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Summary

Epigenetic modifications such as DNA methylation may influence gene expression

and phenotypes, including obesity in childhood. The directionality of this relationship

is nevertheless unclear, and some evidence suggests that adiposity modifies the epi-

genome, rather than the other way around. In this pilot study, we utilize data from

the Early Life Exposures in Mexico to Environmental Toxicants (ELEMENT) study to

examine whether measures of adiposity in childhood and early adolescence are asso-

ciated with repeated measures of blood leukocyte DNA methylation at LINE-1 repet-

itive elements and two genes implicated in growth and adiposity: H19 and HSD11B2.

Longitudinal epigenetic data were generated from cord blood and blood from follow-

up visits in early and late adolescence. We assessed interactions between age and

measures of body mass index (BMI) at 5 years of age and weight, BMI and waist cir-

cumference in early adolescence to infer whether adiposity deflects age-related DNA

methylation changes throughout childhood. Applying linear mixed-effects models, we

found an inverse association between measures of childhood BMI (kg/m2) and early-

teen weight (kg) with repeat measures of H19 DNA methylation. We did not observe

any statistically significant associations (p-value <.05) between any anthropometric

measures and DNA methylation at LINE-1 or HSD11B2. We did not demonstrate sta-

tistically significant evidence in support of deflection of age-related DNA methylation

trajectories by adiposity-related measures (age by adiposity interaction term). Given

the pilot nature of this study, the relationships between repeat measures of DNA

methylation and adiposity-measures across childhood merit further exploration in

larger study populations.
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1 | INTRODUCTION

Overweight and obesity were estimated to cause 3.4 million deaths,

3.9% of years of life lost, and 3.8% of disability adjusted life years

(DALYs) globally in 2010.1,2 The prevalence of overweight and obesity is

also rising among children and adolescents significantly in both developed

and developing countries.1 Given that the aetiology of obesity is multifac-

torial and likely involves gene–environment interactions,3 epigenetics has

emerged as a possible molecular biomarker that will aid understanding of

obesity-related phenotypes, complications, and underlying mechanisms.4

In recent years, mounting human epidemiology and animal model evi-

dence has identified associations between epigenetic marks and chronic

inflammatory cardiometabolic conditions including obesity,5,6 though the

directionalities of these associations remain inconclusive.7–9

Epigenetics is a discipline that studies mitotically heritable and poten-

tially reversible changes in gene expression that are unrelated to the DNA

sequence10; the major epigenetic mechanisms include DNA methylation,

histone modifications, and non-coding RNA.10 DNA methylation is a rela-

tively well-understood epigenetic modification, in mammals, it typically

occurs at the 50-carbon position of cytosine in a Cytosine-phospho-

Guanine (CpG) dinucleotide.11 DNA methylation is generally associated

with decreased transcription factor binding when it occurs at promoter or

enhancer regions, resulting in decreased gene transcription.11,12

DNA methylation patterns at functionally relevant genes have the

potential to affect obesity susceptibility.13 However, it is also possible

that obesity secondarily leads to changes to DNA methylation,

thereby contributing to the development of adiposity-related chronic

diseases.7 Recently, several studies have attempted to infer the direc-

tion of the relationship between DNA methylation and obesity.7,8 For

example, Mendelson et al. conducted an association analysis of BMI

and blood DNA methylation for over 400 000 CpG sites using the

Framingham Heart Study and the Lothian Birth Cohorts. The authors

used Mendelian randomization and genetic sequence variants to show

that for a subset of CpG sites associated with BMI among elderly

adults (16 out of 83), BMI likely altered DNA methylation, not the

other way around. However, even with Mendelian randomization the

cross-sectional nature of this study still limits definitive causal infer-

ence.7 Taking full advantage of a longitudinal study design, Richmond

et al.8 tested for replication of associations between DNA methylation

at CpG sites in Hypoxia Inducible Factor 3 Subunit Alpha (HIF3A) and

adiposity using cord and peripheral blood samples from individuals in

the Avon Longitudinal Study of Parents and Children (ALSPAC)

cohort. Their findings provided evidence for a causal, positive effect

of childhood BMI on HIF3A methylation levels in adolescents. How-

ever, this study also reported positive associations between maternal

pre-pregnancy BMI on offspring HIF3A methylation, highlighting the

importance of including measures of birth DNA methylation data

whenever possible to account for the strong influence of gestational

epigenetic programming on baseline levels.

We proposed ‘environmental deflection’ as a conceptual framework

by which specific internal physiological factors or external toxicant expo-

sures could affect the rate and direction of DNA methylation changes

that occur over the life-course.14 Environmental deflection refers to an

environment-mediated (endogenous and/or exogenous) shift away from

the baseline rate of age-related methylation or stochastic DNA methyla-

tion drift, e.g., gradual increases or decreases at specific loci in ageing cells

and tissues within an organism.14–16 Certain DNA methylation changes

with age are so reliable and reproducible that researchers including Hor-

vath and Raj17 have developed estimators of age that are based on DNA

methylation at specific sets of genes. They observed that individuals with

an epigenetic age that is older than their chronological age exhibit accel-

erated biological ageing of underlying tissues and cells. Horvath and

Raj.17 More intriguingly, higher BMI and weight status were found to be

associated with faster extrinsic epigenetic age acceleration in participants'

blood.17 A series of additional environmental factors, such as exposures

to carcinogenic substances, smoking status, nutritionally induced oxida-

tive stress, and traumatic stress are also associated with accelerated epi-

genetic ageing.18–22 Hence, since obesity predisposes individuals to a

pro-inflammatory and higher oxidative stress state,3 it could alter the rate

or direction of DNA methylation change that typically occurs with ageing,

yet this question has rarely been explored in children.

Environmental deflection could manifest as either (1) shifting the rate

of expected DNA methylation change at a locus known to increase or

decrease with age or (2) shifting the methylation pattern of a gene over

time that is typically stable with age.14 With this in mind, we selected

three regions for this pilot. Long interspersed nuclear element-1 (LINE-1)

is a repetitive element that makes up 17% of the human genome and is

used as a broad biomarker of DNA methylation status. LINE-1 is heavily

methylated to prevent retrotransposition and is hypomethylated in can-

cers.23 LINE-1 methylation decreases with age in adulthood,24 and there

is evidence for very small declines between birth and 9 years of age.25

We also quantified DNA methylation at two growth-related genes that

have previously been associated with adiposity in children—imprinted

maternally expressed transcript (non-coding) H19; and non-imprinted

hydroxysteroid (11-beta) dehydrogenase 2 HSD11B2.26,27 H19 is

expected to be stable over time and across tissues,28 while the ageing-

related pattern of HSD11B2 promoter methylation in children is unknown.

This pilot study leverages the Early Life Exposure in Mexico to

ENvironmental Toxicants (ELEMENT) birth cohort to examine the asso-

ciations between adiposity at two developmental stages and repeat

longitudinal measures of DNA methylation from birth through adoles-

cence (Figure 1). We quantified DNA methylation at LINE-1, H19, and

HSD11B2 via pyrosequencing. We estimated the associations between

childhood BMI and early adolescent BMI, weight, or waist circumfer-

ence with these repeat measures of DNA methylation in early and late

adolescence. We then assessed the interaction between age and each

anthropometric measure as a proof-of-concept to test whether adipos-

ity could deflect age-related DNA methylation levels.

2 | METHODS

2.1 | Study population

The study population comprised a subset of participants from the

ELEMENT project, a longitudinal epidemiological study consisting of
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three sequentially enrolled birth cohorts.29 ELEMENT was originally

designed to focus primarily on lead exposure and its impact on cogni-

tive performance, as well as analyses of other metals and chemi-

cals.30,31 Epigenetics data were then added over time using archived

samples.29 As a brief overview, participants were recruited at three

maternity hospitals (Instituto Mexicano del Seguro Social, Hospital

Manuel Gea Gonzalez, and the National Institute of Perinatology) and

clinics of the Instituto Mexicano del Seguro Social, representing low-

to moderate-income populations in Mexico City from 1994 to 2005.

Prior to participation, study procedures were explained to mothers

and children. Mothers provided written consent upon enrolment in

the study, and children also provided assent during the childhood and

adolescent study visits. The research protocol was approved by the

Human Subjects Committee of the National Institute of Public Health

of Mexico, participating hospitals, and the Internal Review Board at all

participating institutions including the University of Michigan.

The study subjects in this project were a subset of 1079 mother–

child pairs from the second and third birth cohorts who had archived sam-

ples from birth and at least one other time point in mid-childhood/

adolescence available for epigenetic analysis. Umbilical cord blood sam-

ples were collected shortly after birth and stored frozen at �20 to �24�C

until analysis for a subset of these families. At the clinic visit after the child

was born, mothers provided household and demographic information,

including age, education, and previous numbers of pregnancies. The

child's birth weight and gestational age were also obtained from medical

records. Mother–child pairs were followed up at multiple timepoints

throughout early childhood, mid-childhood, and adolescence.29 Briefly,

offspring were followed every 3 to 6 months from birth until 5 years of

age. Starting in 2011, we re-contacted a subset of the offspring (n = 250)

and brought them in for a follow-up visit, referred to as the ‘early-teen’
visit. Three to five years later, one additional follow-up visit (‘late-teen’
visit) was completed among 549 children, of whom 223 had participated

in the ‘early-teen’ visit. Anthropometry information was measured at all

visits, and fasting blood samples were collected at both teen visits. The

time periods utilized in this study are depicted in Figure 1.

2.2 | Assessment of DNA methylation

DNA was isolated from umbilical cord blood nucleated cells and blood

leukocytes from the ‘late-teen’ visit using Qiagen kits following standard

protocols (Qiagen, Valencia, CA). For the ‘early-teen’ visit, DNA was iso-

lated from blood leukocytes using the PaxGene Blood DNA kit

(PreAnalytiX, Switzerland). All samples were bisulfite converted via the

Epitect kit (Qiagen, Valencia, CA) or the EZ DNA Methylation kit (Zymo

Research, Irvine, CA) as previously described.32,33 Percent of DNA meth-

ylation was quantified at LINE-1, H19, and HSD11B2.34 Percent DNA

methylation was quantified via the pyrosequencing platform35 using pre-

viously described assays (locations and primers described in Wu et al.34).

Briefly, sequences were amplified from approximately 50 ng bisulfite-

converted DNA using HotStartTaq Master Mix (Qiagen). Each PCR batch

(experimental plate) contained at least two controls of known methyla-

tion status (0% and 100%). For pyrosequencing, the Pyro Q-CpG soft-

ware was used to compute percent DNA methylation for 4–5 CpG sites

per gene from the PyroMark ID Pyrosequencer (Qiagen), and this soft-

ware incorporates internal quality control checks (e.g., bisulfite conver-

sion control). To minimize the influence of batch effects on the accuracy

of DNA methylation level quantifications, matched birth and ‘early-teen’
samples from each individual were included in the same pyrosequencing

batch; meanwhile, all ‘late-teen’ samples were pyrosequenced at a later

time period together in their own batch. Technical replicates had to pass

a 10% coefficient of variance test or the samples were repeated.

2.3 | Anthropometry

Weight (kg) and height (cm) were measured at 5 years of age and at

2 adolescent visits and waist circumference at adolescent visits fol-

lowing Lohman standardized protocols.36–38 BMI was calculated as

weight over height squared (kg/m2). BMI is commonly recommended

as a practical estimate of obesity in children and adolescents. Abun-

dant evidence has shown the main limitations of BMI include it mea-

sures excess weight rather than excess fat, and it does not provide

information on fat distribution (Health Technology Assessment).

Waist circumference assesses central adiposity, which is more closely

associated with cardiometabolic risk.

2.4 | Covariates

Based on a priori knowledge, the study objective and the sample size

limitation, covariates included in all final models were sex and age.

F IGURE 1 Conceptual framework and timing of measures.
Baseline DNA methylation profiles at birth are shaped by a
combination of the gestational environment and genetics. While DNA
methylation remains stable at some genes across the life-course,
others change with age. Whether environmental or physiological
conditions alter or ‘deflect’ the rate or direction of this change with
age is a new area of research. In a pilot sample from the Early Life
Exposures in Mexico to Environmental Toxicants (ELEMENT) study,
we quantified DNA methylation at LINE-1 repetitive elements and
two growth and adiposity related genes (H19 and HSD11B2) via
pyrosequencing at three developmental time periods. We assessed
interactions between age and measures of children's adiposity
(represented by the dashed arrows) to infer whether adiposity
deflects age-related DNA methylation patterns. Adiposity measures,
BMI, weight, and waist circumference; BMI, body mass index; DNAm,
DNA methylation
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Since our focus is on the potential associations of adiposity with the

rate of DNA methylation fluctuations with age,14,39 we adjusted each

participant's age by coding baseline age (the age when the predictor

variable was collected) as 0 in each model. Age at the year-5 follow-

up visit was considered the baseline age when using childhood BMI

(kg/m2) as the predictor; while ‘early-teen’ visit age was considered

the baseline age when using early-teen BMI (kg/m2), weight (kg), and

waist circumference (cm) as predictors.

2.5 | Statistical methods

We first examined the distribution of age, sex, childhood BMI (calcu-

lated based on their measured weight and height) at age 5 years, as

well as BMI, waist circumference, weight and height from the ‘early-
teen’ visit, across subgroups with subjects who had cord, ‘early-teen’
or ‘late-teen’ DNA methylation levels available. For LINE-1, H19, and

HSD11B2, we calculated descriptive statistics for DNA methylation at

TABLE 1 Demographic characteristics of ELEMENT participants included in the analyses

ELEMENT participants

Sample size of individual group Cord (N = 113) Early-teen (N = 79) Late-teen (N = 96) ANOVA test (p value)

Age (years) n = 113 n = 79 n = 96

N/A 11.16 (1.90) 14.85 (2.10) <.0001

Boys, n (%) n = 113 n = 79 n = 96

60 (53.10) 41 (51.8) 54 (56.25) .77

Predictors

Childhood BMI (kg/m2) n = 81 n = 66 n = 67

16.68 (6.16) 16.94 (6.78) 16.71 (6.66) .97

Early-teen BMI (kg/m2) n = 79

19.98 (4.24)

Early-teen waist circumference (cm) n = 79

72.46 (12.35)

Early-teen weight (kg) n = 79

42.75 (14.01)

Repeat measures of DNA methylation loci

LINE-1 n = 78 n = 75 n = 94

Averaged Methylation of LINE-1 68.49 (3.90) 68.09 (3.74) 77.65 (3.72) <.0001

Methylation of LINE-1, CpG 1 65.54 (4.46) 64.79 (5.03) 75.43 (5.64) <.0001

Methylation of LINE-1, CpG 2 67.91 (3.27) 68.04 (2.71) 77.43 (2.65) <.0001

Methylation of LINE-1, CpG 3 63.18 (5.78) 63.04 (5.05) 74.81 (4.73) <.0001

Methylation of LINE-1, CpG 4 77.35 (5.67) 76.73 (5.06)a 83.33 (3.40)a <.0001

H19 n = 106 n = 79 n = 92

Averaged Methylation of H19 50.61 (2.84) 49.45 (2.52) 50.37 (3.45) .03

Methylation of H19, CpG 1 53.14 (5.67) 51.81 (4.51) 52.00 (5.23) .16

Methylation of H19, CpG 2 49.54 (2.16) 48.55 (2.13) 49.28 (3.55)a .04

Methylation of H19, CpG 3 49.55 (2.80) 48.19 (2.62) 49.16 (4.52)a .03

Methylation of H19, CpG 4 50.21 (2.62) 49.26 (2.55) 50.82 (3.21)a .002

HSD11B2 n = 86 n = 79 n = 93

Averaged Methylation of HSD11B2 2.24 (2.58)a 2.13 (2.49)a 2.74 (1.42) .14

Methylation of HSD11B2, CpG 1 3.15 (3.21) 3.24 (2.90) 3.84 (1.24) .15

Methylation of HSD11B2, CpG 2 1.05 (1.75) 0.80 (1.44) 2.24 (1.53) <.0001

Methylation of HSD11B2, CpG 3 2.90 (4.05) 2.97 (3.81) 3.01 (1.66)a .98

Methylation of HSD11B2, CpG 4 0.46 (1.17) 0.47 (1.22) 1.24 (1.37)a <.0001

Methylation of HSD11B2, CpG 5 3.11 (3.72)a 2.99 (3.44)a 3.43 (2.02)a .64

Note: p value <.05 are in bold.
aSpecific sample size variations at certain CpG sites. This occurs from CpG sites near the end of the sequencing runs failing quality control in some

samples. The fourth CpG site for LINE-1 failed in 2 early-teen and 5 late-teen samples. The fourth CpG site for H19 failed in 2 late-teen samples. The last

three CpG sites in HSD11B2 failed in 1–4 samples per time point.
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individual CpG sites, as well as the average values of all sites in each

region. The distribution comparisons of these variables across sub-

groups were performed using ANOVA tests.

We first assessed the main effect of childhood BMI and early ado-

lescent BMI, weight, or waist circumference on repeat measures of

DNA methylation. As such, we measured DNA methylation from three

timepoints—birth (to account for baseline levels that participants were

born with), ‘early-teen’, and ‘late-teen’. To maximize the sample size as

much as possible while keeping the same baseline measurement of

DNA methylation for each participant, we included subjects that had

either DNA methylation information from all three timepoints, or who

had umbilical cord blood DNA methylation and one additional time

point (‘early-teen’ or ‘late-teen’) in the analysis. Based upon previous

literature evidence,40 BMI at 5 years of age was selected as a proxy of

the early childhood adiposity status. Moreover, due to limited total

sample size and few participants categorized as obese, all weight-

related outcomes were included as continuous variables, instead of cre-

ating categorical variables. We used linear mixed-effects models to

examine the associations of BMI, weight, or waist circumference with

repeat measures of DNA methylation at each loci, while accounting for

age and sex (fixed effects) and random effects for intra-person variabil-

ity and between-batch variability. While there is ample evidence that

gestational age and maternal smoking impact offspring DNA methyla-

tion levels,18–21 we did not adjust for these variables as they would be

expected to impact ‘baseline’ birth DNA methylation which is one of

the included repeat measures of DNA methylation in our study.

To examine evidence for environmental deflection of age-related

DNA methylation trajectories by adiposity-related measures at key

stages in childhood (5-years of age and early-teen), we ran a linear

mixed-effects model with an interaction term between weight-related

measures and age, including fixed effects for age, sex, and random

effects for individual and batch. Coefficients with p-values smaller

than .05 were considered statistically significant. All analyses were

conducted using R software version 3.5.1 (cran.r-project.org). The

lme4 package was used for modelling.41

3 | RESULTS

The ELEMENT cohort included 113 subjects who had DNA samples

for epigenetic analysis at birth and at least one other time point (boys:

60 [53.1%], girls: 53 [46.9%]). Among those, 62 subjects had repeated

measurements from all three time points; 17 subjects had DNA meth-

ylation measurements obtained from cord and early-teen blood

TABLE 3 Associations between early-teen waist circumference and weight status with repeat measures of cord, early-teen and late-teen,
blood DNA methylation levels using linear mixed-effects model

Model 1a Model 2b

Waist circumference Weight

N % of Methylation ß (95% CI) p value ß (95% CI) p value

LINE-1

78 Avg 0.02 (0.01, 0.02) .55 0.01 (0.00, 0.01) .80

78 CpG 1 0.01 (0.00, 0.02) .79 �0.00 (�0.01, 0.01) .95

78 CpG 2 0.01 (0.01, 0.02) .42 0.00 (0.00, 0.01) .85

78 CpG 3 0.01 (0.00, 0.02) .85 0.00 (�0.01, 0.00) .92

78 CpG 4 0.05 (0.04, 0.06) .24 0.02 (0.01, 0.02) .64

H19

79 Avg �0.01 (�0.01, 0.00) .70 �0.03 (�0.04, �0.03) .11

79 CpG 1 0.02 (0.01, 0.03) .56 �0.01 (�0.01, 0.00) .84

79 CpG 2 �0.02 (�0.02, �0.01) .40 �0.05 (�0.05, �0.04) .02

79 CpG 3 �0.00 (�0.01, 0.00) .85 �0.04 (�0.04, �0.03) .12

79 CpG 4 �0.03 (�0.03, �0.02) .31 �0.04 (�0.05, �0.03) .09*

HSD11B2

62 Avg 0.00 (�0.00, 0.00) .96 �0.00 (�0.01, 0.00) .77

62 CpG 1 �0.00 (�0.01, 0.00) .91 �0.01 (�0.01, �0.00) .67

62 CpG 2 �0.01 (�0.01, �0.00) .61 �0.01 (�0.01, �0.00) .43

62 CpG 3 0.01 (0.00, 0.02) .66 0.00 (�0.00, 0.01) .97

62 CpG 4 �0.00 (�0.01, �0.00) .62 �0.00 (�0.01, �0.00) .73

62 CpG 5 0.01 (0.00, 0.31) .74 0.00 (0.00, 0.01) .93

Note: p value <.05 are in bold.
aModel 1: % of Methylation = ß0 + ß1 � (Age) + ß2 � (Sex) + ß3 � (Early-teen waist circumference) + (1jSubject ID) + (1jBatch ID).
bModel 2: % of Methylation = ß0 + ß1 � (Age) + ß2 � (Sex) + ß3 � (Early-teen weight) + (1jSubject ID) + (1jBatch ID).

*p value <.1.
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samples; and 34 subjects had DNA methylation measurements from

cord and late-teen blood samples (Table 1). We observed some statis-

tically significant differences in DNA methylation at CpG sites

between age groups (Table 1). However, this effect did not remain

statistically significant when adjusting for batch in linear mixed-effects

models.

When averaging across all CpG sites and at CpG site 3, we

observed consistent inverse associations between childhood or early-

teen BMI and weight-related measures with H19 DNA methylation.

Most of these associations were not statistically significant via a stan-

dard p value cut-off of .05, though some demonstrated suggestive

associations with p values <.1. For instance, for each kg/m2 increase of

early childhood BMI, we observed a 0.07%-point decrease on average

across three repeat measures of H19 methylation at CpG site 3, adjust-

ing for age, sex and intra-person effect (p value = .04), or a 0.06%

decrease when also adjusting for batch effects (p value = .06) (Table 2).

We also observed suggestive evidence showing an association

between early-teen weight and DNA methylation of H19. Specifically,

for each 1 kg increase of early-teen weight, H19 methylation at CpG

site 2 and 3 decreased by 0.02% (p value = .07) and 0.03%

(p value = .09) respectively, adjusting for age, sex, intra-person, and

batch effects (Table 3). We did not observe any statistically significant

associations of early-teen BMI and waist circumference with repeat

measures of DNA methylation at any other sites of H19 (Table 3). Our

analysis results did not identify any evidence of associations between

anthropometric outcomes and repeat measures of LINE-1 or HSD11B2

DNA methylation.

We next modelled the interaction between adiposity measures

and time to the last measure of DNA methylation (age) on DNA meth-

ylation to investigate evidence for environmental deflection of age-

related DNA methylation by adiposity (represented by the dashed

lines in Figure 1). None of the interaction terms were statistically sig-

nificant (p value >.05; Table S1). However, this pilot study was under-

powered to detect interactions, and several interactions had p values

less than .2. There were positive interactions between age and early

teen adiposity measures (BMI and waist circumference) in models of

DNA methylation at H19 CpG site 3. Effect estimates for the interac-

tion terms were 0.013 ± 0.008 (p = .12) and 0.004 ± 0.003 (p = .20)

for age � BMI and age � waist circumference, respectively. There

were interaction terms with similar magnitude in models of H19 CpG

site 1 and also average of all H19 sites. There was suggestive evidence

that age and adiposity at the early teen visit interact to influence DNA

methylation of HSD11B2 CpG site 5. Effect estimates for the interac-

tion with age were �0.013 ± 0.010 (p = .18), �0.004 ± 0.003

(p = .20), and �0.006 ± 0.003 (p = .10) for BMI, weight, and waist cir-

cumference, respectively. Future studies with appropriate power to

detect interaction should follow up on these preliminary results.

4 | DISCUSSION

Few population-based longitudinal cohort studies have examined the

association of childhood BMI and early adolescent BMI, weight, or

waist circumference with levels of DNA methylation using repeat

measures. Compared to cross-sectional studies, longitudinal cohorts

with repeated epigenetic assessments enable higher statistical reliabil-

ity and potentially provide information regarding directionality of

disease-epigenome relationships. This is especially important in stud-

ies of epigenetics and adiposity given that epigenetic regulation of

some genes can impact adiposity risk but the reverse is true for other

genes.7–9,13,26,42 There is a small but growing set of cohort studies

that examined associations between environmental factors and age-

related DNA methylation trajectories over time using repeat

measures,21,22 but they mainly focused on elderly participants. Here,

we expanded on this existing literature by conducting a pilot analysis

in a sample of adolescents with archived blood DNA from birth (cord

blood) and two follow-up visits in adolescence. We observed an

inverse association between measures of childhood BMI and repeat

measures of H19 DNA methylation, an imprinted gene that is

expected to remain fairly stable over time. We also observed sugges-

tive associations in the same, inverse direction between early-teen

weight and repeat measures of H19 DNA methylation. We do not

report any statistical evidence for deflection of age-related DNA

methylation by adiposity, though interactions between age and early

teen adiposity on H19 and HSD11B2 with p value <.2 merit further

investigation in larger studies.

We conducted this study because the epigenome can change

with age, sometimes in a predictable way,17 yet the gene–

environment interactions that contribute to these changes are only

now beginning to be identified. We previously used a mouse model to

examine whether developmental bisphenol A (BPA) exposure, high-fat

diet, and/or physical activity-related energy expenditure would lead

to environmental deflection of age-related methylation.43 We

observed that western high fat diet (WHFD) as well as WHFD with

BPA exposure had statistically significant impacts on trajectories of

age-related DNA methylation at the Oestrogen Receptor 1 (Esr1)

locus and at two repeat regions, Intracisternal A Particle (IAP), and

LINE-1. The results from the present cohort study suggest that

increased early childhood BMI and early-teen weight, which could be

related to WHFD intake44 and an altered cardiometabolic state, were

associated with decreased repeat measures of H19 DNA methylation

from birth to adolescence on average. However, since the interactions

between age and BMI or weight were not statistically significant in

the second set of models, the results do not provide evidence for

deflection. Given the estimates and p values of some interaction terms

(p < .2) between early teen adiposity measures and age in models of

both H19 and HSD11B2, we recommend examination of this question

in future studies with adequate statistical power.

Since the epigenome is reprogrammed shortly after fertilization, it

is important to acknowledge that in utero environmental exposures

can have long-lasting impacts on individual epigenetic profiles and

contribute to the ‘baseline’ for each individual. While exposures dur-

ing other developmental periods (i.e., infancy, childhood, adolescence)

are not expected to have as great of an impact on epigenetic profiles

compared with in utero exposures, cumulative and continued expo-

sures and conditions such as obesity or inflammation may have subtle
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impacts on maintenance of DNA methylation profiles in dividing cells,

especially in tissues with high turnover, such as blood cells. DNA

methylation profiles are important for health; associations between

DNA methylation and risk for cardiometabolic complications, cancer,

polycystic ovary syndrome, and more are widely published.45 The

reverse direction—the impact of disease states on DNA methylation—

is also plausible but less well studied. One of the potential mecha-

nisms by which adiposity could impact DNA methylation levels is

through induction of oxidative stress (OS). It is widely accepted that

accumulation of adipose tissue in the visceral compartment is consid-

ered an active endocrine organ, releasing a variety of biologically

active adipocytokines or adipokines.46 Due to the complex interplay

between adipokines, overweight/obesity leads to chronic low-grade

inflammation with permanently increased OS.46 Meanwhile, other

work has provided evidence that elevated OS can transiently alter the

epigenome by modulating the activity of enzymes responsible for

demethylation of DNA and deacetylation of histones.47 Integrating

the pieces of evidence above provides biological plausibility for the

impact of early-life adiposity on maintenance of DNA methylation

profiles with ageing. Future analyses on this hypothesis could incorpo-

rate biomarkers of OS along with longitudinal epigenetic profiling.

The results reported in this pilot study are largely null, yet several

factors limited our ability to detect evidence for environmental

deflection by adiposity. First, the sample size was restricted to partici-

pants with repeat archived DNA samples, and statistical power to

detect interactions with small to medium effect sizes was extremely

limited. None of the associations observed would be significant at

a Bonferroni corrected p-value accounting for multiple testing

(p < .001). Second, we quantified DNA methylation at only LINE-1

repetitive elements and two adiposity-related genes; as such, we are

likely missing many key gene regions of interest including those that

have been associated with BMI in children in other studies.9 Third, cell

type composition influences DNA methylation levels at many loci, and

we did not have cell type differentials to adjust for at all time points

of sample collection. Confounding bias from changing cell type com-

position is expected to be minimal for H19, an imprinted gene which

is stable across tissues.28 Fourth, unlike animal studies, cohort studies

are complex and we may not be controlling for all important con-

founders or beneficial factors (e.g., micronutrients) that could protect

against any detrimental effects of obesity on DNA methylation pat-

terns. Finally, we included adiposity measures commonly collected in

clinical settings, e.g., BMI, weight and waist circumference, expecting

each to offer some insights in evaluating whether weight status and

fat distribution may relate to changes in DNA methylation of growth-

related genes across childhood and adolescence. Nevertheless, future

research that relies on measures of adipose tissue via DEXA or MRI

would provide more accurate information on total fat and fat

distribution.

In summary, we conducted a pilot epidemiological study to exam-

ine the associations of early-life adiposity with repeated measure-

ments of DNA methylation at three key developmental time periods

(birth, early, and late-teen). We also estimated the interaction

between childhood adiposity measures and age to investigate

deflection of age-related DNA methylation levels through adoles-

cence. While our results were largely null and the statistical power

to detect interactions was low, we provide some preliminary evi-

dence for the association between early-life adiposity and DNA

methylation at H19, and potential interactions between age and

early teen adiposity on H19 and HSD11B2 methylation. Future stud-

ies with larger sample sizes should incorporate multiple measures of

DNA methylation across childhood, ideally using an epigenome-wide

approach, in order to investigate deflection of age-related DNA

methylation trajectories during childhood and adolescence by obe-

sity. Remaining questions that could be assessed with such studies

include whether: (1) the magnitude of effects vary according to obe-

sity status (i.e. in obese versus normal weight children); (2) adiposity

impacts DNA methylation at other growth-, visceral fat metabolism-

or hormone related genes; (3) adiposity has a stronger effect at cer-

tain developmental periods, especially during childhood adiposity

rebound timing48; and (4) additional endogenous and exogenous fac-

tors modulate the association.

It is known that a complex interplay between genetic and envi-

ronmental factors influence child growth, development, and outcomes

including childhood obesity. We often think of epigenetics as a molec-

ular mechanism linking the child's broader environment to adverse

health outcomes. It is now becoming clear that obesity itself can act

like an adverse ‘environmental exposure’—leading to inflammation,

oxidative stress,3 and a modified epigenome.7 These subtle biological

changes can propagate risk for further health complications. We

believe it is important to understand the extent to which childhood

obesity/adiposity modifies the child epigenome, as this is a molecular

mechanism that can be targeted for further study to identify subtle

alterations in biological pathways that could contribute to further

metabolic complications as children age. Small effect sizes, as we

observe here, are what is commonly observed in children's health

studies involving epigenetics,49 and the impact of such small effects

across a multitude of genes could be important for health.
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