK-M9
in DMEM medium without lipid membranes was used as control. (C) Representative
whole-cell currents of rNaV1.4 at the beginning of whole-cell formation and 30 sec-
onds after whole-cell patch constructed whereby 10 μM BmK-M9 was added in the
pipette solution. (D) The docking model of BmK-M9 with domain IV of rNaV1.4 at rest-
ing state. (E) A zoomed-in view of the interaction between BmK-M9 and rNaV1.4. (F)
A cartoon showing the molecular game theory for a toxin-dominant food chain model
among frogs, scorpions and insects.

zoomed-in complex model, a cation-π interaction
between BmK-M9 and the Asp/Lys-Tyr motif of
BgNaV1 is necessary to stabilize the location ofDIV-
VSD in its resting state (Fig. 4E).Given that this glu-
tamic acidmutation couldbeobserved in the skeletal
muscle sodiumchannel of sequenced anuran species
(Supplementary Fig. S4A, available as Supplemen-
tary Data atNSR online), it likely provides a detoxi-
ficationmechanism for scorpion-eating amphibians,
especially anurans.Therefore, this mechanismmini-
mizes muscular toxicity induced by scorpion stings,
thus, frogs prey and ingest themwithout paralytic re-
sponses (Fig. 4F).

DISCUSSION
Venomous animals are consistently excellent preda-
tors due to possession of formidable venom bio-
chemical armaments and therebyoftenoccupydom-
inant positions in food chains [36,37]. To be
higher-level predators of these venomous animals,
evolutionary game processes at the molecular level
are necessary to equip several crucial detoxification
mechanisms that circumvent the risk of poisoning
[38,39]. The present study highlights a representa-
tive example of this type of predatory game theory
among scorpion-eating amphibians, scorpions and
insects.

Scorpions evolved a gene-encoded venom sys-
temas a primary chemicalweapon for capturing prey
[40,41]. Recent cryo-EM studies have resolved the
atomic structures of several toxin-NaV channel com-
plexes, showing that toxins engage with the channel
mainly through protein-protein interactions [42–
45]. However, we find that to tightly fixDIV-VSD in
the resting configuration, scorpion α-toxin not only
interacts with this domain through a salt bridge and
a cation-π interaction, but it also penetrates deeply
into the lipidmembrane andholdsDIV-VSDagainst
activation (Fig. 4D–E). These characteristics of
α-toxins make the prey’s skeletal muscle sodium
channels constitutively activated without any inacti-
vation, resulting inmuscle rigidity.We found the im-
portant role of DIV-VSD (Fig. 2E–J), especially the
Asp/Lys-Tyrmotif (Fig. 3B–D),which is embedded
in the cell membrane at its resting state (Fig. 4A–
E, Supplementary Fig. S4B, available as Supple-
mentary Data at NSR online). Therefore, paralytic
α-toxin obviously gained an upper hand in the
predatory game between scorpions and their prey.

Scorpion stings containing these paralytic α-
toxins also exhibit defensive roles against verte-
brates, like rodents (SupplementaryMovie S2, avail-
able as Supplementary Data at NSR online), by
exploiting the same mechanisms. This poses, how-
ever, a different question of why rodents do not
evolve tolerance.We first rule out the possibility that
the rodents’ attack is swift enough to ingest scorpi-
ons directly and avoid scorpion stings (Supplemen-
tary Movie S2, available as Supplementary Data at
NSRonline), because scorpion sting events (inmini-
second range) are too fast to dodge [46,47]. It is
plausible that rodents havenoneed to exploit anoth-
erwise new toxic food source and also do not get
stung by scorpion frequently, given that they are not
in the same food cycle. Supporting this argument,
the projection behavior of frogs’ tonguesmay reduce
the number of scorpion sting and envenomation ca-
pacity during the predation process. Moreover, at a
molecular level, resistance to scorpion stings, espe-
cially in frogs, is more likely a receptor-benefit result
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of a long-term prey and predation game. In fNaV1.4,
the Asp/Lys-Tyr motif is mutated to the Asp/Glu-
Tyr, one of attracting pair forces that mutually re-
pel, which greatly reduces the affinity of the toxin for
fNaV1.4 (Fig. 4F). Except for scorpion-eating am-
phibians, such as the anuran species, we found that
the Asp/Lys-Tyrmotif is conserved in nonscorpion-
eating vertebrates. Interestingly, the Asp/Lys-Tyr
motif of nonscorpion-eating amphibians, such as
salamanders, also is intact (Supplementary Fig. S4A,
available as Supplementary Data at NSR online).
Our results provide a clue that specie-crossing in-
teractionshidemoredelicatemolecularmechanisms
among ligands and receptors to support the interest-
ing and intense coevolutionary game.

MATERIALS AND METHODS
Ethics statement
All of the animal experiments were performed in
accordance with recommendations in the Guide
for the Care and Use of Laboratory Animals of
Kunming Institute of Zoology, Chinese Academy of
Sciences. Experimental protocols using animals in
this study were approved by the Institutional Ani-
mal Care andUseCommittees at Kunming Institute
of Zoology, Chinese Academy of Sciences (approval
ID: SMKX-2018029).

Purification and protein sequencing of
BmK-M9
A total of 1,000 (both sexes) adults Mesobuthus
martensii were purchased from Shandong Province,
China. As previously reported [48], crude venom
was collected by stimulating the venom glands with
a 3 V alternating current. BmK-M9 was purified
from the crude venom by using a combination of
a Sephadex G-50 gel filtration column and reverse-
phase (RP)-HPLC.Thepurity andmolecularweight
of the toxin were analysed using a matrix-assisted
laser desorption ionization time-of-flight (MALDI-
TOF). The toxin with a purity of over 99.8% was
collected and stored at−80◦C. A Shimadzu protein
sequencer (PPSQ-31A, Shimadzu, Japan) was used
for the determination of the amino acid sequence of
BmK-M9.

Preparation of recombinant toxin and
fluorescent-labeled BmK-M9
Expression vector construction, protein expression
and purification were performed as described pre-
viously [49,50] with fine tuning. In summary, the
cDNA encoding BmK-M9 was synthesized with
codons optimized for expression in Escherichia coli,

and it was cloned into the modified expression vec-
tor pet32a (+) (Novagen). This vector (pet32a)
encodes a His6 tag for affinity purification, a Trx-
Tag for improving the solubility and activity of
the expressed peptide, and a tobacco etch virus
(TEV)protease recognition site for subsequent pep-
tide cleavage release. The plasmid encoding BmK-
M9 then was transformed into the E. coli strain
BL21(DE3) for recombinant toxin production.

Bacteria were grown in LB broth at 37◦C with
shaking at 180 rpm. BmK-M9 expression was in-
duced with 500 μM IPTG at an OD600 of 0.8, and
the cellswere grownat 16◦Cwith shaking at 100 rpm
for a further 12 h before harvesting by centrifuga-
tion for 10 minutes at 10,000-fold gravitational ac-
celeration. The fusion protein was extracted from
the bacteria by cell ultrasonication and then cap-
tured bypassing the extract (buffered in 20mMTris,
0.5 mM NaCl, pH = 8.0) over Ni-NTA resin (Qi-
agen 30230). Nonspecifically-bound proteins were
removed by washing with 20mM imidazole.The fu-
sion proteinwas elutedwith 500mM imidazole.The
eluted fusion proteinwas lyophilized and further pu-
rifiedbyFPLC(Resource SGE6mL) to remove im-
idazole and obtain higher purity recombinant fusion
protein.

Added to 1 mg of the fusion protein was 10 U
TEVprotease, and then the cleavage reactionwas al-
lowed to proceed at 16◦C for 12 h at a constant vol-
ume with TEV Protease buffer (50 mM NaH2PO4,
150 mM NaCl). The sample then was centrifuged
at 12,000 rpm, and the supernatant was subjected
to further purification using RP-HPLC (C8 XBridge
OBD). Containing a nonnative N-terminal glycine
residue, rBmK-M9 is one residue longer than native
BmK-M9.

Given that rBmK-M9 with His-tag also works on
sodium channels, we used a His-tag–specific dye,
Invision (Invitrogen LC6030), to construct Fluo-
rescent BmK-M9 (F-BmK-M9). Incubated with In-
vision for 24 h, rBmK-M9 was subjected to RP-
HPLC purification. The single peak was collected
and lyophilized for further imaging experiments.

F-BmK-M9 imaging
HEK293T cells transfected with sodium channels
(rNaV1.4 and fNaV1.4) were incubated with F-
BmK-M9 for 1 h in 2 mM Ca2+ Ringer’s solu-
tion (140 mM NaCl, 5 mM KCl, 2 mM MgCl2,
10 mMGlucose, 2 mMCaCl2, and 10 mMHEPES,
pH = 7.4) before fluorescence imaging recordings.
Fluorescence images of HEK293T cells incubated
with F-BmK-M9 were acquired by using an Olym-
pus IX-71microscopewith aHamamatsuR2 camera
controlled byMetaMorph software. F-BmK-M9was

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/6/6/1191/5536076 by W

ashington U
niversity at St Louis user on 19 M

arch 2023



RESEARCH ARTICLE Li et al. 1197

excited by a LED light source (X-Cite 120LED, Lu-
menDynamics)with a560nmexcitationfilter,while
fluorescence emission was detected by a 590 nm
emission filter.

Insecticidal assays
Dissolved in insect saline, 10μMrBmK-M9were in-
jected into the abdomen region of adult American
cockroaches (Periplaneta americana) and adult Ger-
man cockroaches (Blattella germanica). Insect saline
was used as control. Injections were made using a
1.0 mL syringe (B-D Ultra-Fine). A maximum vol-
ume of 1.5 mL was injected per B. germanica and
3.0 mL for P. americana. Thereafter, cockroaches
were housed in closed 1 L conical flasks and pro-
videdwithdry foodandwater.The lethal effectswere
then determined after a period of 24 h. For each
acute toxicity assay, up to five doses of rBmK-M9
were injected (n= 5 insects per dose).The assaywas
repeated three times.

Mutagenesis of toxin and sodium
channels
Chimeras rNaV1.4 and fNaV1.4 used in this study
were generated by the overlapping extension
method by using In-Fusion HD Cloning Kits and
following the user manual (Clontech); all chimeras
were verified by DNA sequencing [51]. Each
sodium channel point mutation was constructed
by using the QuikChange Lightning Site-Directed
MutagenesisKit (Agilent) and following the instruc-
tion manual; all point mutations were confirmed by
DNA sequencing.

For each toxinmutant, site-directedmutagenesis
was performed by PCR on expression plasmid first
and then the corresponding peptide was expressed
as described before. Final confirmation of toxin mu-
tants was carried by CD spectra.

Cut-open VCF and TEVC recordings
Cut-open voltage-clamp fluorometry (VCF) was
used to record ionic currents and fluorescence from
oocytes [52,53]. Xenopus laevis oocyte preparation
and cRNA injection was performed as described
previously [54]. Briefly, the cRNA of BgNav1
was coinjected into oocytes with that of TipE at
a 2:1 molar ratio (50 ng per cell total) for robust
expression. Injected oocytes were incubated indi-
vidually at 18◦C for 5 d in ND-96 solution with
1% penicillin-streptomycin at a pH of 7.4. The
temperature of three chambers was maintained at
19◦C with a controller (HCC-100A; Dagan Cor-
poration). The internal solution contained 113 mM

NMG-Mes, 2 mM Na-Mes, 20 mM HEPES, and
2 mM EGTA, pH = 7.4. The external solution
contained 95 mM NMG-Mes, 20 mM Na-Mes,
20 mMHEPES, and 2mMCa-Mes2, pH= 7.4.The
glass pipettes were filled with filtered 3 M KCl in
0.5% agarose with a resistance of 0.5 to 1.0M�. For
fluorescence measurement experiments, oocytes
were labeled with 20 μM methanethiosulfonate-
carboxytetramethylrhodamine in a depolariz-
ing solution (110 mM KCl, 1.5 mM MgCl2,
0.8 mM CaCl2, and 10 mM HEPES, pH = 7.4)
on ice for 40 min. Methanethiosulfonate-
carboxytetramethylrhodaminewas excitedby aLED
light source (Luminus, PT-121), while fluorescence
emission was detected by a 40 × water-immersion
objective with a numerical aperture of 0.8 (CFI Plan
Fluor; Nikon). Gating currents were recorded with
1μMTTX in the external solution.

Cell culture, transient transfection, and
electrophysiology
HEK293T cells were cultured in Dulbecco’s
modified Eagle’s medium with 10% fetal bovine
serum, penicillin (100 U/ml) and streptomycin
(100 mg/ml) at 37◦C with 5% CO2. Cells were
plated on cover glasses before transfection.
Transient transfection was conducted by using
Lipofectamine 2000 (Invitrogen) and following the
instruction manual.

Electrophysiological experiments were per-
formed between 24–48 h after transfections as
previously described [8]. The macroscopic currents
were recorded by using a HEKA EPC10 amplifier
with the PatchMaster software (HEKA). The
borosilicate glass pipettes were pulled and fire-
polished to a resistance of 3–4 M�. All recordings
were performed at room temperature. To evoke
sodium channel currents, a holding potential of
−80 mV was used with a testing pulse to −10 mV.
The association and dissociation traces were deter-
mined using a rapid solution changer (RSC-200,
BioLogic) to deliver different concentrations of
BmK-M9 and toxin mutants.The stable current am-
plitude before and after BmK-M9 application was
recorded. For the sodium channels recording, the
standard pipette solution contained 140 mM CsF,
1mMEGTA, 10mMNaCl, 3 mMKCl, and 10mM
MgCl2, pH = 7.3. The standard bath solution was
140 mM NaCl, 3 mM KCl, 1 mM MgCl2, 1 mM
CaCl2, and 10 mMHEPES, pH= 7.3.

Lipid membrane interaction
HEK293T cells were incubated with 10 μM
rBmK-M9 for 24 h. The incubated cells were then
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resuspended in 2 mL of PBS and then centrifuged
at 18,000-fold gravitational acceleration for 1 h at
4◦C. The supernatant was filtered and subjected to
RP-HPLC detection.

Given that rBmK-M9 with His-tag also works on
sodium channels, we used a His-tag specific anti-
body (CST) to prove the interaction between BmK-
M9 and lipid membranes. Cells of HEK293T trans-
fected with rNaV1.4 and liposome were incubated
with 10 μM rBmK-M9 for 24 h and then resus-
pended in 2 mL of PBS and centrifuged at 18,000-
fold gravitational acceleration for 1 h at 4◦C.The two
kinds of cell pellets were washed three times with
PBS to get rid of the residual free toxins, then lysed
with RIPA and centrifuged at 18,000-fold gravita-
tional acceleration for 1 h at 4◦C. The two kinds of
supernatantswere collected anddetectedbywestern
blot for the presence of the toxin.

Construction of BmK-M9 and rNaV1.4
channel model
The structure of BmK-M9 was predicted by back-
rub protocol using the Rosetta molecular modeling
suite version 2016.20. A partial model of rNaV1.4
was constructed fromL250 to E1600 bymembrane-
symmetry-loop modeling using the Rosetta molec-
ular modeling suite version 2016.20. The cryo-EM
structure of EeNaV1.4 (5XSY) was used as the tem-
plate, the S3–S4 linker and the S4–S5 linker were
modeled de novo with the KIC loop modeling pro-
tocol. Each round generated 10000 models; among
thesemodels, the top 10 lowest-energymodels were
selected as the inputs for next round of loop mod-
eling. After several rounds of KIC loop modeling,
the top10models convergedwell.The lowest energy
model was finally selected as the rNaV1.4 model.

Docking of BmK-M9/rNaV1.4 complexes
RosettaDock application from Rosetta program
suite version 3.4 was used to dock BmK-M9 to
rNaV1.4 models. Models of the transmembrane do-
mains of rNaV1.4 were first relaxed in a membrane
environment using the Rosetta-Membrane applica-
tion. BmK-M9 was initially placed roughly in the
center of the binding pocket defined by S3, S3–S4
linker and S4 segments. From the results of double
mutation cycle experiments, the distances between
D1428-K62 and K1432-Y42 were constrained to
move within a 4 Å diameter sphere. After docking,
the top 1,000 models with the lowest total energy
score were first selected. They further were scored
with the binding energy between the ligand and the
channel. The top 10 models with the lowest binding
energy were identified as the candidates. The model

with the lowest binding energy among the largest
cluster of the top 10 models was used as the repre-
sentative model.

Data analysis
Offline data analysis was performed using Igor-
Pro (WaveMetrics) as previously reported [55].
Voltage–activation relationships were obtained by
measuring currents elicited by step depolarizations
of 10 mV from a holding potential of −100 mV
and calculating peak conductance (GNa) using the
following equation: G = INa/(Vm—Erev) where G
is peak conductance, INa is peak inward sodium
current, Vm is the test potential and Erev is the
reversal potential. The normalized conductance
was fitted to a two-state Boltzmann function:
G/Gmax = [1 + exp(V—V1/2)/k]−1, where Vm is
the voltage potential of the pulse, V1/2 is the voltage
at half-maximal activation, and k is the slope factor.
The voltage dependence steady-state inactivation
was determined using 200 ms inactivating prepulses
from a holding potential of−120 to 40mV in 10mV
increments and followed by test pulses to −10 mV
for 50 ms. The peak current amplitude during
each test pulse was normalized to the maximum
current amplitude. The steady-state inactivation
data were fitted using a Boltzmann equation:
I/Imax = [1 + (exp(V—V1/2)/k)]−1, where V1/2,
V and k represented the voltage at half-maximal ac-
tivation, test potential and slope factor, respectively.
Dose–response curves to determine LD50 values
were fitted using the following form of the logistic
equation: y= 1/(1+ [x]/Dose50)nH, where x is the
toxin dose and nH is the Hill coefficient. Nonlinear
curve-fitting of data were performed using IgorPro.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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