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Abstract
In graph-based applications, a common task is to pinpoint the most important or “central” vertex
in a (directed or undirected) graph, or rank the vertices of a graph according to their importance.
To this end, a plethora of so-called centrality measures have been proposed in the literature. Such
measures assess which vertices in a graph are the most important ones by analyzing the structure
of the underlying graph. A family of centrality measures that are suited for graph databases has
been recently proposed by relying on the following simple principle: the importance of a vertex in
a graph is relative to the number of “relevant” connected subgraphs surrounding it; we refer to
the members of this family as subgraph-based centrality measures. Although it has been shown
that such measures enjoy several favourable properties, their absolute expressiveness remains largely
unexplored. The goal of this work is to precisely characterize the absolute expressiveness of the
family of subgraph-based centrality measures by considering both directed and undirected graphs.
To this end, we characterize when an arbitrary centrality measure is a subgraph-based one, or
a subgraph-based measure relative to the induced ranking. These characterizations provide us
with technical tools that allow us to determine whether well-established centrality measures are
subgraph-based. Such a classification, apart from being interesting in its own right, gives useful
insights on the structural similarities and differences among existing centrality measures.
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1 Introduction

Graphs are well-suited for representing complex networks such as biological networks, cognitive
and semantic networks, computer networks, and social networks, to name a few. In many
applications that involve (directed or undirected) graphs, a crucial task is to pinpoint the
most important or “central” vertex in a graph, or rank the vertices of a graph according to
their importance. Indeed, these graph-theoretic tasks naturally appear in many different
contexts, for example, finding people who are more likely to spread a disease in the event of
an epidemic [4], highlighting cancer genes in proteomic data [7], assessing the importance of
websites by search engines [12], identifying influencers in social networks [6], and many more.
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9:2 Absolute Expressiveness of Subgraph-Based Centrality Measures

To this end, a plethora of centrality measures have been proposed that assess the importance
of a vertex in a graph [3, 11]. Centrality measures have been also studied in a principled way
with the aim of providing axiomatic characterizations via structural properties over certain
classes of graphs; see, e.g., [8, 18, 19].

It is not surprising that centrality measures have been also considered in the context
of graph-structured data. Major graph database management systems such as Neo4j1
and TigerGraph2, have already adopted and implemented several centrality measures and
algorithms in their Graph Data Science library such as Eigenvector [2], PageRank [12],
Closeness [15], and many others. Moreover, applications of centrality measures have recently
emerged in the context of knowledge graphs for entity linking [9], and Semantic Web search
engines where ranking results is a central task [5].

Several existing centrality measures rely on the following intuitive principle: the import-
ance of a vertex in a graph is relative to the number of connected subgraphs (e.g., triangles,
paths, or cliques) surrounding it. We refer to such measures as subgraph-based. Interestingly,
subgraph-based centrality measures are of particular interest for graph-structured data since
a connected subgraph can be understood as the potential graph patterns occurring in a graph
database. Consider, for example, a property graph G, which is essentially a finite directed
graph, and a language L of basic graph patterns [1]. The evaluation of a query Q from L over
G, denoted Q(G), is the set of vertices of G that comply with the graph pattern expressed
by Q. It is reasonable to assume that the more queries Q’s from L such that v ∈ Q(G) exist,
the more important v is in G (relative to L). This way of defining the importance of a vertex
follows the general principle discussed above, where the relevant connected subgraphs are
the basic graph patterns from the language L.

A framework for defining and studying subgraph-based centrality measures has been
recently introduced by Riveros and Salas [14], where the importance of a vertex is defined as
the logarithm of the number of connected subgraphs surrounding it. As explicitly discussed
in [14], the choice of applying the logarithmic function is purely for technical simplicity, and
one could adopt any function, which we call filtering function, that leads to a richer family
of subgraph-based centrality measures. Note that [14] considered only undirected graphs,
but we can naturally define subgraph-based centrality measures over directed graphs. The
main outcome of the analysis performed in [14] is that subgraph-based centrality measures
satisfy desirable theoretical properties, typically called axioms, provided that the underlying
family of connected subgraphs enjoys certain properties.

Despite the thorough analysis performed in [14], the absolute expressiveness of the family
of subgraph-based centrality measures remains largely unexplored. Our main objective is to
delineate the limits of the family of subgraph-based measures for both directed and undirected
graphs. More precisely, we would like to understand when an arbitrary centrality measure is
a subgraph-based one, or when it induces the same ranking as a subgraph-based one.

Our Contributions. Our contributions can be summarized as follows:
In Section 4, we provide a precise characterization of when an arbitrary centrality measure
is subgraph-based. More precisely, we isolate a “bounded value” property P over centrality
measures, which essentially states that the total number of distinct values that can be
assigned to vertices surrounded by a certain number of connected subgraphs is bounded,
and then show that a measure can be expressed as a subgraph-based one iff it enjoys P .

1 https://neo4j.com/docs/graph-data-science/current/algorithms/centrality/
2 https://docs.tigergraph.com/graphml/current/centrality-algorithms/

https://neo4j.com/docs/graph-data-science/current/algorithms/centrality/
https://docs.tigergraph.com/graphml/current/centrality-algorithms/
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We then proceed in Section 5 to characterize when an arbitrary centrality measure induces
the same ranking as a subgraph-based measure. In this case, we isolate a “graph coloring”
property P over centrality measures, and then show that a centrality measure can be
expressed as a subgraph-based one relative to the induced ranking iff it enjoys P .
In Section 6, we focus on the family of monotonic subgraph-based measures, i.e., subgraph-
based measures with a monotonic filtering function, and provide analogous characteriza-
tions via refined properties in the spirit of the “bounded value” property discussed above.
An interesting finding is that in the case of connected graphs, every centrality measure
can be expressed as a monotonic subgraph-based measure relative to the induced ranking.
We finally proceed in Section 7 to determine if established measures (such as PageRank,
Eigenvector, and many others) are (monotonic) subgraph-based (relative to the induced
ranking). Such a classification, apart from being interesting in its own right, provides
insights on the structural similarities and differences among the considered measures.

Clarification Remark. In the rest of the paper, due to space constraints and for the sake of
clarity, we focus on undirected graphs, but all the notions and results can be transferred to
the case of directed graphs under the standard notion of weak connectedness.

2 Preliminaries

We recall the basics on undirected graphs and graph centrality measures. In the rest of the
paper, we assume the countable infinite set V of vertices. For n > 0, let [n] = {1, . . . , n}.

Undirected Graphs. An undirected graph (or simply graph) G is a pair (V, E), where V is a
finite non-empty subset of V (the set of vertices of G), and E ⊆ {{u, v} | u, v ∈ V } (the set
of edges of G). For notational convenience, given a graph G, we write V (G) and E(G) for the
set of its vertices and edges, respectively. We denote by G the set of all graphs, and by VG
the set of vertex-graph pairs {(v, G) ∈ V × G | v ∈ V (G)}. The neighbourhood of a vertex
v ∈ V (G) in G, denoted NG(v), is the set {u ∈ V (G) | {u, v} ∈ E(G)}. For u ∈ NG(v), we
say that v and u are adjacent in G. For a vertex v ∈ V, we write Gv for the graph ({v}, ∅).

A subgraph of a graph G is a graph G′ such that V (G′) ⊆ V (G) and E(G′) ⊆ E(G);
we write G′ ⊆ G to indicate that G′ is a subgraph of G. Note that the binary relation
⊆ over graphs forms a partial order. We denote by Sub(G) all the subgraphs of G, that
is, the set of graphs {G′ | G′ ⊆ G}. Given a set of vertices S ⊆ V (G), the subgraph
of G induced by S, denoted G[S], is the subgraph G′ of G such that V (G′) = S and
E(G′) = {{u, v} ∈ E(G) | u, v ∈ S}.

A path in G is a sequence of vertices π = v0, v1, . . . , vn, for n ≥ 0, such that {vi, vi+1} ∈
E(G) for every 0 ≤ i < n. We further say that π is a path from v0 to vn. The length of
π, denoted |π|, is the number of edges in π, i.e., n. By convention, there exists a path of
length 0 from a vertex to itself. The distance between two vertices u, v ∈ V (G) in G, denoted
dG(u, v), is defined as the length of a shortest path from u to v in G; if there is no path,
then dG(u, v) = ∞. We denote by SG(u, v) the set of all the shortest paths from u to v in G,
that is, the set {π | π is a path from u to v in G with |π| = dG(u, v)}.

A graph G is connected if, for every two distinct vertices u, v ∈ V (G), there exists a path
from u to v. We denote by A(v, G) the set of all connected subgraphs of G that contain v,
that is, the set {G′ ⊆ G | v ∈ V (G′) and G′ is connected}. By abuse of notation, we may
treat A(·, ·) as a function of the form VG → P(G); as usual, P(S) denotes the powerset of
a set S. A connected component (or simply component) of G is an induced subgraph G[S]
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of G, where S ⊆ V (G), such that G[S] is connected, and, for every v ∈ V (G) \ S, there is
no path in G from v to a vertex of S. It is clear that whenever G is connected, the only
component of G is G itself. We denote by Comp(G) all the components of G, that is, the set
of graphs {G′ | G′ is a component of G}. Let Kv(G) be the set of vertices of the component
of G containing the vertex v.

Two graphs G1 and G2 are isomorphic, denoted G1 ≃ G2, if there exists a bijective function
h : V (G1) → V (G2) such that {v, u} ∈ E(G1) iff {h(v), h(u)} ∈ E(G2). Furthermore, given
the vertices v1 ∈ V (G1) and v2 ∈ V (G2), we say that the pairs (v1, G1) and (v2, G2) are
isomorphic, denoted (v1, G1) ≃ (v2, G2), if G1 ≃ G2 witnessed by h and h(v1) = v2.

Centrality Measures. A centrality measure assigns a score to a vertex v in a graph G, which
reflects the importance of v in G. In other words, we adopt the standard assumption that the
higher the score of a vertex v in G, the more important or “central” v is in G. Furthermore,
it is typically assumed that the values assigned by a measure to the vertices of a graph do
not depend on the names of the vertices, but only on the structure of the graph. In other
words, two isomorphic vertices occurring in isomorphic graphs should be assigned the same
importance; the latter property is usually called closure under isomorphism or anonymity.
The formal definition of the notion of centrality measure follows:

▶ Definition 1 (Centrality Measure). A centrality measure (or simply measure) is a function
C : VG → R such that, for every two pairs (v1, G1) ∈ VG and (v2, G2) ∈ VG, (v1, G1) ≃
(v2, G2) implies C(v1, G1) = C(v2, G2). ⌟

We proceed to recall three known centrality measures that will be used throughout the
paper; more centrality measures are discussed in Section 7.

Stress. This is a well-known centrality measure introduced in the 1950s [16]. It measures the
centrality of a vertex by counting the number of shortest paths that go via that vertex.
For a graph G and a vertex v ∈ V (G), let Sv

G(u, w) be the set of paths {π ∈ SG(u, w) |
π contains v}. The stress centrality of v in G is defined as follows:

Stress(v, G) =
∑

u,w∈V (G)\{v}

|Sv
G(u, w)| .

All-Subgraphs. This measure was recently introduced in the context of graph databases [14].
It states that a vertex is more central if it participates in more connected subgraphs.
Formally, given a graph G and a vertex v ∈ V (G), the all-subgraphs centrality of v in G is

All-Subgraphs(v, G) = log2 |A(v, G)|.

Closeness. This is a well-known measure introduced back in the 1960s [15]. It is usually
called a geometrical measure since it relies on the distance inside a graph. It essentially
states that the closer a vertex is to everyone in the graph the more central it is. Formally,
given a graph G and a vertex v ∈ V (G), the closeness centrality of v in G is the ratio

Closeness(v, G) = 1∑
u∈Kv(G) dG(v, u) .

Let us clarify that we define the sum of distances inside a component of G since the
distance between two vertices in different components of G is by definition infinite.
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3 Subgraph-based Centrality Measures

As already discussed in the Introduction, a natural way of measuring the importance of a
vertex in a graph is to count the relevant connected subgraphs surrounding it, and then
apply a certain filtering function from the non-negative integers to the reals on top of the
count. Of course, the relevant subgraphs and the adopted filtering function are determined by
the intention of the centrality measure. Interestingly, both the stress and the all-subgraphs
centrality measures are actually based on this principle. Let us elaborate further on this.
Consider a graph G and a vertex v ∈ V (G):

For the stress centrality, the important subgraphs for v in G are the shortest paths that
go via v in G, and the filtering function is f×2(x) = 2x since each shortest path is counted
twice. In other words, with Gπ being the graph that corresponds to a path π,

Stress(v, G) = f×2

∣∣∣∣∣∣
⋃

u,w∈V (G)\{v}

{Gπ | π ∈ Sv
G(u, w)}

∣∣∣∣∣∣
 .

For the all-subgraphs centrality, the important subgraphs for v in G are the connected
subgraphs of G that contain v, that is, the set A(v, G), and the filtering function is log2.
Indeed, by definition, we have that

All-Subgraphs(v, G) = log2 |A(v, G)|.

We proceed to formalize the above simple principle, originally introduced in [14], which
gives rise to a family of centrality measures, and then highlight our main research questions.

Subgraph-based Centrality Measures. We first need a mechanism that allows us to specify
what are the important subgraphs for a vertex v in a graph G. This is done via the notion
of subgraph family, which is defined as a function from vertex-graph pairs to sets of graphs
that is closed under isomorphism, that is, a function F : VG → P(G) such that:

for every (v, G) ∈ VG, F(v, G) ⊆ A(v, G), that is, F assigns to each (v, G) ∈ VG a set of
connected subgraphs of G surrounding v, and
for every two pairs (v1, G1) ∈ VG and (v2, G2) ∈ VG such that (v1, G1) ≃ (v2, G2)
witnessed by h, there exists a bijection µ : F(v1, G1) → F(v2, G2) such that, for every
G′ ∈ F(v1, G1), µ(G′) = ({h(v) | v ∈ V (G′)}, {{h(v), h(u)} | (v, u) ∈ G′}).

We also need the notion of filtering function, which, as said above, is simply a function of
the form f : N → R. We are now ready to define subgraph-based centrality measures:

▶ Definition 2 (⟨F, f⟩-measure). Consider a subgraph family F and a filtering function f .
The ⟨F, f⟩-measure is the function C⟨F, f⟩ : VG → R such that, for every pair (v, G) ∈ VG,
it holds that C⟨F, f⟩(v, G) = f(|F(v, G)|). ⌟

Since, by definition, subgraph families are closed under isomorphism, it is straightforward
to see that each ⟨F, f⟩-measure defines a valid centrality measure.

▶ Lemma 3. For a subgraph family F and a filtering function f , it holds that the ⟨F, f⟩-
measure is a centrality measure.

We say that a centrality measure C is a subgraph-based centrality measure if there are a
subgraph family F and a filtering function f such that C coincides with the ⟨F, f⟩-measure,
i.e., for every pair (v, G) ∈ VG, C(v, G) = C⟨F, f⟩(v, G). Coming back to our discussion on
stress and all-subgraph centralities, assuming that S is the subgraph family such that

ICDT 2023



9:6 Absolute Expressiveness of Subgraph-Based Centrality Measures

S(v, G) =
⋃

u,w∈V (G)\{v}

{Gπ | π ∈ Sv
G(u, w)} ,

it is straightforward to verify that

Stress = C⟨S, f×2⟩ and All-Subgraphs = C⟨A, log2⟩.

Main Research Questions. Having the family of subgraph-based centrality measures in
place, the natural question that comes up concerns its absolute expressive power. In other
words, we are interested in the following research question:

▶ Question I. When is a centrality measure a subgraph-based centrality measure?

One may wonder whether the above question is conceptually trivial in the sense that every
centrality measure can be expressed as a subgraph-based centrality measure by choosing
the subgraph family and the filtering function in the proper way as done for Stress and
All-Subgraphs. It turns out that there are measures that are not subgraph-based.

▶ Proposition 4. There is a centrality measure that is not a subgraph-based measure.

Proof. Consider the centrality measure C such that, for every (v, G) ∈ VG, it holds that
C(v, G) = |V (G)|, i.e., it simply assigns to each vertex v in a graph G the number of vertices
occurring in G. It suffices to show that C is not subgraph-based even if we focus on the set
of graphs G⋆ consisting of G1 = ({u1}, ∅), G2 = ({u2, v2}, ∅), and G3 = ({u3, v3, w3}, ∅). By
contradiction, assume that C is a subgraph-based measure over G⋆. Thus, there exists a
subgraph family F and a filtering function f such that, for every G ∈ G⋆ and v ∈ V (G),
C(v, G) = C⟨F, f⟩(v, G). We observe that:
1. For every (v, G) ∈ V × G⋆ with v ∈ V (G), it holds that C⟨F, f⟩(v, G) ∈ {1, 2, 3}, i.e., we

have three distinct values. This follows by the definition of C = C⟨F, f⟩.
2. For every (v, G) ∈ V × G⋆, it holds that |F(v, G)| ∈ {0, 1}, i.e., we have two possible sizes

for the sets of connected subgraphs.
Now, by the pigeonhole principle, we can safely conclude that there are two distinct pairs
(v, G), (u, G′) ∈ V × G⋆ with |F(v, G)| = |F(u, G′)| such that C⟨F, f⟩(v, G) ̸= C⟨F, f⟩(u, G′).
But this contradicts the fact that f is a function, and the claim follows. ◀

As we shall see, not only artificial measures as the one employed in the proof of Pro-
position 4, but also well-known centrality measures from the literature (such as Closeness)
are not subgraph-based. We are going to prove such inexpressibility results by using the
technical tools developed towards answering Question I.

In several applications that involve graphs, we are more interested in the relative than
the absolute importance of a vertex in a graph. More precisely, we are interested in the
ranking of the vertices of a graph induced by a measure C, and not in the absolute value
assigned to a vertex by C. This brings us to the next technical notion:

▶ Definition 5 (Induced Ranking). Let C be a centrality measure. The ranking induced by C,
denoted Rank(C), is the binary relation

{((u, G), (v, G)) | u, v ∈ V (G) and C(u, G) ≤ C(v, G)}

over VG. C is a subgraph-based centrality measure relative to the induced ranking if there
are a subgraph family F and a filtering function f with Rank(C) = Rank(C⟨F, f⟩). ⌟
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Interestingly, although the measure employed in the proof of Proposition 4 is not subgraph-
based, it is easy to show that it is a subgraph-based measure relative to the induced ranking. In
particular, by defining the subgraph family F as F(v, G) = {Gv}, for every (v, G) ∈ VG, and
the filtering function as the identity, it is not difficult to see that Rank(C) = Rank(C⟨F, f⟩).
This observation brings us to our next research question:

▶ Question II. When is a centrality measure a subgraph-based centrality measure
relative to the induced ranking?

As we shall see, the above question is conceptually non-trivial, i.e., there are measures
that are not subgraph-based measures relative to the induced ranking. In particular, we will
see that there are well-established measures (such as Closeness) that are not subgraph-based
centrality measures relative to the induced ranking. Such inexpressibility results are shown
by exploiting the tools developed towards answering Question II.

4 Characterizing Subgraph-based Centrality Measures

We proceed to provide an answer to Question I. More precisely, our goal is to isolate a
structural property P over centrality measures that precisely characterizes subgraph-based
measures, that is, for an arbitrary measure C, C is a subgraph-based measure iff C enjoys P .
Interestingly, the desired property can be somehow extracted from the proof of Proposition 4.
The crucial intuition provided by that proof is that the absolute expressiveness of subgraph-
based measures is tightly related to the amount of connected subgraphs that are available
for assigning different centrality values to vertices. In other words, a measure that assigns
“too many” values among vertices that are surrounded by “too few” connected subgraphs
cannot be expressed as a subgraph-based measure. We proceed to formalize this intuition.

We first collect all the different values assigned by a centrality measure C to the vertices
of a graph G that are surrounded by a bounded number of connected subgraphs of G. In
particular, for n > 0, we define the set of real values

ValnG(C) = {C(v, G) | v ∈ V (G) and |A(v, G)| ≤ n} .

We can then easily collect all the values assigned by C to the vertices of V that are surrounded
by a bounded number of connected subgraphs in some graph. In particular, for n > 0,

Valn(C) =
⋃

G∈G

ValnG(C).

We now define the following property over centrality measures:

▶ Definition 6 (Bounded Value Property). A measure C enjoys the bounded value property
if, for every n > 0, |Valn(C)| ≤ n + 1. ⌟

The bounded value property captures the key intuition discussed above. It actually bounds
the number of different values that can be assigned among vertices that are surrounded by a
limited number of connected subgraphs; hence the name “bounded value property”. Observe
that the measure C devised in the proof of Proposition 4 does not enjoy the bounded value
property; indeed, |Val1(C)| ≥ 3 > 2. Interestingly, the bounded value property is all we need
towards a precise characterization of subgraph-based measures.

▶ Theorem 7. Consider a centrality measure C. The following statements are equivalent:
1. C is a subgraph-based centrality measure.
2. C enjoys the bounded value property.

ICDT 2023



9:8 Absolute Expressiveness of Subgraph-Based Centrality Measures

Proof. (1 ⇒ 2) By contradiction, assume that C does not enjoy the bounded value property,
namely there exists an integer n ≥ 1 such that |Valn(C)| > n + 1. By hypothesis, C is a
subgraph-based centrality measure, and thus, there exist a subgraph family F and a filtering
function f such that the following holds: for every (v, G) ∈ VG, C(v, G) = C⟨F, f⟩(v, G).
We now define the set

Bn = {|F(v, G)| | (v, G) ∈ VG and |A(v, G)| ≤ n} .

Clearly, |Bn| ≤ n + 1 since F(v, G) ⊆ A(v, G). Let h : Valn(C) → Bn be such that

h(C(v, G)) = |F(v, G)|.

By the pigeonhole principle, h is not injective, i.e., there exist C(v1, G1) and C(v2, G2) such
that C(v1, G1) ̸= C(v2, G2) but |F(v1, G1)| = |F(v2, G2)|. This contradicts the fact that
C(v1, G1) = f(|F(v1, G1)|) ̸= f(|F(v2, G2)|) = C(v2, G2), and the claim follows.

(2 ⇒ 1) The goal is to show that there exist a subgraph family F and a filtering function f

such that, for every (v, G) ∈ VG, C(v, G) = C⟨F, f⟩(v, G). We start by defining a total order
⪯C over the set of values Val(C) =

⋃∞
i=1 Vali(C). By definition, for every n, m > 0 such that

n ≤ m, it holds that Valn(C) ⊆ Valm(C). In other words, as we increase the integer n we are
adding new values to the set Valn(C). We can now define the binary relation ⪯C over Val(C)
as follows: for each a, b ∈ Val(C), if there exists n such that a ∈ Valn(C) but b ̸∈ Valn(C)
then a ⪯C b, if not, then a ⪯C b if a ≤ b. It is easy to see that ⪯C is a total order over Val(C),
and thus, it is a total order over Valn(C) for each n > 0. For notational convenience, in the
rest of the proof we assume that Val(C) = {a1, a2, a3, . . .} and a1 ⪯C a2 ⪯C a3 ⪯C · · · .

By exploiting the total order ⪯C over Val(C), we proceed to define a subgraph family F.
Consider an arbitrary pair (v, G) ∈ VG, and let n = |A(v, G)|. By hypothesis, C enjoys the
bounded value property, which in turn implies that |Valn(C)| ≤ n + 1. Therefore, C(v, G),
which belongs to {a1, a2, ..., a|Valn(C)|}, is equal to Valn(C). We further observe that A(v, G)
is a finite set, and we let A(v, G) = {S1, S2, . . . , Sn}. Here we assume an arbitrary order for
A(v, G) that has the following property: for every pair (v′, G′) with (v, G) ≃ (v′, G′), assuming
that A(v′, G′) = {S′

1, S′
2, . . . , S′

n}, it holds that (v, Si) ≃ (v′
i, S′

i) for every i ∈ {1, . . . , n}. The
subgraph family F is defined as follows:

C(v, G) = ai implies F(v, G) = {S1, ..., Si−1}.

This is indeed a subgraph family since F(v, G) ⊆ A(v, G), while the chosen order for A(v, G)
and the fact that C is (by definition) closed under isomorphism ensures closure under
isomorphism. Notice that |F(v, G)| = i − 1 for i ∈ {1, . . . , |Valn(C)| + 1}. Finally, we define
the filtering function f : N → Val(C) as follows: for each i ∈ N,

f(i) = ai+1.

We proceed to show that F and f capture our intention, that is, for every (v, G) ∈ VG,
C(v, G) = C⟨F, f⟩(v, G), which will establish Theorem 7 . Let n = |A(v, G)|. If C(v, G) = ai ∈
Valn(C), then |F(v, G)| = i−1. Therefore, f(|F(v, G)|) = C⟨F, f⟩(v, G) = C(v, G). Conversely,
if C⟨F, f⟩(v, G) = ai, then |F(v, G)| = i − 1, and thus, by construction, C(v, G) = ai. ◀

The above characterization, apart from giving a definitive answer to Question I, it provides
a useful tool for establishing inexpressibility results. To show that a centrality measure C is
not a subgraph-based measure it suffices to show that there exists an integer n > 0 such that
|Valn(C)| > n + 1. For example, we can show that |Val5(Closeness)| > 6, and therefore:

▶ Proposition 8. Closeness is not a subgraph-based measure.
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Without Theorem 7 in place, it is completely unclear how one can prove that Closeness
(or any other established measure) is not a subgraph-based measure. More inexpressibility
results concerning well-established centrality measures are discussed in Section 7.

5 Characterizing Subgraph-based Measures Relative to the Induced
Ranking

We now focus on Question II. Our goal is to isolate a structural property P over centrality
measures that precisely characterizes subgraph-based measures relative to the induced ranking,
i.e., for an arbitrary measure C, C is subgraph-based relative to the induced ranking iff C
enjoys the property P . It turns out that P can be defined by exploiting a certain notion of
graph coloring relative to a centrality measure.

Graph Colorings. The high-level idea is to consider the sizes of the available subgraph famil-
ies that can be assigned to a vertex v in a graph G, i.e., the set of integers {0, . . . , |A(v, G)|},
as available colors. We can then refer to a precoloring of VG (i.e., of all the possible graphs)
as a function pc : VG → N that assigns to each vertex v in a graph G only available colors
from {0, . . . , |A(v, G)|}. Then, the goal is to isolate certain properties of such a precoloring
of VG that leads to the desired characterization, i.e., a measure C is subgraph-based relative
to the induced ranking iff there exists a precoloring of VG that enjoys the properties in
question. Such a characterization tells us that for a centrality measure being subgraph-based
relative to the induced ranking is tantamount to the fact that there are enough colors (i.e.,
sizes of sugbraph families, but without considering their actual topological structure) that
allow us to color VG in a valid way, namely in a way that the crucial properties are satisfied.
We proceed to formalize the above discussion about colorings.

Given a set S ⊆ VG, a precoloring of S is a function pc : S → N such that, for every
(v, G) ∈ S, pc(v, G) ∈ {0, . . . , |A(v, G)|}. The first key property of such a precoloring states
that the values assigned by a measure C to the vertices of a graph G should be respected,
i.e., vertices with different centrality values get different colors. This is formalized as follows:

▶ Definition 9 (Non-Uniform C-Injectivity). Consider a set S ⊆ VG, and a precoloring
pc : S → N of S. Given a centrality measure C, we say that pc is non-uniformly C-injective
if, for every (u, G), (v, G) ∈ S, C(u, G) ̸= C(v, G) implies pc(u, G) ̸= pc(v, G). ⌟

The term non-uniform in the above definition refers to the fact that C-injectivity is only
enforced inside a certain graph, and not across all the graphs mentioned in S, i.e., it might
be the case that a non-uniformly C-injective precoloring of S assigns to (u, G), (v, G′), where
G ̸= G′ and C(u, G) ̸= C(v, G′), the same color.

The second key property of a precoloring S states that S should be consistent with the
induced ranking, not only inside a certain graph, but also among different graphs mentioned
in S. In other words, if (u, G) comes before (v, G) and (u′, G′) comes before (v′, G′), then
one of the following should hold: (u, G) and (v′, G′) get different colors, or (u′, G) and (v, G′)
get different colors. This is formalized as follows:

▶ Definition 10 (C-Consistency). Consider a set S ⊆ VG, and a precoloring pc : S → N of S.
Given a measure C, we say that pc is C-consistent if, for every (u, G), (v, G), (u′, G′), (v′, G′) ∈
S, the following holds: if C(u, G) < C(v, G) and C(u′, G′) < C(v′, G′), then pc(u, G) ̸=
pc(v′, G′) or pc(u′, G) ̸= pc(v, G′). ⌟

Putting together the above two properties over precolorings, we get the notion of C-
colorability of a set S ⊆ VG:
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▶ Definition 11 (C-Colorability). We say that a set S ⊆ VG is C-colorable, for some measure
C, if there exists a precoloring of S that is non-uniformly C-injective and C-consistent. ⌟

The Characterization. Interestingly, C-colorability is all we need towards the desired
characterization, namely a measure C is subgraph-based relative to the induced ranking iff
VG (i.e., all possible graphs) is C-colorable. We further show that the C-colorability of VG
is equivalent to the C-colorability of every finite set S ⊊ VG. The latter, apart from being
interesting in its own right, it provides a tool that is more convenient than the C-colorability
of VG for classifying measures as subgraph-based relative to the induced ranking.

▶ Theorem 12. Consider a centrality measure C. The following statements are equivalent:
1. C is a subgraph-based centrality measure relative to the induced ranking.
2. Every finite set S ⊊ VG is C-colorable.
3. VG is C-colorable.

To show the above characterization, it suffices to establish the sequence of implications
(1) ⇒ (2) ⇒ (3) ⇒ (1). The implication (1) ⇒ (2) is a rather easy one and its full proof is
given below. The proofs of the implications (2) ⇒ (3) and (3) ⇒ (1) are more interesting
and we discuss their key ingredients below.

Implication (1) ⇒ (2)

Since, by hypothesis, C is a subgraph-based measure relative to the induced ranking, there
are a subgraph family F and a filtering function f such that Rank(C) = Rank(C⟨F, f⟩).
Given a finite set S ⊊ VG, we define the function pcS : S → N as follows: for every
(v, G) ∈ S, pcS(v, G) = |F(v, G)|. It is clear that pcS is a precoloring of S since, by definition,
F(v, G) ⊆ A(v, G), and thus, pcS(v, G) ∈ {0, . . . , |A(v, G)|}. It remains to show that pcS is
non-uniformly C-injective and C-consistent, which in turn implies that S is C-colorable:
Non-uniformly C-injective. Since Rank(C) = Rank(C⟨F, f⟩), for every (u1, G), (u2, G) ∈

S, it holds that C(u1, G) ̸= C(u2, G) iff C⟨F, f⟩(u1, G) ̸= C⟨F, f⟩(u2, G). Therefore,
pcS(u1, G) = |F(u1, G)| ≠ |F(u2, G)| = pcS(u2, G), and the claim follows.

C-consistent. By contradiction, assume that there are (v1, G1), (v2, G1), (u1, G2) and (u2, G2)
such that C(v1, G1) < C(v2, G1) and C(u1, G2) > C(u2, G2) but pcS(u1, G2) =
pcS(v1, G1) and pcS(v2, G1) = pcS(u2, G2). Therefore, |F(v1, G1)| = |F(u1, G2)| and
|F(v2, G1)| = |F(u2, G2)|. Consequently, using the fact that Rank(C) = Rank(C⟨F, f⟩),
C⟨F, f⟩(v1, G1) < C⟨F, f⟩(v2, G1) = C⟨F, f⟩(u2, G2) < C⟨F, f⟩(u1, G2) = C⟨F, f⟩(v1, G1),
which is clearly a contradiction, and the claim follows.

Implication (2) ⇒ (3)

The proof of this implication heavily relies on an old result that goes back in 1949 by
Rado [13] known as Rado’s Selection Principle. We write Pfin(A) for the finite powerset of
a set A, i.e., the set that collects all the finite subsets of A. Furthermore, given a function
f : A → B, we write f|C for the restriction of f to C ⊆ A.

▶ Theorem 13 (Rado’s Selection Principle). Let A and B be arbitrary sets. Assume that, for
each C ∈ Pfin(A), fC is a function C → B (a so-called “local function”). Assume further
that, for every x ∈ A, the set {fC(x) | C ∈ Pfin(A) and x ∈ C} is finite. Then, there is a
function f : A → B (a so-called “global function”) such that, for every C ∈ Pfin(A), there is
D ∈ Pfin(A) with C ⊊ D and f|C = fD |C .
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Several proofs and applications of Rado’s Theorem can be found in [10]. We proceed
to discuss how it is used to prove (2) ⇒ (3). By hypothesis, for each S ∈ Pfin(VG), there
exists a precoloring of S, i.e., a function pcS : S → N that is non-uniformly C-injective
and C-consistent. Since, for every (v, G) ∈ VG, A(v, G) is finite, we can conclude that the
following holds: for every (v, G) ∈ VG, the set {pcS(v, G) | S ∈ Pfin(VG) and (v, G) ∈ S}
is finite. This allows us to apply Theorem 13 with A = VG and B = N. Therefore, there
exists a function f : VG → N such that, for every S ∈ Pfin(VG), there exists S′ ∈ Pfin(VG)
with S ⊊ S′ and f|S = pcS′ |S . Interestingly, by exploiting the latter property of the function
f guaranteed by Theorem 13, and the fact that, for each S ∈ Pfin(VG), pcS is a precoloring
of S that is non-uniformly C-injective and C-consistent, it is not difficult to show that f is a
precoloring of VG that is non-uniformly C-injective and C-consistent, and item (3) follows.

Implication (3) ⇒ (1)

We finally discuss the proof of the last implication. The goal is to devise a subgraph family
F and a filtering function f such that Rank(C) = Rank(C⟨F, f⟩), which in turn proves item
(1). By hypothesis, there exists a precoloring pc of VG that is non-uniformly C-injective
and C-consistent. We define F in such way that, for every (v, G) ∈ VG, |F(v, G)| = pc(v, G);
note that such a subgraph family exists since pc(v, G) ∈ {0, . . . , |A(v, G)|}. Now, defining
the filtering function f is a non-trivial task. Let Rpc be the relation

{(i, j) ∈ N × N | there are (u, G), (v, G) in VG such that
C(u, G) < C(v, G), pc(u, G) = i, and pc(v, G) = j} .

The fact that pc is non-uniformly C-injective allows us to conclude that Rpc is irreflexive.
Moreover, the C-consistency of pc implies that Rpc is asymmetric. Observe now that if we
extend Rpc into a total order R⋆

pc over N, and then show that R⋆
pc can be embedded into a

carefully chosen countable subset N of R, then we obtain the desired filtering function f ,
which assigns real numbers to the sizes of the subgraph families assigned to the pairs of VG
by F as dictated by the embedding of R⋆

pc into N ⊊ R. Let us now briefly discuss how this is
done. The binary relation Rpc is first extended into the strict partial order R+

pc by simply
taking its transitive closure. Now, the fact that R+

pc can be extended into a total order R⋆
pc

over N follows by the order-extension principle (a.k.a. Szpilrajn Extension Theorem), shown
by Szpilrajn in 1930 [17], which essentially states that every partial order can be extended
into a total order. Finally, the fact that R⋆

pc can be embedded into N ⊊ R is shown via
the back-and-forth method, a technique for showing isomorphism between countably infinite
structures satisfying certain conditions.

A Bounded-Value-Like Property. An interesting question is whether we can isolate a
property in the spirit of the bounded value property (see Definition 6) that can characterize
subgraph-based measures relative to the induced ranking. Despite our efforts, we have
not managed to provide an answer to this question. On the other hand, we succeeded in
isolating a bounded-value-like property that is a necessary condition for a measure being
subgraph-based relative to the induced ranking. It is clear that the bounded value property is
not enough towards a necessary condition since, as discussed in Section 3, there is a measure
(see the one devised in the proof of Proposition 4) that is not subgraph-based, which means
that it does not enjoy the bounded value property, but it is subgraph-based relative to the
induced ranking. On the other hand, to our surprise, a non-uniform version of the bounded
value property leads to the desired necessary condition. Let us make this more precise. The
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ranking induced by a measure C compares only the values of vertices of the same graph; a
pair ((u, G), (v, G′)), where G ̸= G′, will never appear in Rank(C). This led us to conjecture
that for characterizing subgraph-based measures relative to the induced ranking, it suffices
to bound the number of different values that can be assigned among vertices inside the same
graph that are surrounded by a limited number of connected subgraphs. This leads to the
non-uniform version of the bounded value property:

▶ Definition 14 (Non-Uniform Bounded Value Property). A measure C enjoys the non-uniform
bounded value property if, for every n > 0 and G ∈ G, |ValnG(C)| ≤ n + 1. ⌟

We can then show the following implication:

▶ Proposition 15. Consider a centrality measure C. If there exists a precoloring of VG that
is non-uniformly C-injective, then C enjoys the non-uniform bounded value property.

Proof. Let pc be the non-uniform C-injective precoloring of VG, which exists by hypothesis.
Consider an arbitrary graph G and an integer n > 0. We define the set

Sn = {pc(v, G) | |A(v, G)| ≤ n}.

In simple words, Sn collects all the colors assigned by pc to vertices with at most n connected
subgraphs surrounding them. We then have that |ValnG(C)| ≤ |Sn| since pc is non-uniformly
C-injective. Since pc is a precoloring, Sn ⊆ {0, . . . , n}, and thus, |Sn| ≤ n + 1. This in turn
implies that |ValnG(C)| ≤ n + 1, and the claim follows. ◀

By combining Theorem 12 and Proposition 15, we get the following corollary, which
states that the non-uniform bounded value property leads to the desired necessary condition:

▶ Corollary 16. If a centrality measure is a subgraph-based measure relative to the induced
ranking, then it enjoys the non-uniform bounded value property.

The question whether the non-uniform bounded value property is also a sufficient condition
is negatively settled by the next result:

▶ Proposition 17. There exists a centrality measure that is not a subgraph-based measure
relative to the induced ranking, but it enjoys the non-uniform bounded value property.

Let us stress that Corollary 16 equips us with a convenient tool for showing that a measure
C is not a subgraph-based measure relative to the induced ranking: it suffices to show that
there is n > 0 and a graph G such that |ValnG(C)| > n + 1. In the case of closeness, we can
show that there exists a graph G such that |Val5G(Closeness)| > 6, which in turn implies that:

▶ Proposition 18. Closeness is not a subgraph-based measure relative to the induced ranking.

More inexpressibility results of the above form concerning established centrality measures
are presented and discussed in Section 7.

Connected Graphs. The proof of Proposition 8 establishes that Closeness is not a subgraph-
based measure even if we concentrate on connected graphs. On the other hand, the proof of
Proposition 18 heavily relies on the fact that the employed graphs are not connected. This
observation led us ask ourselves whether Closeness is a subgraph-based measure relative to
the induced ranking if we consider only connected graphs. It turned out that, for connected
graphs, not only Closeness, but every measure is subgraph-based relative to the induced
ranking. We proceed to formalize this discussion.
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Let VCG = {(v, G) ∈ VG | G is connected}. For an arbitrary centrality measure C, its
version that operates only on connected graphs is defined as the function ConC : VCG → R
such that, for every (v, G) ∈ VCG, C(v, G) = ConC(v, G), i.e., it is the restriction of C over
VCG. We then say that ConC is a subgraph-based measure (resp., subgraph-based measure
relative to the induced ranking) if there exist a subgraph family F and a filtering function f

such that ConC = ConC⟨F, f⟩ (resp., Rank(C) ∩ VCG2 = Rank(C⟨F, f⟩) ∩ VCG2). We can
then establish the following result:

▶ Theorem 19. Consider a centrality measure C. It holds that ConC is a subgraph-based
measure relative to the induced ranking.

Proof. We are going to define a subgraph family F and a filtering function f such that
Rank(C) ∩ VCG2 = Rank(C⟨F, f⟩) ∩ VCG2, which in turn implies that ConC is a subgraph-
based measure relative to the induced ranking, as needed. Consider an arbitrary connected
graph G. We first observe that, for every v ∈ V (G), it holds that |A(v, G)| ≥ |V (G)| since
every path from v to any other vertex in G is a connected subgraph containing v. We then
define the equivalence relation ≡G over V (G) as follows: v ≡G u if C(v, G) = C(u, G). Let
V (G)/≡G

= {C1, . . . , Cm} be the equivalence classes of ≡G. We can assume, without loss
of generality, that, for every i, j ∈ [m], with Ci = [v]≡G

and Cj = [u]≡G
, i < j implies

C(v, G) < C(u, G). We then define the subgraph family F in such a way that, for every vertex
v ∈ V (G), |F(v, G)| = i − 1 if [v]≡G

= Ci.3 Note that such a subgraph family F always
exists since, as discussed above, |A(v, G)| ≥ |V (G)|, but we have that |V (G)/≡G

| ≤ |V (G)|.
Note also that we can ensure that F is closed under isomorphism by using the same idea
as in the proof of Theorem 7. Finally, we define the filtering function f in such a way
that, for every i ∈ {0, . . . , m − 1}, f(i) = i + 1. It is now not difficult to verify that indeed
Rank(C) ∩ VCG2 = Rank(C⟨F, f⟩) ∩ VCG2, and the claim follows. ◀

As discussed above, ConCloseness is not a subgraph-based measure (this is implicit in the
proof of Proposition 8), whereas ConCloseness is a subgraph-based measure relative to the
induced ranking (follows from Theorem 19). This reveals a striking difference between the
two notions of expressiveness, that is, being subgraph-based or being subgraph-based realtive
to the induced ranking, when focussing on connected graphs.

We conclude this section by stressing that Theorem 19 provides a unifying framework
for all centrality measures in a practically relevant setting: connected graphs and induced
ranking. Indeed, graphs in real-life scenarios, although might be non-connected, they typically
consists of one dominant connected component and several small components that are usually
neglected as, by default, the most important vertex appears in the dominant component.
Moreover, in real-life graph-based applications, we are typically interested in the induced
ranking rather than the absolute centrality values assigned to vertices.

6 Monotonic Filtering Functions

Until now, we considered arbitrary filtering functions without any restrictions. On the
other hand, the filtering functions f×2 and log2 used to express Stress and All-Subgraphs,
respectively, as subgraph-based measures are monotonic; formally, a filtering function f is
monotonic if, for all x, y ∈ N, x ≤ y implies f(x) ≤ f(y). It is natural to ask Questions I and

3 Note that for pairs (u, G′), where G′ is a non-connected graph, we can simply define F(u, G′) as the
empty set since it is irrelevant what F does over non-connected graphs.
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II for monotonic subgraph-based centrality measures, i.e., subgraph-based centrality measures
C⟨F, f⟩ where f is monotonic. Needless to say, one can study a plethora of different families
of subgraph-based centrality measures that use filtering functions with certain properties
(e.g., linear functions, logarithmic functions, etc.). However, such a thorough analysis is
beyond the scope of this work, and it remains the subject of future research.

Monotonic Subgraph-based Measures. We first give a result analogous to Proposition 4,
showing that not all subgraph-based measures are monotonic, and thus, the bounded value
property is not the answer to Question I in the case of monotonic subgraph-based measures.

▶ Proposition 20. There is a subgraph-based centrality measure that is not monotonic.

Proof. Let G1 be the graph with just one isolated node ({v1}, ∅), and G2 be the graph
({v1, v2, v3}, {{v2, v3}}). Consider the (partial) function C : VG → R defined as follows:

C(v, G) =


1 G = G2 and v ∈ {v2, v3}
2 G = G2 and v = v1

3 G = G1 and v = v1.

It is easy to see that C can be extended to a proper centrality measure Ĉ: for every pair
(u, G′) ∈ VG such that (v, G) ≃ (u, G′), where (v, G) ∈ {(v1, G1), (v1, G2), (v2, G2), (v3, G2)},
let Ĉ(u, G′) = C(v, G), and in any other case let Ĉ(u, G′) = 1. We first show that Ĉ is a
subgraph-based measure. Notice that, for every vertex v ∈ V, Ĉ(v, Gv) = C(v1, G1) = 3.
Hence, we have only two options concerning the set of connected subgraphs assigned to the
vertices of G2 by a subgraph family, and the filtering function, which are the following: with
Guv being the single-edge graph ({u, v}, {{u, v}}), either

F1(v, G) =


∅ v = v1 and G = G1

{Gv1} v = v1 and G = G2

{Gv2 , Gv2v3} v = v2 and G = G2

{Gv3 , Gv2v3} v = v3 and G = G2

with f1(0) = 3, f1(1) = 2 and f1(2) = 1, or

F2(v, G) =


{Gv1} v = v1 and G = G1

∅ v = v1 and G = G2

{Gv2 , Gv2v3} v = v2 and G = G2

{Gv3 , Gv2v3} v = v3 and G = G2

with f2(0) = 2, f2(1) = 3 and f2(2) = 1. We can now extend F1 and F2 into subgraph families
that are closed under isomorphism as follows: for every (u, G′) ∈ VG with (v, G) ≃ (u, G′),
if (v, G) ∈ {(v1, G1), (v1, G2), (v2, G2), (v3, G2)}, then F1(v, G) ≃ F1(u, G′) and F2(v, G) ≃
F2(u, G′), otherwise, F1(u, G′) = ∅ and F2(u, G′) = {Gu}. It is clear that Ĉ = C⟨F1, f1⟩ =
C⟨F2, f2⟩. Observe, however, that both f1 and f2 are not monotonic functions. ◀

The proof of Proposition 20 essentially tells us that the key reason why the subgraph-based
measure Ĉ is not monotonic is because the maximum centrality value is assigned to a vertex
surrounded by few connected subgraphs. To formalize this intuition, we first collect all the
different values x assigned by a measure C to the vertices of a graph G that are surrounded by
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“too many” connected subgraphs such that x does not exceed the maximum value assigned
by C to the vertices of G surrounded by “too few” connected subgraphs. More precisely, for
an integer n > 0, we define the set of values

BValnG(C) =
{

x ∈
⋃

m>0
ValmG (C) | x ̸∈ ValnG(C) and x < max ValnG(C)

}
.

We then define the set of values

BValn(C) =
⋃

G∈G

BValnG(C).

We can now define a refined version of the bounded value property, which provides a better
upper bound for |Valn(C)|:

▶ Definition 21 (Monotonic Bounded Value Property). A centrality measure C enjoys the
monotonic bounded value property if, for every n > 0, |Valn(C)| ≤ n + 1 − |BValn(C)|. ⌟

It is not difficult to see that the measure C devised in the proof of Proposition 20 does
not enjoy the monotonic bounded value property. Indeed, Val1(C) = {1, 3} and BVal1 = {2},
and thus, |Val1(C)| = 2 > 1. The above refinement of the bounded value property is all we
need to get a precise characterization of monotonic subgraph-based measures; hence the
name “monotonic bounded balue property”.

▶ Theorem 22. Consider a centrality measure C. The following statements are equivalent:
1. C is a monotonic subgraph-based centrality measure.
2. C enjoys the monotonic bounded value property.

Induced Ranking. Concerning the expressiveness of monotonic subgraph-based centrality
measures relative to the induced ranking, we can show that the non-uniform version of the
monotonic bounded value property provides a precise characterization.

▶ Definition 23 (Non-Uniform Monotonic Bounded Value Property). A centrality measure C
enjoys the non-uniform monotonic bounded value property if, for every integer n > 0 and
graph G ∈ G, it holds that |ValnG(C)| ≤ n + 1 − |BValnG(C)|. ⌟

We can then establish the following characterization that is in striking difference with
Theorem 12, which shows that the non-uniform bounded value property is only a necessary
condition (but not a sufficient condition) for a centrality measure being subgraph-based
relative to the induced ranking.

▶ Theorem 24. Consider a centrality measure C. The following statements are equivalent:
1. C is a monotonic subgraph-based centrality measure relative to the induced ranking.
2. C enjoys the non-uniform monotonic bounded value property.

Connected Graphs. Recall that the family of subgraph-based measures relative to the
induced ranking provides a unifying framework for all centrality measures whenever we
concentrate on connected graphs (see Theorem 19). Interestingly, a careful inspection of the
proof of Theorem 19 reveals that this holds even for the family of monotonic subgraph-based
measures relative to the induced ranking.

▶ Theorem 25. Consider a centrality measure C. It holds that ConC is a monotonic
subgraph-based measure relative to the induced ranking.
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Table 1 Subgraph-based Measures.

Measure Absolute Values Induced Ranking
Stress ✓ ✓

All-Subgraphs ✓ ✓
Degree ✓ ✓

Cross-Clique ✓ ✓
Closeness ×[trees] × and ✓[con]
Harmonic ×[trees] × and ✓[con]
PageRank ×[trees] × and ✓[con]

Eigenvector ×[trees] ? and ✓[con]
Betweenness ? and ✓[trees] ? and ✓[con]

Table 2 Monotonic Subgraph-based Measures.

Measure Absolute Values Induced Ranking
⋆ as in Table 1 as in Table 1

Betweenness ×[con] and ✓[trees] × and ✓[con]

7 Classification

We proceed to determine whether existing measures belong to the family of (monotonic)
subgraph-based measures (relative to the induced ranking) by exploiting the technical tools
provided by the results of the previous sections. Such a classification, apart from being
interesting in its own right, will provide insights on the structural similarities and differences
among existing centrality measures. To this end, we focus on established measures from the
literature and provide a rather complete classification depicted in Tables 1 and 2; due to space
constraints, the formal definitions of the considered measures are omitted. The second (resp.,
third) column determines whether the measure C stated in the first column is subgraph-based
(resp., subgraph-based relative to the induced ranking); ✓ means that it is, × means that it
is not, ×[trees] means that it is not even for trees, ✓[con] means that it is over connected
graphs, ✓[trees] means that it is over trees, and ? means that it is open. Concerning Table 2,
⋆ refers to any measure considered in Table 1 apart from Betweenness, and ×[con] means
that the respective measure (i.e., Betweenness) is not monotonic subgraph-based even for
connected graphs. Note that Table 2 is identical to Table 1, apart from Betweenness, which
is provably not monotonic subgraph-based (relative to the induced ranking).

We would like to remark that the result ✓[con] for Eigenvector in both tables holds for a
broader class of graphs than connected graphs. Moreover, we can show that Betweenness is a
(monotonic) subgraph-based measure (relative to the induced ranking) for a class of graphs
that captures the class of trees and is incomparable to the class of connected graphs. For the
sake of readability, we state our expressibility results only for trees and connected graphs.

Take-home Messages. We highlight the key take-home messages of the above classification,
which we believe provide further insights concerning the centrality measures in question:
1. If we focus on the induced ranking rather than the absolute values over connected graphs,

then the family of monotonic subgraph-based measures should be understood as a unifying
framework that incorporates every other measure.

2. Our classification excludes a priori the adoption of certain centrality measures (e.g.,
Closeness, Harmonic, etc.) in applications where the importance of a vertex should be
measured based on the connected subgraphs surrounding it.
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3. Betweenness, which computes the percentage of the shortest paths in a graph going through
a vertex, is of different nature compared to all the other measures. Notably, although
it looks similar to Stress, it behaves in a significantly different way. The relationship of
Betweenness with (monotonic) subgraph-based measures deserves further investigation.

4. There is a notable difference between the two feedback measures considered in our
classification, namely PageRank and Eigenvector, that deserves further exploration. As
mentioned above, Eigenvector is a (monotonic) subgraph-based measure relative to the
induced ranking over a broader class C of graphs than connected graphs, whereas PageRank
is provable not a subgraph-based measure over the class C.

A Note on Directed Graphs. As discussed in the clarification remark at the end of the
Introduction, although our analysis (including the classification of this section) focused on
undirected graphs, all the notions and results can be transferred to directed graphs under
the notion of weak connectedness. The only exception is the negative result ×[trees] for
Eigenvector in Tables 1 and 2. Although we can show that for directed graphs, Eigenvector is
not a (monotonic) subgraph-based centrality measure, it remains open whether this holds
even for directed trees (i.e., directed graphs whose underlying undirected graph is a tree).

8 Conclusions

We have provided a rather complete picture concerning the absolute expressiveness of the
family of (monotonic) subgraph-based centrality measures (relative to the induced ranking)
by establishing precise characterizations. We have also presented a detailed classification of
standard centrality measures by using the tools provided by the aforementioned characteriza-
tions. Although our development focused on undirected graphs, all the notions and results
can be transferred to directed graphs under the standard notion of weak connectedness.

We would like to stress that the machinery on graph colorings, introduced in Section 5,
can be used to provide characterizations for all the families considered in the paper, and not
only for the family of subgraph-based measures relative to the induced ranking. For example,
we can show that a measure C is subgraph-based iff there exists a precoloring of VG that is
uniformly C-injective; the latter is defined as non-uniform C-injectivity with the difference
that C-injectivity is enforced across all the graphs (not only inside a certain graph).

The obvious question that remains open is whether we can isolate a bounded-value-like
property that characterizes subgraph-based measures relative to the induced ranking. We
believe that our coloring-based characterization (Theorem 24) is a useful tool towards such a
bounded-value-like characterization. Finally, towards a deeper understanding of subgraph-
based measures, one should perform a more refined analysis by focussing on restricted classes
of subgraph families and filtering functions that enjoy desirable structural properties.
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