
Boise State University Boise State University

ScholarWorks ScholarWorks

Computer Science Faculty Publications and
Presentations Department of Computer Science

2022

Automatic Transformation of Natural to Unified Modeling Automatic Transformation of Natural to Unified Modeling

Language: A Systematic Review Language: A Systematic Review

Sharif Ahmed
Boise State University

Arif Ahmed
Boise State University

Nasir U. Eisty
Boise State University

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. https://doi.org/10.1109/SERA54885.2022.9806783

https://scholarworks.boisestate.edu/
https://scholarworks.boisestate.edu/cs_facpubs
https://scholarworks.boisestate.edu/cs_facpubs
https://scholarworks.boisestate.edu/cs
https://doi.org/10.1109/SERA54885.2022.9806783

Automatic Transformation of Natural to Unified
Modeling Language: A Systematic Review

Sharif Ahmed
Dept. of Computer Science

Boise State University
Boise, USA

sharifahmed@u.boisestate.edu

Arif Ahmed
Dept. of Computer Science

Boise State University
Boise, USA

arifahmed@u.boisestate.edu

Nasir U. Eisty
Dept. of Computer Science

Boise State University
Boise, USA

nasireisty@boisestate.edu

Abstract—Context: Processing Software Requirement Specifi-
cations (SRS) manually takes a much longer time for requirement
analysts in software engineering. Researchers have been working
on making an automatic approach to ease this task. Most of the
existing approaches require some intervention from an analyst
or are challenging to use. Some automatic and semi-automatic
approaches were developed based on heuristic rules or machine
learning algorithms. However, there are various constraints to
the existing approaches to UML generation, such as restrictions
on ambiguity, length or structure, anaphora, incompleteness,
atomicity of input text, requirements of domain ontology, etc. .
Objective: This study aims to better understand the effectiveness
of existing systems and provide a conceptual framework with fur-
ther improvement guidelines. Method: We performed a systematic
literature review (SLR). We conducted our study selection into
two phases and selected 70 papers. We conducted quantitative
and qualitative analyses by manually extracting information,
cross-checking, and validating our findings. Result: We described
the existing approaches and revealed the issues observed in these
works. We identified and clustered both the limitations and
benefits of selected articles. Conclusion: This research upholds
the necessity of a common dataset and evaluation framework to
extend the research consistently. It also describes the significance
of natural language processing obstacles researchers face. In
addition, it creates a path forward for future research.

Index Terms—Requirement Elicitation, Software Engineering,
Natural Language Processing, Unified Modeling Language

I. INTRODUCTION

Requirements analysis in software development is an essen-
tial and rudimentary task. The quality analysis of requirements
elicitation and further developing software work-products such
as various diagrams and formatted textual descriptions leads to
a successful project, product, or service. We human beings, as
an analyst, have the innate power to understand the information
in texts contextually regardless of the existence of misspelled
words, incorrect grammar, and indirectly stated items. This
performance has not been obtained yet in Natural Language
Processing (NLP) or Artificial intelligence, and it is a long
way to go. But we human beings are also limited by fatigue,
drowsiness, distractions, fluctuation in concentrations, which
makes us error-prone despite our aforementioned power. So,
the machines’ ability to work relentlessly with error and
humans’ ability to work perfectly for short periods is not as
easy to put on two pans of a weighing scale’s beam and come
to a conclusion. Berry et al. [1] suggested that NLP tools

for requirements engineering can be an effective approach to
activities that are tedious and rigorous.

Unified Modeling Language (UML) is “a general-purpose
visual modeling language to specify, visualize, construct, and
document the artifacts of a software system”- Rumbaugh
et al. [2]. There is no fully working method or tool to
generate UML diagrams from the informal natural language
(NL) requirements. Most existing approaches have high-level
complexity, are computationally costly, or have limitations.
Researchers found that earlier approaches require developer
intervention for UML diagram creation. Besides, there are a
few approaches that are comparatively recent and are fully
automated. Still, these approaches are working under some
constrained input such as restricted NL or some particular
form of texts [3]. A previous work takes informal NL text
requirements and generates UML Use Case and Activity
Diagrams without any developer’s intervention or assistance
[4]. Any fully automatic approach or tool can significantly
help with requirement elicitation and modeling for software
analysts. It can also save the overall cost and time within a
software development process.

Many tools and approaches have been proposed and de-
veloped to extract information from natural language text
to generate UML diagrams. However, natural language pro-
cessing has many problems such as ambiguity, uncertainty,
incompleteness, and incoherence [3]. Existing approaches
perform poorly at times because of this ambiguity of NL.
On top of that, large requirement documents can produce
other issues while processing. Besides, crucial information is
sometimes missed, which feeds the verb to develop complete
understanding. A software analyst has to figure out such
problems and fix these issues using her domain knowledge.
Many tools and techniques have been proposed to solve this
kind of problem. But in reality, these tools are not being used
in Software Development Life-Cycle for many constraints.
And most of the tools require frequent interventions of an
analyst to finish the process. In addition, the majority of tools
are limited to producing class diagrams only [5], [6].

Though there are some new solutions, they still require more
rules to increase the domain knowledge, which is another
problem [3], [7]. So, our work will provide a conceptual
framework showing an overview of using rule-based heuris-

ScoutBinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at 2022 IEEE/ACIS 20th International Conference on Software Engineering Research, Management and Applications (SERA), published by IEEE. Copyright restrictions may apply. https://doi.org/10.1109/SERA54885.2022.9806783.

(((usecase OR “use case” OR class) AND
diagram) OR UML) AND generation

Final 40 candidate papers

ACM
IEEE

Science Direct
CiteSeerX

Google
Scholar

 Inclusion &
Exclusion

Backward & Forward

Snowballing

Search

(“Natural language” OR “using NLP”) AND
((auto* OR generat*) AND (uml OR diagram
OR requirement))

673
query
results

Most
Relevant

50
papers

Final 30 candidate papers

Screened out 20 papers using Inc/Exc Criteria

Most
frequent
words as

query
terms

ACM
 Inclusion &

Exclusion

Total 70 candidate papers

Fig. 1. Study selection process

tic approaches and machine learning-based approaches. This
framework will help researchers to make decisions while
finding a new solution.

II. RELATED WORK

Though there are not many systematic studies related to our
research questions, we found a few notable literature reviews
that we discuss in this section.

Zaho et al. [8] conducted a robust systematic literature
review on NLP for requirements engineering (RE), capturing
almost every aspect of RE tasks: detection, extraction, classi-
fication, modeling, tracing and relating, search, and retrieval.
They covered the breadth of RE, which is valuable for the
software research community. In contrast, we give a depth of
RE regarding NL to UML automation. As they covered on
breadth, it is not expected to have a depth of any of the tasks
mentioned above they covered.

Omer et al. [9] performed a survey that addressed techniques
and outputs. Their analysis of strengths and weaknesses is
limited to the number of diagrams each study generated.

Esra et al. [3] conducted another systematic mapping study
on the techniques and approaches of NL to UML Class
diagram. However, our analysis is neither limited to class
diagrams nor mapping the techniques and approaches. Instead,
we dug deeper into the existing approaches, tools, pros,
and cons. In addition, we cover what the primary studies
addressed, attempted, or overlooked and their success and
failure anecdotes from their published works.

III. RESEARCH METHODOLOGY

In this section, we discuss our research methodology for
this study. At first, we developed a research protocol follow-
ing guidelines for systematic literature reviews by Kitchen-
ham [10] to make our research process uncompromising and
evident. Then, we followed the following steps: research
question formation, study selection, data extraction, and data
synthesis. Table I shows the protocol overview that we devel-
oped and executed.

A. Research Questions
Our research motivation and objectives led us to the follow-

ing research questions:
RQ1: What are the existing approaches to automate

the UML generation? The answer to this question will
recapitulate the existing tools and techniques used by the
software engineering community.

RQ2: How effective are the existing approaches? This
inquiry will portray opportunities and obstacles of ongoing
effort to solve NL to UML transformations.

B. Searching Strategy
We mainly focused following digital libraries for our study:
• ACM Digital Library (ACM)
• IEEE Xplore Digital Library(Xplore)
• Science Direct Digital Library (Elsevier)
• CiteSeerX
• Google Scholar

Our study comprises two phases. At first, we searched on
aforementioned digital libraries using the query string, (((use-
case OR “use case” OR class) AND diagram) OR UML)
AND generation, addressing the most commonly used UML
diagrams. We snowballed backward and forward with the
retrieved candidate papers on Google Scholar. At that point,
we selected 40 articles perusing the full articles. Then we
checked a shallow synthesis of words from the titles and the
abstracts of these papers and identified the top frequent words.
In the second phase, using these words, we built another search
string (“Natural language” OR “using NLP”) AND ((auto*
OR generat*) AND (uml OR diagram OR requirement))
and performed the second phase of our search on abstracts
only. We chose only ACM Digital Library in this phase as it
retrieved 673 articles, the least number of articles than other
libraries. We manually selected 30 articles after screening the
title and abstract from these retrieved articles. Our searching
period was Sep 2021 to Dec 2021, and the publishing years
of papers were from 1994 to 2021.

ScoutBinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at 2022 IEEE/ACIS 20th International Conference on Software Engineering Research, Management and Applications (SERA), published by IEEE. Copyright restrictions may apply. https://doi.org/10.1109/SERA54885.2022.9806783.

TABLE I
PROTOCOL SUMMARY

Research Questions RQ1: What are the existing approaches to automate the UML generation?
RQ2: How effective are the existing approaches?

Search string Phase-1: (((usecase OR “use case” OR class) AND diagram) OR UML) AND generation
Phase-2: (“Natural language” OR “using NLP”) AND ((auto* OR generat*) AND (uml OR diagram OR requirement))

Search strategy

Phase-1: DB search: ACM, Google Scholar, IEEE, ScienceDirect, Springer, CiteSeerX
Backward and forward snowballing using Google Scholar
Phase-2: DB search: ACM
Formulated new query string from most frequent words found in the titles of articles filtered in Phase-1

Inclusion criteria
The article is written in English
The article is published in a scholarly journal or conference/ workshop/ symposium proceedings
The article covers at least one of our RQs partially or fully

Exclusion criteria

The article doesn’t answer any of our RQs either partially or fully
The article is written in Non-English
Any article retracted from publisher
The article is secondary study derived from primary studies i.e. Systematic Literature Review or Mapping Study

Study type Primary studies

TABLE II
DATA EXTRACTION FORM

Field Categories Relvant RQ
Paper Title Free text -
Year Number Demographics
Source Venue / Journal / Conference Demographics
Authors Free text Demographics
Abstract Free text -
Relationships (Aggregation, Inheritance, Generaliza-

tion, Association, Composition, Depen-
dency, Multiplicity, Inclusion, Exclu-
sion)

RQ2

Methodology Analysis of their implementation RQ2
Pros Analysis of their resolved problem RQ2
Cons Analysis of their unresolved problem RQ2
Automation Automatic, Semi-Automatic, Manual RQ1
Approach Heuristic Rule based, Machine Learn-

ing based, Hybrid (ML+HR)
RQ1

Output Type of output(UML)produced RQ1 , RQ2
Technology Analysis of the tools, technology used

to solve the problem
RQ2

Evaluation Free text RQ1, RQ2

C. Quality Assessment and Inclusion/Exclusion

We considered the studies written in English; published in
a scholarly SE journal, conference, workshop, or symposium
proceedings. We checked if any of the studies already an-
swered any of our RQs partially or fully for assessing quality.
We excluded secondary studies, i.e., Systematic Literature
Review and Systematic Mapping Study. We also deduplicated
the papers as depicted in Fig. 1.

D. Data Extraction

As our final primary studies were selected, we developed
a data extraction form to answer our RQs. Table II shows
data fields and their mapping to RQs. The first two authors
manually went through each of the papers and extracted
information from each of the primary studies to fillup the form.
The third author reviewed the results. Then we discussed the
emerged conflicts and fixed them.

E. Data Synthesis

The data extraction phase led us to synthesize quantitative
and qualitative results. Having extracted the data in the form,
we synthesized it to discover:

• Year-wise distribution of published studies
• Statistics of approaches to convert NL to UML
• Statistics of automation to convert NL to UML
• Relationships among UML components resolved
• Distribution of final/intermediate outputs acquired
• Usage of technologies or tools to solve the problems
• Analysis of dataset, metric, and evaluation techniques
• Analysis of strength and limitation of existing solutions
The Tables III, IV, V, and VI and Fig 2 provide quantitative

insights. Section 4.2 provides 16 facets with both quantitative
and qualitative insights.

IV. RESULTS

We discuss our findings according to the research questions
in this section.

A. RQ1: What are the existing approaches to automate the
UML generation?

At first, we grouped all the approaches found in our primary
selected papers into the following categories: Heuristic Rule-
Based, Machine Learning, Automatic, Semi-automatic, and
Hybrid. Fig. 2 shows the approaches and automation we found
in our analysis. But as we moved forward, we figured out
that many research works combined these approaches. So, we
refined our cluster represented in Fig. 2. We found that most
of the work was carried out by applying the heuristic rules,
and a few other works used machine learning techniques. In
addition, some of the papers obtained significant output by
using both heuristic rules and machine learning techniques.

1) UMLs Generated: Table III shows the UML diagrams
that existing studies covered. Table IIIpresents the most com-
mon UML outputs such as usecase, sequence, and activity.
Among them, the class diagram is studied the most.

2) Technologies Used: We have manually extracted the
technologies used from each of the papers from our primary
studies. Table IV shows the list of technologies used. Re-
searchers used a variety of NLP techniques in their studies.
We observed significant use of the Stanford CoreNLP library.
Besides, we also found the use of OpenNLP and SharpNLP.
Stanford’s POS tagger, Brill, TreeTagger, dependency parser,

ScoutBinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at 2022 IEEE/ACIS 20th International Conference on Software Engineering Research, Management and Applications (SERA), published by IEEE. Copyright restrictions may apply. https://doi.org/10.1109/SERA54885.2022.9806783.

Fig. 2. Approaches to solve NL to UML transformation

Here, hr: Heuristic rules based approach, ml: Machine learning approach

TABLE III
OUTPUTS OBTAINED IN STUDIES

Outputs Studies
class diagram [4]–[6], [11]–[39]
usecase diagram [7], [13], [40]–[45]
object diagram [30], [46]–[49]
processed sentences [50]–[53]
sequence diagram [11], [14], [20], [45]
comparison [8], [54]–[56]
code [11], [17], [35]
use case [37], [57]
test case [35], [57]
processed srs [58], [59]
activity diagram [7], [60]
meta model [57], [61]
Other Outputs: traceability [44]; graph [62]; sbvr [63]; er-diagram [64];
processed named entity [65]; b-spec [66]; owl class [67]; proposal [68];
collaboration diagram [13]; test cases [57]; natural language [69]; feature
diagram [70]; gui prototype [71]

TABLE IV
TECHNOLOGY USED IN EXISTING STUDIES

Technology Studies
nlp [5], [8], [11], [12], [14], [15], [17]–[19], [25]–[31],

[33], [36], [40], [42]–[47], [49], [51]–[53], [56]–[58],
[60], [62], [63], [65], [68], [71]

rule [1], [15], [17], [21], [23], [24], [29]–[31], [33], [44],
[49]

pos tagger [1], [5], [6], [15], [19], [25]–[28], [40]–[42], [53], [64]
parse [1], [13], [21], [28], [41], [42], [45], [46], [54], [64],

[68]
stanford corenlp [1], [7], [11], [13]–[15], [17], [43], [45], [54], [62],

[68]
ontology [1], [5], [12], [18], [27]–[29], [42], [65]
parser [13], [21], [28], [42], [45], [46], [54], [68]
wordnet [5], [11]–[13], [27], [28], [54], [59]
tree [34], [41], [42], [54], [64], [69]
gui [5], [18], [25], [47], [52], [59]
open nlp [12], [25], [27], [28], [68]
dependency [16], [22], [34], [45]
sbvr [15], [15], [24], [24]
graph [22], [34], [62]
ml [20], [36], [70]
ocl [20], [34], [57]
traceability [25], [26]
Other Technologies: brill [5]; treetagger [42]; bayes [40]; featureide
[70]; gkps [16]; javarap [13]; reasoning [19]; sharpnlp [52]; spacy [53];
spider [5]; verbnet [59]; semnet [38]; lolita [38]; rtool [37];

POS parser, and Stanford’s parser were most commonly used
for Parts of Speech (POS) tagging. WordNet was most com-
mon for resolving ambiguity, but WSD and VerbNet were also
used. A set of heuristic rules were defined for heuristic-rule-
based solutions. We also found several works using the domain
ontology technique.

3) Preprocessing techniques applied: We found that all
the preprocessing treatments for NL are almost similar in
nature. The first task in preprocessing is to split the text
into sentences. Then the sentences are tokenized using either
stemming or lemmatization. Surprisingly we found several
works that applied both techniques together [3], [4], [7]. In
stemming, the output can be meaningless words, affecting
the use of tagger and parser. Then POS tagger and POS
parser are used for identifying NP, VB, grammatical structures,
etc. Then a set of rules is applied to identify actors, use
cases, relationships, etc. But while normalizing the NL text
automatically, there is a high chance of losing information
[13]. So, the decision and treatment selection in preprocessing
phase affects the overall performance.

B. RQ2: How effective are the existing approaches?

In this study, one of our objectives was to find “to what
extent problem(s) were solved” and “what limitations were
observed” from our primary studies. To do so, we extracted
both pros and cons from each study. Then, we framed our
findings into a conceptual framework comprising sixteen dif-
ferent facets in Fig. 3. Finally, we describe how far researchers
could solve existing problems and what problems they could
not solve while translating NL to UML in this section.

1) Ambiguity: The requirement document contains text
where comprehension or meaning extracted by readers may
vary based on readers’ perspectives. In particular, requirement
analysts can resolve the ambiguity from text with their domain
knowledge. But when it comes to NLP, it becomes much
harder to capture the correct meaning of a word by resolving
ambiguity. Any misinterpretation of a word may produce
defects that can affect the overall context [72]. Some studies
solved ambiguities but mostly resolved lexical ambiguity. In
NLP, syntactic or semantic ambiguities are also common
problems. But, existing approaches could not resolve such
ambiguities completely [37], [38], [49], [55], [56], [58], [59].

ScoutBinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at 2022 IEEE/ACIS 20th International Conference on Software Engineering Research, Management and Applications (SERA), published by IEEE. Copyright restrictions may apply. https://doi.org/10.1109/SERA54885.2022.9806783.

TABLE V
RELATIONSHIPS RESOLVED IN EXISTING STUDIES

Relation Resolution Studies
aggregation [3]–[6], [12], [14]–[16], [24], [28], [29], [31],

[37], [42], [43], [46], [64], [72], [75]
association [4], [6], [11], [12], [17], [23], [24], [29]–[31],

[37], [38], [43], [46], [65], [70], [72], [75], [76]
generalization [3]–[6], [12], [15], [23], [24], [28], [29], [31], [37]
composition [4], [12], [24], [28], [42], [43], [64], [76]
multiplicity [6], [24], [29], [30], [42]
dependency [3], [4], [24], [28]
inheritance [24], [43]

A study stated six kinds of ambiguity in software require-
ments: lexical, syntactic, semantic, pragmatic, vagueness, and
language error [73]. However, in their work, they only focused
on lexical, syntactic, and language errors only [59]. We found
some manual glossaries, machine learning, and ontology-based
approaches to reduce ambiguity from the SRS. In addition, we
found some tools for identifying and eliminating ambiguities
either fully or partially. Tools are- WSD, QuaARS, ARM,
RESI, SREE, NAI, SR-Elicitor, and NL2OCL [74].

2) Semantic Correctness: We found several studies re-
solved semantic incorrectness by using WordNet. But, in a
study, they considered frequency counts while using WordNet
caused misclassification [12], [28], [44].

3) Language: We did not find any study processing Non-
English requirement text. We only found a work where the
requirement text was translated from French into English [54].

4) Heuristic Rule: Studies using heuristic rules have shown
promising work progress. However, most of them addressed
the necessity of more heuristic rules for better performance
[4], [7].

5) Relation Resolution: Several relationships connect the
UML components. For instance, the association relationship
connects each actor and the use case. Meryem et al. [42]
identified the actors first and then discovered the use cases
using the linkage from the actors. And for more than one
property associated with a concept or candidate, it is con-
sidered as a class; otherwise, an attribute [5]. Prepositions are
emphasized for identifying relationships and associations [17].
Verb phrases are used to determine inheritance, association,
composition, and aggregation relations to extract actors or
classes; association and composition relations are used for
identifying actions, operations, or methods [43]. Another type
of relationship is semantic relation comprising vertical and
horizontal relationships. Vertical relations include broader,
part-of, or instance-of. Horizontal relations are similarity or
relatedness [5]. SBVR, which has Object Oriented informa-
tion, easily retrieves the association, multiplicity, aggregations,
generalizations, and instances. A few others used Named-
Entity-Recognition, Stanford Open Information Extraction,
Ontology, WordNet, and Dependency Parser to solve these
relations.

6) Text Restriction: We found a few papers that mentioned
different constraints on NL text [40], [52]. We also investigated
the structure of the NL text used for transforming into UML.
Some studies put restrictions on:

• Text length: No study explicitly mentioned the text length
except Sandeep et al. [40]. On average there were 10
sentences per story which are comparatively shorter. In
reality, the original user stories are much more lengthy
and lack clarity.

• Sentence length: Some approaches only used 5-15 sen-
tences with an average sentence length of 10 words in
their user requirement document. Some studies observed
that long sentences having more than one N (Nouns) or
VB (Verbs) can create disturbingly long use cases [40].

• Grammatical structure: The constraint to use modal verbs
[52] or active sentences [13], [27], [44], [77] only in
requirement text imposes additional restrictions.

• Controlled language: A few approaches were carried out
using controlled NL instead of NL [15], [55], [63].

7) Formal Expression Extraction: In formal expression
extraction, an expression must be consistent with the formal
representation of the system. Dependency graph construction
based on grammatical structure and abstract syntax trees can
show similarities. But, synonyms applied within a sentence
cause major problem [59]. For example, “CPU” and “Proces-
sor” can be used within the same sentence. In that case, Word
Sense Disambiguation (WSD) is a good choice to resolve such
issues.

8) Dataset: Most of the primary studies applied their mod-
els to one or more NL software requirement text(s) (aka case-
study) to demonstrate the models’ performance. We found
input NL case-study appeared more than twice are: Library
[12], [15], [16], [24], [31], [36], [64], ATM [37], [45], [60],
[76], Elevator [45], [46], [60], Banking [22], [25], [26], [36],
Home [53], [70], Arena [45], [60]. However, some studies
didn’t even address their input case-study [6], [14], [15],
[40], [66], [76]. The number of input case-study used in the
experiment ranges from 0 to 7.

Meryem et al. [42] worked with NLP techniques along with
OWL ontology and MAT, then simulated the performance,
including accuracy, recall, precision on classifying actor, use
case, and relationships on a dataset that is obsolete and
inaccessible. There are a few papers that mentioned the dataset
they used. But we did not find all of them available publicly.
We also found a few studies using significantly small and poor
datasets [15], [35].

9) Anaphora Resolution: This is one of the most common
and challenging problems in NLP. A few studies solved the
only basic or pronominal issues using JavaRAP by replacing
proper nouns with their correct noun form [13], [49]. For
example: “John found the love of his life” where ‘his’ refers
to ‘John’.

10) Incompleteness: Requirement text with correct gram-
matical structure may have an information gap if the document
is written considering readers understandability. Any human
reader having field expertise can comprehend such incomplete-
ness. But, it is difficult to capture such information gaps using
incorporated NLP techniques [65], [72].

11) Atomicity: Another issue comes with a lack of atomic-
ity which appears when the writer keeps the text unambiguous

ScoutBinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at 2022 IEEE/ACIS 20th International Conference on Software Engineering Research, Management and Applications (SERA), published by IEEE. Copyright restrictions may apply. https://doi.org/10.1109/SERA54885.2022.9806783.

TABLE VI
METRICS USED FOR EVALUATION IN EXISTING STUDIES

Metrics Studies
precision [6], [15], [16], [24], [25], [28], [29], [31],

[36], [38], [40], [42], [53], [54], [63], [70],
[76], [78], [79]

recall [6], [15], [16], [24], [25], [28], [29], [31],
[36], [38], [40], [53], [63], [70], [76], [78],
[79]

enumeration [22], [25], [32], [57], [76]
accuracy [14], [40], [41], [45], [59]
relationship [4], [6], [29], [70]
false positive [36], [53], [79]
over specification [6], [16], [31]
output type [4], [7], [13]
false negative [36], [53], [79]
completeness [58], [60]
f-measure [36], [63]
Other Metrics: weighted average [63], f-measure [63], ambiguity [58],
[59], over-generalization [29], consistency [60], automation [13], atomic-
ity [58], conceptual density of dataset [78], limitation [37], verifiability
[59], computational time [58]

by providing all the information to make the text complete
but addresses more than one thing. In NLP, if we can split a
sentence into smaller sentences, then it doesn’t go along with
atomicity. A few studies solved this problem by splitting a
sentence into smaller sentences. But, for complex sentences,
it required human intervention [72].

12) Misclassification: Researchers found a high level of
misclassification for classes and attributes for using simple
heuristic rules [16], [54]. Abdelkareem et al. [14] normalized
the text before POS tagging then used Stanford NLP POS
Tree. But, they found that the Stanford PoS tree misses Sub
(Subject) by misclassifying VB (Verb)/NP (Noun Phrase).

13) Manual Intervention: We found studies producing out-
comes with and without manual intervention. A few studies
require it mandatorily, some of them require it to some extent
[1], [7], [11], [30].

14) SRS Traceability: After identifying class, attributes,
and operations (UML components), identified UML compo-
nents are checked in a backward fashion to see whether the
UML components are meaningful and working or not. This
iterative process provides meaningful class diagrams [25]–
[27].

15) Proof of Concepts: Many of the studies provided
various software, IDE plugins, or other forms of deliverables,
which are essential for the research community to believe their
demonstrations and feasibility [12], [14], [17], [47], [63], [71].

16) Evaluation: The most common metrics found in our
primary studies are based on counting proper classification or
extraction of UML components from NL such as Precision,
Recall Accuracy, F-measure, Enumeration, Over-specification,
Over-generalization False Negative, False Positive. A few
other less common metrics found are Completeness, Ambi-
guity, Conceptual Density of Dataset, Computational time,
Weighted Average (in addition to enumeration), Verifiability,
Consistency, and Atomicity. Some studies just contrasted their
implementation with others as an evaluation such as Relation-
ship, Output Type, Automation.

V. DISCUSSION

We have found most papers using a rule-based heuristic
approach which indicates the common trend for solving, but
machine learning approaches are also noticeable in recent
years. Each of the studies had taken an almost similar treat-
ment for NL preprocessing using different libraries.

We observed many patterns in the existing research works
and discovered trends and relationships. As described in sec-
tion IV, we identified sixteen facets of the solutions and limita-
tions of the existing approaches. We found the class diagram as
the most used UML diagram. Implementing other UMLs like
use case or usecase diagrams does require additional tasks and
effort. We also found a comparatively low number of research
mentioning their proof of concepts, but in some cases, these
were neither publicly accessible nor found on the web. The
primary concern for most of the studies was the ambiguity of
NL. Few works have significantly mentioned this problem, its
limitations, and its treatment.

However, most implementations had constraints such as
satisfying a specific grammatical structure, using a domain on-
tology, sentence length, and absence of ambiguity or anaphora.
Some also failed to identify UML components or detect rela-
tionships among them in some cases. Many evaluation metrics
and datasets emerged in this study. Claims from evaluations
are not comparable in many cases because of differences in
metrics or datasets. Moreover, the case studies used lack more
extensive or diverse descriptions.

VI. THREATS TO VALIDITY

We did not use SpringerLink and Scopus due to not having
access to these digital libraries within the period of this study.
The SLR was independently executed by the first two authors
and reviewed by the third author to minimize personal bias.
We might have some selection bias in phase-1. We analyzed
the most frequent words from the titles of selected 40 papers
from phase-1. Using these most frequent words as query
terms, we again searched the same digital libraries. Thus,
the later searching phase minimizes query term selection bias
as we constructed it from statistics instead of our choice.
Among them, ACM digital library retrieved the least number
of papers. So we considered only ACM for the second phase
and manually selected the most relevant 30 papers for our
second phase study selection. The reduced number of relevant
papers in the second phase indicates that our two-phased
search strategy was effective and had good evidence coverage.

VII. CONCLUSION

This systematic literature review framed research works
that generated UML components from NL. We focused on
approaches used, their pros and cons, and metrics. In addition,
we identified the contributions and limitations of these works
in this study. We found several heuristic-rule-based solutions.
It can be a potential avenue to build a robust framework
using machine learning techniques by exploiting these heuris-
tic rules. In many research fields, several common standard
datasets exist that help researchers extend their research work

ScoutBinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at 2022 IEEE/ACIS 20th International Conference on Software Engineering Research, Management and Applications (SERA), published by IEEE. Copyright restrictions may apply. https://doi.org/10.1109/SERA54885.2022.9806783.

Fig. 3. Conceptual Framework

rapidly. We believe that establishing a benchmark dataset and
designing metrics (quantitative and qualitative) for evaluating
NL to UML transformation will help the community.

This systematic literature review will help the researchers
of the NLP and RE fields. This review pointed out major NL
problems that researchers are trying to resolve. Furthermore,
we have analyzed and conceptually framed the existing ap-
proaches and their pros and cons. Hence, our work will help
both the researchers and developers working on the automation
of NL to UML transformation.

REFERENCES

[1] D. Berry, R. GacituaPete, S. Sri, and F. Tjong, “The case for dumb
requirements engineering tools,” Int. Working Conf. on Requirements
Engineering: Foundation for Soft. Quality REFSQ: Requirements Engi-
neering: Foundation for Soft. Quality, 2012.

[2] J. Rumbaugh, I. Jacobsen, and G. Booch, “The unified modeling
language reference manual.” 2d ed., Addison-Wesley, p. 3, 2004.

[3] E. A. Abdelnabi, A. M. Maatuk, and M. Hagal, “Generating uml class
diagram from natural language requirements: A survey of approaches
and techniques,” IEEE 1st Int. Maghreb Meeting of the Conf. on Sciences
and Techniques of Automatic Control and Computer Engineering MI-
STA, 2021.

[4] E. A. Abdelnabi, A. M. Maatuk, T. M. Abdelaziz, and S. M. Elakeili,
“Generating uml class diagram using nlp techniques and heuristic rules,”
20th Int. Conf. on Sciences and Techniques of Automatic Control and
Computer Engineering (STA), 2020.

[5] N. Zhou and X. Zhou, “Auto-generation of class diagram from free-text
functional specifications and domain ontology,” Artificial Intelligence -
CiteseerX, 2004.

[6] N. Bashir, M. Marjani, M. Bilal, N. Malik, M. Liaqat, and M. Ali,
“Modeling class diagram using nlp in object-oriented designing,” Na-
tional Computing Colleges Conf. (NCCC), 2021.

[7] A. M. Maatuk and E. A. Abdelnabi, “Generating uml use case and
activity diagrams using nlp techniques and heuristics rules,” DATA’21:
Int. Conf. on Data Science, E-learning and Info. Systems, 2021.

[8] L. Zhao, W. Alhoshan, A. Ferrari, K. J. Letsholo, M. A. Ajagbe, E.-V.
Chioasca, and R. T. Batista-Navarro, “Natural language processing for
requirements engineering: A systematic mapping study,” ACM Comput-
ing Surveys, Vol.54, No.3, Art. 55., 2021.

[9] O. S. Dawood and A.-E.-K. Sahraoui, “From requirements engineer-
ing to uml using natural language processing –survey study,” EJERS,
European Jour. of Engg. Research and Science Vol. 2, No. 1, 2017.

[10] B. Kitchenham, “Procedures for performing systematic reviews,” Keele,
UK, Keele Univ., vol. 33, 08 2004.

[11] M. Soeken, R. Wille, , and R. Drechsler, “Assisted behavior driven
development using natural language processing,” Int. Conf. on Modelling
Techniques and Tools for Computer Performance Evaluation TOOLS
’12: Objects, Models, Components, Patterns, 2012.

[12] M. Ibrahim and R. Ahmad, “Class diagram extraction from textual
requirements using natural language processing (nlp) techniques,” IEEE
2nd Int. Conf. on Computer Research and Development, 2010.

[13] D. K. Deeptimahanti and R. Sanyal, “Semi-automatic generation of uml
models from natural language requirements,” ISEC: Proc. of the 4th
India Soft. Engineering Conf., 2011.

[14] A. M. Alashqar, “Automatic generation of uml diagrams from scenario-
based user requirements,” Jordanian Jour. of Computers and Info. Tech.
(JJCIT), Vol. 07, No. 02, 2021.

[15] I. Bajwa and M. C. and, “From natural language soft. specifications
to uml class models”,,” Int. Conf. on Enterprise Inf. Systems (ICEIS),
Berlin, 2011.

[16] R. Sharma, P. Srivastava, and K. Biswas, “From natural language
requirements to uml class diagrams,,” AIRE, Ottawa, ON, Canada, 2nd
Workshop on Artif. Intell. for Requirements Eng, 2015.

[17] I. Bajwa, A. Samad, and S. M. and, “Object oriented soware modeling
using nlp based knowledge extraction,” Europ. Jour. of Sci. Research,
vol. 35(1), 2009.

[18] N. Zhou and X. Zhou, “Automatic acquisition of linguistic patterns for
conceptual modeling,” INFO 629: Artificial Intell., pp. 1-19, 2004.

[19] A. Oliveira, N. Seco, and P. G. and, “A cbr approach to text to class
diagram translation,” 8th European Conf. on Case-Based Reasoning,
Turkey, 2006.

[20] M. Clavel, M. Egea, and V. Silva, “The mova toola rewriting-based uml
modeling, measuring, and validation tool,” 12th Conf. on Sof. Eng. and
Databases, Spain., 2007.

[21] D. Popescu, S. Rugaber, N. Medvidovic, and D. B. and, “Reducing
ambiguities in requirements specifications via automatically created
object-oriented models,” Monterey Workshop, pp. 103-124, 2008.

[22] H. Krishnan and P. Samuel, “Relative extraction methodology for class
diagram generation using dependency graph,” Int. Conf. On Commun.
Control & Comp. Tech, pp. 815-820, 2010.

[23] V. Sharma, S. Sarkar, K. Verma, A. Panayappan, and A. K. and,
“Extracting high-level functional design from soft. requirements,,” 16th
AsiaPacific Soft. Eng. Conf., pp. 35-42, 2009.

[24] H. Afreen and I. S. B. and, “Generating uml class models from sbvr
soft. requirements specifications,” 23rd Conf. on Artif. Intell., pp. 23-32,
2011.

[25] O. S. D. Omer, A.-E.-K. Sahraoui, M. M. E. Mahmoud, and andAbd El-
Aziz Babiker, “Requirements and design consistency: A bi-directional
traceability and natural language processing assisted approach,” Euro-
pean Jour. of Engg. and Tech. Research Vol 6,Issue 3, 2021.

[26] O. Dawood and A.-E.-K. Sahraoui, “Toward requirements and design
traceability using natural language processing,” European of Engineering
and Tech. Research, pp. 42–49, Jul. 2018.

[27] P. More and R. P. and, “Generating uml diagrams from natural language
specifications,,” Jour. of Applied Inf. Sys., vol. 1(8), pp. 19-23, 2012.

[28] S. Joshi and D. Deshpande, “Textual requirement analysis for uml
diagram extraction by using nlp,” Jour. of Comp. Appl., vol. 50(8), pp.
42-46, 2012.

[29] H. Herchi and W. Abdessalem, “From user requirements to uml class
diagram,” Int. Conf. on Comp. Related Knowledge (ICCRK), Tunisia.
arxiv, 2012.

[30] S. Overmyer, B. Lavoie, and O. R. and, “Conceptual modeling through
linguistics analysis using lida,” the 23rd Int. Conf. on Soft. Eng. (ICSE),
Canada., 2001.

[31] H. Harmain and R. G. and, “Cm-builder: A natural language-based case
tool,” Jou. of Auto. Soft. Eng., vol. 10(2), pp. 157-181, 2003.

[32] A. Arellano, E. Carney, and M. A. A. and, “Frameworks for natural lan-
guage processing of textual requirements,” Natural language processing
of textual requirements The 10th Conf. on Sys., Spain, 2015.

[33] W. B. A. Karaa, Z. B. Azzouz, A. Singh, N. Dey, A. S. Ashour, ,
and H. B. Ghazala, “Automatic builder of class diagram (abcd): an
application of uml generation from functional requirements,” Jour. of
Soft. Practice and Experience, vol. 46(11), pp. 1443-1458, 2015.

ScoutBinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at 2022 IEEE/ACIS 20th International Conference on Software Engineering Research, Management and Applications (SERA), published by IEEE. Copyright restrictions may apply. https://doi.org/10.1109/SERA54885.2022.9806783.

[34] R. D. Mathias and S. R. Wille, “Automated and quality-driven require-
ments engineering,” IEEE/ACM Int. Conf. on Computer-Aided Design
(ICCAD), 2014.

[35] W. F. Tichy and S. J. Koerner, “Text to soft.: developing tools to close
the gaps in soft. engineering,” FoSER’10, Santa Fe, New Mexico, USA,
2010.

[36] A. Al-Hroob, A. T. Imam, and R. Al-Heisa, “The use of artificial neural
networks for extracting actions and actors from requirements document,”
Info. and Soft. Tech. Vol. 101, pp. 1-15, 2018.

[37] V. S, S. Aithal, and P. Desai, “An approach towards automation of
requirements analysis,” Proc. of the Int. MultiConf. of Engineers and
Computer Scientists Vol I IMECS., 2009.

[38] L. Michl and R. Garigliano, “Nl-oops: A requirements analysis tool
based on natural language processing,” WIT Transactions on Info. and
Communication Technologies, vol 28, 2002.

[39] R. Giganto, “Generating class models through controlled requirements,”
IMECS, Hong Kong, 2009.

[40] S. Vemuri, S. Chala, and M. Fathi, “Automated use case diagram gen-
eration from textual user requirement documents,” IEEE 30th Canadian
Conf. on Electrical and Computer Engineering (CCECE), 2017.

[41] M. S. O. Z. A. B. J. Alrawashdeh, “Generate use case from the
requirements written in a natural language using machine learning,”
IEEE Jordan Int. Joint Conf. on Electrical Engineering and Info. Tech.
(JEEIT), 2019.

[42] M. Elallaouia, K. Nafilb, and R. Touahnia, “Automatic transformation
of user stories into uml use case diagrams using nlp techniques,” The
8th Int. Conf. on Ambient Systems, Networks and Technologies(ANT),
2018.

[43] S. Nasiri, Y. Rhazali, M. Lahmer, and N. Chenfour, “Towards a genera-
tion of class diagram from user stories in agile methods,” Int. Workshop
on the Advancements in Model Driven Engineering (AMDE), Warsaw,
Poland, 2020.

[44] D. K. Deeptimahanti and M. A. Babar, “An automated tool for gener-
ating uml models from natural language requirements,” IEEE/ACM Int.
Conf. on Automated Soft. Engineering, 2009.

[45] J. S. Thakur and A. Gupta, “Automatic generation of sequence diagram
from use case specification,” ISEC ’14, Chennai, India, 2014.

[46] S. Nanduri and S. R. and, “Requirements validation via automated
natural language parsing,” Jour. of Manag. Inf. Sys., vol. 12(3), 1995.

[47] J. Börstler, “User-centered requirements engineering in record-an
overview,” Jour. Nordic Workshop on Programming Environment Re-
search (NWPER), 1996.

[48] S. Delisle, K. Barker, and I. B. and, “Object-oriented analysis: Getting
help from robust computational linguistic tools,” 4th Int. Conf. on Appl.
of Natural Language to Inf. Sys., Austria, 1999.

[49] S. MacDonell, K. Min, and A. Connor, “, autonomous requirements
specification processing using natural language processing,,” arXiv
preprint, 2014.

[50] C. Arora, M. Sabetzadeh, A. Goknil, L. C. Briand, and F. Zimmer,
“Narcia: An automated tool for change impact analysis in natural
language requirements,” ESEC/FSE’15, Bergamo, Italy, 2015.

[51] P. Jain, K. Verma, A. Kass, and R. G. Vasquez, “Automated review of
natural language requirements documents: Generating useful warnings
with user-extensible glossaries driving a simple state machine,” ISEC’09,
Pune, India, 2009.

[52] M. W. Anwar, I. Ahsan, F. Azam, and W. H. Butt, “A natural language
processing (nlp) framework for embedded systems to automatically
extract verification aspects from textual design requirements,” ICCAE,
Sydney, NSW, Australia, 2020.

[53] M. S. Haris and T. A. Kurniawan, “Automated requirement sentences
extraction from soft. requirement specification document,” SIET ’20,
Malang, Indonesia, 2020.

[54] T. R. Silva and B. Fitzgerald, “Empirical findings on bdd story parsing
to support consistency assurance between requirements and artifacts,”
EASE: Evaluation and Assessment in Soft. Engineering, 2021.

[55] U. S. Shah and D. C. Jinwala, “Resolving ambiguities in natural
language soft. requirements: A comprehensive survey,” ACM SIGSOFT
Soft. Engineering Notes Vol. 40 No. 5, 2015.

[56] K. A. Memon and X. Xiaoling, “Deciphering and analyzing soft.
requirements employing the techniques of natural language processing,”
ICMAI’19, April 12–15, Chengdu, China, 2019.

[57] C. Wangy, F. Pastorey, A. Goknily, L. Briandy, and Z. Iqbal, “Automatic
generation of system test cases from use case specifications,” ISSTA:
Proc. of the Int. Symposium on Soft. Testing and Analysis, 2015.

[58] C. Huertas and R. Juárez-Ramı́rez, “Nlare, a natural language processing
tool for automatic requirements evaluation,” CUBE: Proc. of the CUBE
Int. Info. Tech. Conf., 2012.

[59] A. B. Rojas and G. B. Sliesarieva, “Automated detection of language
issues affecting accuracy, ambiguity and verifiability in soft. require-
ments written in natural language,” Proc. of the NAACL HLT Young
Investigators Workshop on Computational Approaches to Languages of
the Americas, Los Angeles, California, 2010.

[60] T. Yue, L. C. Briand, and Y. Labiche, “atoucan: An automated framework
to derive uml analysis models from use case models,” ACM Transactions
on Soft. Engineering and Methodology, Vol. 24, No. 3, Art. 13, Pub.,
2015.

[61] B. R. Bryant, B.-S. Lee, F. Cao, R. R. Raje, A. M. O. W. Zhao, J. G.
Gray, and C. C. Burt, “From natural language requirements to executable
models of soft. components,” Monterey Workshop on Soft. Engineering
for Embedded Systems, Chicago, IL, pp. 51- 58, 2003.

[62] A. Schlutter and A. Vogelsang, “Knowledge extraction from natural
language requirements into a semantic relation graph,” IEEE/ACM 42nd
Int. Conf. on Soft. Engineering Workshops (ICSEW), 2020.

[63] D. P, S. T, and B. R, “Natural language processing-enhanced extraction
of sbvr business vocabularies and business rules from uml use case
diagrams,” Data & Knowledge Engineering Vol. 128, 101822, 2020.

[64] E. S. Btoush and M. M. Hammad, “Generating er diagrams from
requirement specifications based on natural language processing,” Int.
Jour. of Database Theory and Application Vol.8, No.2, 2015.

[65] A. Arellano, E. Carney, and M. A. Austin, “Natural language processing
of textual requirements,” ICONS’15, The 10th Conf. on Sys., Spain,
2015.

[66] T. C. de Sousa, J. R. Almeida, S. Viana, and J. Pavón, “Automatic
analysis of requirements consistency with the b method,” ACM SIGSOFT
Soft. Engineering Notes Vol. 35 No. 2, 2010.

[67] J. Karpovic and L. Nemuraite, “Transforming sbvr business semantics
into web ontology language owl2: Main concepts,” 17th Int. Conf. on
Info. and Soft. Technologies IT2011, Lithunia, 2011.

[68] G. Deshpande, “Sreyantra: automated soft. requirement inter-
dependencies elicitation, analysis and learning,” IEEE/ACM 41st
Int. Conf. on Soft. Engineering: Companion Proc. (ICSE Companion),
2019.

[69] B. H and H. R, “Natural language generation from class diagrams,”
https://dl.acm.org/doi/pdf/10.1145/2095654.2095666, 2011.

[70] A. Sree-Kumar, E. Planas, and R. Clarisó, “Extracting soft. product
line feature models from natural language specifications,” SPLC ’18,
Gothenburg, Sweden, 2018.

[71] K. Kolthoff, “Automatic generation of graphical user interface prototypes
from unrestricted natural language requirements,” 34th IEEE/ACM Int.
Conf. on Automated Soft. Engineering (ASE), 2019.

[72] A. Sukys, L. Nemuraite, E. Sinkevicius, and B. Paradauskas, “Querying
ontologies on the base of semantics of business vocabulary and business
rules,” 17th Int. Conf. on Info. and Soft. Technologies IT2011, Lithunia,
2011.

[73] D. M. Berry, P. D. C. Science, M. M. Krieger, and P. D. Mathematics,
“From contract drafting to soft. specification: Linguistic sources of
ambiguity,” A Handbook Version 1.0, 2000.

[74] G. Carvalho, D. Falcão, F. Barros, A. Sampaio, A. Mota, L. Motta, and
M. Blackburn, “Test case generation from natural language requirements
based on scr specifications,” SAC’13, Coimbra, Portugal., 2013.

[75] N. Vitacolonna, “Conceptual design patterns for relational databases,”
17th Int. Conf. on Info. and Soft. Technologies IT2011, Lithunia, 2011.

[76] U. Iqbal and I. S. Bajwa, “Generating uml activity diagram from sbvr
rules,” 6th Int. Conf. on Innovative Computing Tech. (INTECH), 2016.

[77] D. D. Kumar and R. Sanyal, “Static uml model generator from analysis
of requirements (sugar),” 2008 Advanced Soft. Engineering and Its
Applications, 2008.

[78] G. Lucassen, M. Robeer, and F. Dalpiaz, “Extracting conceptual mod-
els from user stories with visual narrator,” Requirements Eng (2017)
22:339–358, 2017.

[79] G. Lucassen, F. Dalpiaz, J. M. E. M. van der Werf, and S. Brinkkemper,
“Improving agile requirements: the quality user story framework and
tool,” Requirements Eng (2016) 21:383–403, 2016.

ScoutBinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at 2022 IEEE/ACIS 20th International Conference on Software Engineering Research, Management and Applications (SERA), published by IEEE. Copyright restrictions may apply. https://doi.org/10.1109/SERA54885.2022.9806783.

	Automatic Transformation of Natural to Unified Modeling Language: A Systematic Review
	I Introduction
	II Related Work
	III Research Methodology
	III-A Research Questions
	III-B Searching Strategy
	III-C Quality Assessment and Inclusion/Exclusion
	III-D Data Extraction
	III-E Data Synthesis

	IV Results
	IV-A RQ1: What are the existing approaches to automate the UML generation?
	IV-A1 UMLs Generated
	IV-A2 Technologies Used
	IV-A3 Preprocessing techniques applied

	IV-B RQ2: How effective are the existing approaches?
	IV-B1 Ambiguity
	IV-B2 Semantic Correctness
	IV-B3 Language
	IV-B4 Heuristic Rule
	IV-B5 Relation Resolution
	IV-B6 Text Restriction
	IV-B7 Formal Expression Extraction
	IV-B8 Dataset
	IV-B9 Anaphora Resolution
	IV-B10 Incompleteness
	IV-B11 Atomicity
	IV-B12 Misclassification
	IV-B13 Manual Intervention
	IV-B14 SRS Traceability
	IV-B15 Proof of Concepts
	IV-B16 Evaluation

	V Discussion
	VI Threats to Validity
	VII Conclusion
	References

