Uniform Reliability for Unbounded
Homomorphism-Closed Graph Queries

Antoine Amarilli @a
LTCI, Télécom Paris, Institut Polytechnique de Paris, France

—— Abstract
We study the uniform query reliability problem, which asks, for a fixed Boolean query @, given

an instance I, how many subinstances of I satisfy (). Equivalently, this is a restricted case of
Boolean query evaluation on tuple-independent probabilistic databases where all facts must have
probability 1/2. We focus on graph signatures, and on queries closed under homomorphisms. We
show that for any such query that is unbounded, i.e., not equivalent to a union of conjunctive queries,
the uniform reliability problem is #P-hard. This recaptures the hardness, e.g., of s-t connectedness,
which counts how many subgraphs of an input graph have a path between a source and a sink.
This new hardness result on uniform reliability strengthens our earlier hardness result on
probabilistic query evaluation for unbounded homomorphism-closed queries [2]. Indeed, our earlier
proof crucially used facts with probability 1, so it did not apply to the unweighted case. The new
proof presented in this paper avoids this; it uses our recent hardness result on uniform reliability for
non-hierarchical conjunctive queries without self-joins [3], along with new techniques.

2012 ACM Subject Classification Theory of computation — Database query processing and opti-
mization (theory)

Keywords and phrases Uniform reliability, #P-hardness, probabilistic databases
Digital Object Identifier 10.4230/LIPIcs.ICDT.2023.14
Related Version Full Version: https://arxiv.org/abs/2209.11177 [1]

Funding Partially supported by the ANR project ANR-18-CE23-0003-02 (“CQFD”).

Acknowledgements I am grateful to Mikaél Monet, Charles Paperman, and Martin Retaux for
helpful discussions about this research. Thanks to the reviewers for their helpful feedback.

1 Introduction

A long line of research [14] has investigated how to extend relational databases with probability
values. The most common probabilistic model, called tuple-independent databases (TID),
annotates each fact of the input database with an independent probability of existence.
The probabilistic query evaluation (PQE) problem then asks for the probability that a fixed
Boolean query is true in the resulting product distribution on possible worlds. The PQE
problem has been historically studied for conjunctive queries (CQs) and unions of conjunctive
queries (UCQs). This study led to the dichotomy result of Dalvi and Suciu [5], which
identifies a class of safe UC@Qs for which the problem can be solved in PTIME:

» Theorem 1.1 ([5]). Let Q be a UCQ. Consider the PQE problem for Q which asks, given
a TID I, to compute the probability that Q holds on I. This problem is in PTIME if Q is
safe, and #P-hard otherwise.

This result has been extended in several ways, to apply to some queries featuring
negation [6], disequality (#) joins [10], or inequality (<) joins [11]. More recently, two new
directions have been explored. First, our work with Ceylan [2] extended the study from UCQs
to the broader class of homomorphism-closed queries. This class captures recursive queries
such as regular path queries (RPQs) or Datalog (without inequalities or negation). In [2], we

© Antoine Amarilli;
37 licensed under Creative Commons License CC-BY 4.0

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort; Article No. 14; pp. 14:1-14:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:antoine.amarilli@telecom-paris.fr
https://a3nm.net/
https://orcid.org/0000-0002-7977-4441
https://doi.org/10.4230/LIPIcs.ICDT.2023.14
https://arxiv.org/abs/2209.11177
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2

Uniform Reliability for Unbounded Homomorphism-Closed Graph Queries

focused on homomorphism-closed queries that were unbounded, i.e., not equivalent to a UCQ.
We showed that PQE is #P-hard for any such query, though for technical reasons the result
only applies to graphs, i.e., arity-two signatures. This extended the above dichotomy to the
full class of homomorphism-closed queries (on arity-two signatures).

Second, the dichotomy has been extended from PQE to restricted problems which do not
allow arbitrary probabilities on the TID. Kenig and Suciu [8] have shown that the dichotomy
of [5] still held for the so-called generalized model counting problem, where the allowed
probabilities on tuples are only 0 (the tuple is missing), 1/2, or 1; this is in contrast with the
original proof of the dichotomy, which uses arbitrary probabilities. Our result in [2] already
held for the generalized model counting problem. What is more, for a subclass of the unsafe
queries, they showed that hardness still held for the model counting problem, where the
probabilities are either 0 or 1/2. Independently, with Kimelfeld [3], we have shown hardness
of the same problem for the incomparable class of non-hierarchical CQs without self-joins.
Rather than model counting, we called this the uniform reliability (UR) problem, following
the terminology in the work of Gradel, Gurevich, and Hirsch [7].

In our opinion, this uniform reliability problem is interesting even outside of the context
of probabilistic databases: we simply ask, for a fixed query @, given a database instance I,
how many subinstances of I satisfy Q. The UR problem also relates to computing the causal
effect and Shapley values in databases [13, 9, 3]. What is more, UR, for homomorphism-closed
queries captures existing counting problems on graphs, such as st-connectedness [15] which
asks how many subgraphs of an input graph contain a path between a source and a sink.

The ultimate goal of these two lines of work would be to classify the complexity of uniform
reliability, across all homomorphism-closed queries. Specifically, one can conjecture:

» Conjecture 1.2. Let QQ be a homomorphism-closed query on an arbitrary signature. The
uniform reliability problem for Q is in PTIME if Q is a safe UCQ, and #P-hard otherwise.

To establish this, there are three obstacles to overcome. First, in the case where Q) is a
UCQ), one would need to establish the hardness of UR for all unsafe UCQs, extending the
work of Kenig and Suciu [8]. Second, when @ is unbounded, one would need to adapt the
methods of [2] to apply to UR rather than PQE. Third, the methods of [2] would need to be
extended from graph signatures to arbitrary arity signatures.

Result statement. In this paper, we address the second difficulty and show the following,
which extends the main result of [2] from PQE to UR, and brings us closer to Conjecture 1.2:

» Theorem 1.3 (Main result). Let Q be an unbounded homomorphism-closed query on an
arity-two signature. The uniform reliability problem for Q is #P-hard.

The proof of this result has the same high-level structure as in [2], but there are significant
new technical challenges to overcome. In particular, we now reduce from different problems,
whose hardness rely (among other things) on the hardness of uniform reliability for the
query R(z),S(z,y),T(y), shown in [3]. The impossibility to assign a probability of 1 to facts
also makes reductions much more challenging: intuitively, as all facts can now be missing,
there is no longer a clear connection between the possible worlds of the source problem and
the possible worlds of the database built in the reduction. We use multiple tools to work
around this, for instance a saturation technique that creates a large but polynomial number
of copies of some facts and argues that their absence is sufficiently unlikely to be negligible.
As saturation cannot apply to unary facts, we also need to identify so-called critical models,
a more elaborate variant of a notion in [2], minimizing carefully-chosen weight criteria.

A. Amarilli

We give a high-level structure of the proof below as it is presented in the rest of the
paper, and comment in more detail on how the techniques relate to our earlier work [2].

Paper structure. We give preliminaries and the formal definition of UR in Section 2, along
with the two problems from which we reduce: one problem on bipartite graphs from [3], and
one variant of a connectivity problem of [15]. We show that they are #P-hard in [1].

We then review notions from [2] in Section 3: the dissociation operation on instances, and
the notion of a tight edge, which makes the query false when we apply dissociation to it. We
invoke a result from [2] showing that tight edges always exist for unbounded queries. This is
the only place where we use the unboundedness of the query, and is unfortunately the only
result from [2] that can be used as-is. Some other notions are reused and extended from [2]
but they are always re-defined and re-proved in a self-contained way in the present paper.

We then present in Section 4 the notion of a critical model, as a model of the query
which is subinstance-minimal and features a tight edge which is minimal by optimizing three
successive quantities: weight, extra weight, and lexicographic weight. The notion of weight is
from [2], the two other notions relate to side weight from [2] but significantly extend it. We
show in this section that a query having a model with a tight edge also has a critical model.

We then move on to the hardness proof. As in [2], there are two cases: a non-iterable
case where we reduce from the problem on bipartite graphs, and an iterable case where we
reduce from the connectivity problem. In Section 5, we formally define the notion of iteration
(essentially identical to the notion in [2]) and show hardness when there is a non-iterable
critical model. The coding used in the reduction extends that of [2] with the saturation
technique of creating a large number of copies of some elements. There are many new
technical challenges, e.g., proving that a polynomial number of copies suffices to make the
absence of the facts sufficiently unlikely, and justifying that all the other facts are “necessary”
for a query match, using in particular subinstance-minimality and the notion of extra weight.

Last, in Section 6, we show hardness in the case where all critical models are iterable. We
first show that such models can be repeatedly iterated, and that the measure of extra weight
must be zero in this case, allowing us to focus on the more precise criterion of lexicographic
weight. Then we define the coding, which is similar to [2] up to technical modifications. The
reduction does not use saturation but argues that all facts are “necessary” using the notion
of lexicographic weight and a new ezxplosion structure.

We then conclude in Section 7. The complete proofs are given in the full version [1].

2 Preliminaries and Problem Statement

Instances. We consider an arity-two relational signature o consisting of relations with an
associated arity, where the maximal arity of the signature is assumed to be 2. A o-instance
(or just instance) is a set of facts, i.e., expressions of the form R(a,b) where a and b are
constants and R € o. We assume without loss of generality that all relations in o are
binary, i.e., have arity two. Indeed, if there are unary relations U, we can simply code them
with a binary relation U’, replacing facts U(a) by U’(a, a) in instances, and modifying the
query to interpret U’(a,a) as U(a) and to ignore facts U’(a,b) with a # b: this is similar to
Theorem 8.4 of [2]. Accordingly, we call a fact R(a,b) unary if a = b, otherwise it is binary.

The domain dom(I) of an instance I is the set of constants occurring in I. A homomor-
phism from I to an instance I’ is a function h: dom(I) — dom(I’) such that, for each fact
R(a,b) of I, the fact R(h(a),h(b)) is in I'. We say that I’ is a subinstance of I, written
I' C1I,if I is a subset of the facts of I; we then have dom(I") C dom([I).

14:3

ICDT 2023

14:4

Uniform Reliability for Unbounded Homomorphism-Closed Graph Queries

Queries. A query @ over o is a Boolean function over o-instances which we always assume
to be homomorphism-closed, i.e., if Q) returns true on I and I has a homomorphism to an
instance I’ then @ also returns true on I’. When @ returns true on I we call I a model of Q,
or say that I satisfies Q (written I |= Q); otherwise I violates Q. Any homomorphism-closed
query Q is monotone, i.e., if I satisfies QQ and I C I’ then I’ satisfies Q. A subinstance-minimal
model of @ is a model I of @) such that no strict subinstance of I satisfies Q.

We focus on unbounded queries, i.e., queries having an infinite number of subinstance-
minimal models. Examples of well-studied homomorphism-closed query languages include
conjunctive queries (CQs), unions of CQs (UCQs), regular path queries (RPQs), and Datalog
without inequalities or negations. The queries defined by Datalog or RPQs are unbounded
unless they are equivalent to a UCQ (i.e., non-recursive Datalog); more generally a query is
either unbounded or equivalent to a UCQ.

UR and PQE problems. In this paper, we study uniform reliability (UR). The problem
UR(Q) for a fixed query @ is the following: we are given as input an instance I, and we
must return how many subinstances of I satisfy @, i.e., the number |{I' C I | I' E Q}|.
Note that we have no general upper bound on the complexity of this problem, as we allow
queries to be arbitrarily complex or even undecidable to evaluate, e.g., “there is a path
R(x1),S(x1,22), .., S(Tn-1,2n), T'(x,) where n is the index of a Turing machine that halts”.

We will sometimes consider the generalization of UR called probabilistic query evaluation
(PQE). The PQE(Q) problem for a fixed query @ asks, given an instance I and a probability
distribution 7: I — [0, 1] mapping each fact of I to a rational in [0, 1], to determine the total
probability of the subinstances of I satisfying @, when each fact F' € I is drawn independently
from the others with the probability 7(F"). Formally, we must compute:

> I[[=~ x J[@-=F)).

I'CIst. I'=Q Fel Flel\I’

The UR problem is a special case of PQE where the function 7 maps all facts to 1/2, up
to renormalization, i.e., multiplying by 2//l. We will sometimes abusively talk about UR as
the problem of computing that probability, because this probabilistic phrasing makes it more
convenient, e.g., to reason about conditional probabilities, or about negligible probabilities.

Hard problems. The goal of this paper is to show Theorem 1.3. We will establish
#P-hardness using polynomial-time Turing reductions [4] (see [2] for details). Specifically,
we reduce from one of two #P-hard problems, depending on the query. In [2], we reduce
from the problems #PP2DNF and U-ST-CON (undirected source-to-target connectivity),
which are shown to be #P-hard in [12]. In this paper, given our focus on UR, we reduce
from variants of these problems: the A, u, v-variable-clause-variable probabilistic #PP2DNF
problem and the ¢, n-vertex-edge probabilistic U-ST-CON problem. We first define the first
problem:

» Definition 2.1. Let 0 < A\,v <1 and 0 < p <1 be fized probabilities. The A, u, v-variable-
clause-variable probabilistic #PP2DNF problem (or for brevity A, u, v-#PP2DNF) is the
following: given a bipartite graph (U UV, E) with E CU x V, we ask for the probability that
we keep an edge and its two incident vertices, where vertices of U have probability A to be
kept, edges of E have probability p to be kept, and vertices of V' have probability v to be kept,
all these choices being independent. Formally, we must compute:

Z AUl « (1 — NI s B s (1=)| BISIEE sy VT s (1 =) V=V

(U',E"\V')CUXExXV
E'N(U xV')#0

A. Amarilli

The name #PP2DNF is because of the link to positive partitioned 2-DNF formulas, which
we do not need here. We can show that A, u, v-#PP2DNF is #P-hard, by adapting the proof
in [3] which shows the hardness of uniform reliability for the query R(x), S(z,v),T(y):

» Proposition 2.2 ([3]). For any fized 0 < \,v < 1 and 0 < p < 1, the problem A, p,v-
#PP2DNF is #P-hard.

We now define the second problem:

» Definition 2.3. Let 0 < ¢ <1 and 0 < n <1 be fized probabilities. The ¢, n-vertex-edge-
probabilistic U-ST-CON problem (or for brevity ¢,n-U-ST-CON) is the following: given an
undirected graph G = (V, E) and source and sink vertices r,s € V with r # s, we ask for the
probability that we keep a subset of edges and vertices containing a path that connects r and s
(in particular keeping v and s), where vertices have probability ¢ to be kept and edges have
probability n to be kept, all these choices being independent. Formally, we must compute:

3 SV 5 (1= Q)WVIEIVT s glB s (1 —) BI=1BY

V/CV,E'CE
r and s connected in (V' E\/vl)

This intuitively combines features of the undirected source-to-target edge-connectedness
and node-connectedness problems of [15]. With standard techniques and some effort, we can
show that ¢, n-U-ST-CON is #P-hard (see the full version [1]):

» Proposition 2.4. For any fired 0 < ¢ <1 and 0 < n < 1, the problem ¢,n-U-ST-CON is
#P-hard.

3 Basic Techniques: Dissociation, Tight Edges

Having presented the hard problems, we now recall the notion of edges and how we copy
them, and the dissociation operation introduced in [2]. We also present tight edges and
re-state the result of [2] showing that unbounded queries have models with tight edges.

Edges and copies. An edge e in an instance I is an ordered pair (u,v) of distinct elements
of dom(I) such that there is at least one fact of I using both u and v, i.e., of the form R(u,v)
or R(v,u), hence non-unary. The covering facts of e in I is the non-empty set of these facts.
Note that (u,v) is an edge iff (v, u) is, and they have the same covering facts.

We call e = (u,v) a non-leaf edge if I contains facts using u but not v (called left-incident
facts) and facts using v but not u (called right-incident facts). An example is shown in
Figure la (with no unary facts). The left-incident and right-incident facts are called together
the incident facts; note that they may include unary facts.

In this paper we will often modify instances I by copying an edge e = (u,v) of I to some
other ordered pair (u’,v’) of elements. This means that we modify I to add, for each covering
fact F of e, the fact obtained by replacing u by ' and v by v’. Note that, if v’ and v’ are both
fresh, or if ' = u and v’ is fresh or v/ = v and v’ is fresh, then the result of this process has
a homomorphism back to I. Clearly, copying (u,v) on (u/,v’) is equivalent to copying (v, u)
on (v',u') (but different from copying, say, (u,v) on (v/,u’)). Note that copying an edge does
not copy its incident facts, though our constructions will often separately copy some of them.

» Example 3.1. In the instance I = {R(a), S(a,b),S'(b,a),T(b)}, copying (a,b) on (a,b’)
for a fresh element b’ means adding the facts S(a,b’), S’ (¥, a).

14:5

ICDT 2023

14:6

Uniform Reliability for Unbounded Homomorphism-Closed Graph Queries

to w2 1o () to T T2 x3 Ty w2
\u v \u %/ ’\u/ \v
A
t / \w1 1 /u \w1 t g1 g2 gs w1

(a) A non-leaf edge e with (b) The dissociation of e. (c) An edge and various kinds of incident facts.
incident facts. See Example 4.10.

Figure 1 Examples of Section 3 and 4.

Dissociation. One basic operation on instances is dissociation, which replaces one edge by
two copies connected to each endpoint:

» Definition 3.2. Let I be an instance and e = (u,v) be a non-leaf edge of I. The dissociation
of e in I is obtained by modifying I to add two fresh elements u' and v', copying e to (u',v)
and to (u,v"), and then removing the covering facts of e.

The process is illustrated in Figures 1a and 1b. Note the following immediate observation:

> Claim 3.3. The dissociation of an edge in I has a homomorphism back to I.

Tight edges. We can then define a tight edge as one whose dissociation breaks the query:

» Definition 3.4. A non-leaf edge (u,v) in an instance I is tight for the query Q if I
satisfies @ but the dissociation of (u,v) in I does not.

We use a result of [2] which shows that unbounded queries must have a model with a
tight edge. This is the only point where we use the unboundedness of the query.

» Theorem 3.5 (Theorem 6.6 in [2]). Any unbounded query has a model with a tight edge.
We give a proof sketch for completeness (see [2] for the proof):

Proof sketch. As the query @ is unbounded, it has infinitely many minimal models: let
be a sufficiently large one. Iteratively dissociate the non-leaf edges of I until none remain
(this always terminates), and let I’ be the result. If I’ violates @, then some dissociation
broke @), i.e., was applied to a tight edge in a model of Q. Otherwise, I’ has no non-leaf
edges and satisfies (). We can then show thanks to the simple structure of I’ that it has a
constant-sized subset that satisfies @), and deduce that @ already holds on a constant-sized
subinstance of I. As [is large, this contradicts the minimality of I. |

Thus, in the sequel, we fix the query @ and assume that it has a model with a tight edge.
Note that some bounded queries may also have a tight edge, e.g., the prototypical unsafe
CQ R(x),S(x,y),T(y); our results in this paper thus also apply to some bounded queries.

4 Minimality and Critical Models

In this section, we refine the notion of a tight edge to impose minimality criteria and get
to the notion of critical models. We define three successive minimality criteria, which we
present intuitively here before formalizing them in the rest of this section. The first is called
weight and counts the covering facts; the critical weight © is the minimal weight of a tight
edge. Having defined ©, we restrict our attention to clean tight edges e, whose incident
facts do not include so-called garbage facts, i.e., strict subsets of the covering facts of e. The
second criterion is extra weight and counts the incident facts that are not isomorphic to

A. Amarilli

the covering facts; the critical extra weight = is the minimal extra weight of a tight edge
of weight ©. The third criterion is lexicographic weight and counts the other left-incident
and right-incident facts, ordered lexicographically: the critical lexzicographic weight A is the
minimal lexicographic weight of a tight edge of weight © and extra weight =.

We then define a critical model as a subinstance-minimal model with a clean tight edge
that optimizes these three weights in order, and show that such models exist.

Weight. The weight was defined in [2], but unlike in [2] we do not count unary facts:

» Definition 4.1. The weight of an edge e = (u,v) in an instance I is the number of covering
facts of e (it is necessarily greater than 0).

» Example 4.2. The weight of (a,b) in I = {R(b),T(b,¢),S(b,a),S’'(b,a),U(a,b)} is 3.

The minimal weight of a tight edge across all models is an intrinsic characteristic of Q,
called the critical weight:

» Definition 4.3. The critical weight of the query Q, written © > 1, is the minimum, across
all models I of Q and tight edges e of I, of the weight of e in I.

The point of the critical weight is that edges with weight less than © can never be tight:

> Claim 4.4. Let I be a model of @ and e = (u,v) be a non-leaf edge of I. If the weight
of e is less than O, then the dissociation of e in [is also a model of Q.

» Example 4.5. The bounded CQ Q' : R(z), S(z,y), S (z,y), T(y) has critical weight 2, as
witnessed by the model I’ = {R(a), S(a,b), 5" (a,b), T(b)} with a tight non-leaf edge (a,b) of
weight 2 and the inexistence of a model with a tight non-leaf edge of weight 1.

As @’ has critical weight 2, in any model I of @', if we have an edge e = (u,v) with only
one covering fact using both v and v, we know that dissociating e cannot make Q' false.

Having defined ©, to simplify further definitions, we introduce the notion of a clean edge
as one that does not have incident facts achieving strict subsets of its covering facts:

» Definition 4.6. Let I be an instance, let e = (u,v) be an edge of I, and let C C I be the
covering facts of e. For any edge (u,t), if its covering facts are isomorphic to a strict subset
of C when renaming t to v, then we call these left-incident facts left garbage facts. Likewise,
the right garbage facts are the right-incident facts that are covering facts of edges (w,v) that
are isomorphic to a strict subset of C when renaming w to u.

We call e clean if it has no left or right garbage facts (called collectively garbage facts).

» Example 4.7. In the instance I = {S(a,V’),U(a), S(a,b), S’ (b,a),T(c,b), S(c,b),S'(d,b),
S’(b,e),S(f,b)}, the left garbage facts of the edge (a, b) are {S(a,b')} on the edge (a,d’), and
the right garbage facts are {S’(b, e)} on the edge (e, b) and {S(f,b)} on the edge (f,b). Note
that there are no garbage facts on the edge (b, ¢), because the covering facts {T'(¢,b), S(c,b)}
of this edge are not isomorphic to a strict subset of the covering facts of (a,b). Further note
that there are no garbage facts on the edge (d,b), because the covering facts {S’(d,b)} are
not isomorphic to a strict subset of the covering facts of (a,b) when renaming d to a.

We will always be able to ensure that tight edges with critical weight are clean, justifying
that we restrict our attention to clean tight edges in the sequel:

> Claim 4.8. If @ has a model with a tight edge, then it has a model with a clean tight
edge of weight ©.

14:7

ICDT 2023

14:8

Uniform Reliability for Unbounded Homomorphism-Closed Graph Queries

Proof sketch. We find a model with a tight edge of weight © by definition of ©. Then, any
edges with garbage facts have weight < O, so they can be dissociated using Claim 4.4 and
homomorphically merged to e. At the end of this process, e is clean and is still tight. <

Extra weight. We further restrict tight edges e by limiting their number of incident facts,
similarly to the notion of side weight in [2]. However, in this paper, we additionally partition
the incident facts between so-called extra facts and copy facts. Intuitively, our reductions
will use codings that introduce copies of the edge e, and the extra facts are those that can
be “distinguished” from incident copies of e added in codings; by contrast copy facts are
non-unary facts in edges that are isomorphic copies of e and therefore “indistinguishable”.

We want to minimize the number of extra facts, to intuitively ensure that they are all
“necessary”, in the sense that a copy of e missing an incident extra fact can be dissociated.
Let us formally define the extra facts: among the non-garbage incident facts, they are those
that are part of a so-called triangle (i.e., involve an element occurring both in a left-incident
in a right-incident fact), those which are unary, or those which are a covering fact of an edge
whose covering facts are not isomorphic to the covering facts of e.

» Definition 4.9. Let I be an instance with an edge e = (u,v), and let C C I be the covering
facts of e. An element w € dom([I) forms a triangle with e if both (u,w) and (v,w) are edges.
Let (u',v") be some edge of I. We call (u/,v") a copy of (u,v) if the covering facts
of (u',v") are isomorphic to C' by the isomorphism mapping u' to u and v’ to v.
We partition the non-garbage left-incident facts of (u,v) between:
The left copy facts, i.e., the binary facts involving u and an element v’ such that (u,v’) is
a copy of (u,v) and v' does not form a triangle with e: we call v’ a left copy element of e.
The left extra facts, which comprise all other non-garbage left-incident facts, namely:
The unary facts on u.
The non-garbage binary facts involving u and some element x such that:
the element x forms a triangle with e; or
the covering facts of the edge (u,x) are not isomorphic to C.
We partition the non-garbage right-incident facts into right extra facts and right copy facts
with right copy elements in a similar way. Note that, as we prohibit triangles, the left copy
elements and right copy elements are disjoint. We talk of the copy elements, copy facts, extra
facts of e to denote both the left and right kinds.

» Example 4.10. Consider the instance of Figure 1c and the edge e = (u,v). The covering
facts C' of e are represented as an orange edge, and the other orange edges represent edges
which are copies of e. The left and right copy elements are respectively ¢; and t; and w; and
wsy. The dashed orange edges represent edges whose covering facts are a strict subset of C,
i.e., they are garbage facts. The extra facts include unary facts (not pictured), facts with
(the black edge (u,x1) represents non-garbage facts not isomorphic to C'), and facts with o,
x3, and x4 (which form triangles).

Note that garbage facts are neither extra facts nor copy facts, and are ignored in the
definition above except in that they may help form triangles. This does not matter: thanks to
Claim 4.8, garbage facts will only appear in intermediate steps of some proofs. We can now
define the critical extra weight as the minimal extra weight of a tight edge with weight ©:

» Definition 4.11. The critical extra weight of Q, written = > 0, is the minimum across all
models I of Q and tight edges e of I of weight ©, of the number of extra facts of e in I.

A. Amarilli

» Example 4.12. Continuing Example 4.5, the query Q' had critical extra weight 2, as wit-
nessed by I’. The query Q" : R(x), S(x,y), S(2',y), S(a’,y"), T(y’), has critical weight 1 and
critical extra weight 0, as witnessed by the model I = {R(a), S(a,b), S(a’,b), S(a’,b"), T(V')}
where the edge (a/,b) is tight and has weight 1 and extra weight 0.

Again, the definition of critical extra weight clearly ensures:

> Claim 4.13. Let I be a model of @ and e = (u,v) be a non-leaf edge. If e has weight ©
and extra weight < =, then the dissociation of e in [is also a model of Q.

Lexicographic weight. We then impose a third minimality requirement on tight edges e,
which is needed in Section 6 (but unused in Section 5). The intuition is that we want to
limit the number of copy elements. Specifically, we minimize first the number 7 of left copy
elements, then the number w of right copy elements, hence the name lexicographic weight.
This is why, when choosing a tight edge, we also choose an orientation (i.e., choosing (u,v)
as a tight edge is different from choosing (v, u)):

» Definition 4.14. Let I be an instance with an edge e = (u,v). Let 7 be the number of left
copy elements and w be the number of right copy elements of e. The lexicographic weight of e
is the ordered pair (T,w). We order these ordered pairs lexicographically, i.e., (T,w) < (7/,w’)
with 7,7, w,w ENff r <7 or7=7"and w < W'

The critical lexicographic weight A of Q is the minimum, over all models I of Q and all
tight edges of e with weight © and extra weight =, of the lexicographic weight of e.

Note that minimizing the lexicographic weight does not always minimize the total number
of copy facts!, e.g., (1,3) < (2,1) but 1 +3 > 2 + 1. However, it is always the case that
removing a copy fact of an edge e causes the lexicographic weight of e to decrease (and
does not cause the extra weight to increase, as the remaining covering facts of the edge are
garbage facts).

Again, we have:

> Claim 4.15. Let I be a model of @ and e = (u,v) be a non-leaf edge with weight ©, extra
weight =, and lexicographic weight < A. Then, the dissociation of e in [is also a model of Q.

Critical models. We now define critical models (significantly refining the so-called minimal
tight patterns of [2]). A critical model T is intuitively a model of @ with a clean tight edge e
that achieves the minimum of our three weight criteria, and where we additionally impose
that I is subinstance-minimal. For convenience we also specify a choice of incident facts in
the critical model, but this choice is arbitrary, i.e., we can pick any pair of a left-incident
fact and right-incident fact.

» Definition 4.16. A critical model (I,e, F1,, Fr) is a model I of Q which is subinstance-
minimal, a clean tight edge e of I having weight ©, extra weight =, and lexicographic weight A,
and a left-incident fact F1, € I and a right-incident fact Fr € I of e.

We can now claim that critical models exist:

» Proposition 4.17. If a query Q has a model with a tight edge, then it has a critical model.

! Minimizing the total number of copy facts, or minimizing along the componentwise partial order on
N x N, would suffice almost everywhere in the proof except in part of Section 6.

14:9

ICDT 2023

14:10

Uniform Reliability for Unbounded Homomorphism-Closed Graph Queries

] — I3
\\.IQ//
7N\
t U v w1
t2 QU&
(a) Example critical model M. (b) Iteration of M. (c) 3-saturated coding Ig,3 in M of

G= ({17 2}’ {(17 1)7 (17 2)7 (2’ 2)})

e
Lot

NN
W

Figure 2 Examples of Section 5 and illustration of the notation.

Proof sketch. The existence of models with tight edges achieving the critical weights is
by definition, cleanliness can be imposed by the process used to prove Claim 4.8, and
subinstance-minimality can easily be imposed by picking some minimal subset of facts of the
model that satisfy the query. |

5 Hardness with a Non-Ilterable Critical Model

Having defined critical models, we now start our hardness proof. As in [2], we will distinguish
two cases, based on whether we can break) with an iteration process on a critical model.

» Definition 5.1. Let M = (I, e, FL,, Fr) be a critical model, let e = (u,v), and let C be the
covering facts of e. Let A and B be the set of the left-incident and right-incident facts of e
in I, respectively. The iteration of M is obtained by modifying I in the following way:

Add fresh elements v’ and v, copy e on (u,v’), (u',v"), (v',v), and remove the facts of C.

Create a copy of the facts of A\ {FL} where we replace u by u’.

Create a copy of the facts of B\ {Fr} where we replace v by v'.

» Example 5.2. Consider the critical model in Figure 2a, with edge (u,v) and where Fp,
and FRr are binary facts respectively using u and x; and v and x3. Its iteration is shown in
Figure 2b, with dashed edges representing edges where Fi, and Fr are missing.

A non-iterable critical model M is one whose iteration no longer satisfies the query;
otherwise M is iterable. In this section, we show hardness when there is a non-iterable critical
model:

» Proposition 5.3. Assume that Q has a non-iterable critical model. Then the uniform
reliability problem for Q is #P-hard.

We prove this result in the rest of this section.

Fixing notation. Fix the critical model M = (I,e, F1,, Fr) and let e = (u,v) be the tight
clean edge. We must introduce some notation to talk about the incident facts of e in I, which
is summarized in Figure 2a. As e is clean, we know that its incident facts are either extra
facts or copy facts — there are no garbage facts.

Let C C I be the covering facts of e in I (in orange on the picture), with |C| = ©.
Let X = {x1,..., 21} be the elements different from « and v with which one of u or v has a
(non-unary) extra fact or has one of the two facts F1, and Fr. Note that some of the elements
in X may have facts with both u and v (i.e., triangles), like x5 in the picture. We may have
k = 0, specifically when Fj, and FR are unary facts and any other extra facts are unary.

A. Amarilli

Further let T = {t;,...,t.} be the left copy elements of e not in X, and let W =
{wi,...,w,} be the right copy elements of e not in X, with 7" and W disjoint (because copy
elements cannot form triangles). We exclude elements of X because, if F}, (resp., FRr) is
a copy fact, then X contains exactly one left copy element (resp., exactly one right copy
element)?. Also note that we may have 7 = w = 0, i.e., if there are no copy facts except
possibly those of the edges of FI, and of Fg.

To recapitulate, the incident facts of e in I only involve elements from X UT LI W.
Specifically, they are the unary facts on u, the unary facts on v, the non-unary extra facts
(which involve one of {u,v} and one element of X), the facts Fy, and Fr which respectively
involve u and v and (if they are non unary) one element of X, and the other left and right
copy facts forming isomorphic copies of e as edges (u,t;) with 1 < j <7 and (w;,v) with
1 <4 < w. Notice again how, if F1, or Fg are copy facts, then these notations handle them
as extra facts along with any other covering facts of their edge. Note that our description
of the incident facts of e does not describe the facts that may exist between elements of
X UTUW, and indeed these may be arbitrary (some are pictured in Figure 2a).

Coding bipartite graphs. We will reduce from our variant of #PP2DNF (Definition 2.1) by
using M to code a bipartite graph G = (U UV, E). Intuitively, we will create one copy u;
of u for each vertex i of U, one copy v; of v for each vertex j of V, and copy the edge e on
(ui,vj) for each edge (i,) of E. The reason why we distinguish X and 7" and W is because
we will handle them differently. For the incident facts of e that are unary or involve elements
of X, we will create one single copy of them for each u; and each v;. Indeed, we will show
that edges (u;,v;) that are missing one such incident fact can be dissociated (if an extra fact
is missing, using Claim 4.13) or mapped in a specific way in the iteration (if one of Fy, or Fr
is a copy fact and we are missing one of the covering facts of their edge). For the (copy) facts
involving T'U W, we will copy them (using the fact that they are binary) by creating a large
number g of copies of T'U W. This saturation process will in fact create a large number of
copies of all facts involving some element of T' LI W, which we call the saturated facts.
Let us accordingly define the saturated coding of a bipartite graph in M:

» Definition 5.4. Let G = (U UV, E) be a non-empty bipartite graph, and assume without
loss of generality that U = {1,...,n} and V ={1,...,m}.
Let ¢ > 0 be some integer. The g-saturated coding of G in M, written Ig 4, is the
instance defined by modifying I in the following way:
For all 1 < p < g, create fresh elements T, = {t1p,...,trp} and Wy = {wip, ..., W p}-
Identify t; =t;1 for 1 <j <7 and w; = w;; for 1 <i<w.
Letting ® be the set of the saturated facts, for each 1 < p < q, create a copy of ® where
each element t; is replaced by t;, and each element w; is replaced by w; p.
Create elements uy,...,uy and vy, ..., v,, where we identify w = vy, and v = v;.
Create a copy of all incident facts of e for all u; and vj. Formally, let A and B be the set
of the left-incident and right-incident facts of e in the current model (i.e., involving the
tjp and w; p): note that A (resp., B) contains in particular F1, (resp., Fr) and any unary
facts on u (resp., on v). For each 1 <i <n, create a copy of the facts of A replacing u
by u;, and for each 1 < j < m create a copy of the facts of B replacing v by v;.
Copy e (i.e., C) on (u;,v;) for each (i,j) € E, and remove the facts of C if (ui,v1) ¢ E.

2 Because of this, in general (T,w) may be less than the critical lexicographic weight A.

14:11

ICDT 2023

14:12

Uniform Reliability for Unbounded Homomorphism-Closed Graph Queries

The saturated coding process is illustrated in Figure 2c. Note that the process is in
polynomial time if the value ¢ is polynomial in the size |G| of the input bipartite graph.

Understanding the coding. Letting G = (U UV, E) be a non-empty bipartite graph and
writing U = {1,...,n} and V = {1,...,m}, we study the coding I, to relate subsets
of I 4 to subsets of U x E x V. For this, we partition the facts of I 4 in five kinds (see
Figure 2c):

The base facts (pictured in black), which are the facts that do not involve any of the
elements uy, ..., Uy, v1,..., Uy Oor any element of |_|1§p§q T, UW, (but they may involve
elements of X). These facts are precisely the facts of I that do not involve the elements u
or v or any element of T'LI W, and they are unchanged in the coding.

The saturated facts (in purple), i.e., the facts involving some element of T, LI W, for
some 1 < p < g. These facts exist in ¢ copies, and some (corresponding to facts of T
between u or v and an element of 7' W) have been further copied n times (if they
involve u) or m times (if they involve v).

The non-saturated left-incident facts (in blue) of each vertex ¢ € U, which are the facts
which involve u; and do not involve the T}, LI W), i.e., are unary or involve an element
of X. These facts include in particular one copy of Fy,.

The non-saturated right-incident facts (in green) of each vertex j € V, that involve v; and
not the T, UW,, i.e., are unary or involve an element of X; they include one copy of Fg.
The copy of e (in orange) for each edge (i,j) € E, which is on the edge (u;,v;) of Ig 4.

The last three kinds are what we are interested in for the reduction, but the first two
kinds need to be dealt with. We will show that the base facts must all be present to satisfy
the query, and that each edge has some copy of the saturated facts with high probability.

Base facts. We say that a subinstance of I 4 is well-formed if all base facts are present, and
ill-formed if at least one is missing. The following is easy to see by subinstance-minimality
of I:

» Proposition 5.5. The ill-formed subinstances do not satisfy the query.

Hence, the number of subinstances of G 4 satisfying the query is the number of well-formed
subinstances that do. Thus, in the sequel, we only consider well-formed subinstances.

Saturated facts. For the saturated facts, we will intuitively define valid subinstances where,
for each ordered pair of vertices (i,5) € U x V, considering the copies u; and v; of u and v,
there is a complete copy of the saturated facts that are “relevant” to them. More precisely,
looking back at the original instance I, and considering the facts of I involving an element
of T U W, there are of two types. The first type are the facts that do not involve u or v, i.e.,
they only involve elements of T'LW and possibly of dom(7)\ {u,v}. Each such fact has been
copied ¢ times in /g 4, and the copy numbered 1 < p < g uses one or two elements of T}, LI W/,.
The second type are the facts involving w or v in I (they cannot involve both). These facts
have been copied n x ¢ or m x ¢ times in I¢ 4, each copy using one element of T}, LI W), for
some 1 < p < ¢ and one u; for some 1 < i < n or one v; for some 1 < j < m. What we
require of a valid subinstance J C I¢ 4 is that, for each pair of vertices (i,5) € U x V, we
have in J some copy 1 < p < ¢ containing all facts of the first type and all facts of the second
type involving u; and v;:

A. Amarilli

» Definition 5.6. We partition the saturated facts of Ig 4 in q copies: formally, the p-th
saturated copy for 1 < p < q is the subset of the saturated facts of I 4 that involve some
element of T, UW,. A saturation index for Ig 4 is a function t: U xV — {1,...,q}.

For J C Ig,,, we say that J is valid for v if, for each (i,j) € U x V, letting p := 1(1,7),
considering the facts of the p-th saturated copy, J contains all such facts that are:

of the first type, i.e., J contains all facts of Ig 4 that involve some element of T, U W,

and do not involve any elements of {uy |1 < i <n}U{vy |1 <5 <m};

of the second type and involve u; or v;, i.e., J contains all facts of 1g 4 that involve some

element of T,, U W), and involve either u; or v;.

We call J valid if there is a saturation index for which it is valid; otherwise J is invalid.

Note that, for each choice of ordered pair (i,5) € U x V, the required facts can be found
in a different saturated copy ¢(4,j), i.e., we do not require that there is a p such that J
contains all facts of the p-th saturated copy. Indeed this stronger requirement would be too
hard to ensure: intuitively, the number of facts required for each (4, j) is constant (it only
depends on I), but the number of facts in the p-th saturated copy depends on G (it is linear
in |U] x |[V]).

We now show that we can pick a number g of copies which is polynomial in the input G,
but makes it very unlikely that a random subinstance is invalid. Thanks to this, we do not
need to know which ones of the invalid subinstances satisfy @. Indeed, the proportion of
subinstances of I , that satisfy @) will be the proportion of valid subinstances that do, up
to an error which is much less than the probability of any valid subinstance and can be
eliminated by rounding:

» Lemma 5.7. There is a polynomial Py; depending on the critical model M such that, for
any non-empty bipartite graph G = (U UV, E), letting x := |U| + |V| + | E| be the size of G
and defining q :== Ppr(x), the proportion of subinstances of I 4 that are invalid is strictly
less than 2~ (xII1+1)

Thanks to this, we focus on the well-formed subinstances J where we keep some subset of
the saturated facts making J valid. We now fix ¢ to the value of Lemma 5.7, and build Ig 4
in polynomial time in the input bipartite graph G (with the critical model M being fixed).

Good and bad subinstances. Let us now study the status of the last three kinds of facts:

» Definition 5.8. Let J C Ig,. For 1 <i<n (resp., 1 <j<m), the vertexi € U (resp.,
j € V) is complete in J if all its non-saturated left-incident facts (resp., non-saturated right-
incident facts) are present in J, and incomplete otherwise. The edge (i,j) € E is complete
in J if all covering facts of (u;,v;) in Ig 4 are present in J, and incomplete otherwise. We
call J good if there is an edge (i,j) € E with (i,j), i, and j complete, and bad otherwise.

We now claim that, among the well-formed valid subinstances, the good ones satisfy the
query, and the bad ones do not. This is easy to see for good subinstances:

» Proposition 5.9. For any good valid well-formed subinstance J C Ig 4, there is a homo-
morphism from I to J.

Proof sketch. As J is well-formed all base facts are present, and J is valid for some saturation
index ¢. Let (i,7) € E be an edge witnessing that J is good. The homomorphism maps
TUW to T, U W), maps u to u; and v to v;, and is the identity otherwise. |

For bad subinstances, we show with much more effort that they do not satisfy the query:

14:13

ICDT 2023

14:14 Uniform Reliability for Unbounded Homomorphism-Closed Graph Queries

t wl U/r- U(LT,”' t wl
U /
b u v w2 t Uqgr Urs,r w1 ty / ’Lf:) w2
ta w / Var,a to u w
4 u'l"S
t Uy (%1 w1 t1 {7[\ u Urs,s w2 t U v wy
U Vo 7‘ e Vas,a Uy
t1 w2 \-K " 1 w2
us U3 ta y\ as Vas,s w U2
ts im o w Uge— 39 to u’ v w
(a) Example critical model M (b) The coding I of a graph G in M: (c) Fine dissociation (top)
(top), 4-step iteration (bottom). G = ({a,r, s}, {{r, s}, {a,r},{a, s}}). and explosion (bottom) of M.

Figure 3 Examples of Section 6 and illustration of the notation.

» Proposition 5.10. Any bad subinstance J C I 4 does not satisfy the query.

Proof sketch. It suffices to study the case with no saturation, i.e., ¢ = 1. We dissociate
incomplete edges with Claim 4.4, and dissociate complete edges missing at least one incident
extra fact with Claim 4.13, which does not break). Then we show how to map this
homomorphically to the iteration I’ of M, by mapping complete vertices to u and v in the
dissociation, and mapping the vertices which are missing facts of the edges of F1, or Fy
to v’ and v’ respectively (after dissociating these edges if F1, or FR are copy facts). This
contradicts the assumption that M was non-iterable, i.e., that I’ violates Q. |

This establishes that the status of) on a valid well-formed subinstance J depends on
whether J is good or bad, i.e., depends on which of the last three kinds of facts were kept
in J. Now, the subsets of these facts are clearly in correspondence with the subsets of
U x E xV for the A\, i, v-#PP2DNF problem (see Definition 2.1), for some choice of constant
probabilities A, i, v. Further, a subset of U x E x V is counted in A, u, v-#PP2DNF if and
only if the corresponding subset of the last three kinds of facts yields a good subinstance.
As the ill-formed subinstances are easy to count, and the invalid ones are negligible, we can
conclude the reduction and establish Proposition 5.3. The complete proof is given in [1].

6 Hardness when all Critical Models are lterable

In this last section, we show hardness in the case where all critical models are iterable:

» Proposition 6.1. Assume that QQ has a critical model and that all critical models of @ are
iterable. Then the uniform reliability problem for @Q is #P-hard.

A first observation is that, in this case, we have Z = 0, by contraposition of the following:
> Claim 6.2. If the critical extra weight is > 0, then @ has a non-iterable critical model.

Proof sketch. Take a critical model M = (1, e, F1,, FR) with e = (u,v) and one of Fy,, Fr an
extra fact. The edge (v/,v’) in the iteration of M has weight © and extra weight < Z, so we
can dissociate it without breaking () and merge the two resulting copies. This yields the
so-called fine dissociation (illustrated in Figure 3c, and formally defined in the full version of
this paper [1]), which violates Q. N

Hence, in the rest of the section, we assume = = 0, and fix an iterable critical model
M = (1,e, F1,, FR). All incident facts of e = (u,v) in I are copy facts, so we let ¢,¢1,...,t-—1
be the left copy elements and w, w1, ..., w,_1 be the right copy elements, where ¢ and w are

A. Amarilli

the elements that occur in Fy, and Fg respectively (the choice of F1, and Fg from now on
only matters in that it distinguishes two copy elements ¢ and w). The lexicographic weight
of e in I is thus A = (r,w) with 7,w > 1. We let C be the covering facts of e in I. See
Figure 3a.

n-step iteration. Let us now define the n-step iteration of M. It is related to iteration
in [2], but specialized to the case where Z = 0, i.e., all incident facts are copy facts.

» Definition 6.3. For n > 0, the n-step iteration of M is obtained by modifying I:
Create elements uy, ..., uy and vy, ...,v,, where we identify w and u; and v, and v.
For all1 <1i,j <n, copy e on (u;,tj) and (wir,v;) forall1 <j <71 and1l <i <w.
For all 1 <i<mn, copy e on (u;,v;) for all 1 <i<n and on (ui11,v;) for all 1 <i < n.
Remove the facts of C, except in the trivial case where n = 1.

The iteration is illustrated in Figure 3a. Note that the 1-step iteration is exactly I.

Further, the 2-step iteration resembles the iteration in Section 5, but omits some incomplete
copies of (u,t) and (w,v) (i.e., the dashed edges in Figure 2b): as t and w are copy elements
these facts would be garbage facts so the difference is inessential.

We now show that, if the iteration process of Section 5 cannot break @ on any critical
model, then @) must also be satisfied in the n-step iteration of any critical model M for any
n > 0. This proposition summarizes how we use the hypothesis that all critical models are
iterable:

» Proposition 6.4. Let Q be a query that has a critical model. Assume that all critical
models for @ are iterable. Then = =0 and, for any critical model M of Q, for any n > 0,
the n-iteration of M satisfies Q; further it is a subinstance-minimal model of Q.

Proof sketch. Intuitively, the n-step iteration can be achieved by repeatedly performing the
iteration from Section 5. A tedious point in the proof is to show that subinstance-minimality
is preserved throughout this process. |

Coding. We explain how to code an undirected graph to reduce from ¢, n-U-ST-CON for

some 0 < ¢ < 1and 0 <n < 1 (see Definition 2.3): this time no saturation is needed.

Proposition 6.4 will then intuitively show that some paths in the coding make @ true.

» Definition 6.5. Let G = (V, E) be an undirected graph with source v and sink s, with r # s.
The coding Ig of G in M is the instance defined by modifying I in the following way:
For all a € V, create a fresh element ug,, and copy (u,t;) on (ug,t;:) for all1 < j' < 7.
We identify u to u,, so u, also occurs in another copy of e, namely the edge (uy,t).
For each edge m = {a,b} € E, create fresh elements tur, Vr q, Vrp, copy (u,tjr) on (g, t;r)
forall 1 < j' < 7, copy (wir,v) on (wy,vrg) for all1 < i < w and B € {a,b}, and
copy (u,v) on (Ug,Vra), (Ur,Vra), (Un,Vrp), and (Up, Vrp)-
Copy (u,v) on (us,v), and then remove the facts of C.

An example is given in Figure 3b, shortening the vertex names for readability. The coding
I can clearly be built in polynomial time in G. We partition the facts of I in four kinds:

The base facts (not pictured), i.e., the facts involving no element of {u, |a € V}U{v, g |
meE,pen}U{v}

The supplementary base facts (in black), i.e., the covering facts of (u,,t) and (u,,t;/) for
1 < j" <7, and the covering facts of (us,v) and (w,v) and (w;,v) for 1 < < w.

14:15

ICDT 2023

14:16

Uniform Reliability for Unbounded Homomorphism-Closed Graph Queries

The vertez facts (in purple) of each vertex a € V'\ {r}, i.e., the covering facts of (uq,t;)
for1 <j' <.

The edge facts (in orange) of each edge m = {a, b} of E, i.e., all covering facts and incident
facts of (ur,vrq) and (ug,vrp), including the covering facts of (ug, vr,q) and (up, vVxp).

Similarly to Section 5, the base facts of I are precisely the facts of I that do not involve u
or v. A subinstance J C Ig is well-formed if it contains all base facts and supplementary
base facts, and ill-formed otherwise. We can then use subinstance-minimality to show:

> Claim 6.6. The ill-formed subinstances do not satisfy the query.

Now, consider a well-formed subinstance J C Ig. A vertex a € V is complete in J if
all vertex facts of a are present, and incomplete otherwise; and an edge m € E is complete
in J if all its edge facts of m are present, and incomplete otherwise. A complete path in J
is a path connecting r and s in G such that all traversed edges and vertices are complete
in J (except 7, for which completeness was not defined). We say that J is good if it has
a complete path, and bad otherwise. We can easily see that good subinstances satisfy the
query, because they contain an iterate of M and we can use Proposition 6.4:

> Claim 6.7. For any good well-formed subinstance J C I, there is a homomorphism from
the (2n + 1)-step iteration of M to J, where n is the length of a complete path in J.

It is again far more challenging to show the other claim:
> Claim 6.8. Any bad subinstance J C I does not satisfy the query.

Proof sketch. We dissociate all copies of e that are missing a fact or are of the form (ug, vr g)
and are missing an incident fact with some element w;. Then, we map the result by a
homomorphism A to a structure called the explosion (illustrated in Figure 3¢ and formally
defined in the full version of this paper [1]), which intuitively reflects all maximal strict
subsets of the {t1,...,t,_1}, and violates @ (by considering the lexicographic weight of its
edges). We define h along the cut of G defined by considering the vertices reachable from r
via a complete path. <

We then show hardness by reducing from ¢, n-U-ST-CON for well-chosen constant proba-
bilities ¢ and 7 (up to assuming that the source vertex r is always kept) and thus conclude
the reduction, establishing Proposition 6.1. Together with Proposition 5.3, as) has a critical
model by Proposition 4.17 and Theorem 3.5, we have shown our main result (Theorem 1.3).

7 Conclusion

We have proved the intractability of uniform reliability for unbounded homomorphism-closed
queries on arity-two signatures. We have not investigated the related problem of weighted
uniform reliability [3], which is the restricted case of probabilistic query evaluation where we
impose that all facts of the input TID must have some fixed probability different from 1/2.
We expect that our hardness result should extend to this problem when the fixed probability
is the same across all relations (and is different from 0 and 1). It seems more challenging to
understand the setting where the fixed probability can depend on the relation, in particular if
we can require some relations to be be deterministic, i.e., only have tuples with probability 1.
In this setting, some unbounded homomorphism-closed queries would become tractable (e.g.,
Datalog queries that involve only the deterministic relations), and it is not clear what one
can hope to show.

A. Amarilli

Coming back to the problem of (non-weighted) uniform reliability, an ambitious direction
for future work would be to extend our intractability result towards Conjecture 1.2. The
two remaining obstacles are the case of unbounded queries on arbitrary signatures, which
we intend to study in future work; and the case of bounded queries, i.e., UCQs, where the
general case is left open by Kenig and Suciu [8].

Other natural extensions include the study of queries satisfying weaker requirements than
closure under homomorphisms; or other notions of possible worlds, e.g., induced subinstances;
or other notions of intractability, e.g., the inexistence of lineages in tractable circuit classes
from knowledge compilation. Another broad question is whether the techniques developed
here have any connection to other areas of research, e.g., constraint satisfaction problems
(CSPs).

—— References

1 Antoine Amarilli. Uniform reliability for unbounded homomorphism-closed graph queries. Full
version with proofs, 2023. arXiv:2209.11177.

2 Antoine Amarilli and Ismail Ilkan Ceylan. The dichotomy of evaluating homomorphism-closed
queries on probabilistic graphs. LMCS, 2021. arXiv:1910.02048, doi:10.46298/1mcs-18(1:
2)2022.

3 Antoine Amarilli and Benny Kimelfeld. Uniform reliability of self-join-free conjunctive queries.
LMCS, 18(4), 2022. arXiv:1908.07093, doi:10.46298/1mcs-18(4:3)2022

4 Stephen A. Cook. The complexity of theorem-proving procedures. In Proc. STOC, 1971. URL:
https://www.cs.toronto.edu/~sacook/homepage/1971.pdf.

5 Nilesh N. Dalvi and Dan Suciu. The dichotomy of probabilistic inference for unions of con-

junctive queries. Journal of the ACM, 59(6):30, 2012. URL: https://homes.cs.washington.

edu/~suciu/jacm-dichotomy.pdf.

6 Robert Fink and Dan Olteanu. Dichotomies for queries with negation in probabilistic
databases. TODS, 41(1), 2016. URL: http://www.cs.ox.ac.uk/people/Dan.0lteanu/
papers/fo-tods16.pdf.

7 Erich Gréadel, Yuri Gurevich, and Colin Hirsch. The complexity of query reliabil-
ity. In Proc. PODS, 1998. URL: https://www.researchgate.net/profile/Yuri_
Gurevich2/publication/2900852_The_Complexity_of_Query_Reliability/links/
0c96053321102376cd000000/The-Complexity-of-Query-Reliability.pdf.

8 Batya Kenig and Dan Suciu. A dichotomy for the generalized model counting problem for
unions of conjunctive queries. In Proc. PODS, 2021. arXiv:2008.00896.

9 Ester Livshits, Leopoldo E. Bertossi, Benny Kimelfeld, and Moshe Sebag. The Shapley value

of tuples in query answering. In Proc. ICDT, volume 155, 2020. doi:10.4230/LIPIcs.ICDT.

2020.20.
10 Dan Olteanu and Jiewen Huang. Using OBDDs for efficient query evaluation on probabilistic

databases. In Proc. SUM, volume 5291, 2008. URL: https://wuw.cs.ox.ac.uk/people/dan.

olteanu/papers/oh-sum08.pdf.

11 Dan Olteanu and Jiewen Huang. Secondary-storage confidence computation for conjunctive
queries with inequalities. In Proc. SIGMOD, 2009. URL: https://www.cs.ox.ac.uk/people/
dan.olteanu/papers/oh-sigmod09.pdf.

12 J. Scott Provan and Michael O. Ball. The complexity of counting cuts and of computing the
probability that a graph is connected. SIAM Journal on Computing, 12(4), 1983.

13 Babak Salimi, Leopoldo E. Bertossi, Dan Suciu, and Guy Van den Broeck. Quantifying causal
effects on query answering in databases. In TAPP, 2016. arXiv:1603.02705.

14 Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic databases.
Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2011.

15 Leslie Gabriel Valiant. The complexity of computing the permanent. TCS, 8(2):189-201, 1979.
d0i:10.1016/0304-3975(79)90044-6.

14:17

ICDT 2023

http://arxiv.org/abs/2209.11177
http://arxiv.org/abs/1910.02048
https://doi.org/10.46298/lmcs-18(1:2)2022
https://doi.org/10.46298/lmcs-18(1:2)2022
http://arxiv.org/abs/1908.07093
https://doi.org/10.46298/lmcs-18(4:3)2022
https://www.cs.toronto.edu/~sacook/homepage/1971.pdf
https://homes.cs.washington.edu/~suciu/jacm-dichotomy.pdf
https://homes.cs.washington.edu/~suciu/jacm-dichotomy.pdf
http://www.cs.ox.ac.uk/people/Dan.Olteanu/papers/fo-tods16.pdf
http://www.cs.ox.ac.uk/people/Dan.Olteanu/papers/fo-tods16.pdf
https://www.researchgate.net/profile/Yuri_Gurevich2/publication/2900852_The_Complexity_of_Query_Reliability/links/0c96053321102376cd000000/The-Complexity-of-Query-Reliability.pdf
https://www.researchgate.net/profile/Yuri_Gurevich2/publication/2900852_The_Complexity_of_Query_Reliability/links/0c96053321102376cd000000/The-Complexity-of-Query-Reliability.pdf
https://www.researchgate.net/profile/Yuri_Gurevich2/publication/2900852_The_Complexity_of_Query_Reliability/links/0c96053321102376cd000000/The-Complexity-of-Query-Reliability.pdf
http://arxiv.org/abs/2008.00896
https://doi.org/10.4230/LIPIcs.ICDT.2020.20
https://doi.org/10.4230/LIPIcs.ICDT.2020.20
https://www.cs.ox.ac.uk/people/dan.olteanu/papers/oh-sum08.pdf
https://www.cs.ox.ac.uk/people/dan.olteanu/papers/oh-sum08.pdf
https://www.cs.ox.ac.uk/people/dan.olteanu/papers/oh-sigmod09.pdf
https://www.cs.ox.ac.uk/people/dan.olteanu/papers/oh-sigmod09.pdf
http://arxiv.org/abs/1603.02705
https://doi.org/10.1016/0304-3975(79)90044-6

	1 Introduction
	2 Preliminaries and Problem Statement
	3 Basic Techniques: Dissociation, Tight Edges
	4 Minimality and Critical Models
	5 Hardness with a Non-Iterable Critical Model
	6 Hardness when all Critical Models are Iterable
	7 Conclusion

