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ABSTRACT Anomaly detection is a significant application of residential appliances load monitoring
systems. As an essential prerequisite of load diagnosis services, anomaly detection is critical to energy
saving and occupant comfort actualization. Notwithstanding, the investigation into diagnosis of household
anomalous appliances has not been decently taken into consideration. This paper presents an extensive
study about operation-time anomaly detection of household devices particularly, refrigerators, in terms
of appliances candidate, by utilizing their energy consumption data. Energy as a quantitative property of
electrical loads, is a reliable information for a robust diagnosis. Additionally, it is very practical since it is low-
priced to measure and definite to interpret. Subsequently, an on-line anomaly detection approach is proposed
to effectively determine the anomalous operation of the household appliances candidate. The proposed
approach is capable of continuously monitoring energy consumption and providing dynamic information for
anomaly detection algorithms. Amachine learning-based technique is employed to construct efficientmodels
of appliances normal behavior with application to operation-time anomaly detection. The performance of
the suggested approach is evaluated through a set of diagnostic tests, by utilizing normal and anomalous
data of targeted devices, measured by an acquisition system. In addition, a comparison analysis is provided
in order to further examine the effectiveness of the developed mechanism by exploiting a public database.
Moreover, this study elaborates sensible remarks on an effective management of anomaly detection and
diagnosis decision phases, pivotal to correctly recognition of a faulty/abnormal operation. Indeed, through
experimental results of case studies, this work assists in the development of a load monitoring and anomaly
detection system with practical implementation.

INDEX TERMS Appliance load monitoring, on-line anomaly detection, energy consumption, load model-
ing, load diagnosis.

I. INTRODUCTION
With a 66.5 TWh electricity saving potential, residential sec-
tor becomes the world primary energy saving target among
end-use sectors. The residential energy saving is reinforced
by an inevitable increase in electricity prices and thus, cus-
tomers affordability of spending on electricity consumption
[1], [2]. Residential sector accounts for nearly a portion
of 60% over 2017-25 and 70% over 2025-40 of building
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electricity demand rise. A significant share of this demand is
due to the huge growth in the quantity and size of in-operation
appliances in the projection period to 2040. Therefore, effi-
cient operation and appropriate usage of household appli-
ances play an important role in the achievement of energy
saving targets [3], [4].

A. HOUSEHOLD ANOMALOUS APPLIANCES
Household electrical appliances can undergo operational con-
ditions that violate their normal operation. These abnormal
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conditions can be attributed to different causes that identify
an appliance as anomalous. The consumption pattern of an
anomalous appliance deviates from its expected behavior
that complies with normality [5], [6]. From the perspective
of normal behavior, both faulty operation due to electrical
defects and abnormal usage due to customers’ neglect can
be defined as anomaly. Anomalous appliances can impede
energy saving, reduce operation performance, and jeopardize
safe operation. Accordingly, household appliances anomaly
detection tools are highly useful for both customers to reduce
the energy costs and system operator to enable energy effi-
ciency improvements [7], [8]. Indeed, a reliable and efficient
operation of household appliances, preserved by anomaly
detection systems can increase energy saving up to 12% [9].

B. MOTIVATION AND CONTRIBUTION
Careful anomaly detection requires a framework that is capa-
ble of continuously monitoring appliances loads and provid-
ing their in-operation information for estimation algorithms.
Accordingly, durable household load monitoring systems are
emphasized as key enabler to designate such a structure
[10], [11]. Although, these systems have been thoroughly
probed from both intrusive and non-intrusive aspects, their
anomaly detection capability has not been fairly taken into
consideration. In terms of Non-Intrusive Load Monitoring
(NILM), few studies have only investigated the proficiency
of load disaggregation methods for anomaly detection [12],
[13]. Furthermore, in [11], we have aimed to design a NILM
system for diagnosis purposes. Nevertheless, state-of-the-art
NILMmethods are not adequate to provide efficient anomaly
detection and thus, diagnosis services [11], [12]. In fact,
anomaly in electrical appliances has a dynamic stochastic
nature, for which providing a training class is a tedious
task. The complication increases since a house consists of
a range of appliances with completely different operating
features due to their various manufactures/models. Notwith-
standing a wide range of loads, the anomalous data is very
limited that worsens the above problems [5], [14]. Therefore,
an appliance-level anomaly detection approach is suggested
that investigates the sub-metered data of a targeted-appliance
in-depth and subsequently develops its efficient anomaly
detection method. This concept is augmented by the inade-
quacy of aggregate-level anomaly detection techniques and
advancements in cost-efficient smart plugs technology [15].
However, it has been almost ignored due to the interesting
topic of a NILM with diagnosis abilities.

This paper provides a comprehensive study on household
appliance-level anomaly detection by using energy consump-
tion information of a smart and a standard refrigerator as
appliances candidate. Particularly, it thoroughly examines
anomalous behavior of the targeting loads that is ascribed
to irregularity in their time of operation. Accordingly, this
study proposes: 1) an on-line operation-time anomaly detec-
tion system with generalization ability that is dynamic to
capture any deviation from normality in terms of faulty and
abnormal operations; 2) a robust structure that is performed

by a set of straightforward algorithms and requires minimum
intrusion, least amount of information, and low resolution
data (highly compatible with current metering technologies);
3) an efficient model of appliances normal behavior that
is developed with practical application to diagnosis of an
operation-time anomaly; 4) a highly accurate anomaly detec-
tion of appliances candidate, specifically periodic loads that
consume a notable energy and are important for household
energy saving; 5) the idea of diagnosis decision (as distinct
from anomaly detection) that is resulted from an in-depth
examination of operational conditions of anomalous appli-
ances in terms of faulty or abnormal.

The rest of the paper is organized as follows. Section II
provides a review of anomaly detection concept and its appli-
cations. Section III presents a thorough investigation into
anomalous behavior of household appliances. Section IV
describes the proposed approach through an in-depth dis-
cussion. Section V represents the results of the case studies
and evaluates the method performance. Section VI discusses
important remarks about anomaly detection and load diagno-
sis concepts in accordance with the provided analyses. The
concluding remarks are presented in Section VII.

II. BACKGROUND
Anomaly detection plays a key role in load monitoring and
predictive maintenance [16]. In the following, this concept
is outlined from different perspectives and consequently
discussed with regard to power system sectors, especially
residential zone. Generally, an anomaly detection method
is determined based on the nature of anomaly, which is
categorized in three different classes. The simplest type,
known as ‘point anomaly’, is a single data instance that is
anomalous considering the rest of the data. The second class,
expressed as ‘contextual anomaly’, refers to a deviation in
a particular context regarding the structure of the data. For
example, a temperature record of −30◦C during hot seasons
can be anomalous however, in the context of cold seasons,
this report can occur. The third category, defined as ‘col-
lective anomaly’, implies a data portion that is collectively,
not necessarily individually, anomalous [5]. For instance,
a washing-machine program consists of individual events
such as rinse, drain, and spin. Although these actions are
individually normal, their occurrence in a wrong sequence
can lead to a collective anomaly. From another viewpoint,
anomaly detection methods are classified into ‘data-driven’
and ‘model-based’ practices, according to the way of acquir-
ing a priori knowledge. In the former it is presumed that
a notable amount of data is available, while in the latter
some fundamental comprehension about the physics of the
system is used to create a model [8]. From the standpoint of
formulating an anomaly detection problem,machine-learning
techniques have beenwidely utilized [17], [18]. In this regard,
three different mechanisms can be defined, accounting for:
‘Supervised’, that is training a classifier by using labeled
classes of both normal and anomalous data instances; ‘Semi-
supervised’, that is training only by utilizing a labeled set
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of normal data; ‘Unsupervised’, that requires no training set
since it groups the data under several clusters and defines
dissimilar samples as anomaly. It should be noted that the
supervised techniques simply consider an anomaly detection
as a classification problem. On the other side, the semi-
supervised methods are broadly exploited to separate outliers
regarding normal samples (especially, when the classes are
imbalance) [6]. The aforementioned perspectives can be fur-
ther explored in the specified references.

The concept of anomaly detection has been broadly
explored in different research domains such as computer net-
work, image recognition, and machine operation [19]–[23].
In the context of power systems, this concept has been
generally studied in the main grid sectors. Wang et al. have
proposed a deep-learning based method for fault diagnosis
in a power network by using the power flow information
[24]. Hong et al. have analyzed an integrated anomaly detec-
tion system for network intrusion in the substations [25].
Shaw et al have focused on the anomaly detection of loads
operation power in distribution systems [26]. They have
employed a supervised method based on high sampling rate
data of transient events to provide a classification between
anomalous and normal instances. It should be noted that Shaw
has considered a non-intrusive approach. In small-scale grids
such as institutional sectors, Cui and Wang have explored the
anomalous behavior of a school’s electricity consumption by
visualization of its related data [27]. They have utilized the
half-hourly energy consumption data to assist with the chal-
lenging task of eyeballing of data for detecting anomalies.

At the household level, NILM ability to detect anoma-
lies has recently drawn researchers’ attention. The authors
have previously investigated the NILM capability to provide
diagnosis services [11]. Actually, in [11], we have aimed to
enable NILM diagnosis capacity by designing a time-variant
load modeling system. This framework exploits a recurrent
pattern recognition and model construction mechanism to
capture the dynamic of power consumption. Nevertheless,
the essence of our analysis implies the difficulty of NILM
methods to execute anomaly detection. Besides, other studies
have mainly examined the proficiency of NILM methods for
anomaly detection. Rashid et al. have evaluated the ability
of household appliances load disaggregation techniques for
anomaly detection [13]. Likewise, they have concluded that
enhanced NILM algorithms are required to achieve such
an ability. Furthermore, Rashid has made another similar
study, where the inadequacy of NILM methods to pro-
vide anomaly detection has been inferred [12]. This infer-
ence has been made by manually inserting anomalies into
limited number of appliances data from publicly available
datasets. Therefore, their method of generating a synthetic
anomalous data can point out further challenges of NILM
in the presence of actual anomalies. Notwithstanding the
above, in a prior study, Rashid et al have proposed a
NILM system for anomaly detection [9]. Similarly, they
have used publicly available databases such as ECO that
can bring about further questions on their inference about

anomalous appliances. For example, they have employed
weather data to assist with their visualization of abnormal
consumption. However, ECO dataset provides no information
about the weather. Furthermore, their method, applied to
power-level ratings of a set of known appliances, provides a
low performance compared to the accuracy of current super-
vised NILM methods [11], [14]. This becomes more critical
as they have not reported appliance-level anomaly detection
results. Moreover, Jonetzko et al have suggested a non-
intrusive load detection and diagnosis by exploiting high-
frequency data with 4kHz sampling rate [28]. However, their
study lacks to report any diagnosis results. Furthermore, due
to utilizing a NILM method with a very low accuracy, they
have reduced the dataset by removing the loads to increase
the accuracy. Therefore, their method is not practical.

In fact, NILM barriers to a useful anomaly detection stim-
ulates taking advantage of sub-metered measurements with
regard to low-priced smart plugs technology. Accordingly,
Ganu et al have provided a limited study about an appliance-
level monitoring system [29]. They have utilized several
electrical features to explain appliances behavior. However,
their method can be simply described by a Hidden Markov
Model (HMM) [30]–[33]. Although they have stated their
method is unsupervised, it is likely to be semi-supervised due
to a training phase with predefined parameters. Additionally,
they have neither proposed an anomaly detection method nor
presented numerical results. In [13], Rashid has also reported
the anomaly detection based on sub-metered data. However,
by utilizing a window length of one day, his analysis is
more suitable for an off-line run. In addition, as demonstrated
in this study (Section IV), a daily analysis is not efficient
for appliances anomaly detection especially, periodic loads.
It can notably restrict normal model construction, threshold
definition, and on-line applications. Furthermore, such a win-
dow size necessitates a longer training phase. On the other
side, Rashid’s proposed technique has not been fairly exam-
ined since it has been mainly tested on one type of appliance
anomaly (a refrigerator with continuously ON state). Consid-
ering the anomaly detection rules, it can be concluded that
his method is only suited for significant anomalous events.
This can be related to the choice of the window range that
has limited a more precise anomaly detection. Moreover,
the results have not been adequately evaluated due to a limited
diagnostic test that can be also sensitive to imbalance classes.
On the other hand, this comprehensive study contributes to
appliance-level anomaly detection through actual experimen-
tation with the aim of sensible applications. To the best of
our knowledge, household appliance-level anomaly detection
and diagnosis decision by exploiting sub-metered data has
not been properly investigated. Such a concept allows an
effective analysis of occupants usage and appliances opera-
tion behavior towards a careful anomaly detection. This is
pivotal since the fidelity of customers and system operator
to diagnosis feedback is highly influenced by its accuracy.
It should be mentioned that available products, for which
there is no valuable scientific report, does not normally aim
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FIGURE 1. Two-state, (a) and multi-state, (b) and (c) household appliances can be expressed as two-state operation-time loads.

residential applications. Indeed, an extensive appliance-level
study can aid in designing efficient aggregate-level methods.

III. PROBLEM DEFINITION OF APPLIANCE ANOMALY
DETECTION
In fact, an effective strategy to approach an anomaly detection
problem is to define its general features. Afterwards, the prob-
lem can be further elucidated with regard to case study and
type of input information. In the context of a household,
an anomaly detection problem can be characterized based on
the following overviews.

A. OVERVIEW OF ANOMALY TYPE
Generally, household appliances demonstrate anomalous
behaviors that can be attributed to either their operation-
power or operation-time deviations. For two important rea-
sons, the focal point of this analysis is the operation-time
anomaly detection. First, irregular behavior of household
appliances, especially with major power consumption (such
as refrigerators, stoves, washing machines, and electric water
heaters) is commonly implied by a faulty operation-time
duration. Second, households electrical network has not
been designed to capture this type of anomaly. Indeed, res-
idential electric circuit is technically equipped to detect an
operation-power anomaly within a normal consumption time
rather than an operation-time anomaly with a normal power
demand. According to the nature of anomaly, an operation-
time anomaly can be expressed as a collective anomaly that
occurs in the context of time [5]. For instance, a freezer with
normal power demand that its ON state lasts for an unusually
long time.

Moreover, the anomaly of household appliances is stochas-
tic with a dynamic nature. Therefore, it is difficult to define
an anomalous region that can be utilized to build a model.
This issue deteriorates by knowing the fact that anomalous
data instances are very limited and difficult to collect. Indeed,
the number of abnormal occurrences are much less compared
to normal ones, which causes highly imbalance classes [34].
Accordingly, semi-supervised machine learning methods are
stimulated to deal with appliances anomaly detection due to
the serious challenge of providing labeled class of anomalous
data.

B. OVERVIEW OF APPLIANCE CANDIDATE
Household energy-intensive appliances are commonly finite-
state loads that can be subject to malfunction at any operation
state [35]. Nevertheless, from the perspective of operation-
time anomaly detection, these appliances can be classified
as two-state operation-time (ON/OFF) loads. This has been
demonstrated for common household devices in Fig. 1. Such
classification, as the essence of this study, facilitates provid-
ing a general anomaly detection method for finite-state loads.

In the context of a household, refrigerator is defined as
a global energy-demanding appliance type. In both devel-
oping and advanced economies, refrigerators are among
key factors for residential electricity consumption growth.
They are the main purchased appliance with the increase
of middle-income households in the world [3]. In fact, with
more than two billion in-use numbers worldwide, refriger-
ators have a high penetration rate among main domestic
equipment [36], [37]. On the other side, a refrigerator can
undergo anomalous behaviors that can be attributed to differ-
ent causes related to either a faulty operation or an abnormal
usage. Despite other major domestic appliances, an anoma-
lous refrigerator can bring about important energy saving
issues since it is a permanently operating load with consider-
able energy consumption [38]. Although with most malfunc-
tioning household devices, no (less) usage can avoid (reduce)
anomaly impacts, this is not the case for refrigerators as per-
manent loads. Furthermore, an accurate anomaly detection
of a refrigerator is complex since the causes of deviations
from expected behavior are not always related to a failure. For
example, the power profiles of an open-door refrigerator and
a loaded one are very similar since both result in a lengthy
operation time (discussed in Section IV). Indeed, the above
remarks make refrigerators an appropriate candidate for an
in-depth anomaly detection investigation with regard to two-
sate operation-time appliances. It should be noted that this
appliance has been also an interesting candidate for anomaly
detection analysis in other researches [13], [29].

C. OVERVIEW OF SELECTED FEATURE
Our proposed appliance-level load monitoring and anomaly
detection system utilizes the data of active power consump-
tion with a one-minute sampling frequency, gathered by a
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sub-metered measurement system [39]. Therefore, it presents
a data-driven approach for which, energy consumption is
employed as the extracting feature to explore the anomaly
in the targeted loads [8]. As a quantitative property of an
electrical appliance, energy is a very practical feature for
appliance-level anomaly detection systems. It is a reliable
information for a robust diagnosis as a critical element of
such systems. Energy is low-priced to measure and com-
patible with smart plug/meter structures. In fact, an energy-
based anomaly detection method is easy to integrate with
these structures since they both record energy consumption.
Particularly, from the perspective of both customers and sys-
tem operator, energy-based information is straightforward to
comprehend since the electricity is delivered to customers in
form of energy consumption [40].

According to the above analyses, an anomaly detection
method is suggested for household two-state operation-time
appliances that is semi-supervised, data-driven, and collective
in the context of time. This work promotes an appliance-
level anomaly detection problem in general rather than an
appliance-specific one by using appropriate case studies.
Even from the viewpoint of the latter, this study can be
still general due to utilizing a basic method, a common
electrical feature, and a low sampling rate (regarding energy-
intensive loads) [41], [42]. Besides, the exploitation of sub-
metered data is motivated by rapid influence of smart plug
technologies. With the increasing significance of Internet of
Things (IoT), smart plugs become beneficial for enabling
smart appliances data connection [15], [43]. These appliances
are not only equipped by an electricity connector but also a
data connector according to digitalization aspect [3]. Smart
plugs can provide a key opportunity for an extensive analysis
of anomalous behaviors of major loads (specifically, refrig-
erators, washing machines, and air conditioners). Such an
examination is essential to design efficient anomaly detection
and diagnosis decision systems. It should be noted that
current smart plugs are mostly normal operating systems and
are not targeted to provide services for any specific type of
appliances. Actually, future smart appliances can be them-
selves equipped with load monitoring and diagnosis services.
As mentioned, this implies the practicality of the proposed
approach since it can be integrated into different systems.

IV. METHODOLOGY
Our proposed mechanism for anomaly detection is the con-
sequence of an exhaustive investigation into the behavior of
the case studies based on their energy consumption. Accord-
ingly, the following steps are executed to provide a thorough
examination.

1- First, normal and anomalous behaviors of the appli-
ances candidate (the standard and smart refrigerators) are
explored through analyzing their specified electrical features,
explained below.

2- Second, an on-line technique is proposed to effi-
ciently monitor these electrical factors and provide dynamic

information of targeted loads for consecutive anomaly detec-
tion algorithms.

3- Third, a semi-supervised anomaly detection method
with low-complexity is developed that is capable of modeling
the normal behavior of case studies and subsequently distin-
guishing their anomalous operation.

Moreover, useful remarks are elaborated as an explanation
to the issues, discovered within our comprehensive analysis.
As mentioned, in order to permit an actual implementation,
the entire study is done by using the real data of our acquisi-
tion system.

A. COMPUTATION OF THE ANALYTICAL FEATURES
The behavior of the appliances candidate under different
operation conditions is explored by the calculation of their
energy consumption. These appliances consist of a stan-
dard single-door and a smart french-door refrigerator with
completely different technical specifications. The energy
consumption as the main analytical factor is computed
through (1) [9],

uw =
Nw∑
i=1

yk−i (1)

where k is the discrete time, during which a window size
of w with Nw number of samples is captured for the energy
analysis. yk presents the active power demand at k , and uw
describes the energy consumption within w. Since energy,
by definition, explains a constant power during a specific
period of time, it is a convenient element to determine average
power consumption within a targeted time duration. There-
fore, average power usage, derived from energy based on (2),
is another analytical factor that is employed,

uw =
uw
Nw

(2)

where uw presents the average power use during time win-
dow w. Due to the accumulating nature of energy consump-
tion, the average power quantity with no time dependency
allows to recognize a stationary behavior and define the
boundaries of variations over the time window of analysis.
Furthermore, it eases the comparison between appliances dif-
ferent models of energy consumption behavior. As discussed
in the following, this factor is critical for an accurate estima-
tion of anomalous behavior of periodic loads such as refrig-
erators, freezers, and electric water heaters. This quantity can
be easily converted to energy for a standard comprehension
of electricity consumption in terms of kWh.

B. ANOMALY SCENARIOS
In fact, different conditions can cause the operation of a
household refrigerator to deviate from normality. Therefore,
four scenarios are considered to represent the common con-
ditions that result in an anomalous behavior of a refrigerator.
These scenarios are grouped into faulty and abnormal classes.
Failure is attributed to a condition that cold air is constantly
lost while abnormality is referred to as a situation that cold
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FIGURE 2. Daily energy and average power consumption of (a) standard and (b) smart refrigerators under normal operation.

air is finally kept inside by closing the door. The classes are
numbered in an ascending order and explained as follow. The
faulty class consists of cases 1: door not closed well; and 2:
door with defective gasket. For the scenario 1, the door was
left open at various angles for different time duration. For the
scenario 2, the door gasket was deformed in different sides
of the door for a long time to emulate a damaged one. The
abnormal class comprises cases 3: door open/close overly;
and 4: loaded refrigerator. For the scenarios 3, the door was
overly open/close within several hours at different time of
the day. For the scenario 4, the refrigerator was loaded with
various amount of water at different temperature. Indeed,
the variety of anomaly sources, which cause either a failure
or an abnormality makes refrigerators a challenging load for
a precise anomaly detection. This is not the case of other
household energy demanding devices.

All aforementioned scenarios can lead to a notable waste
of energy. Moreover, operating with dirty coils is another
common condition that brings about an anomalous behav-
ior. However, cleaning the coils, which requires customers’
attention cannot make a considerable difference regrading
the amount of energy usage of new refrigerators. Like-
wise, a freezer can be subject to the same scenarios and
thus, the following examination can also provide valuable
insights into the anomalous behavior of a freezer. It should
be noted that refrigerators and freezers, recently along with
air conditioners are the fundamental members of every single
house [3], [44].

C. INVESTIGATION INTO NORMAL AND ANOMALOUS
BEHAVIORS
In our study, the anomalous behavior is deliberately induced
by jeopardizing the normal operation based on the anomaly
scenarios. Accordingly, an in-depth examination is provided
in the following that outlines the key features of the proposed
load monitoring and anomaly detection system. Furthermore,
a detailed visualization is presented to assist with a clear

comprehension. It should be mentioned that the following
discussion is based on the exploration of the analytical fac-
tors, determined in Section IV.A.

1) NORMAL OPERATION OF APPLIANCES CANDIDATE
In order to capture the difference between normality and
anomaly, the normal behavior is considered beforehand.
Fig. 2 shows the daily energy and average power consumption
for the normal operation of standard and smart refrigera-
tors, respectively. It can be observed that the increase in
energy consumption is consistently uniform. Furthermore,
the average power usage demonstrates a stationary behavior
within the time. More importantly, the consistency of energy
growth and the stability of average power value is preserved
over time. This has been demonstrated in Fig. 3, where the
power profiles of non-consecutive days are coupled. It can
be recognized that in concatenated days (black dashed lines),
which are not successive, there is no inconsistency in the
values of both examining factors. Consequently, the energy
can be determined as a reliable criterion for normal behavior
description due to the fact that the amount of energy use
within normal operation cycles is almost identical. It is noted
that the second factor is also stable since it has been computed
by using the energy consumption. In addition, the modeling
of energy and average power use of refrigerators and freezers
is more efficient since their actual power consumption with
notable transient is challenging to model (see Figs. 2 and 3).

2) ANOMALOUS OPERATION OF APPLIANCES CANDIDATE
The anomaly scenarios have been executed during several
days in order to provide sufficient evidences for the exam-
ination of their resultant irregular behavior. Accordingly,
Fig. 4 illustrates the effect of anomaly scenarios on the energy
and average power usage within a period of the experimen-
tation. In this Figure, the green dashed lines illustrate the
time in which an anomaly scenario has been experimented.
Grey colors in-between energy and average power curves
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FIGURE 3. Consistent normality of energy and average power consumption of (a) standard and (b) smart refrigerators within non-sequential days under
normal operation.

FIGURE 4. Energy and average power consumption variations due to anomaly scenarios applied to (a) standard and (b) smart refrigerators. Each
dashed line corresponds to the time of a specific anomaly test. Yellow dashed line presents an important case, explained in the text.

depict the days of normal operation with no anomaly test.
It can be observed that all cases cause fluctuations in both
the regular increase of energy demand and the regularity of
average power use. These fluctuations occur exactly at the
same time of the anomaly test that demonstrate the capa-
bility of the analytical factors for on-line applications. The
variations can be acknowledged as a general alarm for an
on-going anomaly when compared to the uniformity during
normal operation. Generally, an anomalous behavior can be
recognized by a sudden increase in both energy and average
power consumption. Due to the normal behavior recovery,
this increase is followed by a regular growth in the first factor
and diminished steadily in the second one. The intensity of
an anomaly depends on the extent of the induced scenario,
for example the duration time of an open door. Nevertheless,
no anomaly scenario has been exaggerated throughout the
experiments. Even at the cost of a low accuracy, this study
has avoided evident anomalies that can be easily captured.
According to the operation condition that each scenario can

cause, the following has been noticed. The scenarios 1 and 3
are more distinguishable. Scenario 2 is challenging to be dif-
ferentiated from a normal condition, especially in a long term.
These scenarios have been tested multiple times during every
day of their experiment. Scenario 4 needs a longer period of
time for the examination in comparison with other scenarios.
Therefore, it has been executed within several days. With
regard to the examined scenarios, there are relevant remarks
that are discussed in details below through Fig. 5. In accor-
dance with Fig. 4(a), there are other events that should be
mentioned. The yellow dashed line with no scenario type is a
noteworthy case that has been faced during the experiment.
In fact, during the test days, a notable decrease in both
factors has been experienced due to the loss of data in the
acquisition system (zero consumption has been recorded in
the database). However, in the lack of any clue about the
source of such a behavior, it is yet difficult to attribute that
to an anomalous refrigerator. The reason is that this event has
caused a rapid reduction in the examining features (and not
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FIGURE 5. A detailed demonstration of the energy and average power consumption fluctuations of the standard refrigerator due to the anomaly
scenarios.

an increase based on the above explanation). Additionally,
the unwanted growth during the normal days (after 2018-
12-17) is due to deliberately decreasing the temperature set-
point. Although this situation can be similar to an anomaly,
the degree of a refrigerator is normally fixed by customers
and its manipulation is not a common action.

Fig. 5 exemplifies the energy and average power demands
behavior under each anomaly scenario. Although this is
not the focus of this study, it can be observed that in a
detailed view, the type of anomaly can be explored. Normally,
the anomaly scenarios 1 and 3 lengthen the time duration
of the refrigerator’s ON operation within one to several
cycles. Therefore, they provoke an immediate growth in both
factors, as shown in Fig. 5(a) and 5(b). Actually, leaving
the door open even slightly leads to a non-stoppable running
that usually creates a cycle with long ON operation. Besides,
the anomaly scenarios 2 and 4 boost the number of operation
cycles. Consequently, they raise the slope of energy and level
of average power consumption, as illustrated in Fig. 5(c)
and 5(d). The scenario 4 should be studied in a longer
period according to experimental observations that demon-
strate gradual changes in the analytical factors under this case.
During this scenario (Fig. 5(d)), it has been observed that

the refrigerator operates with faster operation cycles (first
slope change) and subsequently proceeds with longer ON
operations (second slope change). In fact, door with defective
gasket (scenario 4) is the only case that causes a permanent
anomaly. These conditions can be generally encountered by
other periodic-load appliances such as freezers.

According to the above analysis, it is deduced that the
refrigerators are subject to an unexpected operation time
growth in the presence of an anomaly. Likewise, this can be
the situation for other energy-intensive appliances such as
stove and electric water heaters that signifies our proposed
approach to an operation-time anomaly detection system.

D. ANOMALY DETECTION TIME-WINDOW
An extensive examination of normal and anomalous behav-
iors of appliances candidate has been provided in the previous
subsection. The main objective of such an analysis is to elab-
orates important remarks that can assist with the development
of an efficient anomaly detection framework. In accordance
with this investigation, it can be acknowledged that the time
is a critical element in an energy-based anomaly detection.
In fact, the time to capture an anomaly becomes crucial for
two main reasons. First, the rapid response of energy-based
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FIGURE 6. Daily energy and average power consumption of the standard
refrigerator.

factors to an anomaly that promotes an actual on-line appli-
cation. Second, the accumulative manner of energy usage and
stationary behavior of average power use that necessitates a
quick action. Actually, amassing the energy quantity over a
notable time makes it difficult to distinguish a deviation in
the consumption value. Likewise, the tendency to steady-state
amount of average power demand causes a fluctuation to fade
over a short time.

The time restriction to detect an abnormality can be
explored by the analysis of both factors based on a daily time-
window. Fig. 6 depicts the daily energy and average power
demands during the same period as Fig. 4(a) for the standard
refrigerator. For most of the scenarios, it can be observed that
the amount of average power use at the end of a day (brown
dots within the anomalous days) is lower than its value at the
time that the anomaly has occurred. In fact, by the end of
the day, this amount can be attributed to a normal condition
instead of an anomalous event. On the other side, daily energy
usage can be more useful because of its accumulating quality.
Notwithstanding, it can be noted that anomalous and normal
days produce similar step changes (brown dots within all
the days) in their daily energy consumption. This situation
becomes more challenging when the duration time (intensity)
of an anomaly is not significant.

To more clarify, a Gaussian-based Kernel Density Estima-
tion (KDE) based on (3) has been applied to daily energy
and average power consumption data for the same duration
as Fig. 6,

f̂ (x) =
1
N

N∑
i=1

Kh (x − xi) (3)

that for N number of data instances, x defines the discrete
support, f̂ (.) is the KDE function, K(.) presents a Gaus-
sian Kernel, which is centered at each data sample xi, and
h specifies the bandwidth parameter. As a non-parametric
method, KDE is a suitable choice for this analysis since the
data stream includes the samples of anomalous days with
completely random behavior. KDE is able to create an empir-
ical probability density function (pdf) of every data point in

order to estimate an unknown underlying distribution [11].
In order to reduce the complexity, a constant bandwidth with
an empirical value has been chosen that has resulted in a better
estimation through the experiments. Furthermore, the ability
to offer an adequate description of normal behavior of energy-
intensive appliances is the logic behind choosing a Gaussian
Kernel [45].

Accordingly, Fig. 7 illustrates the results of KDE, applied
to energy and average power consumption within a daily
time-window. It can be seen that for the analytical factors
of both case studies, a distinguishable region can be defined.
For the standard refrigerator (Fig. 7(a) and 7(b)), this region
deviates from the general region and can be highly related
to anomalous events. Nevertheless, it contains very few data
samples. For the smart refrigerator (Fig. 7(c) and 7(d)),
the situation is the same however, the few instances in this
region can be hardly associated to an anomalous operation
due to their lower values (as discussed above). Therefore,
for this case, the general region encompasses all anomalous
samples. In fact, for the two refrigerators, the general region
accounts for both normal and anomalous instances. It can
be deduced that a daily analysis is inefficient to capture
deviations from the common behavior that can be related
to anomalous operation. Indeed, such an analysis is useful
when a deviation is highly significant. Additionally, a daily
examination can reduce the usability of the examining factors,
considering the similarity between both distributions (loca-
tions of the samples). Consequently, the following remarks
can be realized from the underlying distributions of data
samples, captured through a daily time-window investigation.

1- Accumulating and stationary behaviors of energy and
average power consumption over a day reduce the influence
of a deviation (anomaly) over the normality.

2- Considering a specific amount of data, a daily time-
window supplies the analysis with less number of samples
and requires a lengthy duration of data acquisition [46]. Addi-
tionally, daily data can suppress detailed information that are
valuable.

3- On a daily basis, defining a threshold to increase the
number of correctly detected anomalies is challenging since
in the general region, differentiating between normal and
anomalous instances is more uncertain.

Regarding the KDE analysis, presented in Fig. 7, it should
be mentioned that higher/lower values for bandwidth param-
eter do not improve the results. The former forms one region
that means all data samples present the same behavior while
the latter shapes several regions that means data instances
offer different classes standing for multiple behaviors.

Generally, the time-window of the anomaly analysis can
affect the influence degree of the analytical factors, the num-
ber of correctly detected deviations, and on-line implemen-
tations. Since an anomalous refrigerator demonstrates an
unexpected periodic behavior, a cyclic time-window exam-
ination of energy and average power consumption is sug-
gested. Fig. 8 demonstrates the KDE results of the cyclic
investigation during the same period as daily analysis.
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FIGURE 7. KDE of daily energy and average power consumption of standard (up) and smart (down) refrigerators.

The detection of operation cycle has been realized by
constructing the operation-state (ON/OFF) sequence of the
refrigerators based on a threshold. Consequently, a cycle is
determined as an event that falls between two ON (or OFF)
state transitions. As it can be observed in Fig. 8, a cyclic
estimation results in distinguishable regions that can be dis-
tinctly segregated from general regions. Particularly, for the
smart refrigerator, a distinguishable region has been created
that in spite of its daily analysis, can be related to anomalous
operations. Moreover, the cyclic analysis demonstrates that
the analytical factors have different sensitivity with regard
to resultant distributions (samples location) and the number
of instances in the distinguishable regions. The samples of
this region can be highly presented as anomaly since it is
almost impossible to present them in a single category due
to their random behavior. Subsequently, the general region
as the only dominant class can be significantly associated
with normality and in turn, assist with capturing an exact
model of normal behavior. Therefore, it can be concluded
that the capability of energy and average power consumption
for anomaly detection remarkably improves by exploring the
cyclic operation of the refrigerators (in comparison with the

daily operation). Considering the remarks about the daily
analysis, the following notes are emphasized for the cyclic
one:

1- Analyzing the energy and average power consump-
tion during an operation cycle can dramatically increase the
impact of an anomaly on the normality. Therefore, this tech-
nique realizes a definite distinguishable region with larger
instances of probable anomalies.

2- Knowing the fact that both examinations have been
applied to the same amount of data, a time window with
the length of a cycle provides the analysis with a substantial
number of samples. Furthermore, it uncovers the detailed
information to enable an explicit anomaly detection.

3- A cyclic investigation not only facilitates the choice of
a threshold but also increases its flexibility due to the wide
distribution of anomalous samples. The latter is significantly
important since not all the anomalies require an (quick)
action.

Moreover, a cycle-based mechanism can offer an on-line
anomaly detection framework by enabling a faster estima-
tion of analytical factors. It should be emphasized that in
the cyclic analysis, the same bandwidth has been chosen to
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FIGURE 8. KDE of cyclic energy and average power consumption of standard (up) and smart (down) refrigerators.

provide acceptable results for KDE through all the cases.
Regarding the completely different electrical features of the
refrigerators, this can evidence the ability of such a mecha-
nism to assist with the construction of general models of nor-
mal behavior. Therefore, a cyclic time-window is employed
for the development of the proposed load monitoring and
anomaly detection structure.

E. ANOMALY DETECTION FRAMEWORK
The comprehensive study, given above has provided a clear
understanding about the refrigerators behavior from different
viewpoints that can make an anomaly detection system feasi-
ble. Therefore, it is used to design both load monitoring and
anomaly detection systems. In fact, the designated structure
that is based on the operation cycles, consists of three proce-
dures of normal behavior modeling, anomaly inference, and
load monitoring.

As mentioned, the modeling process utilizes a semi-
supervised machine learning method since it only constructs
the model of the normal behavior. The cyclic energy and aver-
age power consumption are modeled in terms of Gaussian
distributions N (.), due to the fact that a Gaussian Kernel has

been able to provide a plausible explanation about these fac-
tors. Accordingly, the Gaussian parameters of each analytical
factor are defined based on (4) and (5),

µ =
1
C

C∑
w=1

vw (4)

σ 2
=

1
C

C∑
w=1

(vw − µ)2 (5)

that within C number of training cycles, µ and σ 2 presents
the mean and variance of the modeling factor v ∈ {u, u}.
According to the related models, the anomaly is inferred
through two steps. First, the probability density, f (.) of energy
and average power usage of a captured cycle is estimated by
means of (6),

f (v | µ, σ) =
1

√
2πσ 2

exp

(
−
(v− µ)2

2σ 2

)
(6)

Afterwards, the estimated densities are compared with their
relevant thresholds to be identified as either normal or anoma-
lous. These thresholds are computed by using the Inverse
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Normal Distribution function of every Gaussian model.
Accordingly, µ − δσ ≤ Tv ≤ µ + δσ presents the lower
and upper bounds of each threshold, Tv, respectively, where δ
is defined based on three-sigma rule of thumb. As an essential
prerequisite for the proposed anomaly detection structure,
an on-line load monitoring framework is developed. This
framework provides in-operation information of appliances
candidate power consumption. It creates a data-frame accord-
ing to the sampling time of data arrival. This data-frame, D
is continuously expanded by storing the power consumption
and the relevant state, zk of every appliances candidate in
order to capture its operation cycle. Consequently, the energy
and average power consumption of the detected cycle is com-
puted for model construction and anomaly inference phases.
It is noted that the same state detection method, explained
in the previous subsection is used for the on-line process.
The above procedures result in an on-line load monitoring
and anomaly detection system. In this system, an anomaly
is detected by applying the diagnosis algorithm to the calcu-
lated analytical factors within a detected cycle, expressed by
Algorithm 1.

Algorithm 1On-Line LoadMonitoring and Anomaly Detec-
tion
1: procedure Nv&Tv
2: D = {}
3: for (yk , k) do
4: # Step 1:
5: define zk
6: D = {dk | dk = (y, z)k}
7: if 1zk,k−1 = 1 & 1zk−Nw,k−Nw−1 = 1 then
8: # Step 2:
9: calculate vw F According to (1) & (2)
10: calculate fvw F According to (6)
11: # Step 3:
12: if fvw outof Tv then
13: labelvw ← Anomaly
14: alarmvw ← ON
15: end if
16: end if
17: return ON alarms
18: end for
19: end procedure

V. RESULT AND EVALUATION
The power consumption data of appliances candidate, mea-
sured by our acquisition system has been utilized to examine
the proposed on-line anomaly detection approach. The devel-
oped structure is able to concurrently construct the model
and estimate the anomaly. However, due to the importance
of a robust detection, a practical model of normal behavior
has to be ensured first. Accordingly, the normal behavior
models of the refrigerators have been constructed within a
time period of normal operation, in which no anomaly test
has been executed. Nevertheless, the least amount of data

has been exploited to build a feasible model and examine
its performance with regard to a real-time implementation.
It should be noted that normal condition presents a normal
usage and does not mean a constantly close-door refrigerator.
Subsequently, the most efficient model of each case study,
captured by minimum amount of data has been employed
to detect anomalous events, caused by different anomaly
scenarios. Given the above, it can be comprehended that the
algorithm is semi-supervised from the perspective of anomaly
detection (due to the lack of an anomaly class) and supervised
from the standpoint of model construction (due to utilizing a
training phase). In fact, based on actual events that have been
faced during the tests, a continuously unsupervised update of
the normal model can be unreliable.

Besides, an appropriate diagnostic test is required to
demonstrate the performance of the method. In fact, the accu-
racy metrics, reported in literature have been utilized to esti-
mate either operation states or load profiles of a set of targeted
appliances in the context of a load monitoring problem. How-
ever, in an anomaly detection system, the first target should be
a correct diagnosis of the anomalous event. In such a system,
the estimation of energy waste is also crucial, but this is
not always the case. For example, informing the customers
about an open-door refrigerator or left-on stove is sufficient
since these incidents are not among poor behavioral con-
sumption to be avoided by energy saving awareness. In this
study, a set of diagnostic tests are employed that not only
evaluate the general ability to detect an anomaly but also
estimate the specific operation cycles that are affected by it.
From the view point of the latter, the metrics are similar to
those utilized in load monitoring studies for load profiling.
Therefore, the accuracy metrics that are exploited to describe
the results of anomaly detection are formulated as below,

Spe =
tn

tn+ fp
(7)

Acc =
tp+ tn

tp+ fp+ tn+ fn
(8)

F1 =
2× precision× recall
precision+ recall

(9)

that Spe, Acc, and F1 stands for specificity, accuracy, and
F1-score, respectively. tp describes true positives (number of
correct detection of anomalous cycles), fp explains false pos-
itives (number of false detection of a normal cycle as anoma-
lous), tn defines true negatives (number of true detection of
normal cycles), and fn expresses false negatives (number of
false detection of an anomalous cycle as normal). Conse-
quently, precision = tp

tp+fP
and recall = tp

tp+fn
. The specificity

metric determines the robustness of the model through its
capability in correctly capturing the true normal events. This
diagnostic test is essential for the performance evaluation of
a household anomaly detection system due to the infrequent
occurrence of anomalies in electrical appliances operation.
It should be noted that specificity has not been necessitated
for the evaluation of load monitoring processes. F1-score is
the harmonic mean of precision and recall that presents the
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TABLE 1. Standard refrigerator modeling within normal operation cycles.

TABLE 2. Smart refrigerator modeling within normal operation cycles.

accuracy of the model to identify the anomalous events. Due
to the sensitivity of F1-score to imbalance classes, the accu-
racy score is also utilized to define the general correctness of
the results. In addition, the ability to correctly estimate the
amount of energy usage and average power consumption of
anomalous cycles has been examined through (10),

EA = 1−

∑C
w=1

(
x̂w − xw

)
2
∑C

w=1 xw
(10)

where EA is utilized for both the energy and average power
estimations. x̂w and xw are estimated and actual quantities
of analytical factors within C cycles, respectively. In fact,
EA is applied to the estimated energy and average power
of detected anomalous cycles during testing phase of each
scenario. In order to report the overestimation, this metric has
been revised to consider the real value of the nominator since
the absolute value can only interpret the underestimation.
Actually, the performance evaluation of an anomaly detection
procedure is not simple. It should be noticed that the load
monitoring process has been mainly reported in literature by
using F1-score and energy estimation (based on the absolute
value). Although our ambition is to uncover an anomaly,
a severe evaluation process has been used that examines both
state detection and load profiling abilities.

Accordingly, Table 1 presents the results of normal behav-
ior modeling of standard refrigerator. The model has been
examined over an overall set of anomalous events based on
the four predefined scenarios. In such manner, the model is
not tuned to a specific scenario since anomaly is a general
description, given to any kind of deviation from normality.
In addition, Table 2 describes the modeling procedure of
the smart refrigerator. The term ‘NoC’ explains the Num-
ber of Cycles with normal behavior that have been utilized
to construct the model. The resultant Gaussian models of

both analytical factors have been also presented. It can be
noticed that their parameters vary through normal operation
cycles. Although low variations demonstrate the stability of
normality to rapidly extract an efficient model, it is observed
that they can notably influence a precise anomaly detection.
It should be mentioned that the energy has been presented
based on kWh and averaged over the number of samples of
the detected cycle to compute the average power (kW).

The minimum number of the cycles to capture an efficient
model of the standard refrigerator is 142 that accounts for
around three days of normal operation. The tests have shown
that enlarging the modeling period cannot yield a notable
improvement. Besides, as it can be noticed, this number of
cycles has provided highly accurate results. On the other
side, 87 number of normal operation cycles, associated with
around two days, is the least number to extract an effective
normal model of smart refrigerator. The correspondingmodel
has provided a remarkable anomaly detection performance as
well. It should be highlighted that the less modeling period
of the smart refrigerator is due to a more sensitive response
to any deviation, and not because of a more stabilized nor-
mal behavior. Nevertheless, the minimum time to ensure a
standard model is completely depend on the user behavior.
For example, a refrigerator with less utilization requires more
time to offer an acceptable model since the boundaries of
normality have to be defined with respect to customers’ usage
behavior.

Accordingly, the performance of the on-line load moni-
toring and anomaly detection method to capture a specific
anomaly scenario is estimated based on the efficient models.
In fact, the feasible model of normal behavior can provide
a valid estimation of the anomaly scenarios. Accordingly,
Table 3 expresses the on-line anomaly detection results of the
four scenarios for the standard refrigerator. It can be observed
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TABLE 3. On-line load monitoring and anomaly detection of test scenarios applied to standard refrigerator.

TABLE 4. On-line load monitoring and anomaly detection of test scenarios applied to smart refrigerator.

that the efficient model is highly accurate to distinguish
anomaly from normality for any type of deviation (caused
by different scenarios). Furthermore, it is able to estimate
the deviating consumption in the analytical factors with high
performance. Although the energy consumption factor has
not been able to recognize the scenario 2, this has not been
interpreted as a failure. This scenario mainly influences the
duration time of OFF state rather than ON. Actually, overly
opening/closing of the door has caused the standard refriger-
ator to operate with less OFF periods. However, the energy
consumption (as it can be noticed) computes the amount of
energy demand due to an ON operation condition. Therefore,
the average power consumption has been also considered as a
complementary factor to uncover the OFF-state deviation and
its impact on the whole cycle due to an abnormal operation.
In addition, this factor is useful in explaining the anoma-
lous behavior corresponding to scenario 4 since this scenario
influences both operation states. Furthermore, the average
power consumption can reflect the abnormality due to the loss
of data as it interprets that as OFF period. Such a situation
has been encountered during our tests (yellow dashed line
in Fig. 4(a)).

Besides, Table 4 reports the on-line anomaly detection
results of the efficient model of the smart refrigerator. The
anomaly detection algorithm has been tested for the smart
refrigerator after several months of its effective model con-
struction. It can be observed that the model is notably
correct in detecting the anomalous behavior related to the
scenario 1. The high accuracy of diagnostic tests particularly,
specificity score after a long time demonstrates the stabil-
ity of the normal operation and in turn the robustness of
the model. During the anomaly tests of smart refrigerator,
we have suddenly experienced a rapid blackout. Afterwards,
a permanent anomalous behavior has been warned by our

on-line anomaly detection algorithm, while no anomaly
test has been proceeded. Therefore, the power consumption
behavior of the refrigerator has been observed. As illustrated
in Fig. 9, the blackout event (grey dashed line) has totally
disrupted the normal behavior of the refrigerator. Neverthe-
less, this unexpected event has not been considered as a
disturbance. On the contrary, this advantageous incident has
enabled a critical evaluation of the on-line anomaly detection
system within an actual failure. Therefore, the blackout has
been examined in terms of a scenario. The results indicate that
the method has a high accuracy to detect this event especially,
regarding the energy consumption factor. Furthermore, both
factors are very efficient to estimate the deviations due to
the blackout experience. The continuation of this incident is
comparable with the behavior of the scenario 4. The black-
out examination has been done during several days before
stopping the system for required inspections. However, this
has not brought a major concern with the tests of scenarios
2 and 3 (considering the benefits of such a realistic incident)
since these scenarios are very similar in behavior to scenarios
4 and 1, respectively. In addition, they are not classified as an
actual failure, as mentioned in Section IV.

Moreover, the proposed approach is compared with the
method that has been studied by Rashid in [13] using REFIT
database [47]. In this study, discussed in Section II, a similar
analysis is provided that has been applied to freezer as another
household periodic appliance. Rashid has tested his technique
within a period of three months. However, our suggested
method is implemented for almost all the data (one year) of
the freezers in the same homes of REFIT database to present
an extensive examination. Accordingly, Table 5 presents the
comparison results. Likewise, ‘NoC’ presents the number of
cycles that have been used to construct an efficient model.
In [13], the training duration is one month however, in our
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TABLE 5. Accuracy results of the proposed approach in comparison with the method in [13], tested on REFIT database.

FIGURE 9. The blackout event during the anomaly experiment on the
smart refrigerator; the gray dashed line indicates the approximate time of
the event occurrence.

case, this period is maximum 156 cycles (House 18) that
accounts for around 7 days. Besides, Rashid has used two
factors to decide an anomaly. Therefore, in order to provide
an equal analysis, a deviation has been identified as anomaly
that has been detected by both analytical features (energy and
average power usage). It should be detailed that one of the
analytical factors, used in [13] is the daily number of opera-
tion cycles. Nevertheless, our actual experiments demonstrate
that this factor varies in a sensible way (useful for anomaly
detection), mostly when an intense anomaly occurs. The
reason is that a noticeable anomaly can generally result in
a lengthy operation time and thus, decrease the daily amount
of cycles. The comparison has been made based on the same
accuracy metrics. The results of the proposed approach have
been reported every three months. It can be seen that the
suggested method is notably accurate within the entire test
period. This high performance that has been maintained over
a long time validates the robustness of the designed frame-
work. Particularly, the outcomes are very competitive regard-
ing a three-month comparison (the test duration in [13]).
In fact, except for precision score in House 20, the on-line
anomaly detection system is more accurate in all the cases.

It can be realized that the developed structure is also effective
for other periodic appliances. Indeed, the correct results that
have been obtained from other case studies (homes in REFIT
dataset) demonstrate the generalization capability of the pro-
posed mechanism.

It is worth to point out that author of REFIT database has
declared the information of anomalous events [47]. However,
by a complete examination of this dataset, it has been realized
that there are other operation deviations and loss of data (sim-
ilar to reported ones) that have not been mentioned. It should
be noted that the comparison analysis has been concluded by
considering these additional instances. Nevertheless, this has
not notably influenced the results, compared to an assessment
without such samples due to their few numbers. Actually,
the evaluation of both conditions has resulted in the same
accuracy during three months and an insignificant difference
only after a long period (9 months and more).

VI. DISCUSSION
In accordance with the above results and analyses of the pro-
posed on-line appliance-level load monitoring and anomaly
detection system, the following remarks should be discussed.

1- Although this work has focused on household periodic
energy-intensive appliances as the case studies, its approach
to anomaly detection is general. It has explored the operation-
time anomaly concept that can be applied to other types of
appliances. Furthermore, the method has utilized a common
electrical feature in a low-sampling frequency that is compati-
ble with currentmetering technologies and household energy-
demanding devices. Employing normal electrical properties
is critical to develop a general method, however appliances,
particularly refrigerators can still have basic signatures that
are notably different.

2- Since the study has been done in the appliance-level
with sub-metered information, a highly accurate anomaly
detection process has been intended. Therefore, a careful
set of diagnostic scores has been utilized to examine the
results. These accuracy rules are very precise such a way that
their estimation of the outcomes can be attributed to load
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profiling rather than load diagnosis. From the standpoint of
anomaly detection, the proposed method is totally capable
of recognizing any anomalous behavior particularly, the ones
that are considered as failure.

3- A supervised machine learning algorithm that signifies
an off-line process has been employed to create the normal
behavior models of the appliances candidate. A supervised
method can facilitate capturing an efficient model that can
handle both the stochastic nature of anomalous behavior
of an appliance and the variation of its normal electrical
characteristics (due to different reasons, e.g. aging). In fact,
ensuring effective models of loads regular patterns, which
guarantees customers’ fidelity to warning alarms, is pivotal
for a usable anomaly detection system. Although an on-line
model construction, mainly aimed by unsupervised methods,
is interesting, the stationary behavior of household energy-
intensive appliances reduce its necessity. The concern with an
unsupervised modeling of normal behavior increases consid-
ering an anomaly detection system with poor performance.
For example, it is possible that such a system considers the
abnormal behavior of a refrigerator with defective gasket as
normal (due to the continuation of this kind of anomaly).

4- It is advised that a load monitoring and diagnosis system
should be capable of early diagnosis. Nevertheless, our thor-
ough study has demonstrated that the term ‘early’ (one can
read real-time) depends on different matters, characterized as
below:
• The application: Among the chosen scenarios, two of
them are actually a failure. However, all scenarios have
been detected as anomaly since they cause similar vari-
ations on normal energy consumption. This is due to
the operation-time anomaly nature rather than the model
inadequacy. Therefore, an early detection should be
defined based on the applications that generally account
for fault (scenarios 1 and 4) and over-usage (scenarios
2 and 3) diagnosis.

• The time: Scenarios 1 and 4 express a failure. Although
the energy consumption is rapidly influenced by an
anomaly, these cases require different time period to
ensure an abnormality. The anomaly detection system is
quick to capture scenario 1 however, it needs more time
to recognize scenario 4 (in our case more than one day).
Furthermore, the time can affect the recognition of an
irregular behavior due to aging problems. Subsequently,
a load diagnosis system is real-time with respect to the
type of anomaly that it seeks to detect.

• The urgency: Generally, an operation-time anomaly of a
refrigerator can be dealt with as an energy saving issue.
However, this is not the case for a stove that has been
left ON. In fact, an anomalous stove can cause a dan-
gerous situation instead of energy waste. Consequently,
the early diagnosis should favor the type of a targeting
appliance.

Accordingly, a load monitoring and diagnosis system is
suggested that its diagnosis phase accounts for two separated

steps of anomaly detection and diagnosis decision. As a
result, the term ‘early’ can be an appropriate fit for the
former. The anomaly detection should capture a deviation
when it occurs (on-line distinguishability) and the diagnosis
decision should confirm amalfunctionwhen there is adequate
evidences (e.g. continuation of a deviation).

VII. CONCLUSION
Anomaly detection is a significant application of load mon-
itoring systems. In the residential sector, this application
can assist with different kind of energy saving aware-
ness. Due to the inadequacies related to an aggregate-level
implementation from one side and future low-priced smart
plugs from the other side, an appliance-level anomaly detec-
tion aspect is reinforced. Accordingly, this paper has pro-
vided an exhaustive investigation into different aspects of an
appliance-level anomaly detection with regard to household
energy-intensive appliances. As a result, an on-line load mon-
itoring and anomaly detection approach has been proposed
that is capable of expeditiously capturing any operation-time
abnormality. The proposed approach has been examined by
implementing an actual framework. This framework applies
the suggested design to the measured data of a set of appli-
ances candidate. These appliances account for a standard and
a smart refrigerator with different electrical characteristics.
Refrigerators are important household finite-state loads that
can bring about challenging anomalous behaviors. Therefore,
they are a suitable case study for anomaly detection of house-
hold energy-expensive loads. The results based on careful
diagnostic tests have demonstrated the high performance of
the proposed method. Furthermore, the efficiency of the sug-
gested technique has been demonstrated through an extensive
comparison analysis. Moreover, the utilization of a group of
straightforward algorithms, examined on a physical operating
system, has validated the pertinence of the developed struc-
ture to smart meters/plugs systems. With regard to the case
studies, this analysis has elaborated important remarks on
a full appliance-level load monitoring in terms of a system
capable of continuous load observation, anomaly detection,
and diagnosis decision.
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