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Abstract
Assume there is a data stream of elements and a window of size m. Sliding window algorithms
compute various statistic functions over the last m elements of the data stream seen so far. The
time complexity of a sliding window algorithm is measured as the time required to output an
updated statistic function value every time a new element is read. For example, it is well known that
computing the sliding window maximum/minimum has time complexity O(1) while computing the
sliding window median has time complexity O(log m). In this paper we close the gap between these
two cases by (1) presenting an algorithm for computing the sliding window k-th smallest element in
O(log k) time and (2) prove that this time complexity is optimal.
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1 Introduction

Selection and sliding window algorithms are considered to be among the classical computer
science algorithms with numerous applications [7]. In this paper we consider the overlap
between these two areas: what is the optimal sliding window algorithm for selecting the k-th
smallest element? The sliding window average, median, minimum, and maximum algorithms
have been well studied and have become a part of folklore. It is well known that for a data
stream of elements and a window of size m, one can compute the sliding window average,
minimum, and maximum in O(1) time each time the sliding window moves [9, 25]. The
situation is different for the median – the best possible algorithm can only compute the sliding
window median in O(log m) time [11, 14, 24]. Motivated by the gap between the median and
other order statistics algorithms, we study the sliding window algorithms for selecting the
k-th smallest element for arbitrary k. In this paper we present the first algorithm computing
the sliding window k-th smallest element in time O(log k) while using only O(m) of memory
storage. We also present a lower bound showing that this algorithm has the optimal running
time complexity.

1.1 Prior Work
Algorithms for computing various statistics over a data stream play an important role in
computer science and database processing in particular [4]. One can roughly divide these
algorithms into two groups: exact and approximate ones. The research in the area of the
approximate algorithms focuses on the problem where the whole data stream (or the sliding
window) cannot fit into the memory and hence one seeks for a tradeoff between how much of
the data need to be stored additionally while reading the input stream a limited number of
times vs how accurate the output computed statistics can be [2, 3, 5, 8, 12, 18].
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5:2 An Optimal Algorithm for Sliding Window Order Statistics

The exact algorithms can be further subdivided into those who operate on the whole
input set and on the sliding window only. Once it was shown that the selection algorithms
can be linear [6], the research in the area of the exact algorithms that work with the whole
input set focused on algorithms minimizing the overall number of basic operations [22] and
the algorithms performing well in practice [1]. There is also a corpus of the exact algorithms
that do not only compute a statistical function over a fixed data set but also support range
queries over it [17, 27].

The exact algorithms working with the sliding window include algorithms for standard
aggregation functions like maximum, minimum, average, sum, count [9, 19, 26] and their
monoid-compatible extensions [25]. The exact algorithms for computing quantiles over the
sliding window are limited to the median filtering algorithms [14, 24]. These algorithms
produce their output over the sliding window by maintaining a data structure holding the
elements of the window and updating it accordingly whenever the window moves. Depending
on the aggregation function all the known exact sliding window algorithms can update the
sliding window in constant, logarithmic, or linear time in terms of the sliding window size.

This paper considers the latter model where the aggregation function outputs the k-th
smallest element. For a window of size m and the order statistic k, we present an algorithm
that requires O(m) memory to store the elements of the sliding window and can make updates
to it in O(log k) time whenever the sliding window moves.

2 Notation and Tools

We define a sliding window algorithm as an algorithm that exposes a single interface
update-window reading a new data stream element v and outputting a statistic function over
the last m elements read. If fewer than m elements have been read so far, the output is not
defined. The time complexity of the algorithm is defined as the time complexity of a single
invocation of update-window. The space complexity of the algorithm is defined as the amount
of storage the algorithm utilises.

In the context of this paper we consider the sliding window algorithms that compute the
k-th smallest element of the sliding window:

▶ Definition 1. We say that a sliding window algorithm parameterised with integers k and m

computes the sliding window k-smallest element if update-window returns the k-th smallest
element among the last m elements read by the algorithm.

The smallest element is indexed starting with 1, i.e., the 1-st smallest element corresponds
to the window minimum, while the m-th smallest element corresponds to the window maximum.

We will also assume that k ≤ m/2 everywhere. To derive the same results for k > m/2,
one needs to update all the algorithms to use a reverse order on the elements and output the
(m − k + 1)-th smallest element.

Without loss of generality, we assume that the input data stream has unique elements
only.1 The easiest approach to achieve this is to enumerate each new data stream value v

with an increasing index i and then operate on the tuples (i, v) instead of the values only.
Then, we can compare the tuples in the natural way by first looking at their values, and if
they are the same, break the ties using the index entry. In the end, when producing the
output one needs to drop the index entry of the tuples and output the value only.

1 We use this assumption to simplify the machinery around the binary search trees which do not have a
canonical multiset support. We believe that this requirement can be dropped at an expense of a more
sophisticated analysis of handling the duplicate elements.
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We employ a standard notion of arrays. Given an array a, we refer to an individual
element in the array at index i by writing a[i]; we start array indexing with 0 by default.
We write a[i, j] to denote the range of array elements a[i], a[i + 1], . . . , a[j]. If j < i, then
the expression a[i, j] returns the empty set. Let k-smallest-set(a[i, j]) denote the set of the k

smallest elements in a[i, j].
We assume there exists an implementation of AWBBS (augmented weight-balanced binary

search) trees [20](e.g., based on red-black trees where each node is additionally augmented
with the size of its subtree) that supports execution of the following operations on a tree
with n elements in O(log n) time:

add: adds an element to the tree;
remove: removes an element from the tree;
max: outputs the maximum element of the tree;
size: outputs the size of the tree;
find-rank-one-tree: outputs an element of the tree with the given rank.

We also assume that the tree can be implemented using O(n) space to store n elements.
Given several separate trees we define the k-th smallest element between them to be the

k-th smallest element among all the elements of the trees. Given three AWBBS trees of size
at most n we assume that there is a function computing the k-th smallest element between
them in time O(log n). An example implementation of such a function find-rank-three-trees
is given in Section A.

3 The Algorithm

3.1 Overview
The first trivial approach for the k-th smallest element sliding window algorithm is to
maintain an AWBBS tree with m elements of the sliding window. Then, at each invocation of
update-window we just execute add for the newly added element, call remove on the element
that falls outside of the sliding window, and then search for the element with rank k in the
tree by invoking find-rank-one-tree. The issue with this algorithm is that each operation takes
time proportional to the size of the sliding window O(log m) and we would like to design a
faster algorithm.

The first refinement of the trivial approach is to limit the size of the AWBBS tree by
storing only the k smallest elements of the sliding window in it. This will bring down
the complexity of the elementary operations from O(log m) to O(log k) but it is not clear
how to implement this approach. In particular, while adding a new element to such a tree
is straightforward (we add a new element and then remove the maximum if the tree size
exceeds k), removal of the elements that fall outside of the sliding window is not clear. If
the removed element is one of the k smallest elements we need to find the smallest element
outside of the maintained tree that now needs to be added to it. This seems to require
sorting the elements of the sliding window which again incurs O(log m) costs.

The second refinement is based on the following idea: while it does not seem to be possible
to maintain a single AWBBS tree with the k smallest elements of the sliding window, we can
split the sliding window into separate blocks and maintain a separate AWBBS tree with the
k smallest elements of each block and not the whole sliding window. Then, finding the k-th
smallest element of the sliding window now requires searching for an element with rank k in
multiple AWBBS trees which still can be done in O(log k) time (see Section A for an example
of such an algorithm). Note that the “maintenance burden” of keeping the AWBBS tree
with the k smallest window elements is now distributed among multiple blocks. In particular,
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5:4 An Optimal Algorithm for Sliding Window Order Statistics

one of the blocks will receive a new data stream element, while another one has the element
falling outside of the sliding window and has to deal with its deletion. The trick is that while
the window slides we will have enough time to prepare each block for deletions so that they
also will incur only O(log k) costs once the deletion happens.

3.2 Description
We assume that the input data stream is split into consecutive blocks of size m/2.2 At any
moment of time the sliding window W spans over three consecutive blocks Bleft, Bmiddle and
Bright as shown in the picture:

BmiddleBleft Bright

WmiddleWleft Wright

. . .. . .

Figure 1 Sliding window spanning over Bleft, Bmiddle, Bright.

The sliding window then consists of the following three parts: Wleft intersecting with Bleft,
Wmiddle equals to Bmiddle, and Wright intersecting with Bright.3 The proposed algorithm main-
tains AWBBS trees Tleft, Tmiddle, and Tright with the k smallest elements of the Wleft, Wmiddle,
and Wright parts, respectively. Computing the k-th smallest element of the sliding window
is done by calling function find-rank-three-trees (see Section A for its description) over Tleft,
Tmiddle, and Tright.

The maintenance of the trees is done separately for each of the trees. Tright is maintained
in a straightforward way as we have already noticed before: we add a new element to it and
then remove the maximum if the size of Tright exceeds k. Nothing is done for maintaing
Tmiddle: it is just assigned to Tright every m/2 steps. The core of the algorithm lies in
preparing a data for maintaining Tleft. This data is computed based on Bmiddle and then used
for maintaining Tleft once the window slides to a point of time when the elements of Bmiddle
become Bleft. We prepare a data structure which allows us to move from a tree containing
k-smallest-set(Bmiddle[0, m/2−1]) to a tree containing k-smallest-set(Bmiddle[1, m/2−1]) (then
to a tree containing k-smallest-set(Bmiddle[2, m/2−1]) and so on). The difficulty is that while
we know that we need to remove Bmiddle[0] from the k-smallest-set(Bmiddle[0, m/2 − 1]) , we
do not know which element should be added back to it if Bmiddle[0] was one of the k smallest
elements. We solve this by first learning how to construct k-smallest-set(Bmiddle[0, m/2 − 1])
from k-smallest-set(Bmiddle[1, m/2−1]). This can be done by the same procedure we described
for Tright: first add Bmiddle[0] to k-smallest-set(Bmiddle[1, m/2 − 1]) and then remove the
maximum from this set if its size exceeds k. The key observation is that while doing this we
can record the maximum max that was removed. This allows us to “revert” the process in
order to obtain k-smallest-set(Bmiddle[1, m/2−1]) from k-smallest-set(Bmiddle[0, m/2−1]): we
add this max and then remove Bmiddle[0]. Now we record these max’s during the preparation
phase. The preparation costs are also distributed across the iterations so that the total
complexity stays at O(log k) per invocation of update-window. The maintenance of Tleft is
now done based on the max array computed when Bleft was Bmiddle: we add the stored max
element and remove the element falling outside the window from Tleft.

2 Here and everywhere through paper we assume that m is even to simplify the notation. If m is odd one
needs to update all the places where m/2 is used with ⌊m/2⌋ or ⌈m/2⌉ accordingly.

3 We use a convention that if W is shifted by a multiple of m/2 then Wleft is empty while Wright = Bright.
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Algorithm 1 The sliding window k-th smallest element algorithm.
Input: integers k, m

1: Initialize Tleft, Tmiddle, Tright, and Ttemp as empty AWBBS trees.
2: Initialize incoming elements counter j as 0.
3: Initialize Bleft, Bmiddle, Bright as arrays of size m/2.
4: Initialize max and maxtemp as arrays of size m/2 − k.
5: procedure update-window(v)
6: ▷ General updates:
7: shift := j mod m/2
8: j := j + 1
9: if shift = 0 then

10: max := maxtemp
11: Tleft := Tmiddle
12: Tmiddle := Tright
13: Bleft := Bmiddle
14: Bmiddle := Bright
15: Set Tright and Ttemp to empty tree and Bright to a new array of size m/2
16: end if
17: Bright[shift] := v

18:
19: ▷ Maintaining Tright:
20: add(Tright, v)
21: if size(Tright) > k then
22: remove(Tright, max(Tright))
23: end if
24:
25: ▷ Preparing Bmiddle:
26: if j > m/2 then
27: add(Ttemp, Bmiddle[m/2 − 1 − shift])
28: if shift ≥ k then
29: maxtemp[m/2 − 1 − shift] := max(Ttemp)
30: remove(Ttemp, maxtemp[m/2 − 1 − shift])
31: end if
32: end if
33:
34: ▷ Maintaining Tleft:
35: if j > m then
36: if shift ≤ m/2 − k − 1 then
37: add(Tleft, max[shift])
38: end if
39: remove(Tleft, Bleft[shift])
40: end if
41:
42: ▷ Producing the output (if j ≥ m)
43: Output find-rank-three-trees(Tleft, Tmiddle, Tright, k)
44: end procedure
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5:6 An Optimal Algorithm for Sliding Window Order Statistics

▶ Theorem 2. Algorithm 1 computes the sliding window k-th smallest element with time
complexity O(log k) and space complexity O(m).

Proof. The algorithm splits the update-window method into four logical parts:
(lines 6–17) The general part responsible for keeping the counters and proper wiring of
the left,middle,right parts whenever we reach a block’s boundary (when the shift variable
is 0).
(lines 19–23) The Tright maintenance part.
(lines 25–32) The Bmiddle preparation part.
(lines 34–40) The Tleft maintenance part.

The proof will show that at each iteration Tleft, Tmiddle, and Tright indeed contain the k

smallest elements of the corresponding window parts.

Correctness. We start by proving three lemmata about the state of Tleft, Tmiddle, and Tright
in the update-window method.

▶ Lemma 3. In the end of the method update-window at line 43 Tright contains only
k-smallest-set(Bright[0, shift]).

Proof. Consider an iteration where the right part of the sliding window is Bright[0, shift].
By construction we consecutively added elements Bright[0], Bright[1], . . . , Bright[shift] to Tright.
Whenever the size of Tright grew bigger than k (line 21), we removed the largest ele-
ment of Tright (line 22) to bring the size of Tright back to k. Hence Tright contains only
k-smallest-set(Bright[0, shift]). ◀

▶ Lemma 4. If j > m/2, in the end of the method update-window at line 43 Tmiddle contains
only k-smallest-set(Bmiddle[0, m/2 − 1]).

Proof. Note that Tmiddle only changes at line 12 whenever the next m/2 elements have been
consumed and shift equals to 0. Because of Lemma 3, we know that at such an iteration
Tright contains only k-smallest-set(Bright[0, m/2 − 1]). Since Tmiddle is assigned to Tright at
line 12 and Bmiddle is assigned to Bright at line 14, we conclude that Tmiddle always contains
only k-smallest-set(Bmiddle[0, m/2 − 1]). ◀

▶ Lemma 5. If j > m, in the end of the method update-window at line 43 Tleft contains only
k-smallest-set(Bleft[shift + 1, m/2 − 1]) if shift < m/2 − 1 and is empty if shift is m/2 − 1.

Proof. We start by proving a slightly different statement that at line 36 Tleft contains
only k-smallest-set(Bleft[shift, m/2 − 1]). We prove this by induction on the shift variable.
The base case of shift = 0 holds by construction since in this case Tleft has just been
assigned to Tmiddle, while Bleft has been assigned to Bmiddle. Because of Lemma 4 it holds
that Tmiddle contains only k-smallest-set(Bmiddle[0, m/2 − 1]), and hence Tleft contains only
k-smallest-set(Bleft[0, m/2 − 1]) at line 36 when shift is 0. Assume now this holds for some
shift = t and we need to prove it for shift = t + 1. By the preparation phase at lines 25–
32 max[t] is the maximum element of k-smallest-set(Bleft[t + 1, m/2 − 1]) with the added
Bleft[t]. Hence, adding max[t] to k-smallest-set(Bleft[t, m/2 − 1]) and removing Bleft[t] results
in k-smallest-set(Bleft[t + 1, m/2 − 1]) which becomes the new value of Tleft after line 40 is
completed. Finally, we observe that whenever shift becomes strictly bigger than m/2 − k − 1
then the size of the left part of the window becomes ≤ k and it is sufficient to always remove
Bleft[shift] from Tleft in this part of the maintenance phase so that Tleft always contains
k-smallest-set(Bleft[shift, m/2 − 1]).
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The main lemma statement follows from observing that if at line 36 Tleft contains only
k-smallest-set(Bleft[shift, m/2 − 1]), then at line 43 Tleft must contain only
k-smallest-set(Bleft[shift + 1, m/2 − 1]) for shift values < m/2 − 1 while for shift = m/2 − 1
the tree Tleft is empty. ◀

Now we have that Tleft consists of the k smallest elements of Bleft[shift + 1, m/2 − 1],
Tmiddle consists of the k smallest elements of Bmiddle[0, m/2 − 1], and Tright consists of the
k smallest elements of Bright[0, shift]. Since find-rank-three-trees is correct we have that
find-rank-three-trees will output a correct k-th smallest element of Tleft, Tmiddle and Tright
every time line 43 is executed.

Complexity analysis. In update-window we invoke max at most two times (lines 22, 29),
add at most three times (lines 20, 27, 37), and remove at most three times (lines 22, 30, 39).
While these operations take O(log k) time, all other operations are elementary (like assigning
variables and objects) and take O(1) time. Also, the specialized operation find-rank-three-
trees takes O(log k) time (see Theorem 11). Hence, the time complexity of update-window is
O(log k).

The space complexity is O(m) since we have used O(k) memory for the trees Tleft,
Tmiddle, Tright, Ttemp; and O(m) memory for storing the window parts Bleft, Bmiddle, Bright
and auxiliary arrays max and maxtemp.

We also note that array assigning operations among Bleft, Bmiddle and Bright can take
Ω(m) time if implemented naively. Instead, whenever we assign arrays to each other we
assign their pointers in O(1) time and do not copy the array contents. Furthermore, we do
not need to allocate a new memory for Bright at line 15 – instead, it is sufficient to assign
its pointer to the contents of Bleft which become unused otherwise. With this approach all
array allocations happen once at lines 3 and 4 only. ◀

3.3 Discussing the Preparation Phase
Essentially, the preparation phase allows us to create a directly accessible view of every
k-smallest-set(Bmiddle[i, m/2−1]) for i = 0, 1, . . . , m−1. First of all, we could have simplified
the algorithm by running all the preparation steps at once whenever Bmiddle becomes available
and extract this functionality as a separate method. While the amortised time complexity
of the algorithm would not change in this case, the worst case complexity would become
O(m log k) instead of O(log k) which is undesirable. Second, instead of building an ad-hoc
algorithm computing max array used for “reverting” operations on AWBBS trees, we could
have tried using the standard approach for persistent data structures [10] to build the
sequence of AWBBS trees [21, 13, 23]. However, as explained in [17] such a generic approach
would require copying the tree paths each time add/remove operation is invoked. This would
lead to the suboptimal O(m log k) space complexity of the algorithm.

4 Lower Bounds

In order to prove lower bounds on the time complexity for the sliding window k-smallest
element algorithms we give a reduction from them to sorting algorithms. Then, based on the
well-known lower bounds for sorting algorithms we establish the lower bounds for the sliding
window k-smallest element algorithms.

We give a reduction from computing the sliding window k-th smallest element to piecewise
sorting. As opposed to the classical sorting piecewise sorting only sorts contiguous blocks of
the input array without ensuring any order between the elements from different blocks. In
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5:8 An Optimal Algorithm for Sliding Window Order Statistics

order to sort each contiguous block of size k of an input array we will run a sliding window
k-smallest element algorithm on this array with the caveat that when comparing elements
from blocks i and j we use a custom comparison operator ensuring that all elements from
block i are smaller than the elements from block j for i < j.

We note that our reduction is similar to the reductions that are used to prove the lower
bounds on the sliding window median algorithms [11, 14, 17, 24]. While all these papers
also present a reduction to sorting, the main difference to the reduction presented below is
that all the previous reductions could only be adapted to work in a setting where k is Θ(m)
(k = m/2 is a concrete case of the median considered there), whereas the reduction presented
in this paper works for arbitrary k ≤ m/2.

▶ Definition 6. An array a is k-piecewise sorted if each contiguous k-size block a[k · i, k ·
(i + 1) − 1] is sorted.

An algorithm that takes an input array a and outputs array x which is k-piecewise sorted
and each contiguous k-size block x[k · i, k · (i + 1) − 1] is a permutation of a[k · i, k · (i + 1) − 1]
is called a k-piecewise sorting algorithm.

Algorithm 2 A reduction from sliding window k-smallest element to k-piecewise sorting.
Input: array of n elements a[0], a[1], . . . , a[n − 1]
Output: array of n elements x[0], x[1], . . . , x[n − 1] where each consecutive k size block
x[k · i, k · (i + 1) − 1] is sorted and is a permutation of a[k · i, k · (i + 1) − 1].

1: Consider array s of n + m − 1 elements where
(k − 1 prefix elements) s[i] := (−∞, −∞) for i = −1, −2, . . . , −k + 1;
(n main elements) s[i] := (⌊i/k⌋, a[i]) for i = 0, 1, . . . , n − 1;
(m − k suffix elements) s[i] := (+∞, +∞) for i = n, n + 1, . . . , n + m − k − 1.

2: Define comparison operator on tuples in s as: (i, v) < (j, u) if (i < j) or (i = j and
v < u).

3: Invoke a sliding window k-th smallest algorithm on array s (by feeding s[−k + 1], s[−k +
2], . . . , s[n + m − k − 1] one by one to its update-window interface). Denote the produced
output as y[0], y[1], . . . , y[n − 1].

4: Let x[i] be the second tuple entry of y[i] for i = 0, 1, . . . , n − 1. Output array x.

▶ Lemma 7. In the regime where m ≥ 2k, Algorithm 2 sorts each consecutive block of size
k of the input array in time (n + m − 1) · f(m, k) + O(n + m) where f(m, k) is the time
complexity of the underlying sliding window k-smallest element algorithm instantiated with
the window size m and the order statistics k.

Proof. The core of the reduction lies in the construction of the intermediate array s such
that running a sliding window k-smallest element algorithm on it basically sorts the input
array. The array s elements are constructed at step 1 based on the input array elements a

with the feature that the elements from each contiguous block of size k in s are greater than
the elements from the previous blocks. This is achieved by augmenting each element within
the block with the block index and using the block index to compare the elements. Because
the sliding window k-smallest element algorithm operates on windows of size m and outputs
the k-the smallest element, we also need to add k − 1 prefix elements in the beginning of
s and m − k − 1 suffix elements to its end, so that the sliding window algorithm operates
correctly around the ends of the array.
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Correctness. Consider any k-size contiguous block in the input array a[k · i, k · (i + 1) − 1].
We claim that y[k · i + j] is the (j + 1)-th smallest element in this array for j = 0, 1, . . . k − 1.
By construction, y[k · i + j] corresponds to the k-th smallest element in the window W =
s[k · (i − 1) + j + 1, k · (i − 1) + j + m]. We now define a partition of W around the indices
divisible by k in blocks:

we let the block B1 contain all the window W elements up to the (k · i)-th index, i.e.,
B1 = s[k · (i − 1) + j + 1, k · i − 1];
all consecutive blocks have fixed size k, i.e., B2 = s[k · i, k · (i + 1) − 1], B3 = s[k · (i +
1), k · (i + 2) − 1] and so on as long as we can take a full block of size k within W .
the last block contains the remaining elements of W .

Because m ≥ 2k we know that the second block B2 = s[k · i, k · (i + 1) − 1] completely lies
inside the sliding window W = s[k · (i − 1) + j + 1, k · (i − 1) + j + m] and hence the window
W consists of at least B1 and B2.

By construction, elements in the earlier blocks are smaller than the elements in the
successive blocks, e.g., all the elements in B1 are smaller than the elements in B2. This
means that the k-th smallest element in W is greater than all k − j − 1 elements in B1, and
is actually the (j + 1)-th smallest element in B2. The (j + 1)-th smallest element in B2
corresponds to the (j + 1)-the smallest element in a[k · i, k · (i + 1) − 1].

Complexity analysis. The reduction takes O(n+m) time to process elements at steps 1 and 4.
Then, at step 3 the invocation of the underlying sliding window k-smallest element algorithm
takes f(m, k) time. Hence, the resulting time complexity is (n+m−1)·f(m, k)+O(n+m). ◀

We will now apply existing sorting lower bounds in the comparison model to obtain lower
bounds for the sliding window k-th smallest element algorithms using the reduction we have
just described in Lemma 7.

▶ Theorem 8. Any algorithm computing the sliding window k-th smallest element has time
complexity Ω(log k) in the comparison model.

Proof. Assume we have an algorithm that can solve sliding window k-th smallest element
with time complexity f(m, k). Take an arbitrary array of n − m + 1 elements where m ≤ n/2.
Then, based on the reduction in Lemma 7 we can k-piecewise sort this array in time
n · f(m, k) + O(n). We know that k-piecewise sorting of (n − m + 1)-size array can only be
done in Ω((n − m + 1) · log k) [15]. Given that m ≤ n/2, we have that n · f(m, k) + O(n)
must be in Ω(n log k). This means that f(m, k) is Ω(log k). ◀

5 Conclusions and Future Work

In this paper we have presented the first optimal algorithm for finding the sliding window
k-th smallest element with time complexity O(log k) and proved that this complexity is
optimal. We note that the presented algorithm has fixed time complexity of O(log k) per
newly read element which is independent of the window size m; it also requires only O(m)
memory storage.

The presented algorithm subsumes the existing results on the sliding window minim-
um/maximum algorithms [9, 25] (case k = 1) and median algorithms [14] (case k = m/2).
One distinct feature of the specialized algorithms [9, 25, 14] is the possibility of their extreme
concise representation which effectively fits into several lines of pseudocode. While the
algorithm presented in this paper does share some ideas with these specialized algorithms
(like maintaining an ordered tree of the window elements [14] and keeping only those window
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5:10 An Optimal Algorithm for Sliding Window Order Statistics

elements that can potentially become the corresponding order statistics [9]), its pseudocode
representation is still significantly larger. It would be interesting to investigate if all these
sliding windows algorithms can be cast to a common framework with a simplified pseudocode
representation.
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A Finding the k-smallest Element in Three AWBBS Trees

We assume that each node of the input trees is augmented with its weight, i.e., contains
the size of its subtree. Then, searching for the k-th smallest element in such a tree is
straightforward: one traverses the tree from the root down to the leaves and at each step
chooses the left or the right subtree depending on whether the k-th smallest element can
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be there. The task of finding the k-th smallest element in multiple trees is similar: we
simultaneously traverse all trees from their roots down to the leaves while choosing in which
subtrees the k-th smallest element still can be. One needs to carefully analyze the traversal
condition to make sure that the algorithm works in linear time in terms of the tree heights,
since otherwise the incurred costs can lead to higher complexity (e.g., for two trees it can
become quadratic [16]).

The algorithm that we present below can be seen as the fixed version of the algorithm
from Lemma 2 of [17], where the condition 2 is corrected to continue the search instead of
stopping. (Without this correction the algorithm of [17] won’t work.)

A.1 The Algorithm
We assume that there exists a function find-rank-one-tree which outputs the k-th smallest
element in one tree in time O(h) where h is the height of the tree. At each step of our
algorithm we maintain the remaining trees T1, T2 and T3 where we continue to search for the
k-th smallest element. Wlog, we assume that the root elements of the trees are ordered, i.e.,
the root r1 of T1 is smaller than the root r2 of T2 which is smaller than the root r3 of T3.
Let S denote the elements of the left subtrees L1, L2 and L3. By construction, we know that
the rank of r1 in the union of T1, T2 and T3 is at most |S| + 1, whereas the rank of r3 in the
union of T1, T2 and T3 is at least |S| + 3. These inequalities allow us to identify the subtree
where the element of rank k cannot be: if |S| + 3 > k, then the k-th smallest element cannot
be r3 and cannot be in R3; if |S| + 3 ≤ k, then r1 and elements in L1 are all smaller than
the k-th smallest element and hence can be discarded. We continue this traversal until one
of the trees becomes empty, then we apply the same reasoning for the two remaining trees
only. Finally, once we are left with a single tree we use find-rank-one-tree to output the k-th
smallest element in the remaining tree.

Algorithm 3 find-rank-three-trees finds the k-smallest element in three trees.
Input: trees T1, T2, T3 and the target rank k.
Output: k-th smallest element in T1, T2 and T3.

1: target-rank := k

2: while True do
3: if all but one tree are empty then
4: return target-rank-th smallest element in the non-empty tree by calling find-rank-

one-tree.
5: end if
6: Let T1, T2, . . . , Tℓ denote the non-empty trees left
7: Let Lj , Rj , rj be the left subtree, the right subtree, and the root of Tj , respectively
8: Wlog, assume r1 < r2 < · · · < rℓ (otherwise, rename the trees)
9: if

∑ℓ
j=1 size(Lj) + ℓ > target-rank then

10: Tℓ := Lℓ

11: else
12: T1 := R1
13: target-rank := target-rank − size(L1) − 1
14: end if
15: end while

▶ Lemma 9. Algorithm 3 finds the k-th smallest element in T1, T2 and T3 in O(h1 + h2 + h3)
time where h1, h2 and h3 are the tree heights of T1, T2 and T3, respectively.
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Proof.
Correctness. Let T i

j denote the state of the trees at the beginning of the while loop at
step 2 at iteration i. That is, T 0

1 , T 0
2 and T 0

3 represent the initial input trees, T 1
1 , T 1

2 and T 1
3

represent the trees after one iteration, and so on. Similarly, let target-ranki denote the state
of the target rank variable at the beginning of the i-th iteration. We prove correctness by
validating the following invariant:

▷ Claim 10. The target-ranki-th smallest element among T i
1, T i

2 and T i
3 is the target-ranki+1-

th smallest element among T i+1
1 , T i+1

2 and T i+1
3 .

Proof. Let Li
j , Ri

j , ri
j denote the corresponding loop variables during the iteration i. Consider

two cases:∑ℓ
j=1 size(Li

j) + ℓ > target-ranki : Because the rank of ri
ℓ is at least

∑ℓ
j=1 size(Li

j) + ℓ,
and ℓ ≥ 2 the element with rank target-ranki must be smaller than ri

ℓ and all the elements
in Ri

ℓ. Hence, we can continue searching for the element with rank target-ranki in
T1, . . . , Tℓ−1 and the left subtree of Tℓ which is Lℓ. This is implemented in line 10.∑ℓ

j=1 size(Li
j) + ℓ ≤ target-ranki : Because the rank of ri

1 is at most
∑ℓ

j=1 size(Li
j) + 1,

and ℓ ≥ 2 the element with rank target-ranki must be greater than ri
1 and all the elements

in Li
1. Hence, we can continue searching for the element with rank target-ranki+1 =

target-ranki − size(Li
1) − 1 in T2, T3, . . . , Tℓ and the right subtree of T1 which is R1. This

is implemented in lines 12 and 13. ◁

As long as more than two trees T i
1, T i

2, . . . T i
ℓ are non-empty we search for the right element

in them. Once all but one tree are empty we will output the element with the correct rank
because find-rank-one-tree is correct.

Complexity analysis. Every time the while loop (lines 2 to 15) is executed either T1’s,
T2’s, or T3’s height is decreased by 1. Hence, the maximum number of loop executions is
h1 + h2 + h3. Furthermore, whenever only one of the trees is non empty the loop returns the
output of the find-rank-one-tree call. One invocation of find-rank-one-tree takes time O(h)
where h is the height of the non-empty tree during the invocation. By construction h is smaller
than h1, h2 and h3. This means that the overall time complexity is O(h1 + h2 + h3). ◀

Instantiating Algorithm 5 in the setting where the binary search trees are weight-balanced
we obtain the desired result.

▶ Theorem 11. Algorithm 5 finds the k-th smallest element in O(log n) time where T1, T2
and T3 are AWBBS trees of size at most n.

Proof. The theorem follows by combining the result of Lemma 9 and the observation that
the height of T1, T2 and T3 is O(log n). ◀
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