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Abstract

Objective

Assess the real-world performance of popular imputation algorithms on cochlear implant

(CI) candidate audiometric data.

Methods

7,451 audiograms from patients undergoing CI candidacy evaluation were pooled from 32

institutions with complete case analysis yielding 1,304 audiograms. Imputation model per-

formance was assessed with nested cross-validation on randomly generated sparse data-

sets with various amounts of missing data, distributions of sparsity, and dataset sizes. A

threshold for safe imputation was defined as root mean square error (RMSE) <10dB. Mod-

els included univariate imputation, interpolation, multiple imputation by chained equations

(MICE), k-nearest neighbors, gradient boosted trees, and neural networks.

Results

Greater quantities of missing data were associated with worse performance. Sparsity in

audiometric data is not uniformly distributed, as inter-octave frequencies are less commonly

tested. With 3–8 missing features per instance, a real-world sparsity distribution was associ-

ated with significantly better performance compared to other sparsity distributions (ΔRMSE

0.3 dB– 5.8 dB, non-overlapping 99% confidence intervals). With a real-world sparsity distri-

bution, models were able to safely impute up to 6 missing datapoints in an 11-frequency

audiogram. MICE consistently outperformed other models across all metrics and sparsity

distributions (p < 0.01, Wilcoxon rank sum test). With sparsity capped at 6 missing features

per audiogram but otherwise equivalent to the raw dataset, MICE imputed with RMSE of

7.83 dB [95% CI 7.81–7.86]. Imputing up to 6 missing features captures 99.3% of the audio-

grams in our dataset, allowing for a 5.7-fold increase in dataset size (1,304 to 7,399 audio-

grams) as compared with complete case analysis.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0281337 February 6, 2023 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Pavelchek C, Michelson AP, Walia A,

Ortmann A, Herzog J, Buchman CA, et al. (2023)

Imputation of missing values for cochlear implant

candidate audiometric data and potential

applications. PLoS ONE 18(2): e0281337. https://

doi.org/10.1371/journal.pone.0281337

Editor: Muhammad Fazal Ijaz, Sejong University,

REPUBLIC OF KOREA

Received: August 17, 2022

Accepted: January 10, 2023

Published: February 6, 2023

Copyright: © 2023 Pavelchek et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All code and raw

audiometric data are available on open-source

GitHub. https://github.com/cdpavelchek/

OtoImpute.

Funding: The authors received no specific funding

for this work.

Competing interests: AH – Consultant for Cochlear

Ltd., CAB – consultant for Advanced Bionics,

Cochlear Ltd., Envoy, and IotaMotion, and has

equity interest in Advanced Cochlear Diagnostics,

LLC.; MAS – consultant for Cochlear Ltd. There are

https://orcid.org/0000-0001-9249-6637
https://orcid.org/0000-0001-8112-9516
https://orcid.org/0000-0002-7971-377X
https://doi.org/10.1371/journal.pone.0281337
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0281337&domain=pdf&date_stamp=2023-02-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0281337&domain=pdf&date_stamp=2023-02-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0281337&domain=pdf&date_stamp=2023-02-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0281337&domain=pdf&date_stamp=2023-02-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0281337&domain=pdf&date_stamp=2023-02-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0281337&domain=pdf&date_stamp=2023-02-06
https://doi.org/10.1371/journal.pone.0281337
https://doi.org/10.1371/journal.pone.0281337
http://creativecommons.org/licenses/by/4.0/
https://github.com/cdpavelchek/OtoImpute
https://github.com/cdpavelchek/OtoImpute


Conclusion

Precision medicine will inevitably play an integral role in the future of hearing healthcare.

These methods are data dependent, and rigorously validated imputation models are a key

tool for maximizing datasets. Using the largest CI audiogram dataset to-date, we demon-

strate that in a real-world scenario MICE can safely impute missing data for the vast majority

(>99%) of audiograms with RMSE well below a clinically significant threshold of 10dB. Eval-

uation across a range of dataset sizes and sparsity distributions suggests a high degree of

generalizability to future applications.

Introduction

Cochlear implantation (CI) is considered one of modern medicine’s highest achievements,

capable of restoring hearing in patients with severe-to-profound hearing loss. As of December

2019, there have been over 736,000 registered devices implanted worldwide; in the United

States, approximately 118,100 adults and 65,000 children have been implanted [1]. However,

despite this success, big data research in CI patient care is essentially non-existent. Published

studies typically range from single digits to 100–200 patients due to non-standardized proto-

cols, missing data, and lack of collaboration [2,3]. This has major implications for outcomes

research, population monitoring, and identification of potential CI candidates.

Data-centric statistical approaches are providing new opportunities to operationalize big

data to improve patient care. In the field of CI research, machine learning models may offer

novel insights into CI speech performance prognostication. However, missing data must first

be appropriately dealt with [4]. Few studies directly address the development and validation of

imputation methods, with potentially drastic implications for prediction model performance

[4–6]. Missing data can bias results and lead to inefficient analyses though loss of precision

and power [7,8]. Common methods for handling missing data include complete case analysis,

missing indicators, and univariate imputation. While simple, these methods can introduce sig-

nificant bias [5,6,9,10]. More sophisticated multivariate models use subjects’ other known

characteristics to increase imputation accuracy [5].

In addition to model selection, imputation accuracy depends on structural characteristics

of data, such as feature intercorrelation, dataset size, amount of missing data, and distribution

of sparsity [8]. However, patterns of missing audiometric data in patients undergoing CI evalu-

ation have yet to be thoroughly characterized. Prior work on imputing missing audiometric

data is also limited. Charih et al compared linear interpolation to k-nearest neighbors (KNN)

for prediction of 3000Hz and 6000Hz with no difference in mean absolute error (MAE) found

[11]. Reported MAE ranged from 5.38 dB to 7.36 dB depending on the model and frequency

output. However, all atypical audiograms were algorithmically excluded from analysis using a

gaussian mixture model, potentially inflating performance. Pitathawatchai et al compared

models for prediction of certain frequencies in 206 pediatric audiograms using specific input

frequencies [12]. They found that machine learning models such as neural networks and KNN

were in aggregate (MAE 5–8 dB) superior to linear interpolation (MAE 6.25–10 dB). However,

the small sample size and homogenous pediatric population limits generalizability.

Notably, all prior studies have assessed prediction of specific frequency outputs using spe-

cific frequencies as input. No study has attempted to simulate real-world patterns of missing

data for imputation model assessment. This presents a significant barrier to implementation,

as an understanding of real-world model performance is a critical prerequisite for use in
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clinical research. CI candidates also represent a potentially more challenging subset of patients,

as varying degrees and etiologies of hearing loss can lead to more variance in audiometric

thresholds as compared with the general population. While of particular interest, to date no

study has looked at imputing missing data in this specific population. Finally, the field of

machine learning, particularly in the context of medical data, suffers from a lack of standardi-

zation of methods to rigorously validate models. If imputation is to be employed to leverage

larger datasets for CI research, proper validation of imputation techniques is critical to ensure

results are generalizable, clinically relevant, and statistically sound.

The contributions of the study are as follows:

1. Proposal of a model for imputation model validation on randomly generated sparse data-

sets with structural sparsity equivalent to real-world data. Publication of code to facilitate

validation of real-world imputation model performance on novel datasets.

2. Assessment of the independent effects of sparsity distribution, amount of missing data, and

dataset size on imputation model performance.

3. Demonstration that, for this dataset, up to 6 missing frequencies per 11-frequency audio-

gram can be safely imputed, allowing for a 5.7-fold increase in sample size.

4. Demonstration that, depending on dataset size and sparsity, either interpolation or MICE

is optimal for audiometric imputation; complex, black-box machine learning models are

unnecessary.

5. We make available the largest CI audiometric dataset to-date, which may be used for out-

comes modeling and to bolster imputation accuracy for other audiometric datasets.

Methods

Study population and source of data

Approval was obtained by author’s local Institutional Review Board with waiver of consent

(IRB#202108009) at Washington University in St. Louis. Audiograms were acquired from

HERMES (Auditory Implant Initiative, Wichita Falls TX, www.aii-hermes.org) and the Wash-

ington University School of Medicine in St. Louis (WUSM) CI data registry. HERMES is a

national, prospective, web-based CI database including 32 private practice and academic insti-

tutions that collects de-identified data including age, sex, ethnicity, etiology and duration of

hearing loss, speech perception testing, and audiograms [13]. The WUSM CI data registry cap-

tures similar information but is limited to one institution. All routine audiometric testing was

done by licensed doctors of Audiology and performed in soundproof booths. Audiogram anal-

ysis was limited to post-lingual deafened and native English-speaking adults (�18 years of age)

undergoing cochlear implant evaluation. Eleven frequencies were included as features: 125 Hz,

250 Hz, 500 Hz, 750 Hz, 1000 Hz, 1500 Hz, 2000 Hz, 3000 Hz, 4000 Hz, 6000 Hz, and 8000 Hz.

Invalid values (e.g., text or extreme numbers) were removed. Audiogram values were

clipped to a range of 0 dB to 120 dB to account for inter-site variation in the reporting of

extreme values. “No response” thresholds were imputed as 120 dB, the maximum value

recorded by most audiometers. Removal of blank instances yielded a sparse “parent” dataset of

7,451 audiograms, used to calculate the distribution and degree of sparsity in real-world CI

audiometric data. Complete case analysis yielded a dense dataset of 1,304 audiograms for

model assessment (Fig 1). The sparse parent dataset with associated demographic data is avail-

able in supplementary files.
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Model assessment

Models were assessed with 10 simulations of nested 10-fold by 10-fold cross-validation (Fig 2).

10-fold cross validation has been shown to represent a good trade-off between bias, variance,

and computational cost [14]. Instances were randomly shuffled prior to each simulation such

that fold partitions varied from run to run, as reporting the average and significance of

repeated runs of k-fold cross-validation has been shown to significantly decrease variance of

results [15]. Additionally, repeating runs helps account for the stochasticity of randomly gen-

erated sparse datasets. Nested cross-validation allows for model assessment across the entire

dataset while avoiding data leakage from hyperparameter optimization, leading to more accu-

rate performance estimates [16].

Fig 1. Dataset creation. Flow chart for inclusion and exclusion of subjects and audiograms. Data drawn from the Washington University School of Medicine

in St. Louis Cochlear Implant database (WUSM CI) and the HIPPA-secure, Encrypted, Research, Management, and Evaluation Solution database (HERMES).

https://doi.org/10.1371/journal.pone.0281337.g001
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For each fold, the parent dataset (n = 7,451) was divided into training (90%) and test (10%)

subsets, with test subsets sampled without replacement across folds. Sparsity distribution was

calculated independently for each subset; incomplete instances were subsequently removed

to create dense subsets. This was done following the split into train and test subsets to avoid

Fig 2. Performance assessment pipeline. Diagram of steps for assessment of model performance with repeated simulations of nested cross-validation. Output

consists of model performance mean and confidence intervals averaged across all 10 simulations.

https://doi.org/10.1371/journal.pone.0281337.g002
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potential data leakage. Sparse datasets with known underlying values were created from

dense subsets by randomly deleting values from each instance. When randomly generating

sparse datasets, two axes of sparsity were independently controlled for: quantity (how many

features are missing per instance) and distribution (which features are relatively more

likely to be missing). Four sparsity distributions were tested (Fig 3). Tunable hyperpara-

meters were optimized on the randomly generated sparse train subset with 10-fold cross-

validation (S1 Table). The optimized model was used to predict imputations for the sparse

test subset. Simulation performance metrics were measured across all 10 test subsets in

aggregate. The mean and confidence interval of model performance across all simulations

was reported as output.

Fig 3. Visualization of sparsity distribution. All tested sparsity distributions applied to sample dataset of 500 audiograms. Quantity of sparsity fixed at 3

missing features per instance. Rows represent audiograms, columns represent features. Black bars indicate present data, white bars indicate missing data. (a)

Real-world distribution sets weighted likelihood for feature removal equivalent to the corresponding parent subset. (b) Random distribution sets equivalent

likelihood of removal for all features. (c) Terminal distribution is weighted 3-fold towards removing the terminal 6 frequencies (125 Hz, 250 Hz, 500 Hz, 4000

Hz, 6000 Hz, 8000 Hz). (d) Central distribution is weighted 3-fold towards removing the central 5 frequencies (750 Hz, 1000 Hz, 1500 Hz, 2000 Hz, 3000 Hz).

https://doi.org/10.1371/journal.pone.0281337.g003
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Metrics

Coefficient of determination (R2 score) describes the proportion of variance explained by the

model (Eq 1). R2 score is useful for comparing performance across dependent variables with

varying degrees of noise. Mean absolute error (MAE) is the average absolute magnitude of

residual error (Eq 2). While directly interpretable, MAE is robust to outliers, potentially mask-

ing critically high individual errors. Root mean squared error (RMSE) is the square root of the

sum of squared residual errors (Eq 3). The squared error term more heavily penalizes higher

individual errors, giving a more conservative estimate of performance.

R2 score ¼ 1 �

Pn
i¼1
ðyi � fiÞ

2

Pn
i¼1
ðyi � �yÞ2

ð1Þ

MAE ¼
Pn

i¼1
jyi � fij
n

ð2Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðyi � fiÞ

2

n

s

ð3Þ

fi = ith predicted value
yi = ith true value
�y = data mean
n = number of datapoints

Error threshold

We defined a clinically meaningful change in an audiometric threshold as�10dB, based on

two factors. First, the established intra-session test-retest reliability of routine audiometry is

+/- 5dB [17,18]. Second, the American Speech-Language-Hearing Association (ASHA) defines

a clinically significant hearing change for ototoxicity monitoring as 10dB across two frequen-

cies or 20dB in one frequency [19]. The test-retest reliability of +/- 5dB introduces intrinsic

noise, representing a theoretical lower bound for model MAE. Assuming the +/- 5dB of noise

holds true for this dataset, model performance significantly below this threshold would indi-

cate overfitting or data leakage. The 10dB clinically significant threshold is used as an upper

bound to determine the amount of missing data that can be safely imputed while avoiding clin-

ically significant bias. RMSE is used to define the upper bound as it is more conservative.

Imputation algorithms

Six models were evaluated: univariate imputation (UI), interpolation (INT), k-nearest neigh-

bors (KNN), multiple imputation by chained equations (MICE), neural networks (NN), and

gradient boosted trees (XGB). INT was implemented with the SciPy scientific computing

library version 1.7 [20]. UI, KNN, MICE, and NN models were implemented with the Scikit-

learn machine learning library version 1.0.2 [21]. XGB was implemented with the XGBoost

Python API version 1.6.1 [22]. All testing was performed using the Python programming lan-

guage version 3.9.12 (Python Software Foundation).

Univariate imputation

UI is a single-round imputation method that imputes values for a feature using only that same

feature dimension. UI is a common alternative to complete case analysis, representing an
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important benchmark for the performance of more complex models. The UI hyperparameter

search space included the imputation strategy: feature mean, median, and mode (S1 Table).

Interpolation

INT imputes missing data using non-missing data from that same instance only (S1 Fig).

Interpolants defined between adjacent non-missing datapoints are used to impute interposed

missing datapoints. Missing datapoints outside the range of non-missing datapoints are

imputed by extrapolating the nearest interpolant. Linear interpolation defines interpolants as

first-degree linear equations between two known coordinates (x0, y0) and (x2, y2). For x1 in the

interval (x0, x2), y1 is defined by Eq 4. Cubic spline and piecewise cubic hermite interpolating

polynomial (PCHIP) generate piecewise cubic polynomials as interpolants (Eq 5). Cubic spline

interpolants have continuous first and second derivatives. PCHIP interpolants are continuous

in the first derivative only, avoiding overshooting and preserving monotonicity. The INT

hyperparameter search space included the interpolation method: linear, PCHIP, and cubic

spline (S1 Table).

y1 ¼
y2 � y0

x2 � x0

� x1 � x0ð Þ þ y0 ð4Þ

SðxÞ ¼

a0x3 þ b0x2 þ c0xþ d0; x � x1

a1x3 þ b1x2 þ c1xþ d1; x1 < x � x2

. . .

ai� 1x3 þ bi� 1x2 þ ci� 1xþ di� 1; xi� 1 < x

ð5Þ

8
>>>><

>>>>:

i = number of nonmissing features
ai, bi, ci, di = parameters for ith cubic polynomial
xi = ith nonmissing datapoint

K-nearest neighbors

KNN is a single-round imputation method which imputes missing values using the k instances

most similar to the instance being imputed. For a sparse instance xs, distance from an instance

xi is calculated as the average distance in Euclidean space for all shared non-missing features.

The nearest neighbors are defined as the k instances with the lowest averaged distances from

xs. Missing features in xs are imputed using the unweighted or distance-weighted means of the

k-nearest neighbors (Eq 6). The unweighted model assigns an identical weight w ¼ 1

k to each

k-nearest neighbor, such the relative importance of each nearest neighbor is equivalent. The

weighted model assigns a weight to the ith nearest neighbor inversely proportional to the dis-

tance between xi and xs (Eqs 7 and 8). The KNN hyperparameter search space included the

number of neighbors and the weighting function (S1 Table).

fxs ¼
Pk

i¼1
wi � fxi ð6Þ

wi ¼
1

k
�

1

dðxs � xiÞ
ð7Þ

Pk
i¼1
wi ¼ 1 ð8Þ

xs = Sparse instance to be imputed
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xi = ith nearest neighbor to xs
wi = weight of ith instance
k = number of nearest neighbors
d(xs, xi) = average feature distance between xs and xi

Gradient boosted trees

Decision trees are visualizable as a flowchart of yes or no decisions. While decision trees tend

to overfit and are often poorly generalizable, ensembles are more robust [23]. Gradient boosted

trees are a type of ensemble wherein individual decision trees are iteratively added to the

model such that each new tree reduces the loss function, accounting for the error of the exist-

ing ensemble. We used the gradient boosted trees model XGBoost (XGB), described in Tianqi

et al, 2016 [22]. As XGBoost outputs a single prediction, separate models were trained for each

feature using the Scikit-learn multioutput regressor [24]. The XGB hyperparameter search

space included the number of estimators, maximum tree depth, learning rate, and subsample

proportion (S1 Table).

Neural network

A feed-forward multilayer perceptron was modeled after the NN described in Pitathawatchai

et al (Adam optimizer, rectified linear unit activation function), shown to be superior to the

common approach for audiometric frequency prediction in pediatric audiograms [12,25]. As

NNs are intolerant of missing inputs, missing values were denoted with -1. The NN hyperpara-

meter search space included the number of hidden layers, the number of nodes in each hidden

layer, and the learning rate (S1 Table).

Multiple imputation by chained equations

Multiple imputation by chained equations is a well-validated method for missing data imputa-

tion [26]. Initially, all missing values are imputed using single imputation. Subsequently, all

originally missing values are iteratively re-imputed by a series of multivariate regression mod-

els that impute values in a given feature using all other features as inputs. We tested l1 and l2

regularized linear regression models as the estimator (Eqs 9 and 10), as both are appropriate

for data with high degrees of multicollinearity. Values are imputed for each feature in a round-

robin fashion; imputation of every feature once represents a single round of imputation. This

process iteratively repeats for m rounds, generating m imputations for each originally missing

value. The final round of imputation, presumed to be the most accurate, is commonly used as

model output. Alternatively, Single Center Imputation from Multiple Chained Equations

(SICE) defines model output as the mean of all imputations [27]. The MICE hyperparameter

search space included the estimator, number of iterations, initial imputation function, and

output method (S1 Table).

l1 loss ¼
1

n
Pn

i¼1
ðfi � yiÞ

2
þ l
Pm

j¼1
jyjj ð9Þ

l2 loss ¼
1

n
Pn

i¼1
ðfi � yiÞ

2
þ l
Pm

j¼1
y

2

j ð10Þ

n = number of datapoints
fi = ith predicted value

yi = ith true value
m = number of covariates
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λ = strength of regularization penalty
θj = weight of jth parameter

Results and discussion

Demographics

Median age was 67 years (IQR 54–76 years) and median hearing loss duration was 23 years

(IQR 11–37 years). Etiology was unknown in 78.0% of cases; etiology of remaining cases con-

sisted of noise (4.8%), presbycusis (3.8%), hereditary (3.2%), sudden sensorineural hearing loss

(1.8%), Meniere’s disease (1.8%), “other” (1.7%), congenital (1.4%), infection (1.1%), iatro-

genic (0.7%), otosclerosis (0.7%), autoimmune (0.5%), trauma (0.3%), and acoustic neuroma

(0.2%). Most audiograms were missing six or fewer frequencies (99.3%). The most commonly

missing frequencies were 1500Hz (72.9%), 750Hz (65.4%), 125Hz (45.0%), 3000Hz (30.7%),

and 6000Hz (29.5%). As expected for CI candidates, higher frequencies were associated with

higher audiometric thresholds (Fig 4 and S2 Table).

Quantity and distribution of sparsity

The amount of missing data significantly affects imputation accuracy. However, there is no

standard for the amount of missing data that can be safely imputed. To address this, we first

Fig 4. Demographics. Descriptive statistics for raw sparse audiometric dataset (n = 7,451).

https://doi.org/10.1371/journal.pone.0281337.g004
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defined a clinically significant threshold for “safe” audiometric imputation (< 10dB RMSE).

Model performance was then assessed with increasing amounts of missing data to quantify the

amount of missing data that can be safely imputed. Another important consideration is the

distribution of missing data. One common approach for comparing imputation algorithms is

to take a MCAR assumption and randomly introduce missing values [28]. However, this does

not reflect real-world audiometric data, as certain frequencies are significantly more com-

monly tested. To assess real-world performance, we tested randomly generated sparse datasets

with sparsity distributions weighted to match that of our parent dataset. Three other sparsity

distributions (random, terminal, central) were tested to assess potential generalizability to

novel datasets with different sparsity distributions (Fig 3).

As expected, model performance degraded with increasing amounts of missing data (Fig 5).

With 3 to 8 missing features, all models (except UI) performed significantly better with a real-

world sparsity distribution compared to random and weighted-random sparsity distributions

(Δ RMSE 0.3 dB– 5.8 dB, non-overlapping 99% confidence intervals). With a real-world spar-

sity distribution, it is possible to safely impute up to 6 missing datapoints per audiogram using

MICE, KNN, XGB, and NN. For all other sparsity distributions, the maximum for safe imputa-

tion ranged from 2 to 5 missing features, depending on model (excluding UI) and distribution

(Fig 5). This highlights the importance of considering sparsity distribution when evaluating

imputation models, particularly with audiometric data.

Audiometric data is highly multicollinear. Adjacent frequencies are most strongly corre-

lated, and correlation strength falls off dramatically with increasing distance on the frequency

spectrum (Fig 6). For example, the Pearson correlation coefficient between 125 Hz and 250 Hz

is 0.92; comparatively, the correlation between 125 Hz and 3000 to 8000 Hz ranges from 0.21

to 0.22. We hypothesize that this is likely a driving factor behind the favorability of imputing

missing audiometric data with a real-world sparsity distribution. Random and weighted-ran-

dom sparsity distributions are statistically more likely to have multiple sequential missing fre-

quencies, compared to the real-world distribution of sparsity which is strongly weighted

towards alternating present (octave) and absent (inter-octave) frequencies (Figs 3 and 4D).

Model selection

Sparsity of real-world data varies between instances both spatially (Fig 4D) and quantitatively

(Fig 4A). To identify the best-performing model in a real-world scenario, models were tested

on randomly generated sparse datasets with real-world spatial and quantitative distributions of

sparsity, such that both the number and specific distribution of missing features varied

between audiograms. Quantitative sparsity was capped at six missing features per instance, as

this represents the maximum for safe imputation given a real-world spatial distribution of

sparsity (Fig 5). MICE was the best performing model across all error metrics (p< 0.01, Wil-

coxon rank sum test) with RMSE of 7.83 dB [95% CI 7.81–7.86] (Table 1). To assess generaliz-

ability of model selection to novel datasets, testing was repeated on randomly generated sparse

datasets with other sparsity distributions (random, terminal, and central). As above, the num-

ber of missing features per instance was randomized on a per audiogram basis, capped at six

but otherwise mirroring the quantitative sparsity of the parent subset. MICE was the best per-

forming model across all error metrics (p < 0.01, Wilcoxon rank sum test) for each sparsity

distribution tested (Table 1).

Prior literature states that machine learning models such as KNN and neural networks are

optimal. These results directly conflict with this notion, indicating that simple iterative linear

regression produces optimal results, and that complex machine learning methods are not just

unnecessary but detrimental. Overall, audiometric data is highly multicollinear, making it an
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Fig 5. Quantity and distribution of sparsity. Assessment of model performance on sparse datasets with different degrees of sparsity (1–10 of 11 features) and

sparsity distributions (Real-world, Random, Terminal, Central). Colored lines denote mean root mean squared error; shaded bands represent 99% confidence

intervals.

https://doi.org/10.1371/journal.pone.0281337.g005
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excellent candidate for imputation. This is further bolstered by the favorable sparsity distribu-

tion of real-world audiometric data. Imputing missing data in audiograms with up to 6 missing

datapoints captures 99.3% of the audiograms in our dataset, allowing a 5.7-fold increase in

sample size (1,304 to 7,399 audiograms) while maintaining a clinically insignificant level of

error. These results also suggest an avenue for increased clinical efficiency for audiologists, as

an accurate full 11-frequency audiogram could hypothetically be obtained by measuring only

5 frequencies and imputing the rest.

Dataset size

Dataset size is another consideration, as certain methods (e.g., neural networks) are known to

require more data for optimal performance. Models were tested on datasets ranging in size

Fig 6. Audiometric correlation. Correlation matrix demonstrating the pairwise Pearson correlation coefficient between audiometric frequencies.

https://doi.org/10.1371/journal.pone.0281337.g006
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from 20 to 1280 audiograms (Fig 7). Sparsity was capped at 6 missing datapoints per audio-

gram; otherwise, sparsity quantity and distribution were equivalent to the parent dataset. As

expected, performance of UI and INT models was independent of dataset size; all other models

displayed a positive correlation between dataset size and performance. For datasets smaller

than ~1e2, INT was the best performing model. In all other cases, MICE was the best perform-

ing model. Notably, MICE performance plateaus at a dataset size of approximately 300–400

audiograms. In contrast, the more sophisticated machine learning models (KNN, XGB, and

NN) continue to improve with increasing dataset size. This indicates the possibility that, with a

significantly larger dataset, another model could outperform MICE. However, the perfor-

mance of MICE on the entire dataset with up to 6 missing features is MAE 5.08 [95% CI 5.07–

5.08] (Table 1). It is not possible to impute with greater accuracy than the stochastic noise

(test-retest error) of the underlying dataset, which prior studies define as roughly +/- 5dB

[17,18].

As such, MICE is close to the theoretical upper bound for model performance. For

improvement with a more complex model to be significant enough to justify the cost of

interpretability and ease of implementation, the literature-defined test-retest error would need

to be an overestimate. However, a better model could potentially safely impute audiograms

Table 1. Model selection. Model performance assessment given different sparsity distributions. Quantity of missing data varied on a per-instance basis, capped at 6 miss-

ing features but otherwise statistically equivalent to parent subset. Results averaged across 10 simulations, reported as mean (95% confidence interval).

Sparsity Distribution Model Mean Absolute Error Root mean square error R2 Score

Real-world UI 18.9 (18.87–18.94) 23.97 (23.92–24.02) -0.532 (-0.54 - -0.525)

INT 5.22 (5.21–5.24) 8.34 (8.3–8.37) 0.918 (0.917–0.918)

MICE 5.08 (5.07–5.08) 7.83 (7.81–7.86) 0.93 (0.93–0.931)

KNN 5.38 (5.37–5.39) 8.34 (8.3–8.39) 0.92 (0.919–0.921)

XGB 5.3 (5.29–5.31) 8.19 (8.15–8.23) 0.923 (0.922–0.923)

NN 5.72 (5.7–5.74) 8.87 (8.82–8.92) 0.911 (0.91–0.912)

Random UI 19.0 (18.98–19.02) 23.9 (23.87–23.92) -0.458 (-0.463 - -0.452)

INT 6.2 (6.19–6.22) 9.81 (9.76–9.87) 0.882 (0.881–0.883)

MICE 5.79 (5.77–5.81) 8.75 (8.72–8.79) 0.913 (0.912–0.914)

KNN 6.52 (6.5–6.54) 9.54 (9.51–9.58) 0.891 (0.89–0.892)

XGB 6.75 (6.73–6.77) 9.87 (9.82–9.91) 0.885 (0.884–0.886)

NN 7.73 (7.7–7.77) 11.34 (11.26–11.42) 0.855 (0.853–0.857)

Central UI 18.53 (18.5–18.55) 23.2 (23.18–23.23) -0.935 (-0.942 - -0.927)

INT 5.97 (5.95–6.0) 9.16 (9.11–9.21) 0.881 (0.879–0.882)

MICE 5.6 (5.58–5.63) 8.39 (8.35–8.43) 0.906 (0.905–0.906)

KNN 6.47 (6.45–6.49) 9.33 (9.29–9.37) 0.877 (0.876–0.878)

XGB 6.77 (6.74–6.8) 9.76 (9.71–9.8) 0.865 (0.864–0.866)

NN 7.36 (7.34–7.39) 10.6 (10.56–10.65) 0.85 (0.848–0.852)

Terminal UI 19.41 (19.38–19.44) 24.47 (24.43–24.51) -0.217 (-0.219 - -0.214)

INT 7.01 (6.97–7.04) 11.34 (11.26–11.41) 0.855 (0.854–0.857)

MICE 6.17 (6.14–6.21) 9.34 (9.29–9.39) 0.912 (0.911–0.913)

KNN 6.93 (6.9–6.95) 10.08 (10.03–10.12) 0.894 (0.893–0.895)

XGB 7.13 (7.11–7.15) 10.48 (10.43–10.52) 0.887 (0.885–0.888)

NN 7.89 (7.85–7.93) 11.57 (11.51–11.64) 0.866 (0.864–0.867)

Bolded values indicate best performing model for a given metric and spatial sparsity distribution (p < 0.01, Wilcoxon rank sum test). Models: Univariate (UI),

interpolation (INT), multiple imputation by chained equations (MICE), k-nearest neighbors (KNN), gradient boosted trees (XGB), neural network (NN).

https://doi.org/10.1371/journal.pone.0281337.t001
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with greater than 6 missing datapoints. While this represents only 0.7% of audiograms in our

dataset, this could be applicable for audiometric screening, potentially increasing audiologists’

clinical efficiency by decreasing the number of frequencies needed for a full audiogram.

Limitations and future directions

Generalizability is a primary concern for implementation of any predictive model. While our

dataset is well-represented, future datasets may have different structural sparsity as practices

for audiometric testing change with time. As such, blind implementation is not recommended.

An analysis of sparsity and model performance is critical to avoid inadvertently introducing

bias. The attached GitHub repository contains code and instructions such that researchers

may easily perform these analyses on novel datasets.

Audiometric testing practices also differ between institutions. Complete case analysis was

used prior to analysis, potentially introducing selection bias. As institution-specific data is

unavailable, the degree of selection bias could not be assessed. Furthermore, the study popula-

tion was relatively homogenous; most patients were white or of unknown race with hearing

loss predominantly of unknown etiology, all undergoing evaluation for cochlear implant.

While results support imputation of other audiometric data, future work is needed to validate

use in other populations. We hypothesize the decreased variance of audiometric thresholds in

healthy patients would lead to increased performance.

Results were derived from imputation of full 11-frequency audiograms. However, investiga-

tors may decide to exclude certain frequencies. To assess generalizability of results with a

restricted set of features, models were assessed for imputation of audiograms with 750 Hz and

1500 Hz (the two least commonly tested features) removed. This additionally allowed for

assessment with a larger dataset, expanding sample size to 3,074. Results show that imputation

with this feature set is comparatively more difficult. Given a real-world sparsity distribution,

six non-missing datapoints were required for safe imputation, up from five non-missing data-

points with the 11-frequency dataset (S2 Fig). This suggests that a safer approach to the 11-fre-

quency dataset would be capping quantitative sparsity at 5 rather than 6 missing features per

instance, which still captures the majority (98.8%) of audiograms. Some may also disagree

with a clinically significant threshold of�10dB RMSE. However, should investigators choose

alternative definitions for clinically significant error, the threshold for error tolerance and the

amount of missing data imputed may easily be adjusted.

Finally, models were optimized by grid-search. Certain models, such as XGB and NN, have

many hyperparameters. A complete grid-search is not feasible, as grid-search size increases

exponentially with additional parameters. As such, grid-search potentially underestimates per-

formance of more complex models. To address this, we systematically identified all tunable

hyperparameters prior to each test, such that 1) variance significantly (>1dB RMSE) affected

model performance, and 2) there was no unilaterally superior value to serve as a default

(S1 Table). Despite limitations, given the size of our dataset we believe the gain in generaliz-

ability from testing on all datapoints is worthwhile. Furthermore, our priority is avoiding per-

formance overestimation, as a conservative understanding of performance is a key for

incorporation of models into clinical research. Correspondingly, the parametric simplicity of

INT, MICE, and KNN models represents an advantage over the more complex XGB and NN

Fig 7. Model performance with varying dataset size. Models assessed on sparse datasets with sample size sequentially

increasing twofold. Amount of sparsity varied on a per-instance basis from 1 to 6 missing features, mirroring the

quantity of sparsity of the parent subset. Distribution of sparsity was real-world, mirroring parent subsets. Lines

represent metric mean across 10 simulations; shaded bands represent 99% confidence intervals.

https://doi.org/10.1371/journal.pone.0281337.g007

PLOS ONE Imputation of missing values for cochlear implant candidate audiometric data and potential applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0281337 February 6, 2023 16 / 20

https://doi.org/10.1371/journal.pone.0281337.g007
https://doi.org/10.1371/journal.pone.0281337


models. However, future work is needed to refine the process of identifying tunable hyperpara-

meters, address the computational cost associated with grid search, and assess this approach to

hyperparameter tuning across a range of datasets. Similarly, while the importance of sparsity

distribution is evident in audiometric data, further work is needed to assess the effects of spar-

sity distribution on other datasets.

This study validates imputation of a significant amount of CI audiometric data, addressing

the prevalent issue of missing data in CI outcomes research. A next step is implementation of

imputation models to increase sample size for CI outcomes modeling. Finally, future work

should assess the degree to which audiograms can be used to safely impute other preoperative

factors known to be associated with audiometry, such as hearing loss duration and etiology,

age, and speech perception measurements.

Conclusions

Precision medicine has immense potential; however, these approaches are data-dependent and

widespread sparsity in medical data represents a significant barrier to implementation. The

current standard of complete case analysis leads to selection bias and decreased statistical

power. The high degree of multicollinearity and favorable sparsity distribution of audiometric

data makes it an excellent candidate for imputation. However, validation of imputation models

is both necessary and often overlooked. We rigorously assessed the performance of six imputa-

tion models on CI candidate audiograms, demonstrating the importance of considering both

the quantity and distribution of missing data. With a real-world sparsity distribution, up to 6

of 11 frequencies per audiogram can be safely imputed while maintaining RMSE below a clini-

cally significant threshold of 10dB, allowing for a 5.7-fold increase in dataset size. The standard

approach of complete case analysis leads to discarding of significant amounts of usable data.

Univariate imputation, a common alternative to complete case analysis, introduces a signifi-

cant amount of bias, is outperformed by all other models tested, and should not be used.

Depending on dataset size and sparsity, optimal performance can be obtained with either

interpolation or iterative linear regression. More sophisticated machine learning techniques,

demonstrated by prior literature to be optimal, are unnecessary and detrimental. Results,

derived using the largest CI dataset to date, are likely generalizable. However, the importance

of validating imputation model performance on novel datasets prior to implementation cannot

be understated.

Supporting information

S1 Fig. Interpolation models. Visualization of interpolants computed using linear, PCHIP,

and cubic spline interpolation methods for a sample audiogram with six non-missing data-

points. Interpolants bounded by range of underlying data (0dB to 120dB).

(TIF)

S2 Fig. 9-frequencies, rate and distribution analysis. Assessment of model performance on

sparse datasets with different degrees of sparsity (1–8 of 9 features) and sparsity distributions

(Real-world, Random, Terminal, Central). Colored lines denote mean root mean squared

error; shaded bands represent 99% confidence intervals.

(TIF)

S1 Table. Hyperparameter search space. Prior to each round of testing, tunable hyperpara-

meters were identified, defined as hyperparameters for which no unilaterally superior default

value exists and variance significantly (>1dB RMSE) affects performance. Tunable hyperpara-

meters were identified for each test independently. This table is inclusive, reporting the
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intersection of all hyperparameter search spaces identified.

(DOCX)

S2 Table. Demographics, numerical. Summary statistics for age, duration of hearing loss,

audiometry, and speech perception testing. Measures of speech perception included conso-

nant-vowel nucleus consonant (CNC) test and the Arizona Biomedical Sentence (AzBio) test

in quiet and with +5dB or +10dB of background noise.

(DOCX)
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