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Abstract

A Lorenz curve is a graphical representation of the distribution of income or

wealth within a population. The generalized Lorenz curve can be created by scaling the

values on the vertical axis of a Lorenz curve by the average output of the distribution.

In this thesis, we propose two nonparametric methods for testing the equality of two

generalized Lorenz curves. Both methods are based on empirical likelihood and utilize a

U -statistic. We derive the limiting distribution of the likelihood ratio, which is shown to

follow a chi-squared distribution with one degree of freedom. We conduct simulations to

compare the proposed methods and an existing method by examining Type I error rates

and power across various sample sizes and distribution assumptions. Our results show

that the proposed methods exhibit superior performance in finite samples, particularly

in small sample sizes, and are robust across various scenarios. Finally, we use real-world

data to illustrate the methods of testing two generalized Lorenz curves.



iv

Acknowledgements

I would like to express my sincere gratitude to everyone who supported me during my

master’s thesis journey. First and foremost, I thank my thesis advisor, Dr. Ratnasingam,

for his invaluable guidance, feedback, and encouragement. I also thank my commit-

tee members, Dr. Aikin and Dr. Aldirawi, for their time and support. I am grateful

to the program coordinator, Dr. Dunn, for his assistance and support throughout the

program. Last but not least, I thank my family for their unconditional love and under-

standing. They always believed in me and cheered me on, even when I was stressed and

overwhelmed. I dedicate this thesis to them.



v

Table of Contents

Abstract iii

Acknowledgements iv

List of Figures vii

1 Introduction 1
1.1 Lorenz Curves and Generalized Lorenz Curves . . . . . . . . . . . . . . . 1
1.2 Statistical Inferences about Generalized Lorenz Curves . . . . . . . . . . . 2
1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Definitions and Preliminaries 5
2.1 Generalized Lorenz Curves . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Empirical Likelihood (EL) . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Jackknife Empirical Likelihood (JEL) . . . . . . . . . . . . . . . . . . . . 7
2.4 Adjusted Empirical Likelihood (AEL) . . . . . . . . . . . . . . . . . . . . 8

3 JEL-based Tests for the Equality of Two Generalized Lorenz Curves 10
3.1 JEL Test for the Equality of Two Generalized Lorenz Curves . . . . . . . 10
3.2 AJEL Test for the Equality of Two Generalized Lorenz Curves . . . . . . 13

4 A Simulation Study 14
4.1 Probability of Type I Error Analysis . . . . . . . . . . . . . . . . . . . . . 14
4.2 Power Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Real Data Applications 26
5.1 Using Complete Data to Compare Income Distributions of Faculty at CSU

Monterey Bay and CSU San Bernardino . . . . . . . . . . . . . . . . . . . 27
5.2 Using Complete Data to Compare Income Distributions of Faculty at CSU

San Bernardino and CSU San Francisco . . . . . . . . . . . . . . . . . . . 28
5.3 Using Incomplete Data to Compare Income Distributions of All Faculty at

CSU and UC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 Using Incomplete Data to Compare Income Distributions of CSUSB Fac-

ulty between 2009 and 2020 . . . . . . . . . . . . . . . . . . . . . . . . . . 31



vi

6 Discussion and Conclusion 35

Bibliography 40



vii

List of Figures

4.1 Type I error comparison for ADF, JEL, and AJEL methods for different
distributions, sample sizes, and values of t . . . . . . . . . . . . . . . . . . 19

4.2 Generalized Lorenz curves for Chi-Square, Exponential, and Half-Normal
distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Power comparison for ADF, JEL, and AJEL methods for different distri-
butions, sample sizes, and values of t . . . . . . . . . . . . . . . . . . . . . 25

5.1 (a) Lorenz curves and (b) generalized Lorenz curves for salaries of CSU
Monterey Bay and CSU San Bernardino faculty . . . . . . . . . . . . . . . 27

5.2 (a) Lorenz curves and (b) generalized Lorenz curves for salaries of CSU
San Bernardino and CSU San Francisco faculty . . . . . . . . . . . . . . . 29

5.3 (a) Lorenz curves and (b) generalized Lorenz curves for salaries of CSU
and UC faculty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4 (a) Lorenz curves and (b) generalized Lorenz curves for salaries of CSUSB
faculty in years 2009 and 2020 . . . . . . . . . . . . . . . . . . . . . . . . 32

5.5 (a) Lorenz curves and (b) generalized Lorenz curves for salaries of CSUSB
faculty in years 2009 and 2020 . . . . . . . . . . . . . . . . . . . . . . . . 33



1

Chapter 1

Introduction

1.1 Lorenz Curves and Generalized Lorenz Curves

A Lorenz curve is a visual representation of an income or wealth distribution

within a population. It is named after American economist Max Lorenz [Lor05] who de-

veloped it in 1905. The curve uses the percentiles of the population regarding the income

or wealth as an input and the percent of the cumulative income or wealth attributed to

a given percentile as the output. For example, in a population with a constant income or

wealth per capita, the Lorenz curve will be a piece of the graph of the identity function,

y = x, on the restricted domain [0, 1], i.e., a 45-degree line segment starting at (0, 0) and

ending at (1, 1). This line is commonly referred to as the line of equality and all other

Lorenz curves fall under the line of equality creating a gap that visually represents the

inequality in the population. For example, in a population with a uniformly distributed

income (i.e., all incomes are equally likely to be between some values a and b) the Lorenz

curve will be a piece of the standard parabola, y = x2, on the restricted domain [0, 1].

The area of the region bounded by a given Lorenz curve and the line of equality divided

by the area under the line of equality is called the Gini coefficient. The Gini coefficient

is used to summarize the inequality as a single number which can be used to characterize

the given population or to compare two different populations. The generalized Lorenz

curve can be constructed from a Lorenz curve by scaling the values on the vertical axis

by the average output of the distribution. While Lorenz curves are frequently used in

economics to represent financial inequality, they also can be used in other fields of study
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to visualize the inequality of the distribution within any system. For example, the Lorenz

curve has been used by several researchers to analyze physician distributions. Chang and

Halfon [CH97] examined variations in the distribution of pediatricians among the states

between 1982 and 1992 using Lorenz curves and Gini indices. Kobayashi and Takaki

[KT92] used the Lorenz curve and the Gini coefficient to study the disparity in physician

distribution in Japan.

1.2 Statistical Inferences about Generalized Lorenz Curves

Since the actual distribution is very likely to be unknown, the Lorenz curves

must be constructed from incomplete data by making a statistical inference. In regard

to making comparisons between two Lorenz curves, there have been multiple studies.

Arora and Jain [AJ06] investigated the generalized Lorenz dominance and proposed tests

for the equality of two generalized Lorenz curves over a specified interval. Li and Wei

[LW18] noted that normal approximation-based methods may have poor performance,

especially for the skewed income data, or the limiting distributions are nonstandard and

bootstrap calibrations are needed hence more effective inferences for Lorenz curves are

desirable. Empirical likelihood (EL) introduced by Owen [Owe88] is a nonparametric

method that requires fewer assumptions for utilizing the likelihood ratio approach while

preserving many of its appealing features such as its extension of Wilk’s theorem, asym-

metric confidence intervals, better coverage for small sample sizes, etc. However, it has

some computational complications when using nonlinear statistics as demonstrated by

Jing, Yuan, and Zhou [JYZ09] and when solutions to the corresponding constraints do

not exist as demonstrated by Chen, Variyath, and Abraham [CVA08]:

• Jing et al. [JYZ09] provides an example of the EL-based approach losing its appeal

when using nonlinear U−statistics of degree m ≥ 2, due to the increased compu-

tational difficulty of solving a system of nonlinear equations simultaneously using

Lagrange multipliers. To overcome this difficulty, Jing et al. [JYZ09] proposed the

jackknife empirical likelihood (JEL) approach. In summary, JEL turns the statistic

of interest into a sample mean based on jackknife pseudo-values [Que56] which are

asymptotically independent under mild conditions [Shi84], and then consecutively,

Owen’s EL method can be applied resulting in a simpler system of equations.
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• Chen et al. [CVA08] pointed out that under certain conditions it can be difficult

to determine the parameter region over which the likelihood ratio function is well-

defined, making it a challenge to identify the maximum likelihood ratio or to find a

proper initial value. To overcome this challenge, Chen et al. [CVA08] proposed the

adjusted empirical likelihood (AEL) approach to eliminate the outlined problem.

In summary, the AEL extends the convex hull to include the origin by adding a

pseudo-value. With this adjustment, the empirical likelihood is well-defined for all

parameter values, thus finding the maximum becomes a much simpler problem.

Multiple studies have been conducted on EL for the Lorenz curve by various

researchers. For instance, Belinga-Hall [BH07] and Yang et al. [YQBH12] developed

plug-in empirical likelihood-based inferences to construct confidence intervals for the gen-

eralized Lorenz curve. Most recently, Ratnasingam et al. [RWAR23] developed three

nonparametric EL-based methods to construct confidence intervals for the generalized

Lorenz curve using adjusted empirical likelihood (AEL), transformed empirical likelihood

(TEL), and transformed adjusted empirical likelihood (TAEL). Moreover, several studies

have focused on comparing two Lorenz curves. For example, Arora and Jain [AJ06] in-

vestigated the generalized Lorenz dominance and proposed tests for the equality of two

generalized Lorenz curves over a specified interval. Li and Wei [LW18] noted that nor-

mal approximation-based methods may have poor performance, especially for the skewed

income data, or the limiting distributions are nonstandard and bootstrap calibrations

are needed hence more effective inferences for Lorenz curves are desirable. All of these

tests were parametric and they involve making assumptions about the underlying dis-

tribution of the data. Xu [Xu97] proposed an asymptotically distribution-free statistical

test (ADF) to evaluate the equality of two generalized Lorenz curves and showed that

the test statistic follows the weighted sum of χ2 with different degrees of freedom.

1.3 Motivation

To the best of our knowledge, no previous studies have investigated testing the

equality of two Lorenz curves based on JEL using a U -statistic. Thus, in this thesis, to

test the equality of two generalized Lorenz curves, we propose two new nonparametric

approaches using a U−statistic based on the jackknife empirical likelihood method and
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its extension to the adjusted jackknife empirical likelihood. The new methods combine

two of the EL-based approaches mentioned above - the JEL as described by Jing et al.

[JYZ09] and the AEL as described by Cheng et al. [CVA08].

The rest of the thesis is organized as follows. In Chapter 2, we provide a list

of definitions and briefly describe the fundamental properties of the EL, JEL, and AEL

methods. In Chapter 3, we propose two new approaches to test the equality of two

generalized Lorenz curves. Simulation studies are conducted in Chapter 4 to evaluate the

performance of the proposed methods. In Chapter 5, we apply the proposed methods to

real data sets to demonstrate the procedures. We discuss our results and draw conclusions

in Chapter 6. All proofs are deferred to the appendix.
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Chapter 2

Definitions and Preliminaries

2.1 Generalized Lorenz Curves

Lorenz curves were first introduced by Max Lorenz [Lor05] as a graphical rep-

resentation of the distribution of a variable, such as income or wealth, in a population.

It is used to measure the degree of inequality in a society or group. The Lorenz curve is

constructed by plotting the cumulative percentage of the population on the x-axis against

the cumulative percentage of the variable (such as income or wealth) on the y-axis. The

resulting curve represents the distribution of the variable in the population. A Lorenz

curve that is close to the line of equality (which is a straight line that represents per-

fect equality) indicates that the distribution of the variable is relatively equal across the

population. On the other hand, a Lorenz curve that is farther away from the line of equal-

ity indicates a higher degree of inequality in the distribution of the variable. Following

[Gas71], a general definition of the Lorenz curve is given as

η(t) =
1

µ

∫ ψt

0
xdF (x), t ∈ [0, 1] (2.1)

where µ denotes the mean of F , and ψt = F−1(t) = inf{x : F (x) ≥ t} is the t−th quantile

of F . For a fixed t ∈ [0, 1], the Lorenz ordinate η(t) is the proportion of cumulative income

of the lowest t-th quantile of households. Similarly, the generalized Lorenz curve is defined

by

ξ(t) =

∫ ψt

0
xdF (x), t ∈ [0, 1] (2.2)
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where ψt = F−1(t) = inf{x : F (x) ≥ t} is the t−th quantile of F . For a fixed t ∈ [0, 1],

the generalized Lorenz ordinate ξ(t) is the average income of the lowest t-th quantile of

households.

2.2 Empirical Likelihood (EL)

Let X1, X2, · · · , Xn be a random sample from a population with the cumulative

distribution F (x), then the Empirical cumulative distribution function (ECDF) is defined

as

Fn(x) =
1

n

n∑
i=1

I(Xi ≤ x)

where

I(Xi ≤ x) =

1, Xi ≤ x

0, Xi > x

The nonparametric likelihood of distribution function F is defined as

L(F ) =
n∏
i=1

(F (Xi)− F (Xi−))

where F (Xi) denotes the probability P (Xi ≤ x) and F (Xi−) denotes the probability

P (Xi < x) so that F (Xi) − F (Xi−) = P (Xi = x). It can be easily shown [Owe88] that

ECDF is the nonparametric maximum likelihood estimate of F (x). For a distribution

F (x), the Empirical likelihood ratio is defined as

R(F ) =
L(F )

L(Fn)

Similar to how parametric likelihood ratios are used to construct confidence intervals

and hypothesis tests, the Empirical likelihood ratios can be used as a basis for statistical

inferences but with fewer assumptions. Thus, if we are interested in some parameter θ

defined by the estimating function g(X; θ), then the profile Empirical likelihood function

for θ is

L(θ) = sup

{
n∏
i=1

pi

∣∣∣∣ n∑
i=1

pi = 1, pi ≥ 0,
n∑
i=1

pig(Xi; θ) = 0

}
where pi is the probability of observing Xi. Similarly, we define the profile empirical

likelihood ratio function as

R(θ) =
L(θ)

L(θ̂)
= sup

{
n∏
i=1

npi

∣∣∣∣ n∑
i=1

pi = 1, pi ≥ 0,

n∑
i=1

pig(Xi; θ) = 0

}
(2.3)
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Therefore, the profile empirical log-likelihood ratio function, evaluated at θ is

defined as

W (θ) = sup

{
n∑
i=1

log(npi)

∣∣∣∣ n∑
i=1

pi = 1, pi ≥ 0,

n∑
i=1

pig(Xi; θ) = 0

}

Calculating R(θ) and W (θ) is equivalent to solving an optimization problem with con-

straints which can be done using the Lagrange multipliers method. It can be easily shown

[Owe88] that W (θ) reaches its maximum when

pi =
1

n

1

1 + λg(Xi; θ)

where λ is the Lagrange multiplier that solves the equation

n∑
i=1

g(Xi; θ)

1 + λ′g(Xi; θ)
= 0

When λ is obtained, W (θ) can be computed

W (θ) = 2

n∑
i=1

log [1 + λg(Xi; θ)]

It can be easily shown [Owe88] that when g(X,µ) = X − µ, a (1 − α)100% confidence

region for µ can be constructed using

C =

{
µ

∣∣∣∣W (µ) ≤ χ2
q(α)

}
where C is a convex set and q is the dimension of the set of θ values.

2.3 Jackknife Empirical Likelihood (JEL)

Jing et al. [JYZ09] provides an example of the EL-based approach losing its

appeal when using nonlinear U−statistics of degree m ≥ 2, due to the increased com-

putational difficulty of solving a system of nonlinear equations simultaneously using La-

grange multipliers. To overcome this difficulty, Jing et al. [JYZ09] proposed the Jackknife

Empirical Likelihood (JEL) approach.
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Let Z1, . . . , Zn be a random sample of n independent but possibly not identi-

cally distributed observations and let Tn = T (Z1, . . . , Zn) be consistent estimator of the

parameter θ. We define the jackknife pseudo-values as

V̂i = nTn − (n− 1)T
(−i)
n−1

where T
(−i)
n−1 := T (Z1, . . . , Zi−1, Zi+1, . . . , Zn) is the statistic Tn−1 computed on the sample

of n− 1 observations formed from the original data set by deleting the i-th observation.

We define the jackknife estimator of θ as the average of the pseudo-values

T̂n,jack :=
1

n

n∑
i=1

V̂i

Jing et al. [JYZ09] showed that for one or two-sample U -statistic, the θ’s estimators Tn

and T̂n,jack coincide, that is

Tn =
1

n

n∑
i=1

V̂i

Since Owen’s empirical likelihood is particularly easy to apply for the sample mean, Jing,

Tsao, and Zhou [JTZ17] proposed the Jackknife Empirical Likelihood (JEL) approach in

which the EL is applied to the jackknife pseudo-values V̂i’s.

2.4 Adjusted Empirical Likelihood (AEL)

Chen et al. [CVA08] pointed out that under certain conditions it can be difficult

to determine the parameter region over which the likelihood ratio function is well-defined,

making it a challenge to identify the maximum likelihood ratio or to find a proper initial

value. To overcome this challenge, Chen et al. [CVA08] proposed the Adjusted Empirical

Likelihood (AEL) approach to eliminate the outlined problem.

For any given θ, denote gi = gi(θ) = g(Xi; θ) and ḡn = ḡn(θ) = 1
n

∑n
i=1 gi. For some

positive constant an, define

gn+1 := gn+1(θ) = −an
n

n∑
i=1

gi = −anḡn

The adjusted profile empirical log-likelihood ration function is now

W ∗(θ) = sup

{
n+1∑
i=1

log((n+ 1)pi)

∣∣∣∣ n+1∑
i=1

pi = 1, pi ≥ 0,

n+1∑
i=1

pig(Xi; θ) = 0

}
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Since the convex hull of {gi, i = 1, 2, . . . , n, n + 1} for any given θ contains 0, W ∗(θ) is

well defined without exceptions. The value of an should be chosen to fit the problem

of the user’s particular application and the general recommendation is to have an =

max(1, log(n)/2) coupled with trimmed version of ḡn when appropriate.
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Chapter 3

JEL-based Tests for the Equality

of Two Generalized Lorenz Curves

In this chapter, we develop two new testing procedures using jackknife EL meth-

ods.

3.1 JEL Test for the Equality of Two Generalized Lorenz

Curves

Let X1, X2, · · · , Xn1 and Y1, Y2, · · · , Yn2 be two random samples from two inde-

pendent populations. The generalized Lorenz curve for these two samples are

η1(t) =

∫ ψt

0
xdF (x), t ∈ [0, 1] (3.1)

and

η2(t) =

∫ ψt

0
ydF (y), t ∈ [0, 1] (3.2)

where ψt = F−1(t) = inf{x : F (x) ≥ t} is the t−th quantile of F . We are interested in

testing the following hypotheses.

H0 : η1(t) = η2(t) vs H1 : η1(t) ̸= η2(t) (3.3)

From the definition of the generalized Lorenz curve, it can be clearly seen that

E[X I(X ≤ ψt)]− η1(t) = 0.
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and

E[Y I(Y ≤ ψt)]− η2(t) = 0.

As a result, the generalized Lorenz ordinates η1(t) and η2(t) are the means of the random

variable X and Y truncated at ψt respectively. Let’s consider the kernel function,

h(X,Y ) = X I(X ≤ ψt)I(Y ≤ ψt)− Y I(X ≤ ψt)I(Y ≤ ψt) (3.4)

We can easily show that θ(t) ≡ E
[
h(Xi, Yj)

]
=
(
η1(t) − η2(t)

)
P
(
X ≤ ψt

)
P
(
Y ≤ ψt

)
.

Thus, we are interested in testing

H0 : θ(t) = 0 vs H1 : θ(t) ̸= 0. (3.5)

Now consider, the two-sample U -statistics of degree (1,1) with the kernel h is given by,

Un1,n2 =
1

n1

1

n2

∑
1≤i≤n1

∑
1≤j≤n2

h(Xi, Yj)

=
1

n1

1

n2

∑
1≤i≤n1

∑
1≤j≤n2

Xi I(Xi ≤ ψt)I(Yj ≤ ψt)− Yj I(Xi ≤ ψt)I(Yj ≤ ψt)

(3.6)

Let n = n1 + n2. We can write the U -statistics

Un1,n2(X1, . . . , Xn1 , Y1, . . . , Yn2) = Un(Z1, Z2, . . . , Zn) (3.7)

where

Zk =

Xk k = 1, 2, . . . , n1

Yk−n1 k = n1 + 1, . . . , n

We define the corresponding jackknife pseudo-values by

V̂k = nUn − (n− 1)U−k
n−1, k = 1, 2, · · ·n, (3.8)

where U−k
n−1 = Un

(
Z1, Z2, . . . , Zk−1, Zk+1, . . . , Zn

)
. Further, the jackknife estimator of θ

is n−1
∑n

k=1 V̂k. In particular, under mild conditions, the V̂k’s are asymptotically inde-

pendent. For more details, readers are referred to Shi’s paper [Shi84]. Thus, we can use

the EL approach to the V̂k’s. It should be noted that V̂k(t) is the function of t and can

be calculated at a fixed value t0 such that t0 ∈ [0, 1]. For the simplicity of notations we

use V̂k instead of V̂k(t). The JEL for θ(t) is defined as follows:

L(θ(t)) = sup
p

{ n∏
k=1

pk :

n∑
k=1

pk = 1,

n∑
k=1

pk
(
V̂k −EV̂k

)
= 0

}
(3.9)
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where p = (p1, p2, . . . , pn) is a probability vector satisfying
∑n

k=1 pk = 1 and p ≥ 0 for all

k, and EV̂k can be determined using the equation (14) in [JTZ17]. Note that
∏n
k=1 pk,

subject to
∑n

k=1 pk = 1, attains its maximum n−n at pk = n−1. Thus, the JEL ratio for

θ(t) is given as

R(θ(t)) = sup

{ n∏
k=1

npk :
n∑
k=1

pk = 1,
n∑
k=1

pk
(
V̂k −EV̂k

)
= 0

}
(3.10)

Further, under null hypothesis H0 : θ(t) = 0, the JEL ratio becomes,

R(0) = sup

{ n∏
k=1

npk :
n∑
k=1

pk = 1,
n∑
k=1

pkV̂k = 0

}
. (3.11)

Using the Lagrange multiplier method, we have

pk =
1

n

{
1 + λV̂k

}−1

, k = 1, . . . , n.

where λ is the solution to
1

n

n∑
k=1

V̂k

1 + λV̂k
= 0.

Hence, the profile jackknife empirical log-likelihood ratio for θ(t) becomes

ℓ(θ(t)) = −2 logR(θ(t)) = 2
n∑
k=1

log
{
1 + λV̂k

}
(3.12)

Let h1,0(x) = Eh(x, Y1), σ21,0 = V ar
(
h1,0(X1)

)
, h0,1(y) = Eh(X1, y), and σ20,1 =

V ar
(
h0,1(Y1)

)
. We have the following theorem for the JEL.

Theorem 3.1. Assume that

1. E(X2) <∞, and E(Y 2) <∞

2. σ21,0 > 0, and σ20,1 > 0

3. n1/n2 −→ r, where 0 < r <∞

For any given t = t0 ∈ (0, 1), the limiting distribution of ℓ(θ(t0)) is a chi-square distribu-

tion with one degree of freedom,

ℓ(θ(t0)) −→ χ2
1, as min(n1, n2) −→ ∞. (3.13)

Proof. Proof of Theorem 3.1 is given in Appendix.
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3.2 AJEL Test for the Equality of Two Generalized Lorenz

Curves

Further, Chen et al. [CVA08] proposed the AEL method by adding a pseudo-

observation to the data set. This method bypasses the convex hull constraint and ensures

a solution at any parameter point. By adopting this idea, we extend the proposed JEL

method by employing the adjusted jackknife empirical likelihood (AJEL) to examine the

equality of two Lorenz curves. The AJEL for θ(t) is defined as follows:

LAdj(θ(t)) = sup
p

{ n+1∏
k=1

pAdj
k :

n+1∑
k=1

pAdj
k = 1,

n+1∑
k=1

pAdj
k gAdj

k (t) = 0

}
(3.14)

where gAdj
k (t) = V̂k − EV̂k, k = 1, . . . , n, and gAdj

n+1 = −anḡn(t) = −an
n

∑n
i=1 g

Adj
i (t). As

recommended by Chen et al. [CVA08], an = max{1, log(n)/2}. Using the Lagrange

multiplier method, we can determine LAdj(θ(t)) as follows.

pAdj
k =

1

n+ 1

{
1 + λAdj(t)gAdj

k (t)

}−1

, k = 1, . . . , n+ 1.

where λAdj is the solution to

1

n+ 1

n+1∑
k=1

gAdj
k (t)

1 + λAdj(t)gAdj
k (t)

= 0.

Note that
∏n+1
k=1 p

Adj
k , subject to

∑n+1
k=1 p

Adj
k = 1, attains its maximum (n + 1)−n−1 at

pk = (n+ 1)−1. Thus, the AJEL ratio for θ(t) is given as

RAdj(θ(t)) =

n+1∏
k=1

(n+ 1)pAdj
k =

n+1∏
k=1

{
1 + λAdj(t)gAdj

k (t)
}−1

(3.15)

Hence, the profile-adjusted jackknife empirical log-likelihood ratio for θ(t) is

ℓAdj(θ(t)) = −2 logRAdj(θ(t)) = 2

n+1∑
k=1

log
{
1 + λAdj(t)gAdj

k (t)
}

(3.16)

Theorem 3.2. Under the same conditions of Theorem 3.1 and for any given t = t0 ∈
(0, 1), the limiting distribution of ℓAdj(θ(t0)) is a chi-square distribution with one degree

of freedom,

ℓAdj(θ(t0)) −→ χ2
1 as min(n1, n2) −→ ∞. (3.17)

Proof. Proof of Theorem 3.2 is given in Appendix.
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Chapter 4

A Simulation Study

In this chapter, we conduct a simulation study to evaluate the performance of

the proposed testing methods, JEL and AJEL, and compare the results with the ADF. In

our simulation analysis, we chose Chi-Square, Exponential, and Half-Normal distributions

as the overall distribution function F (x) because the majority of income distributions are

positively skewed. Under the null hypothesis, we examine the distributions of χ2
4, Exp(4),

and HN(1) using different sample sizes (n1, n2) such as (20, 30), (40, 50), (75, 75), and

(100, 100) for each of the methods.

4.1 Probability of Type I Error Analysis

We first assess the Type I error probabilities of the ADF, JEL and AJEL methods

with a nominal level of α = 0.05. Tables 4.1-4.3 provide a summary of the findings,

including the probabilities of Type I errors (TE) and their corresponding standard errors

(SE), whereas Figure 4.1 depicts the outcomes graphically. The JEL method appears to

perform slightly better or similar to the AJEL method. For instance, when using the

χ2
4 distribution with sample sizes of (20, 30) at t = 0.1, the Type I error probability

for the ADF method is 0.007 with a standard error of 0.0027, the JEL method is 0.027

with a standard error of 0.0051, and the AJEL method has a probability of 0.075 and

a standard error of 0.0083. When using the χ2
4 test with sample sizes of 20 and 30, the

AJEL method produces a Type I error rate that is slightly higher than the expected

level. The ADF method comes next, with the JEL method following. However, when

testing for the Exp(1) distribution, the ADF method results in a Type I error rate that is
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much lower than the expected level, and the test becomes more conservative for t > 0.2.

When using the HN(1) distribution, the JEL method performs the best among the three

methods, while the ADF method performs the worst for all sample sizes. The Type I

error probabilities are slightly above the nominal level for small sample sizes, but improve

for larger sample sizes and remain within an acceptable range.
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Table 4.1: Type I error (TE) and standard error (SE) comparison of ADF, JEL, and
AJEL tests with nominal level α = 0.05 when X,Y ∼ χ2

4

ADF JEL AJEL

(n1, n2) t TE SE TE SE TE SE

(20, 30) 0.1 0.007 0.0027 0.027 0.0051 0.075 0.0083
0.2 0.011 0.0033 0.019 0.0043 0.058 0.0074
0.3 0.027 0.0051 0.018 0.0042 0.062 0.0076
0.4 0.037 0.0060 0.017 0.0041 0.065 0.0078
0.5 0.069 0.0080 0.017 0.0041 0.065 0.0078
0.6 0.062 0.0076 0.059 0.0075 0.086 0.0089
0.7 0.069 0.0080 0.052 0.0070 0.070 0.0081
0.8 0.071 0.0081 0.046 0.0066 0.065 0.0078
0.9 0.070 0.0081 0.038 0.0060 0.052 0.0075

(40,50) 0.1 0.005 0.0023 0.016 0.0040 0.055 0.0072
0.2 0.009 0.0030 0.019 0.0042 0.039 0.0061
0.3 0.014 0.0037 0.010 0.0031 0.044 0.0065
0.4 0.027 0.0051 0.013 0.0036 0.054 0.0071
0.5 0.047 0.0067 0.022 0.0046 0.061 0.0076
0.6 0.044 0.0065 0.049 0.0068 0.072 0.0082
0.7 0.051 0.0070 0.050 0.0069 0.065 0.0078
0.8 0.059 0.0075 0.042 0.0063 0.065 0.0078
0.9 0.060 0.0075 0.043 0.0063 0.061 0.0076

(75,75) 0.1 0.001 0.0012 0.010 0.0029 0.012 0.0034
0.2 0.002 0.0014 0.011 0.0033 0.013 0.0039
0.3 0.015 0.0038 0.019 0.0042 0.016 0.0040
0.4 0.016 0.0040 0.012 0.0034 0.018 0.0048
0.5 0.022 0.0046 0.023 0.0047 0.024 0.0051
0.6 0.024 0.0048 0.037 0.0060 0.046 0.0073
0.7 0.025 0.0049 0.031 0.0056 0.031 0.0056
0.8 0.028 0.0052 0.030 0.0054 0.035 0.0071
0.9 0.036 0.0059 0.032 0.0056 0.031 0.0056

(100, 100) 0.1 0.002 0.0016 0.011 0.0030 0.038 0.0060
0.2 0.006 0.0024 0.012 0.0034 0.040 0.0062
0.3 0.014 0.0037 0.020 0.0044 0.048 0.0068
0.4 0.024 0.0048 0.015 0.0038 0.046 0.0066
0.5 0.033 0.0056 0.010 0.0031 0.044 0.0065
0.6 0.036 0.0059 0.031 0.0055 0.046 0.0066
0.7 0.038 0.0060 0.035 0.0058 0.046 0.0066
0.8 0.047 0.0067 0.035 0.0058 0.046 0.0066
0.9 0.045 0.0066 0.033 0.0057 0.045 0.0065
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Table 4.2: Type I error and standard error comparison of ADF, JEL, and AJEL tests
with nominal level α = 0.05 when X,Y ∼ Exp(4)

ADF JEL AJEL

(n1, n2) t TE SE TE SE TE SE

(20,30) 0.1 0.037 0.0060 0.081 0.0086 0.091 0.0091
0.2 0.022 0.0046 0.047 0.0067 0.060 0.0075
0.3 0.010 0.0031 0.074 0.0083 0.075 0.0083
0.4 0.006 0.0024 0.061 0.0076 0.074 0.0083
0.5 0.006 0.0024 0.060 0.0075 0.061 0.0076
0.6 0.001 0.0010 0.096 0.0093 0.101 0.0095
0.7 0.001 0.0010 0.088 0.0090 0.087 0.0089
0.8 0.001 0.0010 0.065 0.0078 0.075 0.0083
0.9 0.000 0.0000 0.062 0.0076 0.064 0.0078

(40,50) 0.1 0.024 0.0049 0.060 0.0075 0.076 0.0084
0.2 0.010 0.0031 0.043 0.0064 0.052 0.0070
0.3 0.000 0.0000 0.048 0.0068 0.049 0.0068
0.4 0.000 0.0000 0.045 0.0066 0.052 0.0070
0.5 0.000 0.0000 0.057 0.0073 0.056 0.0073
0.6 0.000 0.0000 0.068 0.0080 0.070 0.0081
0.7 0.000 0.0000 0.065 0.0078 0.064 0.0077
0.8 0.000 0.0000 0.067 0.0079 0.072 0.0082
0.9 0.000 0.0000 0.059 0.0074 0.061 0.0075

(75,75) 0.1 0.018 0.0043 0.062 0.0076 0.071 0.0081
0.2 0.005 0.0022 0.050 0.0069 0.055 0.0072
0.3 0.000 0.0000 0.049 0.0058 0.050 0.0059
0.4 0.000 0.0000 0.051 0.0070 0.056 0.0073
0.5 0.000 0.0000 0.056 0.0074 0.060 0.0076
0.6 0.000 0.0000 0.069 0.0080 0.069 0.0080
0.7 0.000 0.0000 0.052 0.0072 0.052 0.0072
0.8 0.000 0.0000 0.054 0.0071 0.056 0.0073
0.9 0.000 0.0000 0.052 0.0072 0.055 0.0074

(100, 100) 0.1 0.012 0.0035 0.062 0.0076 0.071 0.0081
0.2 0.006 0.0024 0.049 0.0068 0.055 0.0072
0.3 0.001 0.0010 0.063 0.0077 0.061 0.0076
0.4 0.001 0.0010 0.054 0.0071 0.059 0.0075
0.5 0.000 0.0000 0.054 0.0071 0.051 0.0070
0.6 0.000 0.0000 0.051 0.0070 0.051 0.0070
0.7 0.000 0.0000 0.057 0.0073 0.057 0.0073
0.8 0.000 0.0000 0.057 0.0073 0.057 0.0073
0.9 0.000 0.0000 0.052 0.0072 0.052 0.0072
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Table 4.3: Type I error and standard error comparison of ADF, JEL, and AJEL tests
with nominal level α = 0.05 when X,Y ∼ HN(1)

ADF JEL AJEL

(n1, n2) t TE SE TE SE TE SE

(20,30) 0.1 0.068 0.0080 0.074 0.0083 0.094 0.0092
0.2 0.076 0.0084 0.063 0.0077 0.065 0.0078
0.3 0.084 0.0088 0.050 0.0069 0.047 0.0067
0.4 0.087 0.0089 0.051 0.0070 0.052 0.0070
0.5 0.129 0.0106 0.050 0.0069 0.056 0.0073
0.6 0.115 0.0101 0.077 0.0084 0.090 0.0090
0.7 0.099 0.0094 0.063 0.0077 0.069 0.0080
0.8 0.108 0.0098 0.062 0.0076 0.078 0.0085
0.9 0.103 0.0096 0.041 0.0063 0.071 0.0081

(40,50) 0.1 0.062 0.0076 0.056 0.0073 0.066 0.0079
0.2 0.066 0.0079 0.037 0.0060 0.042 0.0063
0.3 0.068 0.0080 0.049 0.0068 0.054 0.0071
0.4 0.081 0.0086 0.065 0.0078 0.058 0.0074
0.5 0.101 0.0095 0.049 0.0068 0.059 0.0075
0.6 0.094 0.0092 0.080 0.0086 0.087 0.0089
0.7 0.096 0.0093 0.066 0.0079 0.064 0.0077
0.8 0.108 0.0098 0.053 0.0071 0.070 0.0081
0.9 0.098 0.0094 0.034 0.0057 0.055 0.0072

(75,75) 0.1 0.038 0.0061 0.051 0.0070 0.053 0.0071
0.2 0.045 0.0066 0.055 0.0072 0.054 0.0071
0.3 0.059 0.0075 0.051 0.0058 0.058 0.0063
0.4 0.058 0.0074 0.053 0.0071 0.053 0.0071
0.5 0.077 0.0084 0.044 0.0048 0.048 0.0052
0.6 0.079 0.0085 0.057 0.0073 0.065 0.0078
0.7 0.081 0.0086 0.045 0.0050 0.048 0.0052
0.8 0.091 0.0091 0.055 0.0072 0.061 0.0076
0.9 0.098 0.0094 0.036 0.0059 0.062 0.0076

(100, 100) 0.1 0.049 0.0069 0.046 0.0066 0.047 0.0067
0.2 0.055 0.0072 0.071 0.0081 0.064 0.0077
0.3 0.060 0.0075 0.054 0.0071 0.056 0.0073
0.4 0.067 0.0079 0.060 0.0075 0.059 0.0075
0.5 0.072 0.0082 0.048 0.0068 0.053 0.0071
0.6 0.078 0.0085 0.065 0.0078 0.071 0.0081
0.7 0.082 0.0087 0.066 0.0079 0.066 0.0079
0.8 0.087 0.0089 0.063 0.0077 0.072 0.0082
0.9 0.086 0.0089 0.039 0.0061 0.057 0.0073
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Figure 4.1: Type I error comparison for ADF, JEL, and AJEL methods for different
distributions, sample sizes, and values of t
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4.2 Power Analysis

Next, we conduct a power analysis for the ADF, JEL, and AJEL methods.

Figure 4.2 displays the generalized Lorenz curves for Chi-Square, Exponential, and Half-

Normal distribution under two sets of parameters. The difference between the generalized

Lorenz curves of χ2(4) and χ2(5.5) increases as t changes from 0 to 0.5, then the difference

decreases as t changes from 0.5 to 1. The difference between the generalized Lorenz curves

for Exp(2) and Exp(4) increases significantly as t changes from 0 to 1, while the difference

between the generalized Lorenz curves for HN(1) and HN(1.5) also increases but not as

significant as in the case of the Exponential distributions.
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Figure 4.2: Generalized Lorenz curves for Chi-Square, Exponential, and Half-Normal
distributions
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Tables 4.4-4.6 present a summary of the outcomes, depicting the power and

standard errors, whereas Figure 4.3 illustrates the results graphically. As expected, the

power for Chi-Square distributions tends to increase as the value of t ranges from 0.1 to

0.5, followed by a slight drop as t ranges from 0.5 to 0.9. The AJEL method exhibits

better power among the three methods, while the ADF method is the weakest. Moreover,

for Exponential distributions, the power of the JEL and AJEL methods tends to increase

as t ranges from 0 to 0.9, while the power of the ADF method tends to decrease as the

value of t changes from 0 to 0.9. When considering the Half-Normal distributions, all

three methods show a similar pattern, with the ADF method being the most effective

when t ≤ 0.5, and the JEL and AJEL methods being superior when t > 0.5. The

increase in power is more pronounced for Exponential distributions than for Half-Normal

distributions in the case of the JEL and AJEL methods. In all three cases, the AJEL

method outperforms the JEL method slightly.
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Table 4.4: Power comparison of ADF, JEL, and AJEL tests with nominal level α = 0.05
when X ∼ χ2

4 and Y ∼ χ2
5.5

ADF JEL AJEL

(n1, n2) t Power SE Power SE Power SE

(20,30) 0.1 0.128 0.0106 0.357 0.0152 0.372 0.0153
0.2 0.190 0.0124 0.400 0.0155 0.415 0.0156
0.3 0.330 0.0149 0.423 0.0156 0.441 0.0157
0.4 0.360 0.0152 0.454 0.0157 0.471 0.0158
0.5 0.454 0.0157 0.443 0.0157 0.461 0.0158
0.6 0.475 0.0158 0.834 0.0118 0.840 0.0116
0.7 0.439 0.0157 0.771 0.0133 0.781 0.0131
0.8 0.450 0.0157 0.717 0.0142 0.725 0.0141
0.9 0.488 0.0158 0.594 0.0155 0.610 0.0154

(40,50) 0.1 0.182 0.0122 0.483 0.0158 0.497 0.0158
0.2 0.369 0.0153 0.595 0.0155 0.607 0.0154
0.3 0.508 0.0158 0.660 0.0150 0.673 0.0148
0.4 0.578 0.0156 0.664 0.0149 0.676 0.0148
0.5 0.657 0.0150 0.644 0.0151 0.654 0.0150
0.6 0.646 0.0151 0.935 0.0078 0.936 0.0077
0.7 0.655 0.0150 0.914 0.0089 0.915 0.0088
0.8 0.670 0.0149 0.878 0.0103 0.883 0.0102
0.9 0.694 0.0146 0.783 0.0130 0.793 0.0128

(75,75) 0.1 0.438 0.0157 0.688 0.0147 0.695 0.0146
0.2 0.595 0.0155 0.811 0.0124 0.820 0.0036
0.3 0.757 0.0136 0.986 0.0037 0.987 0.0036
0.4 0.790 0.0129 0.869 0.0107 0.872 0.0106
0.5 0.841 0.0116 0.983 0.0041 0.983 0.0041
0.6 0.852 0.0112 0.979 0.0045 0.980 0.0044
0.7 0.856 0.0111 0.791 0.0129 0.797 0.0127
0.8 0.872 0.0106 0.954 0.0066 0.957 0.0064
0.9 0.875 0.0105 0.927 0.0082 0.928 0.0082

(100,100) 0.1 0.625 0.0153 0.809 0.0124 0.813 0.0123
0.2 0.786 0.0130 0.899 0.0095 0.901 0.0094
0.3 0.871 0.0106 0.931 0.0080 0.933 0.0079
0.4 0.923 0.0084 0.932 0.0080 0.933 0.0079
0.5 0.932 0.0080 0.936 0.0077 0.94 0.0075
0.6 0.933 0.0079 0.993 0.0026 0.993 0.0026
0.7 0.942 0.0074 0.991 0.0030 0.991 0.0030
0.8 0.951 0.0068 0.984 0.0040 0.986 0.0037
0.9 0.953 0.0067 0.972 0.0052 0.973 0.0051
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Table 4.5: Power comparison of ADF, JEL, and AJEL tests with nominal level α = 0.05
when X ∼ Exp(4) and Y ∼ Exp(2)

ADF JEL AJEL

(n1, n2) t Power SE Power SE Power SE

(20, 30) 0.1 0.695 0.0146 0.363 0.0152 0.382 0.0154
0.2 0.678 0.0148 0.463 0.0158 0.478 0.0158
0.3 0.520 0.0158 0.551 0.0157 0.566 0.0157
0.4 0.417 0.0156 0.613 0.0154 0.626 0.0153
0.5 0.418 0.0156 0.664 0.0149 0.682 0.0147
0.6 0.367 0.0152 0.893 0.0098 0.901 0.0094
0.7 0.295 0.0144 0.884 0.0101 0.894 0.0097
0.8 0.284 0.0143 0.868 0.0107 0.875 0.0105
0.9 0.238 0.0135 0.834 0.0118 0.846 0.0114

(40, 50) 0.1 0.835 0.0117 0.471 0.0158 0.485 0.0158
0.2 0.812 0.0124 0.606 0.0155 0.615 0.0154
0.3 0.582 0.0156 0.724 0.0141 0.730 0.0140
0.4 0.492 0.0158 0.792 0.0128 0.803 0.0126
0.5 0.470 0.0158 0.837 0.0117 0.851 0.0113
0.6 0.368 0.0153 0.969 0.0055 0.971 0.0053
0.7 0.324 0.0148 0.971 0.0053 0.972 0.0052
0.8 0.317 0.0147 0.961 0.0061 0.966 0.0057
0.9 0.290 0.0143 0.958 0.0063 0.960 0.0062

(75, 75) 0.1 0.901 0.0094 0.616 0.0154 0.623 0.0153
0.2 0.886 0.0101 0.787 0.0129 0.791 0.0129
0.3 0.719 0.0142 0.975 0.0049 0.976 0.0048
0.4 0.586 0.0156 0.930 0.0081 0.930 0.0081
0.5 0.546 0.0157 0.993 0.0026 0.993 0.0026
0.6 0.440 0.0157 0.995 0.0022 0.995 0.0022
0.7 0.408 0.0155 0.987 0.0036 0.988 0.0034
0.8 0.371 0.0153 0.995 0.0022 0.995 0.0022
0.9 0.348 0.0151 0.994 0.0024 0.995 0.0022

(100, 100) 0.1 0.946 0.0071 0.661 0.0150 0.667 0.0149
0.2 0.930 0.0081 0.851 0.0113 0.856 0.0111
0.3 0.717 0.0142 0.927 0.0082 0.928 0.0082
0.4 0.629 0.0153 0.965 0.0058 0.968 0.0056
0.5 0.551 0.0157 0.984 0.0040 0.985 0.0038
0.6 0.483 0.0158 1.000 0.0000 1.000 0.0000
0.7 0.429 0.0157 1.000 0.0000 1.000 0.0010
0.8 0.419 0.0156 0.999 0.0010 0.999 0.0010
0.9 0.355 0.0151 0.999 0.0010 0.999 0.0010
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Table 4.6: Power comparison of ADF, JEL, and AJEL tests with nominal level α = 0.05
when X ∼ HN(1) and Y ∼ HN(1.5)

ADF JEL AJEL

(n1, n2) t Power SE Power SE Power SE

(20, 30) 0.1 0.415 0.0156 0.260 0.0139 0.274 0.0141
0.2 0.438 0.0157 0.292 0.0144 0.303 0.0145
0.3 0.479 0.0158 0.309 0.0146 0.327 0.0148
0.4 0.485 0.0158 0.373 0.0153 0.390 0.0154
0.5 0.541 0.0158 0.377 0.0153 0.395 0.0155
0.6 0.559 0.0157 0.721 0.0142 0.737 0.0139
0.7 0.520 0.0158 0.694 0.0146 0.716 0.0143
0.8 0.537 0.0158 0.670 0.0149 0.688 0.0147
0.9 0.548 0.0157 0.597 0.0155 0.616 0.0154

(40, 50) 0.1 0.654 0.0150 0.312 0.0147 0.330 0.0149
0.2 0.661 0.0150 0.393 0.0154 0.400 0.0155
0.3 0.676 0.0148 0.455 0.0157 0.468 0.0158
0.4 0.690 0.0146 0.544 0.0158 0.561 0.0157
0.5 0.725 0.0141 0.577 0.0156 0.589 0.0156
0.6 0.713 0.0143 0.838 0.0117 0.845 0.0114
0.7 0.723 0.0142 0.840 0.0116 0.847 0.0114
0.8 0.733 0.0140 0.841 0.0116 0.847 0.0114
0.9 0.746 0.0138 0.809 0.0124 0.816 0.0123

(75, 75) 0.1 0.839 0.0116 0.381 0.0154 0.390 0.0154
0.2 0.843 0.0115 0.508 0.0158 0.515 0.0158
0.3 0.853 0.0112 0.896 0.0097 0.897 0.0096
0.4 0.866 0.0108 0.689 0.0146 0.700 0.0145
0.5 0.877 0.0104 0.912 0.0090 0.913 0.0089
0.6 0.876 0.0104 0.933 0.0079 0.936 0.0077
0.7 0.882 0.0102 0.846 0.0114 0.851 0.0113
0.8 0.891 0.0099 0.932 0.0080 0.934 0.0079
0.9 0.892 0.0098 0.929 0.0081 0.931 0.0080

(100, 100) 0.1 0.938 0.0076 0.390 0.0155 0.400 0.0155
0.2 0.940 0.0075 0.554 0.0157 0.561 0.0157
0.3 0.941 0.0075 0.691 0.0146 0.695 0.0146
0.4 0.944 0.0073 0.787 0.0129 0.792 0.0128
0.5 0.951 0.0068 0.837 0.0117 0.839 0.0116
0.6 0.953 0.0067 0.958 0.0063 0.958 0.0063
0.7 0.952 0.0068 0.969 0.0055 0.970 0.0054
0.8 0.957 0.0064 0.973 0.0051 0.973 0.0051
0.9 0.958 0.0063 0.972 0.0052 0.975 0.0049
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Chisq(4), Chisq(5.5) Exp(4), Exp(2) HN(1), HN(1.5)
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Figure 4.3: Power comparison for ADF, JEL, and AJEL methods for different distribu-
tions, sample sizes, and values of t
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Chapter 5

Real Data Applications

In this chapter, we use the proposed methods to evaluate the equality of the

generalized Lorenz curves for various subgroups of employees of California State Univer-

sity (CSU) and University of California (UC) systems in 2021.1 The 2021 data comprises

of 105,414 records of salaries for CSU and 299,448 records of salaries for UC. The data is

anonymous but grouped by employer name and types of positions.2 For the purpose of

this analysis, we considered testing the hypothesis defined in equation (3.5) at a signifi-

cance level of 5% for the following four scenarios.3 In each scenario, we apply the proposed

testing procedures4 for t = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, and obtain the corresponding test

statistics and p-values.

1The most recent data was obtained and is available on the State Controller’s Office website at

https://publicpay.ca.gov/Reports/Explore.aspx.
2To identify CSU instructional faculty, we filtered the data set based on the following key words:

”Instructional Faculty”, ”Teaching Associate”, ”Visiting Faculty”, ”Lecturer”, ”Academic-Related”, ”De-

partment Chair”. To identify UC instructional faculty, we filtered the data set based on the following

key words: ”Assoc Prof”, ”Assoc Adj”, ”Asst Adj”, ”Asst Prof”, ”Prof In”, ”VIS Prof”, ”Adj Instr”,

”Lect”, ”Grad”, ”Adj”. All other employees that didn’t possess the listed key words in description of

their position were identified as non-teaching staff.
3Log-transformed data was used to avoid unnecessary computational burden.
4Note that for ADF procedure, t = 0.0 can not be used, thus we used t = 0.2, 0.4, 0.6, 0.8, 1.0

https://publicpay.ca.gov/Reports/Explore.aspx
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5.1 Using Complete Data to Compare Income Distribu-

tions of Faculty at CSU Monterey Bay and CSU San

Bernardino

In this scenario, we examine the salaries of all instructional faculty from CSU

Monterey Bay and CSU San Bernardino. Filtering data based on the employer name and

the type of position resulted in obtaining the total of 546 records for CSU Monterey Bay

faculty salaries and 1,265 records for CSU San Bernardino faculty. These two institutions

were chosen because their Lorenz and generalized Lorenz curves appear to be very similar

as shown in Figure 5.1.
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Figure 5.1: (a) Lorenz curves and (b) generalized Lorenz curves for salaries of CSU
Monterey Bay and CSU San Bernardino faculty
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Table 5.1: Test statistic and p-value

t

Method Value 0.0 0.2 0.4 0.6 0.8 1.0

ADF Test statistic - 0.0119 0.0119 0.0119 0.0128 0.0135
p-value - 0.9133 0.9133 0.9133 0.9100 0.9076

JEL Test statistic 0.2116 667.8884 417.0143 0.0380 0.0070 0.0138
p-value 0.6455 0.0000 0.0000 0.8454 0.9332 0.9065

AJEL Test statistic 0.2126 669.2835 417.9359 0.0382 0.0071 0.0139
p-value 0.6448 0.0000 0.0000 0.8450 0.9331 0.9063

Table 5.1 shows the calculated test statistics and p-values for JEL and AJEL

methods at t = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 and for ADF method at t = 0.2, 0.4, 0.6, 0.8, 1.0.

While ADF method suggest lack of evidence to conclude that the two generalized Lorenz

curves are different for all values of t, the other two methods lead to different conclusions

depending on values of t. On the one hand, both methods lead to the rejection of the

null hypothesis θ = 0 for t = 0.2 and t = 0.4 which means that at 5% significance level

we have sufficient evidence to conclude that the considered generalized Lorenz curves are

significantly different for 20th and 40th percentiles. On the other hand, both methods

produce p-values that are higher than 0.05 for t = 0.0, t = 0.6, t = 0.8, and t = 1.0 which

means that we do not have sufficient evidence to conclude that the considered generalized

Lorenz curves are significantly different for 0th, 60th, 80th, and 100th percentiles. Such

mixed results can be explained by the fact that the considered generalized Lorentz curves

intersect multiple times.

5.2 Using Complete Data to Compare Income Distribu-

tions of Faculty at CSU San Bernardino and CSU San

Francisco

In this scenario, we examine the salaries of all instructional faculty from CSU

San Bernardino and CSU San Francisco. Filtering data based on the employer name

and the type of position resulted in obtaining the total of 1,265 records for CSU San

Bernardino faculty salaries and 2,294 records for CSU San Francisco faculty. These two

institutions were chosen because their Lorenz and generalized Lorenz curves appear to

be very distinct as shown in Figure 5.2.
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CSU San Bernardino San Francisco
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Figure 5.2: (a) Lorenz curves and (b) generalized Lorenz curves for salaries of CSU San
Bernardino and CSU San Francisco faculty

Table 5.2: Test statistic and p-value

t

Method Value 0.0 0.2 0.4 0.6 0.8 1.0

ADF Test statistic - 17.3485 20.1831 23.0600 24.9908 28.8444
p-value - 0.0000 0.0000 0.0000 0.0000 0.0000

JEL Test statistic 1.5821 217.8804 942.6197 250.0000 30.2795 20.0987
p-value 0.2085 0.0000 0.0000 0.0000 0.0000 0.0000

AJEL Test statistic 1.5860 218.2452 943.7490 250.0000 30.3477 20.1438
p-value 0.2079 0.0000 0.0000 0.0000 0.0000 0.0000

Table 5.2 shows the calculated test statistics and p-values for JEL and AJEL

methods at t = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 and for ADF method at t = 0.2, 0.4, 0.6, 0.8,

1.0. On the one hand, all three methods lead to the rejection of the null hypothesis θ = 0

for t = 0.2, t = 0.4, t = 0.6, t = 0.8, and t = 1.0 which means that at 5% significance level

we have sufficient evidence to conclude that the considered generalized Lorenz curves are

significantly different for 20th, 40th, 60th, 80th, adn 100th percentiles. On the other
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hand, while ADF is inapplicable at t = 0, the other two methods at t = 0 produce p-

values that are higher than 0.05, which means that we do not have sufficient evidence to

conclude that the considered generalized Lorenz curves are significantly different for 0th

percentiles. These results can be explained by the fact that the minimum salaries are

nearly equal for both institutions but as t increases the difference increases as well.

5.3 Using Incomplete Data to Compare Income Distribu-

tions of All Faculty at CSU and UC

In this scenario, we examine the instructional faculty salaries across all CSU and

UC institutions. Filtering data based on the type of position resulted in obtaining the

total of 34,927 records for CSU faculty salaries and 16,798 records for UC faculty salaries.

The Lorenz and generalized Lorenz curves are shown in Figure 5.3. Since both data sets
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Figure 5.3: (a) Lorenz curves and (b) generalized Lorenz curves for salaries of CSU and
UC faculty

are quite large, we decided to utilize the proposed procedures using the samples. Given
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that empirical likelihood approach is effective for relatively small samples, we chose the

sample sizes n1 = n2 = 100. Since the difference between the generalized Lorenz curves

is somewhat distinct, we expect both procedures to be able to capture the difference even

with such small sample sizes.

Table 5.3: Test statistic and p-value

t

Method Value 0.0 0.2 0.4 0.6 0.8 1.0

ADF Test statistic - 14.9673 17.3378 18.9842 19.8941 24.9073
p-value - 0.0001 0.0000 0.0000 0.0000 0.0000

JEL Test statistic 0.6586 48.6775 20.5069 66.4861 38.4036 25.2639
p-value 0.4171 0.0000 0.0000 0.0000 0.0000 0.0000

AJEL Test statistic 0.6833 49.7646 20.9485 67.5089 39.0850 25.7541
p-value 0.4084 0.0000 0.0000 0.0000 0.0000 0.0000

Table 5.3 shows the calculated test statistics and p-values for JEL and AJEL

methods at t = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 and for ADF method at t = 0.2, 0.4, 0.6,

0.8, 1.0. On the one hand, all three methods lead to the rejection of the null hypothesis

θ = 0 for t = 0.2, t = 0.4, t = 0.6, t = 0.8, and t = 1.0 which means that at 5%

significance level we have sufficient evidence to conclude that the considered generalized

Lorenz curves are significantly different for 20th, 40th, 60th, 80th, and 100th percentiles.

On the other hand, both methods produce p-values that are higher than 0.05 for t = 0.0

which means that we do not have sufficient evidence to conclude that the considered

generalized Lorenz curves are significantly different for 0th percentiles. Similar to the

previous scenario, these results can be explained by the fact that the minimum salaries

are nearly equal for both institutions but as t increases the difference increases as well.

However, what is worth noting about these results is that we were able to capture these

differences using relatively small samples.

5.4 Using Incomplete Data to Compare Income Distribu-

tions of CSUSB Faculty between 2009 and 2020

In this scenario, we examine the salaries of all instructional faculty at CSUSB

in the years 2009 and 2020. Filtering data based on the employer name and the type of

position resulted in obtaining a total of 1,111 records for 2009 and 1,331 records for 2020.
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The Lorenz and generalized Lorenz curves are graphed in Figure 5.4.
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Figure 5.4: (a) Lorenz curves and (b) generalized Lorenz curves for salaries of CSUSB
faculty in years 2009 and 2020

After adjusting for inflation and expressing the wages in 2020 US dollar5, the

adjusted Lorenz and generalized Lorenz curves are graphed in Figure 5.5.

5The adjustment coefficient 1.23 was obtained using the CPI inflation calculator from https://www.

bls.gov/data/inflation_calculator.htm between January 2009 and January 2020.

https://www.bls.gov/data/inflation_calculator.htm
https://www.bls.gov/data/inflation_calculator.htm
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Figure 5.5: (a) Lorenz curves and (b) generalized Lorenz curves for salaries of CSUSB
faculty in years 2009 and 2020

Once again, since both data sets are quite large, we utilized the proposed pro-

cedures using the samples of sizes n1 = n2 = 100.

Table 5.4: Test statistic and p-value

t

Method Value 0.0 0.2 0.4 0.6 0.8 1.0

ADF Test statistic - 1.5990 2.2190 2.2614 2.5820 2.5776
p-value - 0.2060 0.1363 0.1326 0.1081 0.1084

JEL Test statistic 0.1719 52.4042 29.2928 0.1161 0.0624 0.1486
p-value 0.6785 0.0000 0.0000 0.7333 0.8028 0.6999

AJEL Test statistic 0.1725 52.5651 29.3841 0.1165 0.0626 0.1490
p-value 0.6779 0.0000 0.0000 0.7329 0.8025 0.6994

Table 5.4 shows the calculated test statistics and p-values for JEL and AJEL

methods at t = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 and for ADF method at t = 0.2, 0.4, 0.6,

0.8, 1.0. On the one hand, the ADF method lead to failure of rejection of the null

hypothesis θ = 0 for all values of t, which means that at 5% significance level, we do
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not have sufficient evidence to conclude that the considered generalized Lorenz curves

are significantly different for 20th, 40th, 60th, 80th, and 100th percentiles. On the other

hand, the JEL and AJEL methods result in large p-values for t = 0.0, 0.6, 0.8, 1.0

and small p-values at t = 0.2, t = 0.4, which means that we have sufficient evidence to

conclude that the generalized Lorenz curves in this scenario are significantly diffirent at

t = 0.2 and t = 0.4. Such mixed results can be explained by the fact that the considered

generalized Lorentz curves intersect multiple times. The two proposed methods were able

to capture these differences using relatively small samples.
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Chapter 6

Discussion and Conclusion

In this thesis, we introduced two non-parametric JEL-based methods using a U -

statistic to test the equality of two generalized Lorenz curves. The limiting distribution

of the likelihood ratios are shown to follow a chi-squared distribution with one degree of

freedom. Simulations for different distribution types and various sample sizes illustrate

that as the sample size increases both methods improve in terms of controlling the Type

I error probability and the power. Simulations showed that AJEL resulted in higher test

powers in comparison to JEL across all distributions, sample sizes, and values of t with

a few exceptions. However, AJEL also resulted in higher Type I errors in comparison to

JEL, but still within an acceptable range. Applications to real data sets for four differ-

ent scenarios demonstrated that both testing procedures produce reasonable results for

complete and incomplete data.

In future research, we can extend the results by utilizing other modified ap-

proaches such as transformed empirical likelihood and transformed adjusted empirical

likelihood. Further, we are also interested in utilizing a kernel-smoothing estimator to

extend the proposed methods via a smoothed jackknife empirical likelihood approach.
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Appendix

Proofs of Theorems

Proof. Theorem 3.1

Let n1 ≤ n2. As shown in [Arv69], the jackknife procedure for the two sample

U -statistics, Un1,n2 , we have

Vi,0 = n1Un1,n2 − (n1 − 1)U−i,0
n1−1,n2

, i = 1, · · · , n1

V0,j = n2Un1,n2 − (n2 − 1)U0,−j
n1−1,n2

, j = 1, · · · , n2
(6.1)

Further, they proposed a consistent estimator of V ar(Un1,n2) given as,

V̂ arJack(Un1,n2) =
1

n1(n1 − 1)

n1∑
i=1

(
Vi,0 − V̄·,0

)2

+
1

n2(n2 − 1)

n2∑
j=1

(
V0,j − V̄0,·

)2

where V̄·,0 and V̄0,· are the means of Vi,0 and V0,j respectively.

Lemma 6.0.1. (See [Arv69])

1. Assume that E|h(X,Y )| <∞, then Un1,n2

a.s.−−−−−−→ θ as n −→ ∞.

2. Assume that Eh2(X,Y ) < ∞, σ21,0 > 0 and σ20,1 > 0, let S2
n1,n2

=
1

n1
σ21,0 +

1

n2
σ20,1,

then

Un1,n2 − θ

Sn1,n2

d−−−−→ N(0, 1) and V̂ arJack
(
Un1,n2

)
− S2

n1,n2
= op(n

−1
1 ) as n1 −→ ∞.

In order to apply JEL, using (6.1), we can determine

Vi,0 =
1

n2
I(Xi ≤ ψt)

n2∑
r=1

(
Xi − Yr

)
I(Yr ≤ ψt), i = 1, · · · , n1
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and

V0,j =
1

n1
I(Yj ≤ ψt)

n1∑
s=1

(
Xs − Yj

)
I(Xs ≤ ψt), j = 1, · · · , n2

Let n = n1 + n2. Consider

Un =
1

n1n2

∑
1≤i≤n1<j≤n

(
Xi − Yj−n1

)
I(Xi ≤ t)I(Yj−n1 ≤ ψt)

and

U−i
n = U

(
Z1, Z2, . . . , Zi−1, Zi+1, . . . , Zn

)
=

(
n− 1

2

)−1 1

n1n2

∑
1≤r<s≤n
r,s ̸=i

(
Xr − Ys−n1

)
I(Xr ≤ t)I(Ys−n1 ≤ ψt)

=



n

n− 2

[
Un −

1

n1n2

∑
i<j

(
Xi − Yj−n1

)
I(Xi ≤ t)I(Yj−n1 ≤ ψt)

]
, 1 ≤ i ≤ n1

n

n− 2

[
Un −

1

n1n2

∑
j<i

(
Xj − Yi−n1

)
I(Xj ≤ t)I(Yi−n1 ≤ ψt)

]
, n1 < i ≤ n

It can be seen that

1

n1n2

∑
i<j

(
Xi − Yj−n1

)
I(Xi ≤ t)I(Yj−n1 ≤ ψt) =

1

n1
Vi,0 , 1 ≤ i ≤ n1

and
1

n1n2

∑
j<i

(
Xj − Yi−n1

)
I(Xj ≤ t)I(Yi−n1 ≤ ψt) =

1

n2
V0,i , n1 < i ≤ n

Now, consider JEL given in (3.8), for 1 ≤ k ≤ n, we have

V̂k = nUn − (n− 1)U−k
n−1

=
n(n− 1)

n− 2

[(
Vk,0
n1

)
I(1≤k≤n1) +

(
V0,k−n1

n2

)
I(n1+1≤k≤n)

]
− n

n− 2
Un1,n2

Thus,

EV̂k =
nθ

n− 2

[(
n2 − 1

n1

)
I(1≤k≤n1) +

(
n1 − 1

n2

)
I(n1+1≤k≤n)

]
Under H0, EV̂k = 0. Next, following the similar arguments given in [JYZ09], for fixed

t = t0 ∈ [0, 1], it can be proven that ℓ(θ(t0)) −→ χ2
1, as n1 −→ ∞ . Thus, details are

omitted here.
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Proof. Theorem 3.2

The proof of this theorem is similar to Theorem 1 given in [CVA08]. Let λAdj(t) be the

solution to
n+1∑
k=1

gAdj
k (t)

1 + λAdj(t)gAdj
k (t)

= 0. (6.2)

The first step is to show that λAdj(t) = Op(n
−1/2). By using Lemma 3 of [Owe90] and

the fact that E(V̂ 2
1 (t)) < ∞, we can establish that g∗ = max1≤k≤n ||V̂k|| = op(n

1/2) and

ḡn(t) = Op(n
−1/2). Let ρ = ||λAdj(t)||, an = op(n) and λ̂

Adj(t) = λAdj(t)/ρ. Multiplying

λ̂Adj(t)/n to both sides gives

0 =
λ̂Adj(t)

n

n+1∑
k=1

gAdj
k (t)

1 + λAdj(t)gAdj
k (t)

=
λ̂Adj(t)

n

n+1∑
k=1

gAdj
k (t)− ρ

n

n+1∑
k=1

(λ̂Adj(t)gAdj
k (t))2

1 + ρλ̂Adj(t)gAdj
k (t)

≤ λ̂Adj(t)ḡn(t)(1− an/n)−
ρ

n(1 + ρg∗(t))

n∑
k=1

(λ̂Adj(t)gAdj
k (t))2

= λ̂Adj(t)ḡn(t)−
ρ

n(1 + ρg∗(t))

n∑
k=1

(
λ̂Adj(t)gAdj

k (t)
)2

+Op(n
−3/2an).

(6.3)

The inequality stated above is valid due to the non-negativity of the (n + 1)th term in

the second summation. According to [CVA08], for any given ϵ > 0, we have

1

n

n∑
k=1

(
λAdj(t)gAdj

k (t)
)2 ≥ 1− ϵ. (6.4)

Therefore, as long as an = op(n), equation (6.3) implies that

ρ

(1 + ρg∗(t))
≤ λ̂Adj(t)

ḡn(t)(t)

(1− ϵ)
= Op(n

−1/2). (6.5)

Thus, we get ρ = Op(n
−1/2) and hence λAdj(t) = Op(n

−1/2). Now, consider

0 =
1

n

n+1∑
k=1

gAdj
k (t)

1 + λAdj(t)gAdj
k (t)

= ḡn(t)(t)− λAdj(t)V̂n(t) + op(n
−1/2),

(6.6)

where V̂n = (1/n)
∑n

k=1 g
Adj
k (t)2. Hence, when n −→ ∞, λAdj(t) = V̂ −1

n ḡn(t) + op(n
−1/2).

Now, we expand l∗(θ(t)) as follows
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l∗(θ(t)) =

n+1∑
k=1

log
(
1 + λAdj(t)gAdj

k (t)
)

=
n+1∑
k=1

{
λAdj(t)gAdj

k (t)−
(
λAdj(t)gAdj

k (t)
)2

2

}
+ op(1).

(6.7)

Substituting the expansion of λAdj, we get that

−2l∗(θ(t0)) = nV̂ −1
n ḡn(t)

2 + op(1)

d−→ χ2
1.

(6.8)

This completes the proof.



40

Bibliography

[AJ06] S. Arora and K. Jain. Testing for generalized lorenz dominance. Statistical

Methods and Applications, 15:75–88, 2006.

[Arv69] J. N. Arvesen. Jackknifing u-statistics. Ann. Math. Stat, 40:2076–2100, 1969.

[BH07] N Belinga-Hall. Empirical likelihood confidence intervals for generalized

lorenz curve. Thesis, Georgia State University, 2007.

[CH97] R. Chang and N. Halfon. Graphical distribution of pediatricians in the united

states: An analysis of the fifty states and washington, dc. Pediatrics, 100:172–

179, 1997.

[CVA08] J. Chen, A.M. Variyath, and B. Abraham. Adjusted empirical likelihood and

its properties. Journal of Computational and Graphical Statistics, 17(2):426–

443, 2008.

[Gas71] J. L. Gastwirth. A general definition of lorenz curve. Econometrica, 39:1037–

1039, 1971.

[JTZ17] B-Y. Jing, M. Tsao, and W. Zhou. Transforming the empirical likelihood

towards better accuracy. The Canadian Journal of Statistics, 45(3):340–352,

2017.

[JYZ09] B. Y. Jing, J. Yuan, and W. Zhou. Jackknife empirical likelihood. Journal of

the American Statistical Association, 104(487):1224–1232, 2009.

[KT92] Y. Kobayashi and H. Takaki. Geographic distribution of physicians in japan.

Lancet., 340:1391–1393, 1992.



41

[Lor05] M. C. Lorenz. Method of measuring the concentration of wealth. J. Ame.

Statist., 9:209–219, 1905.

[LW18] Z. Li and Y. Wei. Statistical inference for the difference of two lorenz curves.

Statistics, 52(5):1128–1155, 2018.

[Owe88] A. B. Owen. Empirical likelihood ratio confidence intervals for a single func-

tional. Biometrika, 75:237–249, 1988.

[Owe90] A. B. Owen. Empirical likelihood confidence regions. The Annals of Statistics,

18:90–120, 1990.

[Que56] M. H. Quenouille. Notes on bias in estimation. Biometrika, 43(3/4):353–360,

1956.

[RWAR23] S. Ratnasingam, S. Wallace, I. Amani, and J. Romero. Non-parametric con-

fidence intervals for generalized lorenz curve using modified empirical likeli-

hood. (submitted), 2023.

[Shi84] X. Shi. The approximate independence of jackknife pseudo-values and the

bootstrap methods. J. Wuhan Inst. Hydra-Elect. Eng., 2:83–90, 1984.

[Xu97] K. Xu. Asymptotically distribution-free statistical test for generalized lorenz

curves: An alternative approach. Journal of income distribution, pages 45 –

62, 1997.

[YQBH12] B. Y. Yang, G. S. Qin, and N. E. Belinga-Hill. Non-parametric inferences for

the generalized lorenz curve. Sci Sin Math, 42(3):235–250, 2012.


	Jackknife Empirical Likelihood Tests for Equality of Generalized Lorenz Curves
	Recommended Citation

	Abstract
	Acknowledgements
	List of Figures
	Introduction
	Lorenz Curves and Generalized Lorenz Curves
	Statistical Inferences about Generalized Lorenz Curves
	Motivation

	Definitions and Preliminaries
	Generalized Lorenz Curves
	Empirical Likelihood (EL)
	Jackknife Empirical Likelihood (JEL)
	Adjusted Empirical Likelihood (AEL)

	JEL-based Tests for the Equality of Two Generalized Lorenz Curves
	JEL Test for the Equality of Two Generalized Lorenz Curves
	AJEL Test for the Equality of Two Generalized Lorenz Curves

	A Simulation Study
	Probability of Type I Error Analysis
	Power Analysis

	Real Data Applications
	Using Complete Data to Compare Income Distributions of Faculty at CSU Monterey Bay and CSU San Bernardino
	Using Complete Data to Compare Income Distributions of Faculty at CSU San Bernardino and CSU San Francisco
	Using Incomplete Data to Compare Income Distributions of All Faculty at CSU and UC
	Using Incomplete Data to Compare Income Distributions of CSUSB Faculty between 2009 and 2020

	Discussion and Conclusion
	Bibliography

