
Washington University School of Medicine Washington University School of Medicine 

Digital Commons@Becker Digital Commons@Becker 

2020-Current year OA Pubs Open Access Publications 

6-1-2022 

Synthesizing pseudo-T2w images to recapture missing data in Synthesizing pseudo-T2w images to recapture missing data in 

neonatal neuroimaging with applications in rs-fMRI neonatal neuroimaging with applications in rs-fMRI 

Sydney Kaplan 
Washington University School of Medicine in St. Louis 

Dimitrios Alexopoulos 
Washington University School of Medicine in St. Louis 

Jeanette K Kenley 
Washington University School of Medicine in St. Louis 

Deanna M Barch 
Washington University School of Medicine in St. Louis 

Jeffrey J Neil 
Washington University School of Medicine in St. Louis 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.wustl.edu/oa_4 

 Part of the Medicine and Health Sciences Commons 

Please let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Kaplan, Sydney; Alexopoulos, Dimitrios; Kenley, Jeanette K; Barch, Deanna M; Neil, Jeffrey J; Rogers, 
Cynthia E; Sotiras, Aristeidis; Smyser, Christopher D; and et al., "Synthesizing pseudo-T2w images to 
recapture missing data in neonatal neuroimaging with applications in rs-fMRI." NeuroImage. 253, 119091 
(2022). 
https://digitalcommons.wustl.edu/oa_4/1327 

This Open Access Publication is brought to you for free and open access by the Open Access Publications at 
Digital Commons@Becker. It has been accepted for inclusion in 2020-Current year OA Pubs by an authorized 
administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu. 

https://digitalcommons.wustl.edu/
https://digitalcommons.wustl.edu/oa_4
https://digitalcommons.wustl.edu/open_access_publications
https://digitalcommons.wustl.edu/oa_4?utm_source=digitalcommons.wustl.edu%2Foa_4%2F1327&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/648?utm_source=digitalcommons.wustl.edu%2Foa_4%2F1327&utm_medium=PDF&utm_campaign=PDFCoverPages
https://becker.wustl.edu/digital-commons-becker-survey/?dclink=https://digitalcommons.wustl.edu/oa_4/1327
mailto:vanam@wustl.edu


Authors Authors 
Sydney Kaplan, Dimitrios Alexopoulos, Jeanette K Kenley, Deanna M Barch, Jeffrey J Neil, Cynthia E 
Rogers, Aristeidis Sotiras, Christopher D Smyser, and et al. 

This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/oa_4/1327 

https://digitalcommons.wustl.edu/oa_4/1327


NeuroImage 253 (2022) 119091 

Contents lists available at ScienceDirect 

NeuroImage 

journal homepage: www.elsevier.com/locate/neuroimage 

Synthesizing pseudo-T2w images to recapture missing data in neonatal 

neuroimaging with applications in rs-fMRI 

Sydney Kaplan 

a , 1 , ∗ , Anders Perrone 

f , g , 1 , Dimitrios Alexopoulos a , Jeanette K. Kenley 

a , 

Deanna M. Barch 

b , d , e , Claudia Buss i , k , Jed T. Elison 

f , Alice M. Graham 

g , Jeffrey J. Neil a , c , 

Thomas G. O’Connor h , Jerod M. Rasmussen 

i , Monica D. Rosenberg 

j , Cynthia E. Rogers c , e , 

Aristeidis Sotiras b , Damien A. Fair f , Christopher D. Smyser a , b , c 

a Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States 
b Department of Radiology and Institute for Informatics, Washington University School of Medicine, St. Louis, MO, United States 
c Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States 
d Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, United States 
e Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States 
f Department of Pediatrics and the Masonic Institute for the Developing Brain, Institute of Child Development, University of Minnesota, Minneapolis, MN, United States 
g Department of Psychiatry, Oregon Health and Science University, Portland, OR, United States 
h Department of Psychiatry, University of Rochester, Rochester, NY, United States 
i Department of Pediatrics, University of California Irvine, Irvine, CA, United States 
j Department of Psychology, University of Chicago, Chicago, IL, United States 
k Department of Medical Psychology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, 

Augustenburger Platz 1, 13353, Berlin 

a r t i c l e i n f o 

Keywords: 

Structural MRI 

Synthetic medical images 

Deep learning 

Multi-atlas fusion 

Neuroimaging 

Neonate 

a b s t r a c t 

T1- and T2-weighted (T1w and T2w) images are essential for tissue classification and anatomical localization in 

Magnetic Resonance Imaging (MRI) analyses. However, these anatomical data can be challenging to acquire in 

non-sedated neonatal cohorts, which are prone to high amplitude movement and display lower tissue contrast 

than adults. As a result, one of these modalities may be missing or of such poor quality that they cannot be used 

for accurate image processing, resulting in subject loss. While recent literature attempts to overcome these issues 

in adult populations using synthetic imaging approaches, evaluation of the efficacy of these methods in pediatric 

populations and the impact of these techniques in conventional MR analyses has not been performed. In this work, 

we present two novel methods to generate pseudo-T2w images: the first is based in deep learning and expands 

upon previous models to 3D imaging without the requirement of paired data, the second is based in nonlin- 

ear multi-atlas registration providing a computationally lightweight alternative. We demonstrate the anatomical 

accuracy of pseudo-T2w images and their efficacy in existing MR processing pipelines in two independent neona- 

tal cohorts. Critically, we show that implementing these pseudo-T2w methods in resting-state functional MRI 

analyses produces virtually identical functional connectivity results when compared to those resulting from T2w 

images, confirming their utility in infant MRI studies for salvaging otherwise lost subject data. 

1. Introduction 

Neonatal and infant neuroimaging is growing in popularity and 

rapidly expanding its utility in characterizing typical and atypical 

brain development ( Smyser and Neil, 2015 ; Grayson and Fair, 2017 ; 

Graham et al., 2021 ). Across these investigations, high-quality T1- and 

T2-weighted (T1w and T2w) structural data have proven critical for 

generating the accurate segmentations necessary for attaining robust 

∗ Corresponding author. 
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volumetric and surface-based measures, as well as precise localiza- 

tion and mapping of functional magnetic resonance imaging (fMRI) 

data ( Hüppi et al., 1998 ; Mahapatra et al., 2012 ; Dubois et al., 2014 ; 

Savalia et al., 2017 ; Reuter et al., 2015 ). However, non-sedated imaging 

sessions in neonates are frequently limited in duration, interrupted by 

arousals, and susceptible to large amplitude movements. Subsequently, 

these critical structural data are periodically either corrupted or not ac- 

quired ( Barkovich et al., 2019 ; Malamateniou et al., 2013 ). Often, the 

only substitute for obtaining these required data is rescheduling and re- 
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scanning, which is costly and challenging due to the rapid pace of mat- 

uration during this stage of development. These burdens often result in 

high rates of participant loss for population-based studies. 

Recent advances in synthetic medical imaging afford a ready solution 

to recapture missing structural scans with methods typically falling into 

one of two categories: deep learning or registration-based. Deep learning 

methods use relatively large datasets of paired images to learn a non- 

linear mapping of voxel-to-voxel intensities and synthesize one imag- 

ing modality from another. Various iterations of convolutional neural 

networks (CNNs) in the form of U-Nets ( Ronneberger et al., 2015 ) and 

generative adversarial networks (GANs) ( Goodfellow et al., 2014 ) have 

proven effective in cross-modality image estimation. These methods are 

commonly applied in the generation of synthetic positron emission to- 

mography (PET) ( Li et al., 2014 ; Pan et al., 2018 , 2019 ; Lin et al., 2021 ) 

and computed tomography (CT) ( Nie et al., 2017 ; Zhao et al., 2018 ; 

Zhang et al., 2018 ) images from MRI data. Recently, several studies have 

explored the utility of these networks in longitudinal MRI prediction 

( Xia et al., 2019 ; Ravi et al., 2019 ) and T1w-to-T2w image translation 

( Dar et al., 2019 ; Welander et al., 2018 ), however, methods in these 

studies have been limited to 2-dimensional (2D) image estimations due 

to computational complexity. Importantly, the latest research on deep 

generative methods in MRI suggest that 3-dimensional (3D) models are 

computationally tractable and have successfully demonstrated T1w-to- 

fMRI translation in adults ( Abramian and Eklund, 2019 ), as well as pre- 

dicting future MRI from infant scans ( Peng et al., 2020 ), however, these 

3D methods have not yet been applied in neonatal populations nor in 

the context of T1w-to-T2w translation. 

In contrast, registration-based methods offer a solution that does not 

require a large training dataset, but instead only a small “bank" of tem- 

plate subjects. This method operates by registering images from tem- 

plates to an individual subject image of interest. The registrations are 

then applied to the target modality of the template subjects. The regis- 

tered images from the target modality of the template subjects are then 

combined based on morphological similarity to create a synthetic ver- 

sion of the subject’s target modality. This method has previously been 

explored in the synthesis of CT maps for PET attenuation correction from 

MRI data ( Burgos et al., 2014 ; Schreibmann et al., 2010 ). Advances in 

nonlinear registration algorithms ( Klein et al., 2009 ; Avants et al., 2009 ; 

Sotiras et al., 2013 ; Ou et al., 2011 ) and joint fusion ( Wang et al., 2013 ; 

Artaechevarria et al., 2009 ) have greatly improved image-to-image map- 

ping in brain MRI. As a result, this method has become a popular tool 

for generating MRI segmentations. However, despite these advances, the 

utility of this class of algorithms has not yet been explored in the context 

of T1w-to-T2w translation. 

While existing studies using these approaches have predominantly 

included adult participants, infant and pediatric populations may bene- 

fit most from application of these techniques to address the challenges 

inherent to studying this age group ( Barkovich et al., 2019 ). Based on the 

successful application of 3D GANs for MR image synthesis ( Zhang et al., 

2018 ; Abramian and Eklund, 2019 ) and pediatric image prediction 

( Peng et al., 2020 ), as well as the generation of neonatal atlases using 

multi-template registration in Alexander et al. (2017) , we hypothesized 

that these two image synthesis approaches could be successfully imple- 

mented to perform neonatal T1w-to-T2w translation. In this work, we 

explore the application of both methods through development of two in- 

novative approaches for synthesizing T2w images from T1w images in 

neonates. We chose to synthesize images in this direction because on- 

going white matter myelination during this critical developmental win- 

dow results in an inversion of tissue contrast in neonates ( Dubois et al., 

2014 ) resulting in T2w images demonstrating higher contrast between 

cerebral tissue types ( Gui et al., 2012 ), a consideration vital for reliable 

automated MR image processing ( Hüppi et al., 1998 ; Mahapatra, 2012 ; 

Dubois et al., 2014 ; Savalia et al., 2017 ; Reuter et al., 2015 ). First, we 

extend the 2D CycleGAN proposed by Zhu et al. (2017) and validated by 

Welander et al. (2018) to 3D volumetric images without the restrictions 

of paired training data nor the stitching together of 2D slices following 

image synthesis, heretoafter referred to as “3DGAN-T2w ”. Additionally, 

we propose a registration-based method for synthesis that utilizes state- 

of-the-art symmetric diffeomorphic image registration ( Avants et al., 

2009 ) to calculate highly accurate nonlinear transformations and joint 

fusion ( Wang et al., 2013 ) to perform image synthesis using a training 

dataset of paired image sets, heretoafter referred to as “Kaplan-T2w ”. 

We then demonstrate the efficacy of these image translation methods 

in two independent neonatal cohorts. Finally, we establish the efficacy 

of utilizing synthetic images for application of resting-state functional 

MRI (rs-fMRI) processing by demonstrating connectivity estimates are 

highly comparable between data processed with original and synthetic 

T2w data. 

2. Methods 

2.1. Samples 

2.1.1. Early life adversity biological embedding (eLABE) 

MRI data from 127 neonates (postmenstrual age = 41.1 ± 1.5 weeks, 

female N = 59, white N = 42) with high-quality (i.e., little to no mo- 

tion) T1w and T2w images participating in the early life adversity and 

biological embedding study were used in this analysis. Of the 127 to- 

tal neonates, MR data from 107 neonates were used as reference and 

training data for the pseudo-T2w generation methods (see Supplemental 

Information (SI) “3D-CycleGAN Additional Analyses ” for training data 

quantity comparison), and 20 neonates were used for primary analyses. 

This study was approved by the Washington University Human Studies 

Committees and informed consent was obtained from the parents of all 

participants. 

Participants were scanned within the first month of life during 

natural sleep without the use of sedating medications on a Siemens 

3T Prisma scanner with a 64-channel head coil. T1w (TR = 2400 ms, 

TE = 2.22 ms, 0.8 mm isotropic), T2w (TR = 4500 ms, TE = 563 ms, 0.8 mm 

isotropic), spin echo fieldmaps (SEFM) (TR = 8000 ms, TE = 66 ms, 2 mm 

isotropic, MB = 1), and rs-fMRI data (TR = 800 ms, TE = 37 ms, 2 mm 

isotropic, MB = 8) were collected. rs-fMRI data were collected in both 

anterior → posterior (AP) and posterior → anterior (PA) phase encod- 

ing directions. Each BOLD run consisted of 420 frames (5.6 min), with 

a minimum of 2 runs (11.2 min) and maximum of 7 runs (39.2 min) 

collected per scanning session. 

2.1.2. Environmental influences on child health outcomes (ECHO) 

The ECHO Program is a nationwide study conducting observational 

studies of pediatric cohorts including participants of different races, gen- 

ders, ages, and backgrounds to better understand the effects of environ- 

mental influences on child health and development. Informed consent 

was obtained from the parents of all participants. 

MRI data from 10 infants (age = 41.2 ± 1.9 weeks, female N = 5, 

white N = 8) with high-quality (i.e., little/no motion) T1w and T2w im- 

ages acquired at the University of Pittsburgh as part of the ECHO Study 

were included in supplemental analyses as a replication cohort. These 

participants were scanned during natural sleep without the use of se- 

dating medications on a 3T Siemens Prisma scanner with a 64-channel 

head coil. The following sequences were acquired for each participant: 

T1w (TR = 2400 ms, TE = 2.22 ms, 0.8 mm isotropic), T2w (TR = 3200 ms, 

TE = 563 ms, 0.8 mm isotropic), and up to four 5 min rs-fMRI scans 

(TR = 800 ms, TE = 37 ms, 2 mm isotropic, MB = 8). rs-fMRI data were 

collected in the AP phase encoding direction only. 

2.2. Data analysis 

2.2.1. Pseudo-T2w method 1: 3DGAN-T2w 

The deep learning model for creating a 3DGAN-T2w consists of mul- 

tiple CNNs trained simultaneously with the goal of learning a non-linear 

mapping between T1w and T2w images. The networks consist of two 

image generators and two image discriminators. One of the generators 
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Fig. 1. 3DGAN-T2w Generation Network Architecture . Missing T2w images can 

be generated directly by simply inputting the full volumetric T1w image into 

this network. The generator consists of an “encoding stage ” (blue) and a “de- 

coding state ” (green). k refers to the number of kernels and s refers to the stride 

of the convolutions at each layer. The encoding stage is made up of 6 3D convo- 

lutional layers that take the full resolution input (140 × 168 × 144) and output a 

latent representation that has been downsampled by half after the fourth layer. 

Each convolutional layer is followed by a ReLU activation. The decoding stage 

upsamples the latent representation back to the size of the original input using 

2 transpose convolutions, and finally estimates the T2w using convolution with 

a 1 × 1 × 1 kernel and a hyperbolic tangent ( “tanh ”) activation function. This 

network was trained using the CycleGAN procedure outlined in the SI section 

“3D-CycleGAN Additional Analyses ”. 

attempts to estimate T2w images from T1w images and is depicted in 

Fig. 1 , while the corresponding discriminator distinguishes real from 

synthesized T2w images. Similarly, the remaining networks are trained 

with the goal of creating pseudo-T1w from T2w images. The networks 

are trained simultaneously using two separate loss functions: adversar- 

ial loss and cycle-consistency loss. In adversarial loss, the discrimina- 

tor attempts to classify the resulting pseudo-T2w and real images, and 

the weights are updated based on the mean squared error between the 

discriminator’s prediction and true label of the image. This loss is mini- 

mized for the discriminator network to improve the ability to detect syn- 

thetic images, but the loss is maximized for the generator network to cre- 

ate more realistic synthetic images. As one network’s performance im- 

proves, the other must necessarily improve as well. In cycle-consistency 

loss, the pseudo-T1w generator attempts to estimate the T1w from the 

resultant pseudo-T2w. In theory, the pseudo-T1w image should be iden- 

tical to the original T1w image, so the mean absolute error between 

these two is used to further update the generator. The full CycleGAN 

training architecture is depicted in Supplementary Fig. 1. 

The original 2D model on which this architecture was based, while 

useful and efficient in comparing different types of GANs, yields band- 

ing artifacts in 3D medical images since synthetic images are generated 

slice-by-slice. To resolve this issue, the model was extended to 3D so that 

it can be trained on full volumetric data. This extra dimension comes at 

the cost of substantially increasing the memory requirements of the net- 

work and therefore must be trained using a GPU with at least 32 GB 

of VRAM. To accommodate training, it was necessary to remove some 

of the deeper layers as well as the number of filters at each layer, with 

training finishing in roughly one week. The generator network in this 

work was trained using paired T1w and T2w images from 107 eLABE 

neonates and is visualized in Fig. 1 . 

2.2.2. Pseudo-T2w method 2: Kaplan-T2w 

Generating a Kaplan-T2w requires a set of high-quality reference 

data, which includes aligned T1w and T2w images. Reference data were 

separated into age-specific “banks ”, where each “bank ” consisted of 10 

subjects that were scanned within 2–3 weeks postmenstrual age (PMA) 

of each other to account for differences in the rapidly developing neona- 

tal brain. 

A Kaplan-T2w image is generated to anatomically match an individ- 

ual subject T1w image. In order to maximize anatomical correspondence 

between the generated Kaplan-T2w and the T1w image, computations 

involved in creating the Kaplan-T2w were restricted to voxels within the 

brain by applying a manually drawn brain mask so that regions of non- 

interest (i.e., the body and surrounding air) did not contribute to sim- 

ilarity optimization. Additionally, all images were bias field corrected 

using the ANTs software package in an effort to remove inhomogeneities 

( Avants et al., 2009 ; Tustison et al., 2010 ). 

With the intention of directly mapping each “bank ” image to the 

target individual, ANTs registration tools were used to estimate the de- 

formation field between each of the “bank ” T1w images to the target in- 

dividual T1w image. Applying the calculated nonlinear transformations 

to each “bank ” T1w and T2w image produced 10 estimations of the tar- 

get for each modality ( Fig. 2 a). Given that multi-atlas fusion techniques 

produce superior representations of a target image in comparison to any 

single estimation alone ( Rohlfing et al., 2004 ; Heckemann et al., 2006 ), 

ANTs Joint Fusion was used to determine the optimal fusion weight- 

ing of the 10 T1w estimates that best represent the individual target 

T1w ( Fig. 2 b). These weights were then applied to the set of T2w es- 

timates, resulting in a pseudo-T2w image that is structurally accurate 

to the individual target T1w. In order to improve the texture of the 

pseudo-T2w image, ANTs DenoiseImage was applied. Since histogram 

manipulation has been shown to improve image contrast and quality 

( Senthilkumaran and Thimmiaraja, 2014 ; Patel et al., 2020 ), this image 

was histogram matched to each of the 10 “bank ” T2w images in order to 

provide realistic image improvements. This resulted in 10 pseudo-T2w 

estimations; these were then averaged to produce a realistic pseudo-T2w 

brain, depicted in Fig. 2 c. The skull and surrounding background noise 

were mapped similarly to the individual target and added to the brain- 

only image resulting in the final Kaplan-T2w image. The entire process 

was completed utilizing multiple CPUs in a matter of hours. 

2.2.3. Structural and functional data processing 

T1w and T2w MR images were corrected for gradient and readout 

distortions using the methods described in ( Glasser et al., 2013 ), and 

distortion corrected images were denoised using ANTs DenoiseImage 

( Avants et al., 2009 ; Manjón et al., 2010 ). Anatomical segmentations 

and surfaces were generated using MCRIBS ( Adamson et al., 2020 ), 

3 
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Fig. 2. Kaplan-T2w Generation Procedure . Missing T2w 

images can be recovered by generating a Kaplan-T2w 

from a T1w image. The procedure to do so begins with 

(A) nonlinear registration between each T1w “bank ” im- 

age and the target T1w image. The estimated deforma- 

tion is then applied to the T2w and segmentation “bank ”

images, resulting in 3 registered images for each “bank ”

subject. (B) The optimal fusion weighting of the regis- 

tered “bank ” images to the target T1w is estimated using 

only the registered T1w “bank ” images. The computed 

fusion weighting is then applied to the registered T2w 

and segmentation “bank ” images resulting in fused im- 

ages that are structurally comparable to the T1w target 

image. (C) Contrast, texture, and quality of the fused T2w 

image is improved by performing a histogram matching 

to all “bank ” T2w images. These are then averaged to cre- 

ate the final Kaplan-T2w image. 

where either a T2w image or pseudo-T2w image was used as input. All 

segmentations were manually inspected and corrected as needed by ex- 

perienced raters (DA, JD, DM). rs-fMRI data were preprocessed through 

a standard neonatal BOLD preprocessing pipeline using a combination of 

the 4dfp tool suite ( ftp://imaging.wustl.edu/pub/raichlab/4dfp_tools/ ; 

Shulman et al., 2010 ) and FSL tools ( Jenkinson et al., 2012 ). BOLD time- 

series data were corrected for intensity differences due to interleaved 

acquisition and debanded. Rigid body motion within BOLD runs was 

corrected using linear realignment. Images were bias field corrected and 

normalized to whole brain mode 1000. Time series data were corrected 

4 
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for readout distortion and linearly registered to 711–2N Talairach at- 

las space ( Smyser et al., 2010 ) as: BOLD →individual T2w or pseudo- 

T2w →cohort-specific T2w atlas →711–2N Talairach atlas, with linear 

registrations performed in a single step. The cohort-specific T2w atlas 

was generated using ANTs atlas builder from 50 eLABE subjects that 

were independent of the 20 test subjects used in analyses. Atlas regis- 

tered BOLD timeseries were mapped to subject-specific surfaces using 

methods adapted from Marcus et al. (2013) and Marcus et al. (2011) . 

Frame censoring was performed so that only data with at least three 

consecutive frames with frame displacement (FD) < 0.25 mm were used. 

Each BOLD run was demeaned, detrended, and regressed for nuisance 

waveforms including: white matter, ventricular and extra-axial cere- 

brospinal fluid (CSF), whole brain, and the 24-Friston motion param- 

eters. Data were then bandpass filtered (0.005–0.1 Hz) to remove non- 

BOLD frequencies and spatially smoothed. 

2.2.4. Evaluation of structural data 

To evaluate the accuracy of the generated pseudo-T2w images, they 

were compared to the corresponding ground-truth T2w images by com- 

puting the absolute value of the intensity differences between them. Im- 

ages were first normalized to the same scale (0–2000) and the absolute 

error was restricted to voxels that fell within the brain. To summarize 

the performance for each individual, the mean of the absolute errors 

(MAE) across all voxels within the brain was computed. 

To assess the correctness of anatomical structure of the pseudo-T2w 

images, the mean structural similarity index (MSSIM) was computed be- 

tween each pseudo-T2w and T2w image ( Wang et al., 2004 ). The images 

were first normalized to the same scale (0–2000) and the calculation 

was restricted to voxels that fall within the brain. To validate the struc- 

tural similarity of the MCRIBS output ( Adamson et al., 2020 ), the DICE 

coefficient was computed between the atlas registered cortical ribbons 

derived from the psuedo-T2w and T2w images. 

To gauge the contrast properties important for accurate segmenta- 

tion and registration, the contrast-to-noise ratio (CNR) of the anatomical 

images was computed. Here, CNR is defined as 

𝐶𝑁𝑅 = 

|𝜇( 𝐺𝑀 ) − 𝜇( 𝑊 𝑀 ) |√ 

( 𝜎( 𝐺𝑀 ) 2 + 𝜎( 𝑊 𝑀 ) 2 )∕2 
(1) 

where μ(GM) and 𝜎(GM) are the average and standard deviation of all 

voxels within the gray matter region-of-interest (ROI), and μ(WM) and 

𝜎(WM) are the average and standard deviation of all voxels within the 

white matter ROI ( Lee and Riederer, 1987 ). MCRIBS ( Adamson et al., 

2020 ) anatomical segmentations generated from the T2w or pseudo- 

T2w images were adapted to obtain gray and white matter ROIs that 

minimize partial volume averaging. To construct the gray matter ROI, 

the gray matter segmentation was shifted inward by both 1 and 2 voxels, 

and the 2-voxel shift mask was then removed from the 1-voxel shift mask 

so that only the center of the segmentation remained. White matter ROIs 

were generated by eroding the white matter segmentations by 5 voxels. 

CNR was computed to confirm that pseudo-T2w images possess simi- 

lar contrast compared to T2w images. Paired t-tests were then performed 

between all combinations of anatomical image types to determine the 

significance of differences in CNR, using a threshold of p < 0.05 to de- 

note significance. 

2.2.5. Evaluation of synthetic images in fMRI analyses 

The 4dfp tool suite ( ftp://imaging.wustl.edu/pub/raichlab/4dfp_tools/ ; 

Shulman et al., 2010 ) was used to compute linear registrations between 

BOLD and anatomical data (T2w and pseudo-T2w images) to 711–2N 

Talairach atlas space. Registrations optimized the gradient correlation 

between images and were computed BOLD → individual anatomic 

image → cohort-specific T2w atlas → 711–2N Talairach atlas. To assess 

the quality of BOLD to anatomical and anatomical to atlas registrations, 

the mutual information (MI) between each registered image and its 

target was computed ( Avants et al., 2009 ). MI measures the amount of 

shared information between two images and has the ability to capture 

nonlinear relationships in image intensities ( Viola and Wells, 1995 ; 

Collignon et al., 1995 ). This property is ideal for evaluating registrations 

of multi-modality images, which often have nonlinear relationships. 

Paired t -tests were then performed between the computed MI for 

all combinations of anatomical images to determine the significance 

of differences in registration quality, using a threshold of p < 0.05 

to denote significance. See SI “Additional Comparisons ” for further 

analysis comparing the registration quality to the T1w. 

To assess brain-wide similarities of BOLD data that were pre- 

processed using either a T2w or pseudo-T2w image, functional dense 

connectomes (dconns) from each participant’s rs-fMRI data were com- 

puted for each of the three anatomic images. An average dconn for each 

of the three pre-processing methods, T2w, 3DGAN-T2w, and Kaplan- 

T2w, was obtained by averaging across participants. Pearson correlation 

coefficients were computed between the T2w average dconn and each 

of the pseudo-T2w average dconns to measure similarity. 

Functional connectivity (FC) estimates for BOLD data pre-processed 

using T2w and pseudo-T2w images were obtained by computing the 

pairwise correlation of the average BOLD time series for a set of stan- 

dard cortical parcels ( Gordon et al., 2016 ). Matrices consisting of these 

FC estimates for each participant were then organized based upon age- 

specific resting state network assignments (RSN) determined using pre- 

viously published methods ( Wheelock et al., 2019 ; Eggebrecht et al., 

2017 ). The average and variance of the connectivity matrices were com- 

puted across subjects to evaluate similarity in RSN connectivity patterns 

between BOLD data pre-processed using T2w and pseudo-T2w images. 

Paired t-tests between the T2w connectivity matrices and both of the 

pseudo-T2w connectivity matrices were then performed to determine 

the significance of differences in FC estimates, using a Bonferroni cor- 

rected threshold of p < 0.00015 to denote significance. Bonferroni cor- 

rection was computed as 

𝑝 < 

0 . 05 
𝑁 𝑝𝑎𝑟𝑐 

(2) 

where N parc = 333 parcels. 

3. Results 

3.1. Anatomical comparison of T2w and pseudo-T2w images 

Resulting absolute error for a representative subject is presented in 

Fig. 3 a where brighter voxels represent the largest error. Here, the over- 

all error in both pseudo-T2w images is low and localized to the CSF. The 

relative mean absolute error (MAE) of included voxels for all subjects is 

presented in Fig. 3 b. Relative MAE across subjects was 6.9 ± 0.9% for 

the Kaplan-T2w images and 5.6 ± 1.1% for the 3DGAN-T2w images. 

Anatomical similarity between pseudo-T2w and T2w images across 

subjects is presented in Fig. 4 . MSSIM ( Fig. 4 a) was 0.72 ± 0.04 for the 

Kaplan-T2w images and 0.79 ± 0.04 for the 3DGAN-T2w images, and cor- 

tical ribbon DICE coefficients ( Fig. 4 b) were 0.76 ± 0.03 for the Kaplan- 

T2w images and 0.82 ± 0.03 for the 3DGAN-T2w images. See SI “Ad- 

ditional Comparison ” for visual comparison of pseudo-T2w and T2w 

cortical ribbons. 

Volumetric slices of anatomic images from a representative partici- 

pant are presented in Fig. 5 a. Fig. 5 a demonstrates the qualitative simi- 

larities in contrast properties between the pseudo-T2w and T2w images 

that are important for segmenting tissues, as well as computing optimal 

registrations between images automatically. These qualitative observa- 

tions of tissue contrast can be quantitatively measured using CNR, de- 

picted in Fig. 5 b for T2w and pseudo-T2w images, where increased CNR 

corresponds to improved contrast necessary for subsequent processing. 

Plotted mean lines show no significant CNR differences between T2w 

images and both pseudo-T2w images (T2w with: Kaplan-T2w p = 0.15, 

3DGAN-T2w p = 0.71). 
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Fig. 3. Error in pseudo-T2w images. (A) Heatmap of absolute error between each pseudo-T2w image and the corresponding T2w image for a representative subject, 

where 100% represents the highest error value between the images. Here, brighter values indicate larger error and are localized to regions of CSF. (B) Violin plot 

depicting the relative MAE with T2w images of all subjects for both peudo-T2w images (Kaplan-T2w 6.9 ± 0.9%, 3DGAN-T2w 5.6 ± 1.1%). Smaller values indicate 

less error. 

Fig. 4. Structural comparison of pseudo-T2w images to T2w images . Violin plots depicting the (A) MSSIM of the images and (B) DICE coefficient of the cortical ribbons 

between the T2w and each psuedo-T2w for all subjects. For both metrics, values closer to 1 indicate higher similarity. 

Fig. 5. Contrast comparison of anatomical images . 

(A) Volumetric image slices from T2w and pseudo- 

T2w images for a representative subject. Cropped 

regions highlight contrast properties of each im- 

age between gray and white matter. Visual contrast 

properties are quantified as the (B) CNR between 

gray and white matter of different anatomical im- 

age types. CNR distributions are equivalent be- 

tween T2w (0.62 ± 0.31), Kaplan-T2w (0.76 ± 0.45), 

and 3DGAN-T2w (0.63 ± 0.29) images. 
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Fig. 6. Registration accuracy of BOLD and anatomical images. Mutual information (MI) for each participant between registered (A) BOLD and anatomical images, as 

well as registered (B) anatomical and atlas images for each anatomical image type. Note the overlap in MI between T2w and pseudo-T2w images for both BOLD and 

anatomic image registrations. 

3.2. fMRI pre-processing with pseudo-T2w images is comparable to T2w 

images 

Since registration algorithms typically rely on intensity differences 

between tissues to perform alignment ( Gonzalez-Castillo et al., 2013 ), 

greater tissue contrast translates to better registration between im- 

ages. Fig. 6 shows the quality of registration of BOLD to anatomic 

data ( Fig. 6 a), as well as anatomic data to the 711–2N Talairach at- 

las ( Fig. 6 b). Here, higher quality registration is defined as increased MI, 

and there is substantial overlap between the MI of pseudo-T2w and T2w 

registrations. However, the T2w registration quality was higher than 

both pseudo-T2w images (BOLD registration: p < 0.001 for both Kaplan- 

T2w and 3DGAN-T2w; anatomical registration: p = 0.002 for Kaplan- 

T2w and p < 0.001 for 3DGAN-T2w). Between the pseudo-T2w regis- 

trations, registration quality for Kaplan-T2ws was higher than 3DGAN- 

T2ws for anatomical registrations ( p = 0.04), but 3DGAN-T2ws were 

higher for BOLD registration ( p < 0.001). 

Group average dconns for BOLD data pre-processed using T2w and 

pseudo-T2w images are shown in Fig. 7 a. Select seeds from early devel- 

oping brain networks are shown, where seeds are taken from the center 

of adult-defined network clusters ( Power et al., 2011 ). Note the simi- 

lar connectivity patterns between the seedmaps of the pseudo-T2w and 

T2w maps. The brain-wide likeness is further reflected when correlating 

the dconns of pseudo-T2w and T2w maps ( r = 0.98 for both Kaplan-T2w 

and 3DGAN-T2w). 

In addition to brain-wide similarities, Fig. 7 b demonstrates regional 

connectivity patterns of BOLD data pre-processed with pseudo-T2w and 

T2w images. The first row displays the average connectivity matrices for 

all three pre-processing methods. FC patterns are consistent between all 

three average connectivity matrices, both within and between RSNs. To 

demonstrate the spread across subjects, the variances of the connectiv- 

ity matrices are plotted in the second row. Overall, the variance is low 

for all three pre-processing methods, but notably, regions of higher vari- 

ance occur in the same parcels regardless of the anatomic pre-processing 

method. 

To confirm equivalency between T2w and pseudo-T2w connectivity 

matrices, Fig. 7 c shows statistical differences measured using a paired t - 

test. Parcels identified as different are sparse with no apparent patterns, 

nor are they isolated to any particular region. Additionally, overall dif- 

ferences are minimal (0.06% for Kaplan-T2w and 0.03% for 3DGAN- 

T2w). All analyses and results were replicated in the ECHO cohort, see 

SI ECHO Cohort Results ”. 

4. Discussion 

In this work, we developed two techniques to generate accurate syn- 

thetic T2w images from T1w images in neonates. In the first method, we 

extended prior 2D deep learning models to 3D, avoiding the banding is- 

sues associated with 2D models. Alternatively, we proposed a second 

method that makes use of recent advances in nonlinear registration and 

builds upon prior work to perform image-to-image translation. Notably, 

we have shown that T2w and synthetic T2w images are anatomically 

alike, possess similar contrast properties, and provide accurate targets 

for BOLD image registration. Further, we demonstrated that pseudo- 

T2w images produce equivalent results to T2w images for rs-fMRI pre- 

processing, surface mapping, and connectivity estimates in two inde- 

pendent cohorts. Crucially, implementing these techniques affords the 

ability effectively recover potentially otherwise lost participant data. 

4.1. Prior utilization of synthetic image methods 

Deep learning continues to allure researchers with promises of an all- 

powerful model capable of generating multi-contrast images with tun- 

able image acquisition parameters ( Denck et al., 2021 ). While recent 

developments in the form of GANs have enabled training of such mod- 

els without the requirement of paired data, sizable datasets with a wide 

variety of image types are still required. Recent variations of the classic 

GAN ( Goodfellow et al., 2014 ), including TarGAN ( Chen et al., 2021 ), 

Hyper-GAN ( Yang et al., 2021 ), and PTNet ( Zhang et al., 2021 ) among 

others, have reported new improvements to network architecture to op- 

timize cross contrast MR image estimation. However, in an effort to limit 

computational resources, these models are critically restricted to com- 

putations on 2D slices, which has been shown to result in discontinuities 

and artifacts in the final synthetic volumetric image ( Xiang et al., 2018 ). 

This major limitation of these deep learning algorithms has been high- 

lighted by researchers attempting to impute missing data for longitudi- 

nal studies (Peng et al., 2021). To address this issue, Peng et al. conceded 

image resolution and downsampled cropped input images by a factor of 

two. However, because high-resolution images are optimal for anatom- 

ical image preprocessing, we instead opted to reduce the parameters 
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Fig. 7. Pseudo-T2w use in functional connectivity . (A) 

Average functional dense connectomes at select seeds 

for BOLD data pre-processed with T2w and psuedo- 

T2w images. Seeds were selected as the center vertex of 

adult-defined network clusters from early developing 

networks. Seedmaps from the somatomotor (top row) 

and default mode (bottom row) networks show simi- 

lar connectivity patterns across the three anatomical 

image types. (B) Average functional connectivity ma- 

trices (top row) using cortical parcels and the variance 

of the connectivity matrices (bottom row) across par- 

ticipants for BOLD data pre-processed with T2w and 

pseudo-T2w images. Parcels are organized into net- 

works including: motor, temporal lobe (Temp), pos- 

terior frontoparietal (pFPN), posterior cingulate cor- 

tex (PCC), lateral visual (lVIS), medial visual (mVIS), 

dorsal attention (DAN), anterior frontoparietal (aFPN), 

cingulo-opercular (CO), default mode (DMN), and 

unassigned (Usp). Note similar patterns and connectiv- 

ity strength between matrices of T2w and pseudo-T2w 

images. (C) FC estimate differences between BOLD 

data pre-processed with T2w images and Kaplan-T2w 

or 3DGAN-T2w images. Brighter colors indicate more 

significant differences. 

of the model to address this limitation. Subsequently, in this study, we 

demonstrated these shallower CNNs are equally capable of generating 

3D volumes that can be successfully implemented in current research 

applications. Additionally, while 3D cycleGANs have previously been 

implemented for various medical image synthesis tasks in adult popula- 

tions ( Zhang et al., 2018 ; Abramian and Eklund, 2019 ; Pan et al., 2018 , 

2019 ), to the best of our knowledge this is the first to do so in the context 

of neonatal T1w-to-T2w applications. 

Alternatively, registration based methods have been thoroughly 

investigated and remain the gold standard for brain segmentation 

even with the availability of deep learning methods ( Iglesias and 

Sabuncu, 2015 ), though their use in image translation has been 

predominantly overlooked in recent literature. Earlier attempts by 

Schreibmann et al. (2010) to synthetically translate MR images to CT 

utilized deformable registration; however, their approach only included 

a single atlas, which has been shown to underperform compared to 

multi-atlas fusion ( Rohlfing et al., 2004 ; Heckemann et al., 2006 ). While 

multi-atlas fusion techniques typically use template image intensity to 

inform fusion weightings for segmentation ( Wang et al., 2013 ), the same 

methodology has not been fully explored to create synthetic images. Al- 

though in prior work ( Burgos et al. 2014 ) utilized multi-atlas fusion 

for PET attenuation correction, their method did not exploit recent ad- 

vances in diffeomorphic registration which has proven advantageous 

for high variability in deformation magnitudes, a common issue in the 
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developing brain ( Klein et al., 2009 ; Avants et al., 2009 ; Rogelj and Ko- 

vacic 2006 ; Trouvé 1998 ; Beg et al., 2005 ). Further still, previous work 

has not addressed the anatomical accuracy of translated images to the 

degree found in highly detailed MR images. In this work, we build upon 

these efforts and used image intensity fusion and optimal nonlinear reg- 

istration to demonstrate that multi-atlas fusion is capable of generating 

accurate anatomical images in normative populations. 

4.2. Comparison of pseudo-T2w method requirements 

Overall, both pseudo-T2w methods produce highly accurate anatom- 

ical images that can be used interchangeably with T2w images for rs- 

fMRI analyses. Despite minor differences in performance for metrics 

evaluated in this work, the two pseudo-T2ws primarily differ in their 

methodological requirements, including data availability, as well as sys- 

tem resources and computational time. While both pseudo-T2w meth- 

ods require high-quality (i.e., little to no motion) reference images, the 

quantity of reference data differs greatly between the two: roughly 10 

subjects for Kaplan-T2w compared to about 70 subjects for the initial 

training of the 3DGAN-T2w. This becomes particularly important for 

studies with limited data, as it leaves the Kaplan-T2w method as the 

primary option for developing a new model. However, if a pre-trained 

3DGAN-T2w model exists, lower quantities of new data could be incor- 

porated by further training the model. 

Because the initial training of the 3DGAN-T2w method requires large 

quantities of data, it must be run on a GPU with at least 32 GB of VRAM 

and takes approximately one week to train the model. However, once 

the network training is complete, 3DGAN-T2w images can be produced 

within minutes on a CPU. In contrast, the Kaplan-T2w method gener- 

ates images within a couple hours and is executed on CPUs. Since CPUs 

are more cost effective and widely available, producing Kaplan-T2w im- 

ages might be more readily implementable. Importantly, both methods 

utilize software that is publicly available on most operating systems. 

The procedures behind the pseudo-T2w methods also lead to differ- 

ences in their potential ability to incorporate new sequence parameters. 

For instance, it is straightforward to add new sequences to an existing 

pre-trained 3DGAN-T2w model for subsequent training and refinement 

without the need for paired data. In contrast, the Kaplan-T2w method 

would require a new set of paired data to accommodate substantially 

different sequences. As was shown in the ECHO dataset results, while 

generated pseudo-T2w contrast properties are specific to the sequences 

in the training data, both methods generalize well to new sequence pa- 

rameters in terms of resultant anatomical accuracy and subsequently 

derived measures. Potential considerations for training a new model in- 

clude: age of cohort, tolerance of contrast deviation, and input image 

variation. First, since T1w and T2w contrast properties flip during the 

first few months of life ( Dubois et al., 2014 ), it would be necessary to 

train a new model for each period of development. In addition, output 

image contrast properties cannot be extrapolated outside of the training 

set, so the need to train a new model depends on the tolerance of de- 

viation in the training set’s contrast properties from that of a particular 

study. Finally, a new model would need to be trained if the input images 

differ substantially from the training set, and further investigation into 

acceptable input image parameter bounds is needed. Ultimately, both 

methods are sufficiently well-suited for MR analyses, and pseudo-T2w 

method selection should be determined by the needs and resources of a 

particular study. 

4.3. Implementation of synthetic images in MR analyses 

Given that most MR analyses rely on T1w and T2w images for deter- 

mining spatial and structural information, anatomical accuracy in syn- 

thetic images is essential. Even moderate errors in anatomy can result 

in incorrect volumetric measures or improper localization of functional 

activity, which can bias study conclusions. We have demonstrated that 

the two methods for synthesizing pseudo-T2w images presented in this 

work are appropriate for use in MR analyses due to their high anatomic 

accuracy when compared to corresponding T2w images. Critically, im- 

plementation of both methods permits the use of any processing stream 

regardless of which anatomical image is collected. 

In rs-fMRI analyses, anatomical images typically serve as intermedi- 

ate targets for BOLD registration to atlas templates and are used to gen- 

erate surfaces and tissue segmentations for delineating nuisance signals. 

Therefore, it is crucial for BOLD data to precisely align with anatomi- 

cal images to ensure nuisance signals are correctly demarcated and for 

accurate anatomical atlas registration to compare rs-fMRI data across 

individuals. Tissue contrast has been shown to greatly affect the quality 

of image registration estimates ( Gonzalez-Castillo et al., 2013 ). Herein, 

we have shown that, for neonates, T2w and pseudo-T2w images have 

similar tissue contrast that, more importantly, translates to the precise 

registration necessary for correct surface mapping and nuisance regres- 

sion. Between the pseudo-T2w methods, minor differences in registra- 

tion performance may be attributed to the higher CNR for the Kaplan- 

T2w and lower MAE for the 3DGAN-T2w; but more importantly, both 

methods result in highly accurate registrations overall. Once the corti- 

cal signal is accurately identified, cortical brain-behavior outcomes are 

generally investigated regionally at the parcel or network level. To best 

assess the effect that pre-processing BOLD data with pseudo-T2w im- 

ages has on a typical study of FC, we computed FC estimates using a 

set of standard cortical parcels ( Gordon et al., 2016 ). By showing that 

there is no effective difference between both pseudo-T2w and T2w FC 

estimates, we demonstrate that implementing pseudo-T2w fc processing 

likely will not impact study outcomes in this age range and can therefore 

be confidently used when T2w images are not available. 

4.4. Limitations and future work 

This work was limited to data obtained from healthy term-born 

neonates. Further investigation is needed to determine the applicability 

of these methods to premature, injured, or other atypically developed 

brains, as well as different age groups. Further, although network-level 

fc estimates were evaluated using networks derived from infant data, the 

initial parcellation scheme was developed using adult data, which may 

not appropriately fit the developing neonatal brain. Replicating these 

analyses using a neonatal derived parcellation scheme remains neces- 

sary. In addition, this work was completed using manually drawn brain 

masks for both training and testing data, which is a time consuming and 

expensive process. Future work is needed to adapt these methods to al- 

low for unmasked data. For the 3DGAN-T2w method, this would mean 

improving memory efficiency to allow for the larger image inputs, and 

for the Kaplan-T2w method this would require initial unmasked image 

registration that can be used to automatically delineate the brain-skull 

boundary. 

5. Conclusions 

This work offers two innovative methods for synthetic image gen- 

eration that can be used when one structural image modality is miss- 

ing in neonatal MR analyses. Critically, both methods can be readily 

implemented using publicly available software, and output images can 

be successfully incorporated into existing MRI processing pipelines. Im- 

portantly, developing these methods in a neonatal population provides 

a means of avoiding subject loss due to inherent challenges associated 

with scanning this age group, and successful application of either ap- 

proach will greatly assist future studies of brain-behavior relationships 

in the developing brain. 
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