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a b s t r a c t 

This article presents the comprehensive mechanical testing 

data archive from a neutron irradiation campaign of nuclear 

structural alloys fabricated by powder metallurgy with hot 

isostatic pressing (PM-HIP). The irradiation campaign was de- 

signed to facilitate a direct comparison of PM-HIP to con- 

ventional casting or forging. Five common nuclear structural 

alloys were included in the campaign: 316L stainless steel, 

SA508 pressure vessel steel, Grade 91 ferritic steel, and Ni- 

base alloys 625 and 690. Irradiations were carried out in 

the Advanced Test Reactor (ATR) at Idaho National Labora- 

tory (INL) to target doses of 1 and 3 displacements per atom 

(dpa) at target temperatures of 300 and 400 °C. This arti- 

cle contains the data collected from post-irradiation uniax- 

ial tensile tests following ASTM E8 specifications, fractogra- 

phy of these tensile bars, and nanoindentation. By making 

this systematic and valuable neutron irradiated mechanical 

behavior dataset openly available to the nuclear materials 

research community, researchers may now use this data to 

populate material performance databases, validate material 
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performance and hardening models, design follow-on exper- 

iments, and enable future nuclear code-qualification of PM- 

HIP techniques. 

© 2023 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

Specifications Table 

Subject Material Characterization 

Specific subject area Neutron irradiation effects on the mechanical behavior of nuclear reactor 

structural alloys, including steels and Ni-base alloys. 

Type of data Table – Data tables are provided from uniaxial tensile testing and nanoindentation 

testing 

Image – Images are provided from nanoindentation testing and fracture surface 

characterization (after uniaxial tensile testing) 

How the data were acquired Three primary sets of data were collected: (1) uniaxial tensile testing of round 

tensile bars, (2) fracture surface imaging of broken tensile specimens, and (3) 

nanoindentation on 3 mm disc specimens. 

Uniaxial tensile data was collected using a 13M Instron load frame located inside 

the hot cells at the Hot Fuel Examination Facility (HFEF) at Idaho National 

Laboratory (INL). Testing was conducted in accordance with ASTM standard E8 for 

threaded grip specimens. Tensile testing was conducted at ambient temperature in 

an argon environment. Strain rate was 8.78 × 10 −3 s −1 , which corresponds to a 

crosshead speed of 0.279 mm/min. After 10% strain, the strain rate was increased 

to 0.0315 s −1 (crosshead speed 1.0 mm/min) until failure. 

Following tensile testing, selected fracture surfaces of interest were sectioned from 

the broken tensile specimens so that the fracture surface could be accommodated 

within a scanning electron microscope (SEM) for fractography. Fractography was 

conducted using a Lyra3 Tescan SEM, also at HFEF at INL. 

Nanoindentation was conducted on disc specimens (3 mm diameter, ∼250 μm 

thickness) after surfaces were prepared by jet electropolishing in a 90% 

methanol + 10% perchloric acid solution at -20 °C. A Berkovich indenter tip was 

used in continuous stiffness mode. For the SA508 specimens, nanoindentation was 

conducted in load-controlled mode to a maximum load of 80 0 0 μN with a loading 

time of 5 s, holding time of 5 s, and unloading time of 5 s. For all other alloys, 

nanoindentation was conducted in depth-controlled mode to a maximum depth of 

3500 nm at a strain rate of 0.2 s −1 . Indents were generally made in 6 × 5 indent 

arrays. All nanoindentation was conducted using a Hysitron TI-950 TriboIndenter 

operating in ambient temperature and atmosphere. 

Note that alloy composition was measured using inductively coupled plasma 

atomic emission spectroscopy (ICP-AES). 

Data format Raw – All data is provided in raw form 

Description of data collection Uniaxial tensile data was conducted at ambient temperature in an argon 

environment within a hot cell. The applied strain rate was 8.78 × 10 −3 s −1 until 

10% strain was achieved, after which the strain rate was increased to 0.0315 s −1 

until failure. 

Fractography of selected fracture surfaces was conducted at ambient temperature 

in a high vacuum environment within a SEM. 

Nanoindentation was conducted at ambient temperature in an atmospheric air 

environment. Berkovich nanoindentation was conducted at a strain rate of 0.2 s −1 

using a loading time of 5 s, holding time of 5 s, and unloading time of 5 s. 

Data source location Uniaxial tensile data and fracture surface images: 

Idaho National Laboratory 

Idaho Falls, ID 

USA 

Nanoindentation data: 

Center for Advanced Energy Studies 

Idaho Falls, ID 

USA 

( continued on next page ) 
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Data accessibility Repository name: Mendeley Data 

Data identification number: 10.17632/9z98kdkpyz.1 

Direct URL to data: 10.17632/9z98kdkpyz.1 

Related research article C. Clement, S. Panuganti, P.H. Warren, Y. Zhao, Y. Lu, K. Wheeler, D. Frazer, D.P. 

Guillen, D.W. Gandy, J.P. Wharry, Comparing structure-property evolution for 

PM-HIP and forged alloy 625 irradiated with neutrons to 1 dpa, Mater. Sci. & Engr. 

A 857 (2022) 144058. 10.1016/j.msea.2022.144058 

Value of the Data 

• Data represent a comprehensive mechanical characterization of unique neutron irradiated 

powder metallurgy - hot isostatically pressed (PM-HIP) structural alloys, with a direct 

comparison to the cast or forged counterpart alloy. Direct comparisons of advanced manu- 

factured materials to their conventionally manufactured counterparts – particularly under 

neutron irradiation – are rare. 

• Neutron irradiation experiments are costly, time-consuming, and challenging, so the re- 

sultant data can offer considerable value to the nuclear materials and irradiation effects 

research communities. 

• Historical data from neutron irradiated materials (especially legacy power plant materials) 

have been poorly archived in the open, accessible literature. By making the data herein 

open and permanently accessible, we aim to contribute to growing this critical database. 

• Researchers working in irradiation effects and nuclear reactor materials may be able to 

use these data to enhance our overall understanding of mechanical behavior of structural 

alloys under neutron irradiation, and guide future mechanistic experiments. 

• Data can support future nuclear code qualification efforts for PM-HIP alloys. 

• Data can be used for verification and validation of predictive mechanics models for nu- 

clear structural material lifetimes and performance, including use as training data for ma- 

chine learning models. 

1. Objective 

The objective is to publish the mechanical behavior data from neutron irradiated structural 

alloys fabricated by both powder metallurgy with hot isostatic pressing (PM-HIP) and conven- 

tional casting or forging. Neutron irradiations with post-irradiation examination (PIE) are re- 

quired to qualify advanced materials for nuclear reactor service. But these neutron irradiation 

and PIE campaigns are time-consuming, often spanning 7 or more years, and can cost multi- 

ple millions of dollars partially because of the precautions necessary for characterizing radioac- 

tive specimens. Hence, data generated from these campaigns is of tremendous value to the nu- 

clear materials and irradiation effects research communities. Here, we publish a comprehensive 

neutron irradiated mechanical testing dataset that enables direct comparisons of PM-HIP alloys 

to their cast/forged counterparts. Alloys studied are 316L stainless steel, SA508 pressure vessel 

steel, Grade 91 ferritic steel, and Ni-base alloys 625 and 690. Irradiations were carried out in 

the Advanced Test Reactor (ATR) to target doses of 1 and 3 displacements per atom (dpa) at 

target temperatures of 300 and 400 °C. Mechanical data included are ASTM E8 uniaxial tensile 

tests, fractography, and nanoindentation. This data can be used to populate material performance 

databases, validate models, design follow-on experiments, and enable future code-qualification 

of PM-HIP manufacturing. 

https://doi.org/10.17632/9z98kdkpyz.1
https://doi.org/10.17632/9z98kdkpyz.1
https://doi.org/10.1016/j.msea.2022.144058
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2. Data Description 

Nanoindentation, uniaxial tensile testing, and fractography are conducted on five nuclear 

structural alloys fabricated by PM-HIP and a conventional method (specifically, casting or forg- 

ing), then irradiated to a range of doses and temperatures. The specific forms of data are: 

Tensile Data – Raw data are provided in .csv format. Each data file corresponds to a single 

tensile specimen. Files contain a header with metadata including the specimen name, testing 

conditions, and experiment date and operator. The remainder of each file contains the tabulated 

measured stress-strain curve. 

Fractography Data – Files are organized into folders by specimen (i.e., broken tensile bar). 

Multiple image files are collected from each specimen. Typically, an “overview” image is pro- 

vided, with numerous additional higher-magnification images of representative areas on the 

fracture surface. All fractographs are provided in software-agnostic .jpg, .bmp, or .tiff format. 

Nanoindentation Data – Files are organized into folders by specimen. Each folder contains 

three file types: 

(1) One “Read Me” .txt file: The first line of these files lists the total number of indents, N, 

made on the given specimen (typically N = 20–30 indents per specimen). The remainder 

of this file lists the file names corresponding to each of these N indents and tabulates 

key indentation results and parameters, specifically: maximum indent depth h max (nm), 

characteristic depth h c (nm), maximum load P max (μN), stiffness S (μN/nm), indent area A 

(nm 

2 ), effective depth h eff (nm), reduced modulus E r (GPa), and hardness H (GPa). These 

values can be used with the corresponding raw data files (see #2 below) to calculate H 

versus depth and E versus depth curves, per the Oliver-Pharr method. 

(2) A total of N raw data .txt files, each corresponding to one of the indents made on the 

given specimen. Indent depth (nm), load (μN), and time (s) are tabulated throughout the 

duration of each indent, from initial to deepest indent depths. Load-displacement curves 

can be generated from these raw data. 

(3) Some specimen ID numbers will have an associated .jpg image that displays the array of 

indents made on the specimen. Images were not collected for all specimens, so are not 

available for all specimens (i.e., in all folders). 

3. Experimental Design, Materials and Methods 

This article presents a complete dataset from the mechanical testing conducted as part of 

a neutron irradiation campaign [1–3] aiming to directly compare the irradiation behavior of 

five PM-HIP [4–6] nuclear structural alloys to their conventional cast or forged counterparts. 

The intention of this article is to make this high-value, systematic neutron irradiated mechani- 

cal behavior dataset openly and permanently available to the nuclear materials community for 

research and practical purposes such as populating material performance databases, validating 

hardening models, designing follow-on experiments, and providing materials qualification data. 

3.1. Materials and Irradiations 

Five common nuclear structural alloys were studied, specifically 316L stainless steel, SA508 

Grade 3 Class 1 pressure vessel steel, Grade 91 ferritic steel, and two Ni-based alloys 625 and 

690. All five alloys had a PM-HIP version and a conventionally manufactured (cast or forged) 

version. Alloy compositions measured by ICP-AES and processing parameters are provided in 

Tables 1 and 2 , respectively. The unirradiated thermal and mechanical behaviors of Alloys 625, 

690, and 316L have been documented in Refs. [7–9] and the ion irradiation response of Alloy 

625 in Ref. [10] . From each alloy, specimens were machined into either transmission electron 

microscopy (TEM) discs or round tensile bars, Fig. 1 . The TEM discs were cut by wire electrical 
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Table 1 

Alloy compositions in wt%, measured by ICP-AES. 

Alloy Fabrication C Si Mn P S Cr Ni Mo Ti Cu Al Co Pb Fe V Nb N 

625 PM-HIP 0.01 0.45 0.41 0.003 0.003 21.9 Bal 8.2 0.006 < 0.1 < 0.05 < 0.1 < 0.010 3.6 – – –

625 Forged 0.01 0.20 0.42 0.006 0.004 23.7 Bal 7.6 0.31 – 0.02 – – 3.5 – 3.6 –

690 PM-HIP 0.019 0.45 0.37 – 0.003 30.9 Bal – – 0.01 < 0.02 – – 9.6 – – –

690 Forged – 0.12 0.59 – 0.003 31.3 Bal – 0.31 – 0.26 – – 10.3 – – –

Grade 91 PM-HIP 0.12 0.47 0.62 0.004 0.003 8.78 0.08 0.92 – – 0.12 – – Bal 0.27 – –

Grade 91 Cast 0.10 0.24 0.48 0.004 0.008 8.40 0.09 0.86 – – 0.05 – – Bal 0.20 – –

SA 508 PM-HIP 0.01 0.21 1.39 0.002 0.005 0.18 0.79 0.37 – – – – – Bal – – –

SA 508 Forged 0.02 0.31 0.46 0.003 0.007 0.21 0.50 0.26 – – – – – Bal 0.01 – –

316L PM-HIP 0.004 0.88 1.41 0.005 0.005 17.6 12.5 2.10 – – – – – Bal – – < 0.1 

316L Forged 0.03 0.52 1.52 0.045 < 0.03 16.3 10.7 1.86 – 0.35 – – – Bal – – < 0.1 

Table 2 

Alloy processing parameters [18] . 

Alloy 

HIP Parameters (Pressure, 

Temperature, Time) Heat Treatment 

625 15 ksi, 1149 °C, 4 h Solution cycle 1171 ± 14 °C, 2 h; water quench 

690 15 ksi, 1149 °C, 4 h Solution cycle 1177 ± 14 °C, 2 h; water quench 

Grade 91 15 ksi, 1121 °C, 4 h Normalize 1060 ± 14 °C, 2.5 h; forced air fan cooling; 

temper 777 ± 14 °C, 4.5 h; air cooling 

SA 508 15 ksi, 1121 °C, 4 h Solution cycle 1121 °C, 2 h; water quench; normalize 

899 °C, 10 h; water quench; temper 649 °C, 10 h; air 

cooling 

316L 15 ksi, 1121 °C, 4 h Solution cycle 1066 ± 14 °C, 1 h; water quench 

Fig. 1. Specimen geometries of (a) TEM discs and (b) tensile bars (all dimensions in inches). 



6 J.P. Wharry, C.D. Clement and Y. Zhao et al. / Data in Brief 48 (2023) 109092 

Table 3 

List of files for 304L stainless steel specimens. 

Fabric 

ation Specimen ID 

Specimen 

Type 

Target Dose 

[dpa] 

Target Temp 

[ °C] 

Actual Dose 

[dpa] 

Actual Avg 

Temp [ °C] 

Nanoi 

ndent Tensile 

Fracto- 

graphy 

Cast 701 Tensile 3 400 2.98 388 – Yes –

702 Tensile 3 400 3.36 398 – Yes –

722 Tensile 3 400 3.15 379 – Yes –

723 Tensile 3 400 2.70 385 – Yes –

Table 4 

List of files for 316L stainless steel specimens. 

Fabric 

ation Specimen ID 

Specimen 

Type 

Target Dose 

[dpa] 

Target Temp 

[ °C] 

Actual Dose 

[dpa] 

Actual Avg 

Temp [ °C] 

Nanoi 

ndent Tensile 

Fracto- 

graphy 

Cast 643 TEM Disc 3 400 3.83 396 Yes – –

704 Tensile 3 400 3.84 379 – Yes –

705 Tensile 3 400 3.94 382 – Yes –

PM-HIP 646 TEM Disc 3 400 4.00 397 Yes – –

719 Tensile 3 400 3.91 380 – Yes –

720 Tensile 3 400 3.77 373 – Yes Yes 

discharge machining (EDM) to 3 mm in diameter and ∼250 μm thick. They were subsequently 

hand polished using successively finer diamond suspensions (to the finest suspension of 1 μm 

diamond) to achieve a mirror finish and a final disc thickness of 150 μm for compliance with 

dimensions shown in Fig. 1 . The tensile specimen geometries were guided by ASTM standard E8, 

having a total length of 76.2 mm (3 in) and gauge diameter of 6.35 mm (0.25 in). The tensile 

specimens were cut by computer numerical control (CNC) machining to a surface roughness of 

3.2 μm. Each specimen was engraved with a unique identification (ID) number. 

Following machining and dimensional inspections, specimens were loaded for irradiation ex- 

periments into non-instrumented stainless steel capsules, which acted as sealed pressure bound- 

aries between the specimens and the reactor coolant. Capsules were pressurized with He or Ar 

gas to control temperature; quartz-encapsulated melt wires in capsules were used to estimate 

in-pile temperature history. Capsules were then assembled into test trains for reactor insertion. 

Additionally, the irradiation experiment design process included structural, thermal, and neu- 

tronic analyses as described in Refs. [ 11 , 12 ]. A comprehensive description of the capsule design, 

assembly, and irradiation experiment design is provided in Ref. [1] . 

The test trains were loaded into Advanced Test Reactor (ATR) inboard positions A-6, A-7, and 

A-8. The irradiation occurred during ATR cycles 164A, 164 B, 166A and 166B, between May 9, 

2018, and January 10, 2020. The estimated total irradiation dose was calculated using MCNP5 

release 1.60 [ 13 , 14 ] using microscopic cross-section data generated by NJOY [15] . Specimen max- 

imum and average temperatures during irradiation were estimated by finite-element analysis in 

ABAQUS, together with the melt wire analysis, as described in refs. [ 16 , 17 ]. As-run thermal and 

dose analysis is comprehensively described in Ref. [1] . 

The actual neutron irradiation doses ranged ∼0.5–4.5 displacements per atom (dpa) and ac- 

tual specimen average temperatures ranged ∼260–400 °C. The specific dose and temperature 

history of each specimen is listed in Tables 3–8 , which are organized by alloy. The type of me- 

chanical testing data obtained from each specimen – i.e., nanoindentation, uniaxial tensile test- 

ing, and/or fractography – is also specified in Tables 3–8 . 

3.2. Mechanical Testing of Irradiated Specimens 

After neutron irradiation, all specimens are unloaded from their capsules, decontaminated, 

and sorted within the radioactive material handling host cells at the Hot Fuel Examination Facil- 

ity (HFEF) at Idaho National Laboratory (INL). From there, tensile specimens were moved within 
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Table 5 

List of files for Alloy 625 specimens. 

Fabric 

ation 

Specimen 

ID 

Specimen 

Type 

Target Dose 

[dpa] 

Target Temp 

[ °C] 

Actual Dose 

[dpa] 

Actual Avg 

Temp [ °C] 

Nanoi 

ndent Tensile 

Fracto- 

graphy 

Forged Unirrad TEM Disc 0 0 0 0 Yes – –

Unirrad Tensile 0 0 0 0 – Yes –

448 TEM Disc 1 400 1.06 385 Yes – –

520 Tensile 1 400 0.71 355 – Yes –

521 Tensile 1 400 0.52 338 – Yes Yes 

303 Tensile 3 300 4.32 269 – – –

304 Tensile 3 300 4.43 270 – Yes –

615 TEM Disc 3 400 4.20 398 Yes – –

603 Tensile 3 400 3.84 380 – Yes Yes 

604 Tensile 3 400 4.01 392 – – –

PM-HIP Unirrad TEM Disc 0 0 0 0 Yes – –

Unirrad Tensile 0 0 0 0 – Yes –

452 TEM Disc 1 400 1.05 385 Yes – –

459 Tensile 1 400 0.73 339 – Yes –

460 Tensile 1 400 0.53 321 – Yes Yes 

342 Tensile 3 300 4.40 264 – Yes –

343 Tensile 3 300 4.23 257 – Yes –

609 TEM Disc 3 400 4.27 398 Yes – –

671 Tensile 3 400 3.93 384 – Yes –

672 Tensile 3 400 3.69 367 – Yes Yes 

Table 6 

List of files for Alloy 690 specimens. 

Fabric 

ation 

Specimen 

ID 

Specimen 

Type 

Target Dose 

[dpa] 

Target Temp 

[ °C] 

Actual Dose 

[dpa] 

Actual Avg 

Temp [ °C] 

Nanoi 

ndent Tensile 

Fracto- 

graphy 

Forged Unirrad Tensile 0 0 0 0 – Yes –

415 TEM Disc 1 400 1.09 389 Yes – –

518 Tensile 1 400 0.99 358 – Yes –

519 Tensile 1 400 0.86 335 – Yes –

301 Tensile 3 300 3.79 284 – Yes –

302 Tensile 3 300 4.13 306 – Yes –

627 TEM Disc 3 400 4.11 398 Yes – –

601 Tensile 3 400 3.12 373 – Yes –

602 Tensile 3 400 3.52 385 – Yes –

PM-HIP Unirrad Tensile 0 0 0 0 – Yes –

408 TEM Disc 1 400 1.09 388 Yes – –

457 Tensile 1 400 0.99 342 – Yes –

458 Tensile 1 400 0.86 368 – Yes –

344 Tensile 3 300 3.96 288 – Yes –

345 Tensile 3 300 3.53 266 – Yes –

621 TEM Disc 3 400 4.14 398 Yes – –

673 Tensile 3 400 3.29 378 – Yes –

674 Tensile 3 400 2.82 378 – Yes –

the HFEF hot cells for uniaxial tensile testing, while the TEM disc specimens were packaged for 

shipping to the Center for Advanced Energy Studies (CAES) for nanoindentation testing. 

Uniaxial tensile data was collected using a 13M Instron load frame located inside the INL 

HFEF hot cells. Although this load frame is dedicated for radioactive materials, the unirradiated 

tensile bars were also tested on this same load frame for consistency and to eliminate effects of 

instrument variability. Testing was conducted in accordance with ASTM standard E8 for threaded 

grip specimens. All tensile testing was conducted at ambient temperature in an Ar environment. 

Strain rate was 8.78 × 10 −3 s −1 , which corresponds to a crosshead speed of 0.279 mm/min. 

After 10% strain, the strain rate was increased to 0.0315 s −1 (crosshead speed 1.0 mm/min) until 

failure. 

Following tensile testing, some specimens of interest were selected for fractography. To pre- 

pare specimens for fractography, ∼1-2 mm (including the fracture surface) was cut off the end 
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Table 7 

List of files for Grade 91 steel specimens. 

Fabri 

cation 

Specimen 

ID 

Specimen 

Type 

Target Dose 

[dpa] 

Target Temp 

[ °C] 

Actual Dose 

[dpa] 

Actual Avg 

Temp [ °C] 

Nanoi 

ndent Tensile 

Fracto- 

graphy 

Cast Unirrad Tensile 0 0 0 0 – Yes –

425 TEM Disc 1 400 0.99 389 Yes – –

503 Tensile 1 400 1.00 386 – Yes Yes 

504 Tensile 1 400 0.99 376 – Yes –

666 TEM Disc 3 400 3.97 397 Yes – –

605 Tensile 3 400 3.71 363 – Yes –

703 Tensile 3 400 3.54 362 – Yes Yes 

PM-HIP Unirrad Tensile 0 0 0 0 – Yes –

424 TEM Disc 1 400 0.99 389 Yes – –

403 Tensile 1 400 1.02 367 – Yes Yes 

404 Tensile 1 400 1.01 358 – Yes –

636 TEM Disc 3 400 3.74 397 Yes – –

605 Tensile 3 400 3.71 363 – Yes –

670 Tensile 3 400 3.68 362 – Yes Yes 

721 Tensile 3 400 3.40 351 – Yes –

Table 8 

List of files for SA508 steel specimens. 

Fabri 

cation 

Specimen 

ID 

Specimen 

Type 

Target Dose 

[dpa] 

Target Temp 

[ °C] 

Actual Dose 

[dpa] 

Actual Avg 

Temp [ °C] 

Nanoi 

ndent Tensile 

Fracto- 

graphy 

Forged Unirrad TEM Disc 0 0 0 0 Yes – –

Unirrad Tensile 0 0 0 0 – Yes –

110 TEM Disc 1 300 0.69 286 Yes – –

114 TEM Disc 1 300 0.69 286 Yes – –

201 Tensile 1 300 0.53 265 – Yes –

206 Tensile 1 300 0.83 270 – Yes –

437 TEM Disc 1 400 0.95 384 Yes – –

501 Tensile 1 400 0.96 362 – Yes –

502 Tensile 1 400 0.98 385 – Yes Yes 

PM-HIP Unirrad TEM Disc 0 0 0 0 Yes – –

Unirrad Tensile 0 0 0 0 – Yes –

104 TEM Disc 1 300 0.70 286 Yes – –

101 Tensile 1 300 0.54 266 – Yes –

127 Tensile 1 300 0.84 273 – Yes –

434 TEM Disc 1 400 0.98 388 Yes – –

401 Tensile 1 400 0.97 343 – Yes Yes 

402 Tensile 1 400 1.00 365 – Yes –

of one of the broken “halves” of the tensile bar. Cutting was done with a low-speed saw, and 

the cut was made normal to the tensile axis. This allowed for the fracture surface to be ac- 

commodated face-up within a scanning electron microscope (SEM) for fractography, and also 

minimized the radioactive material volume within the SEM. The cutting was done in the hot 

cells in HFEF, then specimens were subsequently moved into the Lyra3 Tescan SEM, also at HFEF 

at INL. SEM images were collected in secondary electron (SE) mode. An overview image of the 

entire fracture surface was taken for each specimen of interest. Additional images were taken to 

show representative features of the fracture surface in higher magnification and detail. 

Nanoindentation was conducted on the TEM disc specimens shipped to CAES. Their surfaces 

were first prepared by jet electropolishing in a 90% methanol + 10% perchloric acid solution 

maintained at -20 °C. A Berkovich indenter tip was used in continuous stiffness mode. For the 

SA508 specimens, nanoindentation was conducted in load-controlled mode to a maximum load 

of 80 0 0 μN with a loading time of 5 s, holding time of 5 s, and unloading time of 5 s. For 

all other alloys, nanoindentation was conducted in depth-controlled mode to a maximum depth 

of 3500 nm at a strain rate of 0.2 s −1 . Indents were generally made in 6 × 5 indent arrays. 

All nanoindentation was conducted using a Hysitron TI-950 TriboIndenter at CAES operating in 

ambient temperature and atmosphere. 
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