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ABSTRACT 

 

The internal structure of materials also called the microstructure plays a critical 

role in the properties and performance of materials. The chemical element composition is 

one of the most critical factors in changing the structure of materials. However, the 

chemical composition alone is not the determining factor, and a change in the production 

process can also significantly alter the materials' structure. Therefore, many efforts have 

been made to discover and improve production methods to optimize the functional 

properties of materials. The most critical challenge in finding materials with enhanced 

properties is to understand and define the salient features of the structure of materials that 

have the most significant impact on the desired property. In other words, by process, 

structure, and property (PSP) linkages, the effect of changing process variables on 

material structure and, consequently, the property can be examined and used as a 

powerful tool in material design with desirable characteristics. In particular, forward PSP 

linkages construction has received considerable attention thanks to the sophisticated 

physics-based models. Recently, machine learning (ML), and data science have also been 

used as powerful tools to find PSP linkages in materials science. One key advantage of 

the ML-based models is their ability to construct both forward and inverse PSP linkages. 

Early ML models in materials science were primarily focused on process-property 

linkages construction. Recently, more microstructures are included in the materials 

design ML models. However, the inverse design of microstructures, i.e., the prediction of 
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process and chemistry from a microstructure morphology image have received limited 

attention. This is a critical knowledge gap to address specifically for the problems that the 

ideal microstructure or morphology with the specific chemistry associated with the 

morphological domains are known, but the chemistry and processing which would lead to 

that ideal morphology are unknown. 

In this study, first, we propose a framework based on a deep learning approach 

that enables us to predict the chemistry and processing history just by reading the 

morphological distribution of one element. As a case study, we used a dataset from 

spinodal decomposition simulation of Fe-Cr-Co alloy created by the phase-field method. 

The mixed dataset, which includes both images, i.e., the morphology of Fe distribution, 

and continuous data, i.e., the Fe minimum and maximum concentration in the 

microstructures, are used as input data, and the spinodal temperature and initial chemical 

composition are utilized as the output data to train the proposed deep neural network. The 

proposed convolutional layers were compared with pretrained EfficientNet convolutional 

layers as transfer learning in microstructure feature extraction. The results show that the 

trained shallow network is effective for chemistry prediction. However, accurate 

prediction of processing temperature requires more complex feature extraction from the 

morphology of the microstructure. We benchmarked the model predictive accuracy for 

real alloy systems with a Fe-Cr-Co transmission electron microscopy micrograph. The 

predicted chemistry and heat treatment temperature were in good agreement with the 

ground truth. The treatment time was considered to be constant in the first study. 

In the second work, we propose a fused-data deep learning framework that can 

predict the heat treatment time as well as temperature and initial chemical compositions 
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by reading the morphology of Fe distribution and its concentration. The results show that 

the trained deep neural network has the highest accuracy for chemistry and then time and 

temperature. We identified two scenarios for inaccurate predictions; 1) There are several 

paths for an identical microstructure, and 2) Microstructures reach steady-state 

morphologies after a long time of aging. The error analysis shows that most of the wrong 

predictions are not wrong, but the other right answers. We validated the model 

successfully with an experimental Fe-Cr-Co transmission electron microscopy 

micrograph. 

Finally, since the data generation by simulation is computationally expensive, we 

propose a quick and accurate Predictive Recurrent Neural Network (PredRNN) model for 

the microstructure evolution prediction. Essentially, microstructure evolution prediction 

is a spatiotemporal sequence prediction problem, where the prediction of material 

microstructure is difficult due to different process histories and chemistry. As a case 

study, we used a dataset from spinodal decomposition simulation of Fe-Cr-Co alloy 

created by the phase-field method for training and predicting future microstructures by 

previous observations. The results show that the trained network is capable of efficient 

prediction of microstructure evolution. 
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CHAPTER ONE: INTRODUCTION 

This Ph.D. dissertation aims to develop a framework based on deep learning (DL) 

to enable chemistry and process history prediction behind a microstructure as well as 

microstructure morphology prediction through microstructure evolution. The developed 

models enable the prediction of processing history and chemical compositions from 

microstructure images and predict microstructure morphologies without expensive and 

time-consuming simulations and experiments. Doing so will provide the materials 

science community with knowledge and algorithms that can be used for new materials 

development with the desired properties. In this way, we reviewed the previous studies 

for using machine learning in the construction of PSP linkages and material 

microstructure evolution prediction.  

Process-Structure-Property Linkages 

Heterogeneous materials are widely used in various industries, such as aerospace, 

automotive, and construction. These materials’ properties greatly depend on their 

microstructure, which is a function of the chemical composition and operational process 

of materials production. To accelerate the novel materials design process, the 

construction of process-structure-property (PSP) linkages is necessary. Establishing PSP 

linkages with sole experiments is not practical as the process is costly and time-

consuming. Therefore, computational methods are used to study the structure of materials 

and their properties. A basic assumption for computational modeling of materials is that 

they are periodic on the microscopic scale and can be approximated by representative 
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elements (RVE) [1]. Finding the effects of process conditions and the chemical 

composition on the characteristics of the RVE, such as volume fraction, microstructure, 

grain size, and, consequently, the materials’ properties, will lead to the development of 

PSP linkages. In the past two decades, the phase-field (PF) method has been increasingly 

used as a robust method for studying the spatiotemporal evolution of the materials’ 

microstructure and physical properties [2]. It has been widely used to simulate different 

evolutionary phenomena, including grain growth and coarsening [3], solidification [4], 

thin-film deposition [5], dislocation dynamics [6], vesicle formation in biological 

membranes [7], and crack propagation [8]. PF models solve a system of partial 

differential equations (PDEs) for a set of continuous variables of the processes. However, 

solving high-fidelity PF equations is inherently computationally expensive because it 

requires solving several coupled PDEs simultaneously [9]. Therefore, PSP construction, 

particularly for complex materials, only based on the PF method is inefficient. To address 

this challenge, machine learning (ML) methods have recently been proposed as an 

alternative for creating PSP linkages based on the limited experimental/simulation data or 

both [10]. Artificial intelligence (AI), ML, and data science are beneficial in speeding up 

and simplifying the process of discovering new materials [11]. Developing and deploying 

an appropriate support data infrastructure that efficiently integrates closed-loop iterations 

between experimentation and multi-scale modeling/simulation efforts is climacteric. This 

need is addressed by a new interdisciplinary field called Materials Data Science and 

Informatics [12-18]. 

A fundamental element of the data science approach is a multi-faceted framework 

that enables the research community to collect, aggregate, nurture, disseminate, and reuse 
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valuable knowledge. In materials innovation efforts, this knowledge is primarily desired 

in the form of length and time scale PSP linkages associated with the material system of 

interest [19-24]. In a multi-scale materials modeling effort, this means developing a 

formal data science approach to extract reusable PSP linkages from an ensemble of 

simulation and experiment datasets, as depicted in  Figure 1.1. The top arrow in Figure 

1.1, forward design philosophy, shows a typical workflow that materials scientists 

historically have used in developing PSP linkages. In forward design philosophy, we loop 

through the ordered connection of process-structure-property. Forward design usually 

involves the use of experiments and advanced physics in combination with numerical 

algorithms. Generally, since material discovery requires exploration of big space, the 

forward design is prone to result in high costs and time. This cost can be a significant 

obstacle to materials innovation efforts, even in the realm of simulations, as these 

simulations are often expensive, and the design space is huge. This is precisely where the 

data science approaches offer many benefits. As shown in Figure 1.1, the data science 

tools and algorithms can enable us to perform inverse design, i.e., start from the desired 

properties and find the required processing. With the full advantage of advanced statistics 

and machine learning techniques, data science can provide a mathematically rigorous 

framework for PSP linkage in multi-scale material design. As depicted in Figure 1.1, one 

of the main benefits of adding data science components to the entire workflow is that it is 

very practical to solve the inverse problem, which is the ultimate goal of materials 

innovation efforts. In fact, materials informatics provides a low computational approach 

for materials design. This is mainly because the PSP linkages are cast as metamodels or 
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surrogate models. These models can be easily used to find the optimum conditions for 

making materials with desired properties.  

In recent years, using data science in various fields of materials science has increased 

significantly [25-30]. For instance, data science is applied to help density functional 

theory calculations to establish a relationship between atoms’ interaction with the 

properties of materials based on the quantum mechanics [31-34]. AI is also utilized to 

establish PSP linkages in the context of materials mechanics. In this case, ML can be 

used to design new materials with desired properties or employed to optimize the 

production process of the existing materials for properties improvement. Through data 

science, researchers will be able to examine the complex and nonlinear behavior of a 

materials production process that directly affects the materials’ properties [35]. Many 

studies have focused on solving cause-effect design, i.e., finding the material properties 

from the microstructure or processing history. These studies have attempted to predict the 

structure of the materials from processing parameters or materials properties from the 

microstructure and processing history [10, 25, 36-43]. A less addressed but essential 

problem is a goal-driven design that tries to find the processing history of the materials 

from their microstructures. In these cases, the optimal microstructure that provides the 

optimal properties is known, e.g., via physics-based models, and it is desirable to find the 

chemistry and processing routes that would lead to the desirable microstructure.  
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Figure 1.1 Schematic of materials design workflow by forward and inverse 

design using PSP linkages. 

 

The use of microstructure images in ML modeling is challenging. The microstructure 

quantification has been reported as the central nucleus in the PSP linkages construction 

[37]. Microstructure quantification is important from two perspectives. First, it can 

increase the accuracy of the developed data-driven model. Second, an in-depth 

understanding of the microstructures can improve the comprehension of the effects of 

process variables and chemical composition on the properties of materials [37]. In recent 

years, deep learning (DL) methods have been successfully used in other fields, such as 

computer vision. Their limited applications in materials science have also proven them as 

reliable and promising methods [38]. The main advantages of DL methods are their 

simplicity, flexibility, and applicability for all types of microstructures. Furthermore, DL 

Process-Structure-Property (PSP) Linkages
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has been broadly applied in materials science to improve the targeted properties [34, 39-

46]. One form of DL models that has been extensively used for feature extraction in 

various applications such as image, video, voice, and natural language processing is 

Convolutional Neural Networks (CNN) [47-50]. In materials science, CNN has been used 

for various image-related problems. Cang et al. used CNN to achieve a 1000-fold 

dimension reduction from the microstructure space [51]. DeCost et al. [52] applied CNN 

for microstructure segmentation. Xie and Grossman [53] used CNN to quantify the 

crystal graphs to predict the material properties. Their developed framework was able to 

predict eight different material properties such as formation energy, bandgap, and shear 

moduli with high accuracy. CNN has also been employed to index the electron 

backscatter diffraction patterns and determine the crystalline materials’ crystal orientation 

[54]. The stiffness in two-phase composites has been predicted successfully by the deep 

learning approach, including convolutional and fully-connected layers [55]. In a 

comparative study, the CNN and the materials knowledge systems (MKS), proposed in 

the Kalidindi group based on the idea of using the n-point correlation method for 

microstructures quantification [56-58], were used for microstructure quantification and 

then, the produced data were employed to predict the strain in the microstructural volume 

elements. The comparison showed that the extracted features by CNN could provide 

more accurate predictions [59]. Cecen et al. [20] proposed CNN to find the salient 

features of a collection of 5900 microstructures. The results showed that the obtained 

features from CNN could predict the properties more accurately than the 2-point 

correlation, while the computation cost was also significantly reduced. Comparing DL 

approaches, including CNN, with the MKS method, single-agent, and multi-agent 
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methods shows that DL always performs more accurately [59-61]. Zhao et al. utilized the 

electronic charge density (ECD) as a generic unified 3D descriptor for elasticity 

prediction. The results showed a better prediction power for bulk modulus than for shear 

modulus [62]. CNN has also been applied for finding universal 3D voxel descriptors to 

predict the target properties of the solid-state material [63]. The introduced descriptors 

outperformed the other descriptors in the prediction of Hartree energies for solid-state 

materials.  

Training a deep CNN usually requires an extensive training dataset that is not always 

available in many applications. Therefore, a transfer learning method that uses a 

pretrained network can be applied for new applications. In transfer learning, all or a part 

of the pretrained networks such as VGG16, VGG19 [64], Xception [65], ResNet [66], 

and Inception [67], which were trained by the computer vision research community with 

lots of open source image datasets such as ImageNet, MS, CoCo, and Pascal, can be used 

for the desired application. In particular, in materials science which generally the image-

based data are not greatly abundant, transfer learning could be beneficial. DeCost et al. 

[68] adopted VGG16 to classify the microstructures based on their annealing conditions. 

Ling et al. [25] applied VGG16 to extract the feature from scanning electron microscope 

(SEM) images and classify them. Lubbers et al. [69] used the VGG 19 pretrained model 

to identify the physical meaningful descriptors in microstructures. Li et al. [70]  proposed 

a framework based on VGG19 for microstructure reconstruction and structure-property 

predictions. The pretrained VGG19 network was also utilized to reconstruct the 3D 

microstructures from 2D microstructures by Bostanabad [71].  
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Review provided above shows that the majority of the ML-microstructure related 

works in the materials science community were primarily focused on using ML 

techniques for microstructure classification [72-74], recognition [75], microstructure 

reconstruction [70, 71], or as a feature-engineering-free framework to connect 

microstructure to the properties of the materials [55, 76, 77]. However, the process and 

chemistry prediction from a microstructure morphology image has received limited 

attention. This is a critical knowledge gap to address specifically for the problems in 

them the ideal microstructure or morphology with the specific chemistry associated with 

the morphology domains are known, but the chemistry and processing which would lead 

to that ideal morphology is unknown. The problem becomes much more challenging for 

multicomponent alloys with complex processing steps. Recently, Kautz et al. [77] have 

used the CNN for microstructure classification and segmentation on Uranium alloyed 

with 10 wt% molybdenum (U-10Mo). They used the segmentation algorithm to calculate 

the area fraction of the lamellar transformation products of α-U + γ-UMo, and by feeding 

the total area fraction into the Johnson-Mehl-Avrami-Kolmogorov equation, they were 

able to predict the annealing parameters, i.e., time and temperature. However, Kautz et 

al.’s [77] work for aging time prediction did not consider the morphology and particle 

distribution, and also, no chemistry was involved in the model. To address the knowledge 

gap, in this work, we develop a mixed-data deep neural network that is capable to predict 

the chemistry and processing history of a micrograph. The model alloy used in this work 

is Fe-Cr-Co permanent magnets.  
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Materials Microstructure Evolution Prediction 

The processing-structure-property relationship of engineered materials is directly 

impacted by material microstructures, which are mesoscale structural elements that 

operate as an essential link between atomistic building components and macroscopic 

qualities. One of the pillars of contemporary materials research is the ability to manage 

the evolution of the material's microstructure while it is being processed or used, 

including common phenomena like solidification, solid-state phase transitions, and grain 

growth. Therefore, a key objective of computational materials design has been 

comprehending and forecasting of microstructure evolution. Simulations of 

microstructure evolution frequently rely on phase separation or coarse-grained models, 

such as partial differential equations (PDEs), which are used in the phase-field techniques 

[2, 78] because they can represent time and length scales that are far larger than those that 

can be captured by molecular dynamics. A wide range of significant evolutionary 

mesoscale processes, including grain development and coarsening, solidification, thin-

film deposition, dislocation dynamics, vesicle formation in biological membranes, and 

crack propagation, have all been fully described using the phase-field method [3-8]. 

However, there are some significant problems with this strategy as well. First off, PDE-

based microstructure simulations are still relatively expensive. The stability of numerical 

techniques that use explicit time integration for nonlinear PDEs sets stringent upper 

bounds on the smallest time-step size in the temporal dimension. 

Similarly, implicit time-integration techniques manage longer time steps by adding 

more inner iteration loops at each step. Furthermore, despite the fact that in theory 

controlling PDEs can be inferred from the underlying thermodynamic and kinetic 
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considerations, actual PDE identification, parametrization, and validation take a 

significant amount of work. The evolution principles may not be fully understood or may 

be too complex to be characterized by tractable PDEs for difficult or less well-studied 

materials. Currently, the efforts to reduce computational costs have mostly concentrated 

on utilizing high-performance computer architectures [79-82] and sophisticated 

numerical techniques [83, 84], or on merging machine learning algorithms with 

simulations based on microstructures [43, 85-91]. Leading studies, for instance, have 

developed surrogate models using a variety of techniques, such as Green's function 

solution [85], Bayesian optimization [43, 86], a combination of dimensionality reduction 

and autoregressive Gaussian processes [88], convolutional autoencoder and decoder [92], 

or integrating a history-dependent machine-learning method with a statistically 

representative, low dimensional description of the microstructure evolution generated 

directly from phase-field simulations that can quickly predict the evolution of the 

microstructure from phase-field simulations [9]. The main problem, however, has been to 

strike a balance between accuracy and computing efficiency, even for these successful 

systems. For complex, multi-variable phase-field models, for example, precise answers 

cannot be guaranteed by the computationally effective Green's function solution. In 

contrast, complex, coupled phase-field equations can be solved using Bayesian 

optimization techniques, however, at a higher computational cost (although the number 

of simulations required is kept to a minimum because the Bayesian optimization protocol 

determines the parameter settings for each subsequent simulation). The capacity of this 

class of models to predict future values outside of the training set is constrained by the 

fact that autoregressive models can only forecast microstructural evolution for the values 
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for which they were trained. In other models based on dimensionality reduction methods 

like principle component analysis (PCA), a large amount of information is ignored, which 

will sacrifice accuracy. This study uses Predictive Recurrent Neural Network (PredRNN) 

[93] to forecast how the microstructure represented by 2D image sequences will change 

over time.  

 

Dissertation Structure 

The dissertation outline is as follows. In chapter two, we describe the methods 

used in this study, like PF, deep learning methods, train and test data generation, and 

error metrics.  

In chapter three, we develop a mixed-data deep neural network capable of 

predicting a micrograph's chemistry and processing history. The model alloy used in this 

work is Fe-Cr-Co permanent magnets. These alloys experience spinodal decomposition at 

temperatures around 853 – 963 K. We use the PF method to create the training and test 

dataset for the DL network. CNN will quantify the produced microstructures by the PF 

method; then the salient features will be used by another deep neural network to predict 

the temperature and chemical composition. 

In chapter four, we explain a model based on a deep neural network to predict a 

complete set of processing parameters, including temperature, time, and chemistry from a 

microstructure micrograph. As a case study, we focused on the spinodal decomposition 

process, and to prove the model applicability for realistic alloys, we picked the Fe-Cr-Co 

permanent magnets as the model alloy. We used the PF method to create the training and 

test datasets for deep network training. A fused dataset including material microstructure 
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as well as minimum and maximum iron concentration in the microstructure is used as the 

input data. We quantified the generated microstructures with the CNN and then combined 

the extracted salient features from the microstructures with iron composition to predict 

the processing history, i.e., annealing time and temperature, and chemical compositions 

of the micrograph.  

In chapter five, we describe the microstructure evolution prediction by PredRNN. 

In this study, spinodal decomposition is used as a case study. Spinodal decomposition 

occurs in two separate phases: a quick composition modulation growth phase, followed 

by a slower coarsening phase, during which the Gibbs-Thomson effect causes a 

progressive rise in the length scale of the phase-separation pattern. We demonstrate that 

PredRNN can precisely capture all the required features from earlier microstructures to 

predict long-term microstructures. This result is particularly important because it can 

predict morphology evolution in both phases.  

Finally, the key findings in this thesis are summarized and possible opportunities 

for future works are discussed. 

This dissertation leads to the following peer-reviewed and conference papers; 

1. Amir Abbas Kazemzadeh Farizhandi, Mahmood Mamivand, Processing time, 

temperature, and initial chemical composition prediction from materials 

microstructure by deep network for multiple inputs and fused data, Materials & 

Design, Volume 219, 2022, 110799, ISSN 0264-1275, 

https://doi.org/10.1016/j.matdes.2022.110799. 

 

https://doi.org/10.1016/j.matdes.2022.110799
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2. Amir Abbas Kazemzadeh Farizhandi, Omar Betancourt, Mahmood Mamivand. 

Deep learning approach for chemistry and processing history prediction from 

materials microstructure. Sci Rep 12, 4552 (2022). 

https://doi.org/10.1038/s41598-022-08484-7. 

 

3. Amir Abbas Kazemzadeh Farizhandi, Mahmood Mamivand, Spatiotemporal 

Prediction of Microstructure Evolution with Predictive Recurrent Neural 

Network, Submitted to Materials & Design. 

 

4. Amir Abbas Kazemzadeh Farizhandi, Mahmood Mamivand, Chemistry and 

Processing History Prediction from Materials Microstructure by Deep Learning, 

2022 TMS Annual Meeting & Exhibition, Symposium: Algorithm Development 

in Materials Science and Engineering. 

 

5. Amir Abbas Kazemzadeh Farizhandi, Mahmood Mamivand, 

Spatiotemporal Prediction of Microstructure by Deep Learning, 2022 TMS 

Annual Meeting & Exhibition, Symposium: AI/Data Informatics: Computational 

Model Development, Validation, and Uncertainty Quantification. 

 

6. Smith, Leo, Mahmood Mamivand, Amir Abbas Kazemzadeh Farizhandi, 

and Carl Agren. "Prediction of Onsager and Gradient Energy Coefficients from 

Microstructure Images with Machine Learning." Idaho Conference on 

Undergraduate Research (2022). 

https://doi.org/10.1038/s41598-022-08484-7
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7. Keynote Speaker: Mahmood Mamivand, Amir Abbas Kazemzadeh, 

“Microstructural mediated materials design with deep learning”, International 

Conference on Plasticity, Damage, and Fracture, Jan 2023 

 

8. Invited Talk: Mahmood Mamivand, Amir Abbas Kazemzadeh, "Chemistry and 

Processing History Prediction from Microstructure Morphologies”, TMS March 

2023 

 



15 

 

CHAPTER TWO: METHOD 

In this chapter, we describe the models and algorithms that we have used in this 

dissertation.   First, we briefly describe the Phase Field (PF) model for spinodal 

decomposition simulation and the dataset generation process. Then, we provide the 

details of the proposed fused-data deep neural network for process history and chemistry 

prediction from materials microstructure morphologies. Finally, we explain the LSTM 

model that has been used to predict the evolution of material microstructures along with 

an overview of methods to quantify the similarity between microstructure morphologies. 

Phase Field Method 

With the enormous increase in computational power and advances in numerical 

methods, the PF approach has become a powerful tool for the quantitative modeling of 

microstructures' temporal and spatial evolution. Some applications of this method include 

modeling materials undergoing martensitic transformation [94], crack propagation [95], 

grain growth [96], and materials microstructure prediction for optimization of their 

properties [97]. 

The PF method eliminates the need for the system to track each moving boundary by 

having the interfaces to be of finite width where they gradually transform from one 

composition or phase to another [2]. This essentially causes the system to be modeled as 

a diffusivity problem, which can be solved by using the continuum nonlinear PDEs. 

There are two main PF PDEs for representing the evolution of various PF variables. One 

being the Allen-Cahn equation [98] for solving non-conserved order parameters (e.g., 
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phase regions and grains), and the other one being the Cahn-Hilliard equation [99] for 

solving conserved order parameters (e.g., concentrations).  

Since the diffusion of constituent elements controls the process of phase separation, 

we only need to track the conserved variables, i.e., Fe, Cr, and Co concentration, during 

isothermal spinodal phase decomposition. Thus, our model will be governed by Cahn-

Hilliard equations. The PF model in this work is primarily adopted from [100]. For the 

spinodal decomposition of the Fe-Cr-Co ternary system, the Cahn-Hilliard equations are,  

 𝜕𝜕𝑐𝑐𝐶𝐶𝐶𝐶
𝜕𝜕𝜕𝜕

= ∇ ⋅ 𝑀𝑀𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶∇
𝛿𝛿𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡
𝛿𝛿𝑐𝑐𝐶𝐶𝐶𝐶

+ ∇ ⋅ 𝑀𝑀𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶∇
𝛿𝛿𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡
𝛿𝛿𝑐𝑐𝐶𝐶𝑡𝑡

, (1) 

 𝜕𝜕𝑐𝑐𝐶𝐶𝑡𝑡
𝜕𝜕𝜕𝜕

= ∇ ⋅ 𝑀𝑀𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶∇
𝛿𝛿𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡
𝛿𝛿𝑐𝑐𝐶𝐶𝐶𝐶

+ ∇ ⋅ 𝑀𝑀𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶∇
𝛿𝛿𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡
𝛿𝛿𝑐𝑐𝐶𝐶𝑡𝑡

. (2) 

The microstructure evolution is primarily driven by the minimization of the total free 

energy Ftot of the system. The free energy functional, using N conserved variables ci at 

the location 𝑟𝑟 is described by: 

 𝐹𝐹𝜕𝜕𝐶𝐶𝜕𝜕 = ∫ �𝑓𝑓𝑙𝑙𝐶𝐶𝑐𝑐(𝑐𝑐1, … , 𝑐𝑐𝑁𝑁 ,𝑇𝑇) + 𝑓𝑓𝑔𝑔𝐶𝐶(𝑐𝑐1, … , 𝑐𝑐𝑁𝑁)�𝑑𝑑𝑟𝑟 + 𝐸𝐸𝑒𝑒𝑙𝑙𝐶𝐶 . (3) 

In this model, N=3 conserved variables are cFe, cCr, and cCo, and they denote the 

composition of Fe, Cr, and Co, respectively. fgr is the gradient energy density and is 

described by 

 𝑓𝑓𝑔𝑔𝐶𝐶 =  𝜅𝜅
2
∑ |∇𝑐𝑐𝑖𝑖|2𝑁𝑁
𝑖𝑖 , (4) 

where κi is the gradient energy coefficient. In this case, κ is considered a constant 

value. floc is the local Gibbs free energy density as a function of all concentrations, ci, and 

temperature, T. For this work, we will model the body-centered cubic phase of Fe-Cr-Co, 

where the Gibbs free energy of the system is described as [100],  
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 𝑓𝑓𝑙𝑙𝐶𝐶𝑐𝑐 = 𝑓𝑓𝐹𝐹𝑒𝑒0 𝑐𝑐𝐹𝐹𝑒𝑒 + 𝑓𝑓𝐶𝐶𝐶𝐶0 𝑐𝑐𝐶𝐶𝐶𝐶 +  𝑓𝑓𝐶𝐶𝐶𝐶0 𝑐𝑐𝐶𝐶𝐶𝐶 + 𝑅𝑅𝑇𝑇(𝑐𝑐𝐹𝐹𝑒𝑒𝑙𝑙𝑙𝑙𝑐𝑐𝐹𝐹𝑒𝑒 + 𝑐𝑐𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙𝑐𝑐𝐶𝐶𝐶𝐶 +
𝑐𝑐𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙𝑐𝑐𝐶𝐶𝐶𝐶) + 𝑓𝑓𝐸𝐸 + 𝑓𝑓𝑚𝑚𝑔𝑔 , (5) 

where fi
0 is the Gibbs free energy of the pure element i and fE is the excess free energy 

defined by 

 𝑓𝑓𝐸𝐸 = 𝐿𝐿𝐹𝐹𝑒𝑒,𝐶𝐶𝐶𝐶𝑐𝑐𝐹𝐹𝑒𝑒𝑐𝑐𝐶𝐶𝐶𝐶 + 𝐿𝐿𝐹𝐹𝑒𝑒,𝐶𝐶𝐶𝐶𝑐𝑐𝐹𝐹𝑒𝑒𝑐𝑐𝐶𝐶𝐶𝐶 + 𝐿𝐿𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶, (6) 

where LFe,Cr, LFe,Co, and LCr,Co are interaction parameters. fmg is the magnetic energy 

contribution and can be expressed as 

 𝑓𝑓𝑚𝑚𝑔𝑔 = 𝑅𝑅𝑇𝑇𝑙𝑙𝑙𝑙(β+ 1)𝑓𝑓(𝜏𝜏), (7) 

where β is the atomic magnetic moment, f(τ) is a function of τ ≡ T/TC. TC is the Curie 

temperature. Eel in Eq. (3) is the elastic strain energy added to the system and is 

expressed as 

 𝐸𝐸𝑒𝑒𝑙𝑙 = 1
2 ∫ 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝜀𝜀𝑖𝑖𝑖𝑖𝑒𝑒𝑙𝑙(𝑟𝑟, 𝑡𝑡)𝜀𝜀𝑖𝑖𝑙𝑙𝑒𝑒𝑙𝑙(𝑟𝑟, 𝑡𝑡)𝑑𝑑𝑟𝑟𝐶𝐶 , (8) 

 𝜀𝜀𝑖𝑖𝑖𝑖𝑒𝑒𝑙𝑙(𝑟𝑟, 𝑡𝑡) = 𝜀𝜀𝑖𝑖𝑖𝑖𝑐𝑐 (𝑟𝑟, 𝑡𝑡) − 𝜀𝜀𝑖𝑖𝑖𝑖0 (𝑟𝑟, 𝑡𝑡), (9) 

where 𝜀𝜀𝑖𝑖𝑖𝑖𝑒𝑒𝑙𝑙(𝑟𝑟, 𝑡𝑡) is the elastic strain and 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙  are the elastic coefficients of the stiffness 

tensor. 𝜀𝜀𝑖𝑖𝑖𝑖0 (𝑟𝑟, 𝑡𝑡) is the eigen-strain and is expressed by 

 𝜀𝜀𝑖𝑖𝑖𝑖0 (𝑟𝑟, 𝑡𝑡) = [𝜀𝜀𝐶𝐶𝐶𝐶(𝑐𝑐𝐶𝐶𝐶𝐶(𝑟𝑟, 𝑡𝑡) − 𝑐𝑐𝐶𝐶𝐶𝐶0 ) + 𝜀𝜀𝐶𝐶𝐶𝐶(𝑐𝑐𝐶𝐶𝐶𝐶(𝑟𝑟, 𝑡𝑡) − 𝑐𝑐𝐶𝐶𝐶𝐶0 )]𝛿𝛿𝑖𝑖𝑖𝑖, (10) 

where 𝜀𝜀𝐶𝐶𝐶𝐶 and 𝜀𝜀𝐶𝐶𝐶𝐶 are lattice mismatches between Cr with Fe and Co with Fe, 

respectively. 𝑐𝑐𝐶𝐶𝐶𝐶0  and 𝑐𝑐𝐶𝐶𝐶𝐶0  are the initial concentrations of Cr and Co, respectively and 𝛿𝛿𝑖𝑖𝑖𝑖 

is the Kronecker delta. The constrained strain, 𝜀𝜀𝑖𝑖𝑖𝑖𝑐𝑐 (𝑟𝑟, 𝑡𝑡), is solved using the finite element 

method. 

𝑀𝑀𝑖𝑖𝑖𝑖 in Eq. (2) are Onsager coefficients and are scalar mobilities from the coupled 

system involving the concentrations. They can be determined by [100], 
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 𝑀𝑀𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶 = [𝑐𝑐𝐹𝐹𝑒𝑒𝑐𝑐𝐶𝐶𝐶𝐶𝑀𝑀𝐹𝐹𝑒𝑒 + (1 − 𝑐𝑐𝑐𝑐𝐶𝐶)2𝑀𝑀𝐶𝐶𝐶𝐶 + 𝑐𝑐𝐶𝐶𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶𝑀𝑀𝐶𝐶𝐶𝐶]
𝑐𝑐𝐶𝐶𝐶𝐶
𝑅𝑅𝑇𝑇, (11) 

 𝑀𝑀𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶 = [𝑐𝑐𝐹𝐹𝑒𝑒𝑐𝑐𝐶𝐶𝐶𝐶𝑀𝑀𝐹𝐹𝑒𝑒 + 𝑐𝑐𝐶𝐶𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶𝑀𝑀𝐶𝐶𝐶𝐶 + (1− 𝑐𝑐𝐶𝐶𝐶𝐶)2𝑀𝑀𝐶𝐶𝐶𝐶] 𝑐𝑐𝐶𝐶𝑡𝑡
𝑅𝑅𝑅𝑅

, (12) 

 𝑀𝑀𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶 = 𝑀𝑀𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶 = [𝑐𝑐𝐹𝐹𝑒𝑒𝑀𝑀𝐹𝐹𝑒𝑒 − (1− 𝑐𝑐𝑐𝑐𝐶𝐶)𝑀𝑀𝐶𝐶𝐶𝐶 − (1− 𝑐𝑐𝐶𝐶𝐶𝐶)𝑀𝑀𝐶𝐶𝐶𝐶] 𝑐𝑐𝐶𝐶𝐶𝐶𝑐𝑐𝐶𝐶𝑡𝑡
𝑅𝑅𝑅𝑅

. (13) 

The mobility Mi of each element i is determined by 

 𝑀𝑀𝑖𝑖 = 𝐷𝐷𝑖𝑖0 exp �− 𝑄𝑄𝑖𝑖
𝑖𝑖𝐵𝐵𝑅𝑅

�, (14) 

where 𝐷𝐷𝑖𝑖0 is the self-diffusion coefficient and 𝑄𝑄𝑖𝑖 is the diffusion activation energy. 

We parametrized the model with the calculation of phase diagram (CALPHAD) data 

[100]. To solve the non-linear CH partial differential equations (PDEs), we used the 

Multi-physics Object-Oriented Simulation Environment (MOOSE). MOOSE is an open-

source finite element package developed at Idaho National Laboratory and efficient for 

parallel computation on supercomputers [101]. The coupled CH equations were solved 

with the help of MOOSE's prebuilt series of weak form residuals of CH PDEs with the 

input parameters given in Table 2.1.   



19 

 

Table 2.1 Phase-field model input parameters [100, 102, 103] 

Gas constant, 𝑅𝑅 � 𝐽𝐽
𝐾𝐾⋅𝑚𝑚𝐶𝐶𝑙𝑙

� 8.31446261815324  

Gradient energy 
coefficient, 𝜅𝜅 �𝐽𝐽⋅𝑚𝑚

2

𝑚𝑚𝐶𝐶𝑙𝑙
� 

1.0× 10−14  

Gibbs free energy of the 
pure element 𝑖𝑖, 𝑓𝑓𝑖𝑖0 �

𝐽𝐽
𝑚𝑚𝐶𝐶𝑙𝑙

� 
𝑓𝑓𝐹𝐹𝑒𝑒0 = 𝑓𝑓𝐶𝐶𝐶𝐶0 = 𝑓𝑓𝐶𝐶𝐶𝐶0 = 0 

Interaction parameters, 
𝐿𝐿𝑖𝑖𝑖𝑖  �

𝐽𝐽
𝑚𝑚𝐶𝐶𝑙𝑙

� 

𝐿𝐿𝐹𝐹𝑒𝑒,𝐶𝐶𝐶𝐶 = 20500-9.68𝑇𝑇 
𝐿𝐿𝐹𝐹𝑒𝑒,𝐶𝐶𝐶𝐶 = −23669 + 103.9627𝑇𝑇 − 12.7886𝑇𝑇 𝑙𝑙𝑙𝑙𝑇𝑇 
𝐿𝐿𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶 = (24357 − 19.797𝑇𝑇) − 2010(𝑐𝑐3 − 𝑐𝑐2)  

Curie temperature, 𝑇𝑇𝐶𝐶  [𝐾𝐾] 𝑇𝑇𝐶𝐶 = 1043𝑐𝑐𝐹𝐹𝑒𝑒 − 311.5𝑐𝑐𝐶𝐶𝐶𝐶 + 1450𝑐𝑐𝐶𝐶𝐶𝐶
+ {1650 + 550(𝑐𝑐𝐶𝐶𝐶𝐶 − 𝑐𝑐𝐹𝐹𝑒𝑒)}𝑐𝑐𝐹𝐹𝑒𝑒𝑐𝑐𝐶𝐶𝐶𝐶 + 590𝑐𝑐𝐹𝐹𝑒𝑒𝑐𝑐𝐶𝐶𝐶𝐶 

Atomic magnetic 
moment, 𝛽𝛽 �𝐽𝐽

𝑅𝑅
� 

𝛽𝛽 = 2.22𝑐𝑐𝐹𝐹𝑒𝑒 − 0.01𝑐𝑐𝐶𝐶𝐶𝐶 + 1.35𝑐𝑐𝐶𝐶𝐶𝐶 − 0.85𝑐𝑐𝐹𝐹𝑒𝑒𝑐𝑐𝐶𝐶𝐶𝐶
+ {2.4127 + 0.2418(𝑐𝑐𝐶𝐶𝐶𝐶 − 𝑐𝑐𝐹𝐹𝑒𝑒)}𝑐𝑐𝐹𝐹𝑒𝑒𝑐𝑐𝐶𝐶𝐶𝐶 

Magnetic contribution’s 𝜏𝜏 
function, 𝑓𝑓(𝜏𝜏) [−] 

𝑓𝑓(𝜏𝜏) =

⎩
⎪
⎨

⎪
⎧1 − 1

𝐴𝐴
�79𝜏𝜏

−1

140𝑝𝑝
+ 474

497
�1
𝑝𝑝
− 1� �𝜏𝜏

3

6
+ 𝜏𝜏9

135
+ 𝜏𝜏15

600
�� , 𝜏𝜏 < 1

− 1
𝐴𝐴
�𝜏𝜏

−5

10
+ 𝜏𝜏−15

315
+ 𝜏𝜏25

1500
� , 𝜏𝜏 ≥ 1

𝐴𝐴 = 518
1125

+ 11692
15975

�1
𝑝𝑝
− 1� , 𝑝𝑝 = 0.4 𝑓𝑓𝑓𝑓𝑟𝑟 𝑏𝑏𝑐𝑐𝑐𝑐 

  

Elastic coefficients, 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙  
[𝐺𝐺𝐺𝐺𝐺𝐺] 

𝐶𝐶11𝐹𝐹𝑒𝑒 = 𝐶𝐶11𝐶𝐶𝐶𝐶 = 233.1 
𝐶𝐶12𝐹𝐹𝑒𝑒 = 𝐶𝐶12𝐶𝐶𝐶𝐶 = 135.44 
𝐶𝐶44𝐹𝐹𝑒𝑒 = 𝐶𝐶44𝐶𝐶𝐶𝐶 = 117.83 
𝐶𝐶11𝐶𝐶𝐶𝐶 = 350 
𝐶𝐶12𝐶𝐶𝐶𝐶 = 67.8 
𝐶𝐶44𝐶𝐶𝐶𝐶 = 100.8 

Lattice mismatch, 𝜀𝜀𝑖𝑖 [−] 𝜀𝜀𝐶𝐶𝐶𝐶 = 6.1 × 10−3  
𝜀𝜀𝐶𝐶𝐶𝐶 = −7.1 × 10−3  

Self-diffusion coefficient 
of element 𝑖𝑖, 𝐷𝐷𝑖𝑖0 �𝑚𝑚

2

𝑠𝑠
� 

𝐷𝐷𝐹𝐹𝑒𝑒0 = 𝐷𝐷𝐶𝐶𝐶𝐶0 = 1.0 × 10−4 
𝐷𝐷𝐶𝐶𝐶𝐶0 = 2.0 × 10−5 

Diffusion activation 
energy of element 𝑖𝑖, 𝑄𝑄𝑖𝑖 
� 𝑖𝑖𝐽𝐽
𝑚𝑚𝐶𝐶𝑙𝑙

� 

𝑄𝑄𝐹𝐹𝑒𝑒 = 𝑄𝑄𝐶𝐶𝐶𝐶 = 294 
𝑄𝑄𝐶𝐶𝐶𝐶 = 308 
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Dataset Generation  

Dataset Generation for Steady State Case Study 

Since the compositions are subject to the constraint that they must sum to one, the 

dataset was produced based on the mixture design as a design of experiments method 

[104]. The Simplex-Lattice [105] designs were adopted to provide the data for 

simulation. The simulation variables and their range of values are given in Table 2.2. The 

simulations were run on Boise State University R2 cluster computers [106] using the 

MOOSE framework [101].  

Table 2.2 Simulation variables and their range of values for database 
generation of steady state case study. 

Simulation variable Range of values Grid 

Temperature (K) 853 - 963 10  

Chromium composition 0.05 - 0.9 0.05 

Cobalt composition 0.05 - 0.9 0.05 

 

After running the simulations, the microstructures were collected from the results 

showing the phase separation. The extracted microstructures for Fe, i.e., the morphology 

of Fe distribution, from the PF simulations, along with the minimum and maximum 

compositions of Fe in each microstructure, are utilized as the inputs to predict spinodal 

temperature, Cr, and Co compositions as processing history parameters. Indeed, the input 

data is a mixed dataset combined of microstructures, as image data, and Fe composition, 

as numerical or continuous data. Since these values constitute different data types, the 

machine learning model must be able to ingest the mixed data. In general, handling the 
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mixed data is challenging because each data type may require separate preprocessing 

steps, including scaling, normalization, and feature engineering [107].  

 

Dataset Generation for Unsteady State Case Study 

To develop proper training and test datasets, we need to span the possible ranges of 

input variables, i.e., time, temperature, and chemical compositions. For the temperature, 

we are bonded to the range of 850 – 970 K, as spinodal decomposition in Fe-Cr-Co 

happens in this window. For chemistry, we explore the range of 0.05-0.9 at. % for both 

Cr and Co. Since the chemistry is subjected to the conservation of mass constrain, i.e., 

cFe+cCr+cCo = 1, we used the Simplex-Lattice [105] as a mixture design method to 

generate the chemistry space to explore. Finally, we bounded the dataset to 300 hours for 

the time, as our study showed most microstructures would reach equilibrium to some 

extent by this time. Unlike temperature and chemistry, we did not grid the time domain 

linearly because the microstructure is very sensitive to aging time in the early stages of 

annealing, but this sensitivity drops dramatically as time passes. Therefore, we picked a 

fine grid at the beginning, 50 s, and increased it exponentially, to 100000 s, with time. 

The variables and their ranges are given in Table 2.3. To cover all the range of input 

variables, the dataset was generated based on the design of the experiment (DOE). We 

generated the microstructures by solving the CH PDEs using the MOOSE framework 

[101]. The simulations were run on different clusters including Boise State University R2 

cluster computers [106], Boise State University BORAH [108], and the Extreme Science 

and Engineering Discovery Environment (XSEDE) (Jetstream2 cluster), which is 

supported by National Science Foundation (NSF) [109] using the MOOSE framework 
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[101]. We note that because of the deterministic nature of the PF technique, i.e., not being 

stochastic, and the physics of the spinodal decomposition, we only need to run each 

condition once. 

Table 2.3 Simulation variables and their range of values for database 
generation of unsteady state case study. 

Simulation variable Range of values Grid 

Time (S) 10 - 1080000 

10 - 3600 50 

3600 - 36000 500 

36000 - 360000 5000 

360000 - 1080000 100000 

Temperature (K) 850 - 970 10 

Chromium composition 0.05 - 0.9 0.05 

Cobalt composition 0.05 - 0.9 0.05 

 
After simulations, we collected the morphology of Fe distribution, which represents 

the Fe-rich and Fe-depleted, i.e., Cr-rich, regions, as image data. In addition, we used the 

minimum and maximum compositions of Fe in each microstructure as numeric data. The 

deep network uses images and numeric data as input to predict the time, temperature, and 

chemical compositions. Therefore, different types of deep networks like convolutional 

and fully-connected layers are required to process the input data. We note that the 

accuracy of the model will increase for real materials if some experimental data is added 

to the training dataset. However, even having the experimental dataset to be just a few 

percent of the whole dataset, requires hundreds of tailored transmission electron 

microscopy (TEM) images. Generating such a big experimental dataset is time-
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consuming and costly. Therefore, in this work, we limit the model to synthetic data. 

However, as we will show in the validation part, the model predicts the history of an 

experimental TEM image pretty well, because we are using a CALPHAD-informed phase 

field model to generate the training and test dataset, and CALPHAD is inherently 

informed by some experimental data. 

 

Dataset Generation for Microstructure Evolution Case Study 

The produced microstructures in the unsteady state case study are also used as 

training, validation, and test data in this study. The Fe-based composition microstructure 

morphologies sequences are utilized to construct the dataset. The length of each sequence 

is 20 microstructures; the first 10 microstructures until 30 hr of the process are used to 

predict the future 10 microstructures until 300 hr. 

 

Deep Learning Methodology 

Deep learning (DL), as an artificial intelligence (AI) tool, is usually used for image 

and natural language processing as well as object and speech recognition based on human 

brain mimicking [49, 110]. Indeed, DL is a deep neural network that can be applied for 

supervised, e.g., classification and regression tasks, and unsupervised, e.g., clustering, 

learning. In this work, since we have two different data types as input, two various 

networks are needed for data processing. The numerical data is fed into fully-connected 

layers while image features are extracted through the convolutional layers. For images 

involving a large number of pixel values, it is often not feasible to directly utilize all the 

pixel values for fully-connected layers because it can cause overfitting, increased 
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complexity, and difficulty in model convergence. Hence, convolutional layers are applied 

to reduce the dimensionality of the image data by finding the image features [73, 111]. 

 

Fully-Connected Layers 

Fully-connected layers are hidden layers consist of hidden neurons and activation 

function [112]. The number of hidden neurons is usually selected based on trial and error. 

The neural networks can predict complex nonlinear behaviors of systems through 

activation functions. Any nonlinear function that is differentiable can be used as an 

activation function. However, there are some activation functions such as rectified linear 

(ReLU), leaky rectified linear, hyperbolic tangent (Tanh), sigmoid, Swish, and softmax 

that have been successfully used in different applications in neural networks [113]. In 

particular, ReLU (f(x) = max (0, x)) and Swish (f(x) = x sigmoid(x)) activation functions 

have been recommended for hidden layers in deep neural networks [114].  

 

Convolutional Neural Networks (CNN) 

A convolutional neural network (CNN) is a deep network that is applied for image 

processing and computer vision tasks. For the first time, LeCun et al. proposed using 

CNN for image recognition [115]. CNN, like other deep neural networks, consists of 

input, output, and hidden layers. But the main difference lies in the use of hidden layers 

consisting of convolutional, pooling, and fully-connected layers that follow each other. 

Several convolutional and pooling layers can be designed in the CNN architectures.  

Convolutional layers can extract the salient features of images without losing the 

information. At the same time, the dimensionality of the generated data gets reduced and 
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then fed as input to the fully-connected layer. Two significant advantages of CNN are 

parameter sharing and sparsity of the connections. A schematic diagram for CNN is given 

in Figure 2.1. The convolutional layer consists of filters that pass over the image and 

scanning the pixel values to make a feature map. The produced map proceeds through the 

activation function to add nonlinearity property. The pooling layer involves a pooling 

operation, e.g., maximum or average, which acts as a filter on the feature map. The 

pooling layer reduces the size of the feature map by pooling operation. Different 

combinations of convolutional and pooling layers are usually used in various CNN 

architectures. Finally, the fully-connected layers are added to train on image extracted 

features for a particular task such as classification or regression.  

 

 
Figure 2.1 Schematic of a typical convolutional neural network. 

 

Similar to other neural networks, a cost function is used to train a CNN and update 

the weights and biases by backpropagation. There are many hyperparameters such as the 

number of filters, size of filters, regularization values, dropout values, optimizer 

parameters, initial weights, and biases that must be initialized before training. Training a 
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CNN usually needs an extensive training dataset that is not always available for all 

applications. In this situation, transfer learning can be helpful in developing a CNN. In 

transfer learning, all or part of a pretrained network like VGG16, VGG19 [64], Xception 

[65], ResNet [66], and Inception [67], which were trained by computer vision research 

community with lots of open source image datasets such as ImageNet, MS, CoCo, and 

Pascal, can be used for the desired application. The state-of-the-art pretrained network is 

EfficientNet which was proposed by Tan and Le [116]. This method is based on the idea 

that scaling up the CNN can increase its accuracy [117]. Since there was no complete 

understanding of the effect of network enlargement on the accuracy, Tan and Le 

proposed a systematic approach for scaling up the CNNs. There are different ways to 

scale up the CNNs by their depth [117], width [118], and resolution [119]. Tan and Le 

proposed to scale up all the depth, width, and resolution factors for the CNN with fixed 

scaling coefficients. [116]. The results demonstrated that their proposed network, 

EfficientNet-B7, had better accuracy than the best-existing networks while using 8.4 

times fewer parameters and performing 6.1 times faster. In addition, they provided other 

EfficientNet-B0 to -B6, which can overcome the models with the corresponding scale 

such as ResNet-152 [117] and AmoebaNet-C [120] in terms of accuracy with much fewer 

parameters. Due to the outstanding performance of EfficientNet, although it is trained 

based on the ImageNet dataset which is completely different from materials 

microstructures, it seems the EfficientNets convolutional layers have the potential to 

extract the features of images from other sources like materials microstructures. 
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Proposed Model for Steady State Case Study 

The training and test datasets are produced using the PF method. In this work, two 

different algorithms, including CNN and transfer learning, were proposed to extract the 

salient features of the microstructure morphologies. We applied a proposed CNN (Figure 

2.2) or part of pretrained EfficienctNet B-6 and B-7 convolutional layers (Figure 2.3) to 

find the features of the microstructures. The architecture of the proposed CNN was found 

by testing different combinations of convolutional layers and their parameters based on 

the best accuracy. In the transfer learning part, different layers of the pretrained 

convolutional layers were tested to find the best convolutional layers for feature 

extraction. 

On the other hand, the minimum and maximum Fe composition in the microstructure, 

as numerical data, is fed into the fully-connected layers. The extracted features from 

microstructures and the output of the fully-connected layers are combined to feed other 

fully-connected layers to predict the processing temperature and initial Cr and Co 

compositions. Different hyperparameters such as network architecture, cost function, and 

optimizer are tested to find the model with the highest accuracy. The model 

specifications, compilations (here loss function, optimizer, and metrics), and cross-

validation parameters are listed in Table 2.4.  
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Figure 2.2 The flowchart of the developed model for chemistry and processing 

history prediction from microstructure images (FC: fully-connected layer) 
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Table 2.4 Parameters selected for model specification, compilation, and cross-
validation. 

 Parameter Selected value or option  

Model Specification 

Learning Rate 1.00E-0.3 

Body activation Swish, ReLU 

Output activation Linear 

Input dimension (224, 224, 1) 

Output dimension (3) 

Compilation 

Loss Mean absolute percentage error 

Optimizer Adam 

Metric Root Mean square error (RMSE), R squared 

Cross-Validation 

Fold 5 

Training data 80% 

Testing data 20% 

Batch size 8 

Epochs 750 

 

 
Figure 2.3 The flowchart of the developed model for chemistry and processing 

history prediction from microstructure images (FC: fully-connected layer) 
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Proposed Model for Unsteady State Case Study 

In this study, different in-house CNNs or different layers of pretrained convolutional 

layers of EfficientNet have been adopted to extract microstructure features. The proposed 

deep network in the framework includes different in-house CNNs or pretrained 

convolutional layers from EfficientNet-B7 (transfer learning) for microstructure feature 

extraction and fully-connected layers for processing of the extracted features and numeric 

data (Iron minimum and maximum composition in the micrographs). CNNs with 

different convolutional layers are applied for microstructure feature extraction in the in-

house CNNs. In transfer learning, different layers of pretrained convolutional networks 

are tested to find the optimum number of layers based on the overall accuracy. The 

architecture of the proposed network is found by testing different combinations of 

convolutional, fully-connected layers and their parameters based on the best accuracy. A 

schematic flowchart of the proposed framework is given in Figure 2.4. The extracted 

features of microstructures are passed through fully-connected layers to get combined 

with the output of the fully-connected layers that proceed the numeric data. The network 

is trained by the end-to-end method to find the optimum hyperparameters. The model 

parameters and specifications are the same as in Table 2.4, and only the output dimension 

will be 4.  
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Figure 2.4 The flowchart of the developed model for chemistry, time, and 

temperature prediction from microstructure images (FC: fully-connected layer) 

 

Proposed Model for Microstructure Evolution Prediction 

Prediction of microstructure evolution is a spatiotemporal problem. Different network 

architectures, which can generally be grouped into three categories: feed-forward models 

based on CNNs, recurrent models, and others such as the combinations of convolution 

and recurrent networks, as well as the Transformer-based and flow-based methods, are 

used to encode different inductive biases into neural networks for spatiotemporal 

predictive learning [121]. The inductive bias of group invariance over space has been 

brought to spatiotemporal predictive learning through the use of convolutional layers. For 

next frame prediction in Atari games, Oh et al. [122] defined an action-conditioned 

autoencoder with convolutions. The Cross Convolutional Network, developed by Xue et 

al. [123], is a probabilistic model that stores motion data as convolutional kernels and 

learns to predict a likely set of future frames by understanding their conditional 

distribution. In order to complete the crowd flow prediction challenge, Zhang et al. [124] 

suggested using CNNs with residual connections. It specifically takes into account the 

proximity, duration, trend, and external elements that affect how population flows move. 

Additionally, the convolutional architectures are employed in tandem with the generative 
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adversarial networks (GANs) [125], which successfully lowered the learning process' 

uncertainty and enhanced the sharpness of the generated frames. Most feed-forward 

models demonstrate greater parallel computing efficiency on large-scale GPUs compared 

to recurrent models [126-128]. However, these models generally fail to represent long-

term reliance across distant frames since they learn complex state transition functions as 

combinations of simpler ones by stacking convolutional layers. 

Some helpful insights into how to forecast upcoming visual sequences based on 

historical observations are provided by recent developments in RNNs. In order to forecast 

future frames in a discrete space of patch clusters, Ranzato et al. [129] built an RNN 

architecture that was influenced by language modeling. As a remedy for video prediction, 

Srivastava et al. [130] used a sequence-to-sequence LSTM model from neural machine 

translation [131]. Later, other approaches to describe temporal uncertainty or the 

multimodal distribution of future frames conditioned on historical observations have been 

presented, by integrating variational inference with 2D recurrence [132-135]. By 

arranging 2D recurrent states in hierarchical designs, certain additional techniques 

successfully increased the forecast time horizon [136]. The factorization of video 

information and motion is another area of research, typically using sequence-level 

characteristics and temporally updated RNN states [137]. The use of optical flows, new 

adversarial training schemes, relational reasoning between object-centric content and 

pose vectors, differentiable clustering techniques, amortized inference enlightened by 

unsupervised image decomposition, and new types of recurrent units constrained by 

partial differential equations are typical approaches [138-143]. The aforementioned 

techniques work well for breaking down dynamic visual scenes or understanding the 
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conditional distribution of upcoming frames. To describe the spatiotemporal dynamics in 

low-dimensional space, they primarily use 2D recurrent networks, which inadvertently 

results in the loss of visual information in actual circumstances.  

Shi et al. [144] created the Convolutional LSTM (ConvLSTM), which substitutes 

convolutions for matrix multiplication in the recurrent transitions of the original LSTM to 

combine the benefits of convolutional and recurrent architectures. An action-conditioned 

ConvLSTM network was created by Finn et al. [145] for visual planning and control. Shi 

et al. [146] coupled convolutions with GRUs and used non-local neural connections to 

expand the receptive fields of state-to-state transitions. Wang et al. [147] introduced a 

higher-order convolutional RNN that uses 3D convolutions and temporal self-attention to 

describe the dynamics and includes a time dimension in each hidden state. Su et al. [148] 

increased the low-rank tensor factorization-based higher-order ConvLSTMs' 

computational effectiveness. Convolutional recurrence provides a platform for further 

research by simultaneously modeling visual appearances and temporal dynamics [149-

154]. The spatiotemporal memory flow, a novel convolutional recurrent unit with a pair 

of decoupled memory cells, and a new training method for sequence-to-sequence 

predictive learning are all used to enhance the existing architectures for action-free and 

action-conditioned video prediction in Predictive Recurrent Neural Network (PredRNN) 

[93].  

A network component known as a memory cell is crucial in helping stacked LSTMs 

solve the vanishing gradient issue seen by RNNs. It can latch the gradients of hidden 

states inside each LSTM unit during training, preserving important information about the 

underlying temporal dynamics, according to strong theoretical and empirical evidence. 
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However, the spatiotemporal predictive learning task necessitates a distinct focus on the 

learned representations in many areas from other tasks of sequential data; therefore, the 

state transition pathway of LSTM memory cells may not be optimum. First, rather than 

capturing spatial deformations of visual appearance, most predictive networks for 

language or speech modeling concentrate on capturing the long-term, non-Markovian 

features of sequential data [155, 156]. However, both space-time data structures are 

essential and must be carefully considered in order to forecast future frames. Second, 

low-level features are less significant to outputs in other supervised tasks using video 

data, such as action recognition, where high-level semantical features may be informative 

enough. The stacked LSTMs don't have to maintain fine-grained representations from the 

bottom up because there are no complex structures of supervision signals. Although the 

current inner-layer memory transition-based recurrent architecture can be sufficient to 

capture temporal variations at each level of the network, it might not be the best option 

for predictive learning, where low-level specifics and high-level semantics of 

spatiotemporal data are both significant to generating future frames. Wang et al. [93] 

proposed a new memory prediction framework called PredRNN, which extends the inner-

layer transition function of memory states in LSTMs to spatiotemporal memory flow. 

This framework aims to jointly model the spatial correlations and temporal dynamics at 

different levels of RNNs. All PredRNN nodes are traversed by the spatiotemporal 

memory flow in a zigzag pattern of bi-directional hierarchies: A newly created memory 

cell is used to deliver low-level information from the input to the output at each timestep, 

and at the top layer, the spatiotemporal memory flow transports the high-level memory 

state to the bottom layer at the following timestep. The Spatiotemporal LSTM (ST-
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LSTM), in which the proposed spatiotemporal memory flow interacts with the original, 

unidirectional memory state of LSTMs, was therefore established as the fundamental 

building element of PredRNN. It seems that they would require a unified memory 

mechanism to handle both short-term deformations of spatial details and long-term 

dynamics if they anticipated a vivid imagination of numerous future images: On the one 

hand, the network may learn complex transition functions within brief neighborhoods of 

subsequent frames thanks to the new spatiotemporal memory cell architecture, which also 

increases the depth of nonlinear neurons across time-adjacent RNN states. Thus, it 

considerably raises ST-modeling LSTM's capacity for short-term dynamics. To achieve 

both long-term coherence of concealed states and their fast reaction to short-term 

dynamics, ST-LSTM, on the other hand, still uses the temporal memory cell of LSTMs 

and closely combines it with the suggested spatiotemporal memory cell. Schematics of 

the PredRNN architecture and the ST-LSTM unit with twisted memory states are given in 

Figure 2.5.  

On five datasets—the Moving MNIST dataset, the KTH action dataset, a radar echo 

dataset for precipitation forecasting, the Traffic4Cast dataset of high-resolution traffic 

flows, and the action-conditioned BAIR dataset with robot-object interactions—the 

proposed methodology demonstrated state-of-the-art performance. The original paper 

[93] contains information about the investigation in detail. This dissertation adopts the 

PredRNN to predict the microstructure evolution in a split second. 
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Figure 2.5 Left: the main architecture of PredRNN, in which the orange arrows denote 

the state transition paths of Ml
t, namely the spatiotemporal memory flow. Right: the ST-

LSTM unit with twisted memory states serves as the building block of the proposed 
PredRNN, where the orange circles denote the unique structures compared with 

ConvLSTM (the figure was adopted from the original study [157]). 

 

Measure the Similarity Between Images 

Perhaps the most fundamental process underpinning all of computing is the capability 

to compare data elements. It is not particularly challenging in many fields of computer 

science; for example, binary patterns may be compared using the Hamming distance, text 

files can be compared using the edit distance, vectors can be compared using the 

Euclidean distance, etc. Even the seemingly straightforward operation of comparing 

visual patterns is still an open problem, which makes computer vision a particularly 

difficult field to study. Visual patterns are not just exceedingly high-dimensional and 

strongly correlated, but the idea of visual similarity itself is frequently arbitrary and 

intended to emulate human visual perception [158]. In order to compare the various 

outcomes of the experiments when working on computer vision tasks, we must select a 

method for measuring the similarity between two images. Objective quality or distortion 

assessment techniques can be divided into two main categories. The first category 

includes metrics that may be expressed quantitatively, such as the frequently used mean 
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square error (MSE), peak signal to noise ratio (PSNR), root mean square error (RMSE), 

mean absolute error (MAE), and signal-to-noise ratio (SNR). In an effort to include 

measurements of perceptual quality, the second class of measurement techniques takes 

into account the properties of the human visual system (HVS) [159]. 

The mean-square error estimator is the most common. The average squared difference 

between the anticipated values (estimated values) and the actual value is measured by 

MSE (ground truth). Therefore, we just square the differences between each pixel. 

However, this only works well if we want to create a picture with the best pixel colors 

consistent with the real-world image. We occasionally like to focus on the picture's 

structure or relief [158].  

The second conventional estimator is PSNR (Peak Signal to Noise Ratio). All pixel 

representation values must be converted to bit form to utilize this estimator. The values of 

the pixel channels must range from 0 to 255 if we are using 8-bit pixels. By the way, the 

RGB color model, sometimes known as red, green, and blue, suits the PSNR the best. 

The PSNR metric displays the relationship between a signal's maximum achievable 

power and the power of corrupting noise that compromises the accuracy of its 

representation [159]. 

However, PSNR, a variant of MSE, continues to focus on the pixel-by-pixel 

comparison. Another technique for image similarity quantification is the structural 

similarity approach (SSIM). SSIM and the effectiveness and perception of the human 

visual system are connected (HVS color model). The SSIM represents picture distortion 

as a combination of three elements, namely loss of correlation, luminance distortion, and 
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contrast distortion, as opposed to utilizing conventional error summation techniques 

[159]. 

Convolutional neural networks' hidden variables have recently been demonstrated to 

be an effective measure of perceptual similarity that accurately predicts human 

perception of relative picture similarity. The perceptual similarity between two images is 

assessed using the Learned Perceptual Image Patch Similarity (LPIPS). In essence, 

LPIPS determines how comparable two picture patches' activations are for a given 

network. This measurement has been demonstrated to reflect human perception closely. 

Image patches with a low LPIPS score are perceptually similar [158].  

In material science, there are other methods for microstructure assessment, including 

two-point correlation function, chord length distribution, etc. In addition to index values 

such as MSE, PSNR, SSIM, and LPIPS, two-point correlation function [160] and chord 

length [161] are used for distribution comparison between two images in this dissertation.   

In two-point correlation, the local state and local state space can be used to digitize 

the microstructure images [162]. Local space (h) is the attributes that are needed to 

completely identify all relevant material properties for the selected length scale and can 

be defined as follows: 

 ℎ = (𝜌𝜌, 𝑐𝑐𝑖𝑖) (15) 

 

Where ρ is a phase identifier (α, β, γ, …) and 𝑐𝑐𝑖𝑖 represents chemical composition. 

The complete set of all theoretically possible local states in a selected material system is 

the local state space (H) [163]. 
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 𝐻𝐻 = {(𝜌𝜌, 𝑐𝑐𝑖𝑖)|𝜌𝜌𝜌𝜌{𝛼𝛼,𝛽𝛽, 𝛾𝛾, … }, 𝑐𝑐𝑖𝑖𝜌𝜌𝐶𝐶𝑖𝑖
𝑓𝑓} (16) 

 

Representation of the microstructure as a function h(x, t) specifies the local state 

present at every spatial position x and time t. In practice, all microstructure 

characterization techniques probe the local state in the materials over a finite volume and 

a finite time interval. It is impractical to implement this function in practice due to the 

resolution limits and uncertainty inherent to the characterization techniques used. In 

addition, the local state can only be characterized as an average measure over a finite 

probe volume and finite time step. The problem raises is the fact that the local state in any 

particular pixel or voxel at any particular time step may not be unique [164]. To solve the 

mentioned issues, microstructure function m(h, x) is defined as the probability density 

associated with finding local state h at the spatial location x at time t. It captures the 

probability of finding one of the local states that lie within a small interval dℎ centered 

around ℎ at a selected x. m(ℎ, x) dℎ dx would represent the probability and m(ℎ, x) the 

corresponding probability density [165]. The desired information for the evaluation of 

m(h, x) is usually discrete values.  

The microstructure image on a square lattice can be represented by pixel in two-

dimensional (2D) images and voxel in three-dimensional (3D) images. In this case, the 

microstructure images are expressed by arrays that each element of the array has a value 

based on that pixel or voxel brightness. Then, enough sampling grid is needed to capture 

rich attributes from the material internal structure. The different phases in the material 

microstructure can be represented by special values. For example, Figure 2.6a shows a 

real two-phase microstructure that can be depicted by a binary image (black and white).  
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      (a)                                  (b)                                            (c) 

Figure 2.6 (a) A real two-phase microstructure, (b) and (c) a simple 
checkerboard microstructure for presenting X_uv and two-point correlation (white 

color is phase 1 and black color is phase 2) 

 

If X indicates the microstructure on a square lattice, it can be displayed 

mathematically as follows: 

 𝑋𝑋𝑢𝑢𝑢𝑢 = �1, 𝑖𝑖𝑓𝑓 𝑢𝑢𝑢𝑢 ∈ 𝑝𝑝ℎ𝐺𝐺𝑎𝑎𝑎𝑎 1
0, 𝑂𝑂𝑡𝑡ℎ𝑎𝑎𝑟𝑟𝑒𝑒𝑖𝑖𝑎𝑎𝑎𝑎  (17) 

 

uv is the pixel index and represents the pixel location in the microstructure image. 

In the two-point correlation function, as a simple n-point correlation method, the 

correlation between two random points in the microstructure that can be specified by 

vector r are evaluated as follows: 

 𝑓𝑓𝐶𝐶 ,𝑢𝑢𝑢𝑢
𝑛𝑛𝑝𝑝 = 〈𝑋𝑋𝑢𝑢𝑢𝑢𝑛𝑛 ,𝑋𝑋𝑢𝑢𝑢𝑢+𝐶𝐶

𝑝𝑝 〉 (18) 

 

Where 〈. 〉 is the expectation operator. A simple example for 𝑋𝑋𝑢𝑢𝑢𝑢 and two-point 

correlation has been presented in Figures 1b and 1c. Since we are dealing with discrete 

values, the expectation can be defined as:  
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 𝑓𝑓𝐶𝐶 ,𝑢𝑢𝑢𝑢
𝑛𝑛𝑝𝑝 = 〈𝑋𝑋𝑢𝑢𝑢𝑢𝑛𝑛 ,𝑋𝑋𝑢𝑢𝑢𝑢+𝐶𝐶

𝑝𝑝 〉 = �𝑋𝑋𝑢𝑢𝑢𝑢𝑛𝑛  𝑋𝑋𝑢𝑢𝑢𝑢+𝐶𝐶
𝑝𝑝

𝑢𝑢𝑢𝑢

 (19) 

 

𝑓𝑓𝐶𝐶 ,𝑢𝑢𝑢𝑢
𝑛𝑛𝑝𝑝  is the conditional probability of finding local state n at bin uv given finding 

local state p at bin uv+r. This definition can be extended for three, four, or n-point 

correlation function. If there is a periodic microstructure, 𝑓𝑓𝐶𝐶 ,𝑢𝑢𝑢𝑢
𝑛𝑛𝑝𝑝  is independent from uv. 

For a two-phase material, there are 𝑓𝑓𝐶𝐶11, 𝑓𝑓𝐶𝐶12, 𝑓𝑓𝐶𝐶21 , and 𝑓𝑓𝐶𝐶22 .  

 
𝑓𝑓𝐶𝐶
𝑛𝑛𝑝𝑝 = �𝑓𝑓𝐶𝐶

11 𝑓𝑓𝐶𝐶12

𝑓𝑓𝐶𝐶21 𝑓𝑓𝐶𝐶22
� (20) 

 

The lineal-path function is an additional statistical function that can help for 

microstructure characterization. The lineal-path function quantifies the clusteredness of 

the straight lines in the microstructure. In fact, form probabilistic point of view, the 

probability that a line drawn on the microstructure will be completely in one phase is 

calculated [166, 167]. It can be calculated by different methods like chords distribution 

[166] or Monte Carlo simulation [168]. The lineal-path function in a microstructure is 

linearly independent unlike two-point correlation which is more effective for phases 

recognition. The second derivative of lineal-path function is chord-length distribution 

(CLD) which is also used for microstructure quantification [169]. The lineal-path 

function cannot show the connectivity of the phases accurately because just linear 

connections are considered in this method. In addition, these linear connections are 

measured in the certain directions. Some studies tried to apply different methods to 

evaluate it in the multiple directions [170-172]. Despite these weaknesses, the lineal-path 

function has been applied for microstructure characterization in different studies [166, 
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173]. The CLD function which can be derived from lineal-path function was used by 

Popova et al. [174] to quantify the material structure in additive manufacturing. Some 

researchers have reported that the lineal-path function and the two-point cluster 

correlation function is useful for finding clusters in the microstructures [166, 173, 175].  
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CHAPTER THREE: DEEP LEARNING APPROACH FOR CHEMISTRY AND 

PROCESSING HISTORY PREDICTION FROM MATERIALS MICROSTRUCTURE 

In this chapter, we develop a deep neural network to predict chemistry and 

processing history prediction from materials microstructure. All the microstructures in 

this chapter belong to a heat treatment time of 100 hr.  

The result provided in this chapter is published as a research paper [176] in the 

Scientific Report Journal (Volume 12, 4552 (2022), https://doi.org/10.1038/s41598-022-

08484-7). 

Phase-Field Modeling and Dataset Generation 

Different microstructures are produced by PF modeling for different chemical 

compositions and temperatures. The chemical compositions and temperature were 

designed based on the design of experiment method. Since the chemical compositions are 

subject to the constraint that they must sum to one, the Simplex-Lattice design as a 

standard mixture design was adopted to produce the samples. In this regard, the 

compositions start from 0.05 and increase to 0.90 at 0.05 intervals, and the temperature 

rises from 853 K to 963 K at 10 K increment, see Table 2.2. Therefore, 2053 different 

samples were simulated by the PF method, and the microstructures were constructed for 

different chemical compositions and temperatures. All the proposed operating conditions 

were simulated for the 100 hr spinodal decomposition process. Figure 3.1 depicts three 

sample results of the PF simulation. The MOOSE-generated data can be presented in 

different color formats. In most transmission electron microscopy (TEM) images in 

https://doi.org/10.1038/s41598-022-08484-
https://doi.org/10.1038/s41598-022-08484-
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literature, the Fe-rich and Cr-rich phases have been shown by bright and dark contrasts, 

respectively. We followed the same coloring for the extracted microstructures from the 

MOOSE. The Chigger python library in MOOSE has been used for microstructures 

extraction. 

 
Figure 3.1 Fe-Cr-Co alloys microstructure generated by the phase-field method 

for: a) Fe-20%, Cr-40%, Co-40% at 873K, b) Fe-20%, Cr-40%, Co-40% at 963K, c) 
Fe-25%, Cr-30%, Co-45% at 933K. (Composition are in atomic percent).  

 

Since decomposition does not occur in all the proposed operating conditions and 

chemistries, the microstructures showing the 0.05 difference in Fe composition between 

Cr-rich and Fe-rich phases were considered spinodally decomposed results. Hence, 454 
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samples in which decomposition has taken place are used to create the database. 80% of 

454 samples were used for training and 20% for testing. The training was validated by 5-

fold cross-validation. The Fe-based composition microstructure morphologies, as well as 

minimum and maximum of Fe compositions in the microstructure along with 

corresponding chemical compositions and temperatures, form the dataset. A sample 

workflow on the dataset construction is given in Figure 3.2.  

 
Figure 3.2 A sample workflow of dataset construction.  

 

Convolutional Layers for Feature Extraction 

The overreaching goal of the convolutional layers is feature extraction from the 

images. First, we train a proposed CNN, which includes three convolutional layers, batch 

normalization, max pooling, and ReLU activation function. Filters in each convolutional 

layer encode the salient features of images. Once the input images are fed into the 

network, the filters in the convolutional layers are activated to produce the response maps 

as an output of the filters. Some response maps of each convolutional layer in the 
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proposed CNN are given in Figure 3.3. Then, as a comparison, the EfficientNet-B6 and 

EfficientNet-B7 convolutional layers were also applied to extract the salient features of 

produced microstructure by the PF method. The EfficientNet-B6 and EfficientNet-B7 

have 43 and 66 million parameters which are less than other network parameters with 

similar accuracy. The trained weights and biases of the EfficientNet models on the 

ImageNet dataset for classification tasks are loaded for convolutional layers without top 

fully-connected layers. EfficientNet-B6 and EfficientNet-B7 have 668 and 815 layers, 

including 139 and 168 convolutional layers, respectively. The response maps for some 

layers are given in Figure 3.4 and Figure 3.5 for EfficientNetB7 and EfficientNetB6, 

respectively. They represent the locations of the encoded features by the filters on the 

input image.   
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Figure 3.3 Sample response maps in developed CNN for 2D microstructure 

morphology inputs. The response map of the first four filters of three convolutional 
layers is illustrated for three input images. The layer numbers are presented at the 

top of the images. 

 
Figure 3.4 Sample response maps in EfficientNetB7 for 2D microstructure morphology 
inputs. The response map of the first four filters of some convolutional layers is illustrated 

for three input images. The layer numbers are presented at the top of the images.  

Input Image Conv_2Conv_1 Conv_3

Input Image Layer 25Layer 4 Layer 286Layer 108 Layer 509 Layer 810
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Figure 3.5 Sample response maps in EfficientNetB6 with 2D microstructure 
inputs. The response map of the first four filters of some convolutional layers is 

illustrated for three input images. The layer number is presented at the top of the 
figure. 

 

The response maps for both trained CNN and pretrained EfficientNet show that 

the first layers capture the simple features like edges, colors, and orientations, while the 

deeper layers extract more complicated features that are less visually interpretable, see 

Figure 3.4; similar observations are reported in other studies [65, 67, 177]. The filters 

from the first layers can extensively detect the edges; hence the microstructures are 

segmented by the borders of two different phases. By going into deeper layers, 

understanding the extracted information by the filters becomes more difficult and can 

only be analyzed by their effects on the accuracy of the final model. Since the pretrained 

EfficientNet has deeper layers, they can extract more complicated features from the 

microstructure morphologies. Indeed, we can use different layers for microstructure 

information extraction and test them to predict the processing history and find the most 

optimum network. 
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Temperature and Chemical Compositions Prediction 

The mixed dataset contains microstructure morphologies as image data and the 

minimum and maximum of Fe composition in the microstructures as numeric data. The 

most common reported experimental images in literature for the spinodally decomposed 

microstructures are greyscale TEM images. To enable the model to predict the chemistry 

and processing history of the experimental microstructures, we have used the greyscale 

images in the network training. The proposed CNN, as well as EfficientNet-B6 and 

EfficientNet-B7 pretrained networks, were used for microstructures’ feature extraction. 

Then, the extracted features are passed through the fully-connected layers with batch 

normalization, Swish activation function, and dropout. The numeric data was proceeded 

by fully-connected layers with the ReLU activation function. The output of both layers 

was combined with other fully-connected layers to predict temperature and chemical 

compositions through the linear activation in the last fully-connected layer. After testing 

different fully-connected layer sizes, the best architecture was selected based on 

prediction accuracy and stability, which is shown in Figure 2.2 for the proposed CNN and 

Figure 3.6 for pretrained networks. The models were trained on XSEDE resources [178]. 

As a starting point, the proposed CNN network with fully-connected layers was 

trained to predict the processing history parameters. After testing different CNN 

architectures, the presented network in Figure 2.2, provided the best results that are given 

in Figure 3.7. The results show that the proposed network can predict the chemical 

compositions reasonably well, but the temperature accuracy is poor. Temperature is a key 

parameter in the spinodal decomposition process and developing a model with higher 

accuracy is required. To increase the accuracy, we need to extract more subtle features 
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from the morphologies. However, training a CNN with more layers requires numerous 

training data. A pretrained network can extract more valuable features from images and 

consequently can be helpful for accuracy improvement. Therefore, after fixing the 

architecture of fully-connected layers, different layers of EfficientNet-B6 and 

EfficientNet-B7 were tested to find the best layer for microstructures’ feature extraction. 

Herein, layers 96, 111, 142, 231, 304, 319, 362, 392, 496, 556, 631, 659, and 663 from 

EfficientNet-B6 and layers 25, 108, 212, 286, 346, 406, 464, 509, 613, 673, 806, and 810 

from EfficientNet-B7 were selected to quantify the microstructures. The models were 

run, based on the given parameters in Table 2.4, for different layers. The model training 

was repeated five times. The average R Squares and mean square error (MSE) for cross-

validation and test set are given in supplementary materials, Table 3.1 and Table 3.2, for 

EfficientNet-B6 and EfficientNet-B7, respectively. Indeed, the models were validated by 

5-fold cross-validation during training, and the test set contains the data that the model 

never sees in the training process. According to the results, both trained models based on 

EfficientNet-B6 and EfficientNet-B7 can predict the Co composition very well and while 

the prediction of temperature and Cr composition is good, they are more challenging. 

Accordingly, the most accurate prediction belongs to the models that use up to layer 319 

of the EfficientNet-B6 and layer 806 of EfficientNet-B7 for microstructures’ 

quantification.  
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Figure 3.6 The architecture of the proposed model (input image size is 224 × 224 

pixels).  

 
In addition to cross-validation and test set accuracy, which can be used for 

overfitting identification, tracking the loss change in each epoch during the training 

process can also help in overfitting detection. Figure 3.8a depicts the loss change in each 

epoch for the developed model based on EfficientNet-B7, a corresponding plot for 

EfficientNet-B6 is available in supplementary materials, Figure 3.9a. Figure 3.8a shows 

that both training and validation losses reduce smoothly with the epoch increase. The 

insignificant gap between the train and validation losses proves that the models’ 

parameters converge to the optimal values without overfitting. To better understand the 

application of the developed models, the models were tested by a sample from the test 

set; the microstructure belongs to the spinodal decomposition of 20% Fe, 40% Cr, and 

40% Co at 913 K after 100 hr. The model predictions for temperature and chemical 
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compositions are given in Figure 3.8b, for EfficientNet-B7, and Figure 3.9b, for 

EfficientNet-B6. The comparison between the ground truth and prediction demonstrates 

that the models can predict the chemistry and processing history reasonably well. To 

quantify the models’ predictive accuracy on all test data points, we have used the parity 

plots in which the models’ predictions are compared with ground truth in an x-y 

coordinate system. For an ideal 100% accurate model all data points will overlap on a 45-

degree line. The parity plots of the models, i.e., EfficientNet-B7 and EfficientNet-B6, for 

temperature, Cr composition, and Co composition along with their accuracy parameters 

are given in Figure 3.8c and Figure 3.9c. The results show that the models can predict the 

Co composition with the highest accuracy. It seems that temperature prediction is the 

most challenging variable for the models, but still, there is a good agreement between the 

models’ prediction and ground truth.  
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Table 3.1 R-squared and MSE of model predictions for training and testing 
dataset when different layers of EfficientNet-B6 are used for microstructures’ 
feature extraction. 

La
ye

r 
R squared MSE 

Validation Test Validation Test 

T Ccr Cco T Ccr Cco T Ccr Cco T Ccr Cco 

96 0.9683 0.9930 0.9985 0.9443 0.9048 0.9966 3E-05 3E-05 3.7E-05 5E-05 0.0003 6E-05 

111 0.9607 0.9961 0.9984 0.9347 0.9069 0.9958 4E-05 2E-05 3.7E-05 6E-05 0.0004 9E-05 

142 0.9739 0.9962 0.9982 0.9503 0.9335 0.9957 3E-05 2E-05 4.1E-05 5E-05 0.0003 9E-05 

231 0.9698 0.9944 0.9983 0.9289 0.9022 0.9944 3E-05 3E-05 4E-05 7E-05 0.0004 1E-04 

304 0.9602 0.9948 0.9976 0.9303 0.9328 0.9952 4E-05 3E-05 4.8E-05 8E-05 0.0003 7E-05 

319 0.9742 0.9949 0.9987 0.9544 0.9362 0.9964 3E-05 3E-05 3.1E-05 5E-05 0.0003 9E-05 

362 0.9626 0.9942 0.9984 0.9324 0.9270 0.9962 4E-05 3E-05 3.7E-05 7E-05 0.0003 9E-05 

392 0.9761 0.9939 0.9985 0.9680 0.9151 0.9957 3E-05 3E-05 3.5E-05 3E-05 0.0004 9E-05 

496 0.9506 0.9667 0.9962 0.8878 0.9313 0.996233 5E-05 0.0002 8E-05 8E-05 0.0002 7E-05 

556 0.9591 0.9933 0.9977 0.9182 0.9527 0.9962 4E-05 4E-05 5.5E-05 9E-05 0.0002 9E-05 

631 0.9198 0.9856 0.9633 0.8143 0.8805 0.9373 7E-05 5E-05 0.00089 0.0002 0.0006 0.002 

659 0.9584 0.9925 0.9978 0.8799 0.9313 0.9943 5E-05 4E-05 5.1E-05 9E-05 0.0003 1E-04 

663 0.9168 0.9859 0.9607 0.8576 0.9295 0.9222 6E-05 7E-05 0.00096 0.0002 0.0004 0.002 
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Table 3.2 R-squared and MSE of model predictions for training and testing 
dataset when different layers of EfficientNet-B7 are used for microstructures’ 
feature extraction. 

La
ye

r 

R squared MSE 

Validation Test Validation Test 

T Ccr Cco T Ccr Cco T Ccr Cco T Ccr Cco 

25 0.9407 0.9906 0.9878 0.9248 0.9112 0.9499 6E-05 5E-05 3E-04 7E-05 0.0003 0.001 

108 0.9587 0.9944 0.9988 0.9324 0.9325 0.9956 4E-05 3E-05 3E-05 7E-05 0.0003 1E-04 

212 0.9700 0.9944 0.9982 0.9488 0.9079 0.9935 3E-05 3E-05 4E-05 6E-05 0.0004 1E-04 

286 0.9622 0.9749 0.9980 0.9528 0.9253 0.996 4E-05 0.0001 5E-05 5E-05 0.0003 9E-05 

346 0.9687 0.9911 0.9878 0.9451 0.8977 0.9298 3E-05 5E-05 3E-04 6E-05 0.0005 0.002 

406 0.9729 0.9959 0.998 0.9375 0.9116 0.9964 3E-05 2E-05 5E-05 7E-05 0.0004 9E-05 

464 0.9663 0.9939 0.9983 0.9491 0.9248 0.9972 4E-05 3E-05 4E-05 5E-05 0.0003 8E-05 

509 0.9673 0.9959 0.9984 0.9461 0.9215 0.9952 4E-05 2E-05 4E-05 6E-05 0.0004 1E-04 

613 0.9110 0.9853 0.9696 0.8782 0.8421 0.7446 7E-05 8E-05 7E-04 1E-04 0.0007 0.007 

673 0.9625 0.9945 0.9976 0.9484 0.9248 0.9937 4E-05 3E-05 5E-05 6E-05 0.0003 1E-04 

806 0.9599 0.9887 0.9978 0.9319 0.955 0.9962 4E-05 6E-05 5E-05 8E-05 0.0003 1E-04 

810 0.9422 0.993 0.9976 0.9095 0.9412 0.9963 6E-05 4E-05 6E-05 8E-05 0.0002 1E-04 
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Figure 3.7 a) Training and validation loss per each epoch, b) prediction of 

temperature and chemical compositions for a test dataset, and c) the parity plots of 
temperature and chemical compositions for the testing dataset from the proposed 

model when proposed CNN are used for microstructures’ feature extraction (input 
image size is 224 × 224 pixels) 

 

The results include two important points. First, while the extracted features from 

the shallow trained CNN can predict the compositions well, we need deep CNN to 

precisely predict the temperature. For this reason, the deep pretrained EfficientNet 

networks were used, which could predict temperature with higher accuracy. This 

observation indicates that the compositions are more relevant to simple extracted features 

of the microstructure morphology, however, more complicated extracted features are 

required to estimate the temperature. The physical concepts of the problem can also 

explain this. A small change in compositions would alter the microstructure morphology 
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much more dramatically than a small change in temperature. The differences among the 

microstructures with different compositions and the same processing temperature are 

easily recognizable. For example, with a slight change in chemistry the volume fraction 

of the decomposed phases would vary and this information, i.e., change in the number of 

white and black pixels, can easily get extracted from the very first layers of the network. 

However, there are subtle differences between the microstructure morphologies when we 

slightly change the processing temperature. Therefore, much more complex features are 

needed to distinguish the differences among the morphologies with small processing 

temperature variations. Extraction of these complex features requires deeper 

convolutional layers. In addition, with convolutional layers increasing, the receptive field 

size would improve. And that ensures no important information is left out from the 

microstructure when making predictions. Therefore, more information is extracted from 

the microstructures, and it would also increase the temperature prediction accuracy. On 

the other hand, training a deep CNN with limited training and test dataset is not practical. 

To overcome this challenge, transfer learning can be helpful, and some other studies have 

shown that pretrained networks are effective in feature extraction in materials science-

related micrographs [25, 36, 52, 72, 179-181].  
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Figure 3.8 a) Training and validation loss per each epoch, b) prediction of 

temperature and chemical compositions for a random test dataset, and c) the parity 
plots of temperature and chemical compositions for the testing dataset from the 

proposed model when first 806 layers of EfficientNetB7 are used for 
microstructures’ feature extraction (The size of the input images are 224 × 224 

pixels) 

 

 

(a)

Ground 
truth Prediction 

Temperature 913 912.3
Cr composit ion 0.4 0.3932
Co composit ion 0.4 0.4037

(b)

(c)

R-Squared =   0.9550
MSE =  0.0003

R-Squared =   0. 9962
MSE =  1E-04 

R-Squared =   0.9319
MSE =  8E-05



58 

 

 
Figure 3.9 a) Training and validation loss per each epoch, b) prediction of 

temperature and chemical compositions for a test dataset, and c) the parity plots of 
temperature and chemical compositions for the testing dataset from the proposed 

model when proposed CNN are used for microstructures’ feature extraction (input 
image size is 224 × 224 pixels) 

 

Validation of The Proposed Model with The Experimental Data 

The model accuracy against the test dataset, i.e., the data that the model has never 

seen in the training process, is good, but the test dataset is still from phase-field 

simulation. Since the ultimate goal of the developed framework is to facilitate the 

microstructure mediated materials design via predicting chemistry and processing history 

for experimental microstructures, it is valuable to test the model accuracy on the real 

microstructures. For this purpose, we have tested the model against an experimental TEM 

image for spinodal decomposition of Fe-Cr-Co with initial composition 46% Fe, 31% Cr, 
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MSE =  0.0001

R-Squared =   0. 9956
MSE =  0.0001
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and 23% Co after 100 hr heat treatment at 873 K from Okada et al. [182]. Since the Fe 

composition of the micrograph was not reported in Okada et al.’s paper, we selected the 

Fe composition by interpolating between the adjacent simulation points in our database. 

Figure 3.10 shows the predictions of the proposed network for an experimental TEM 

microstructure.  

 
Figure 3.10 Prediction of chemistry and processing temperature for an 

experimental TEM image adopted from Okada et al. [182]. The original image was 
cropped to be in the desired size of 224 × 224 pixels. 

 

While Co composition and processing temperature prediction is very good, we see 

a 16% error in Cr composition prediction. We believe the error could stem from several 

factors. Firstly, the TEM micrograph that we used does not have the image quality of the 

training dataset. Secondly, the Fe composition associated with the micrograph was not 

reported in the original paper [182], and we used a phase-field-informed Fe composition. 

Thirdly, the dimension of the experimental image was larger than the simulated data, and 

it was cropped to be at the same size as the required input microstructure size. Despite all 

these limitations, the proposed model based on the first 806 convolutional layers of 

EfficientNetB7 predicts the chemistry and processing temperature of an experimental 

TEM image reasonably well. And it demonstrates that the developed model in this work 

is suitable for finding the process history behind the experimental microstructures.  

Ground 
truth Prediction 

Temperature 873 866.7
Cr composit ion 0.31 0.36
Co composit ion 0.23 0.23
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Beyond the specific model alloy that we used in this work, the developed model 

can also be generalized to other materials by considering the material production 

processes. The developed framework can be used for other ternary alloys that are 

produced by spinodal decomposition. The model performance in the process history and 

chemistry prediction should be considered for other spinodal decomposed alloys with less 

or more elements. The domain adaptation methods such as unsupervised domain 

adaptation [183] can provide the ability to use the developed model for other spinodal 

decomposed alloys. In practice, the proposed model needs two experimental inputs, 1) a 

TEM micrograph that shows the morphology and, 2) X-ray fluorescence spectroscopy 

(XRF) that provides the corresponding compositions. 

 

Conclusion 

We introduced a framework based on a deep neural network to predict the 

chemistry and processing history from the materials’ microstructure morphologies in this 

chapter. As a case study, we generated the training and test dataset from phase-field 

modeling of the spinodal decomposition process of Fe-Cr-Co alloy. We considered a 

mixed input dataset by combining the image data, the produced microstructure 

morphologies based on Fe composition, with numeric data, the minimum and maximum 

of Fe composition in the microstructure. The temperature and chemical compositions 

were predicted as processing history. We quantified the microstructures by a proposed 

CNN and different convolutional layers of EfficientNet-B6 and EfficientNet-B7 

pretrained networks. Then, the produced features were combined with the output of a 

fully-connected layer for numeric data processing by other fully-connected layers to 
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predict processing history. After testing different architectures, the best network was 

found based on the model’s accuracy. A detailed analysis of the model’s performance 

indicated that the model parameters were optimized based on training and validation loss 

reduction. The results show that while the simple extracted features from the 

microstructure morphology by the first convolutional layers are enough for the chemistry 

prediction, the temperature needs more complicated features that can be extracted by 

deeper layers. The model benchmark against an experimental TEM micrograph indicates 

the model’s well predictive accuracy for real alloy systems. We demonstrated that the 

pretrained convolutional layers of EfficientNet networks could be used to extract the 

meaningful features relevant to the compositions and temperature from the microstructure 

morphology. In general, the proposed models were able to predict the processing history 

based on the materials’ microstructure reasonably well. 

 

Data availability 

The raw/processed data and codes required to reproduce these findings are 

available at https://github.com/Amir1361/Materials_Design_by_ML_DL. 

 

 

https://github.com/Amir1361/Materials_Design_by_ML_DL
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CHAPTER FOUR: PROCESSING TIME, TEMPERATURE, AND INITIAL 

CHEMICAL COMPOSITION PREDICTION FROM MATERIALS 

MICROSTRUCTURE BY DEEP NETWORK FOR MULTIPLE INPUTS AND FUSED 

DATA 

In this chapter, we consider heat treatment time as another processing parameter 

for process history and chemistry prediction from materials microstructure. 

The result provided in this chapter is published as a research paper [184] in the 

Materials & Design Journal (Volume 219, July 2022, 110799, 

https://doi.org/10.1016/j.matdes.2022.110799). 

Phase-Field Modeling and Dataset Generation  

We ran the PF model for the different combinations of time, temperature, and 

chemical compositions informed by the Simplex-Lattice design. Within the ranges given 

in Table 2.3, 125,233 different samples were simulated by the PF method, and the 

microstructures were extracted for different chemical compositions, temperatures, and 

time. Figure 4.1 depicts the sample results of the PF simulation. MOOSE simulations of 

the 2D domains take approximately 120 service units (SU) per run on a 24 Core CPU. 

Therefore, screening the proposed range of different temperatures and chemical 

compositions for microstructure evolution required approximately 505k SU to complete. 

 

 

https://doi.org/10.1016/j.matdes.2022.110799
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Figure 4.1 The phase-field method generates Fe-Cr-Co alloy microstructures 

(Compositions are in atomic percent). 

 

Since decomposition does not occur for all proposed operating conditions and 

chemistries, the microstructures showing the 0.1 difference in Fe composition between 

Cr-rich and Fe-rich phases and at least 15 % volume fraction for each phase were 

considered as spinodally decomposed results. Hence, only 14,376 samples in which 

decomposition has taken place are used to create the database. 80% of samples were used 

for training and 20% for testing. The training was validated by 5-fold cross-validation. 

The Fe-based composition microstructure morphologies, as well as minimum and 

maximum of Fe compositions in the microstructure along with corresponding time, 

temperature, and chemical compositions, form the dataset. A sample workflow of the 

dataset construction is given in Figure 4.2.  

25000

Cr-40%, Co-30% 
at 920 K

35000 7500050000 125000 200000 360000 1080000

Cr-40%, Co-30%
at 970 K

Cr-35%, Co-25%
at 920 K

Time in second
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Figure 4.2 A sample workflow of dataset construction. 

 

Deep Network Training 

First, the in-house CNNs with different convolutional layers have been tested to 

find the best architecture. The results are given in Table 4.1. The results indicate that the 

CNNs can predict the chemistry reasonably well. The accuracy of time prediction 

increases proportionally with the number of filters. However, the temperature accuracy is 

poor for all networks. According to previous study findings [185], the temperature is 

related to complicated microstructure features that can only be extracted by deep 

convolutional layers. Training such a deep network needs a very large training dataset, 

which is not available. Therefore, we adopted the transfer learning method to check the 

network accuracy. We used the EfficientNet-B7 convolutional layers to extract the salient 

features of the produced microstructure by the PF method as transfer learning. The 

EfficientNet-B7 has 66 million parameters which are less than other networks with 

similar accuracies, such as VGG16, etc. Similar to other studies [65, 67, 177], the first 

Input
Microstructure

morphology
Fe minimum 

concentration
Fe maximum 
concentration

0.10 0.46

Fe-30%, Cr-40%, 
Co-30% at 920K 

after 720000 sec.

Output
Ccr Cco Temperature Time

0.4 0.3 920 720000

CFe
0.46

0.37

0.28

0.19

0.10
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layers capture simple features like edges, colors, and orientations. In contrast, the deeper 

layers extract more complicated, less visually interpretable features (see Figure 4.3). The 

fused data, including microstructure morphology and Fe minimum and maximum 

concentration in morphology, are used for network training. Different pretrained 

convolutional layers of EfficientNet-B7 are applied to extract microstructures salient 

features while numeric data is proceeded by fully-connected layers. After passing fully-

connected layers, the extracted features by convolutional layers are combined with the 

numeric data through the fully-connected layers to predict the outputs by linear activation 

function in the last layer, see Figure 4.4. Convolutional layers 25, 108, 212, 286, 346, 

406, 464, 509, 613, 673, 806, and 810 from EfficientNet-B7 are used to extract the 

microstructures features. For different convolutional layers, the model is trained based on 

the given parameters in Table 2.4. The model training is based on 5-fold cross-validation 

and dividing the dataset into training (80%) and testing (20%) datasets. The average R 

Squares and mean square error (MSE) for cross-validation and test set that the model 

never sees in the training process are given in Table 4.2. According to the results, the 

prediction of time and temperature is more challenging than compositions. Almost all the 

models can predict the compositions very well. The whole training process was repeated 

three times to check the models' stability. Finally, the most accurate prediction belongs to 

the model that uses up to layer 286 of the EfficientNet-B7 for microstructures' 

quantification. The error distribution of this model, which shows a normal distribution, is 

given in Figure 4.5.  
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Figure 4.3 Sample response maps in EfficientNetB7 with 2D microstructure 
inputs. The response map of the first four filters of some convolutional layers is 

illustrated for four input images. The layer number is presented at the top of the 
figure. 

Figure 4.4 The architecture of the proposed model (input image size is 224 × 224 
pixels). 

Input Image Layer 25Layer 4 Layer 286Layer 108 Layer 509 Layer 810

Max

Min

Feature 
Flatten

Fully connected 
layer with 8 

neurons + ReLU
Activation

Fully connected 
layer with 32 

neurons + ReLU
Activation

Fully connected 
layer with 512 

neurons + Batch 
Normalization + 

Swish 
Activation + 

Dropout (0.5)

Fully connected 
layer with 4 

neurons + ReLU
Activation

Fully connected 
layer with 3 
neurons + 

Linear
Activation

Fully connected 
layer with 128 

neurons + Batch 
Normalization + 

Swish 
Activation

Fully connected 
layer with 16 

neurons + ReLU
Activation

Processing Time 
Processing Temperature
Chemical Compositions
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In addition to cross-validation, testing data has also been used for overfitting 

detection. The training and validation losses diminish smoothly with epoch, as shown in 

Figure 4.6a, and it is an indication that the model parameters converge to the global 

optimum without overfitting. A sample from the test set is given in Figure 4.6b to show 

the developed model performance. The presented microstructure is for 15% Fe, 25% Cr, 

and 60% Co (all in atomic percent) after 195000 seconds of heat treatment at 950 K. The 

model's predictions have good agreement with ground truth values for time, temperature, 

and chemical compositions. The parity plots with accuracy metrics for comparing the 

model prediction with ground truth for all testing data are shown in Figure 4.6c. The 

results show that the model can predict the chemical compositions with the highest 

accuracy. The prediction accuracy for time and temperature is not as good as chemical 

compositions. But the model can still predict them reasonably well.  
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Figure 4.5 Error distribution for the testing dataset from the proposed model 
when the first 286 layers of EfficientNetB7 are used for microstructures’ feature 

extraction (The size of the input images is 224 × 224 pixels) 

 

The results indicate that the time and temperature prediction is more challenging 

than chemical compositions, which is explainable by physical concepts. According to our 

simulation results (see Figure 4.7) and reported studies [182, 186], a slight change in 

initial chemical compositions can lead to a sensible change in microstructure morphology 

which is even recognizable by human eyes. Therefore, it will be uncomplicated for the 

model to realize the chemical composition changes. However, small changes in 

temperature will hardly lead to noticeable changes in the microstructure morphologies 
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when the time and chemical composition are fixed. Therefore, finding these differences is 

hard and makes temperature prediction challenging. In the case of time, there are two 

different conditions. The morphology changes rapidly with time at the early stages of 

heat treatment, but the rate of change drops dramatically after some time, i.e., when the 

morphology reaches some stability, and changes will be minimal over time. This 

insensitivity will make the identification strenuous for the model. According to Table 4.2, 

the models can predict the chemical composition, temperature, and time in order of 

maximum to least accuracy. However, as we will discuss in the next section, most errors 

in time and temperatures, are not actually real errors, but just other right answers. 

 

 
Figure 4.6 a) Training and validation loss per each epoch, b) prediction of time, 

temperature, and chemical compositions for a random test dataset, and c) the parity 
plots for time, temperature, and chemical compositions for the testing dataset based 
on the transfer learning model when the first 286 layers of EfficientNetB7 are used 
for microstructures' feature extraction (The size of the input images are 224 × 224 

pixels) 

Ground truth Prediction 
Time (Sec.) 195000 194997.8

Temperature (K) 950 954.702
Cr composit ion 0.25 0.2503
Co composit ion 0.6 0.6003

(a)

(b)

(c)

R-Squared =   0.981
MSE =  0.001

R-Squared =   0.985
MSE =  1.7E-05

R-Squared =   0.994
MSE =  2.4E-05

R-Squared =   0.999
MSE =  1.3E-05
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Figure 4.7 Different microstructures a) at constant time and temperature, b) at 

constant time and chemical compositions, and c) at constant temperature and 
chemical compositions.  

 

Model Performance Analysis  

The R-square and RSME results for testing points show that the model can predict 

time, temperature, and chemical compositions well. However, the model's reliability 

depends on knowing the sources of the errors.  Therefore, in this section, we will do a 

more in-depth study on some low-accuracy cases to find out the source of errors. As was 

mentioned earlier and according to the parity plots in Figure 4.6c, the lowest accuracy 

belongs to time and temperature predictions. Some worst cases in time and temperature 

prediction are given in Figure 4.8. 

After studying some random cases, among the predictions with high errors, we 

concluded that two scenarios are possible for the sources of errors. One is achieving 

stability in the microstructure morphology after a certain time, and the second is 

achieving an identical microstructure from two different paths. Based on the observations 

a) 360000 Sec.
and 930 K

b) Cr-40%, Co-30%
and 360000 Sec.

c) Cr-40%, Co-30%
and 930 K

Cr-40%, Co-30% Cr-40%, Co-40% Cr-40%, Co-20% Cr-50%, Co-20% Cr-30%, Co-60% Cr-30%, Co-25% 

T =  890 K T =  900 K T =  910 K T =  920 K T =  930 K T =  940 K

Time =  25000 sec. Time =  68000 sec. Time =  125000 sec.Time =  225000 sec.Time =  360000 sec.Time =  900000 sec.
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and physical concepts, the microstructure morphologies change very sluggishly with time 

after passing the early stages of separation and coarsening, and reach some sort of 

stability. As mentioned earlier, once the stability is achieved, it is hard for the model to 

distinguish the differences between the microstructures due to the subtle or no changes 

between two considerable time steps. Therefore, we hypothesize that the errors that we 

observe in time predictions for high heat treatment times, i.e., times above 100 hrs, are 

associated with morphology stability. To test this hypothesis, we compared the simulated 

microstructures based on the model's predictions with the microstructure given as the 

input, i.e., ground truth, to the modal. Quantitative comparison of different images can be 

made either by evaluating specific metrics or by observing the distribution of defined 

parameters in the images. We adopted some evaluation metrics that were widely used in 

the computer vision community including the Root Mean Squared Error (RMSE), Peak 

Signal-to-Noise Ratio (PSNR) [187, 188], the Structural Similarity Index Measure 

(SSIM) [189], and the Learned Perceptual Image Patch Similarity (LPIPS) [158]. In these 

metrics, smaller RMSE and LPIPS, and higher PSNR and SSIM indicate more similarity 

between images. For distributions comparison between two images, two-point correlation 

function [160] and chord length [161] are standard techniques and we used them in this 

study. Figure 4.9 shows the comparison between the ground truth and simulated 

microstructure for the first row of Figure 4.8. We note that the simulated microstructures 

in Figure 4.9 are informed by the DL-predicted chemistry, temperature, and time, i.e., the 

prediction values in Figure 4.8. The evaluation metrics and distributions demonstrate that 

the two microstructures are similar, while there is about 70 hrs differences in their heat 

treatment times. These quantitative comparisons endorsed our hypothesis that the errors 
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that we observe in time predictions for high heat treatment times are associated with the 

morphology stability.  

 

 
Figure 4.8 Some worst cases for time (first row of images) and temperature 

(second row of images) predictions. 

 

Ground truth Prediction Ground truth Prediction Ground truth Prediction Ground truth Prediction 
Time (Sec.) 900000 633511.2 1080000 815184.8 96000 107438.8 1080000 804410.9

Temperature (K) 850 863.4268 930 934.9607 880 863.9738 850 856.0246
Cr composit ion 0.3 0.2979 0.5 0.4966 0.4 0.4081 0.3 0.3074
Co composit ion 0.6 0.5999 0.1 0.1005 0.15 0.1482 0.55 0.543509

Ground truth Prediction Ground truth Prediction Ground truth Prediction Ground truth Prediction 
Time (Sec.) 900000 1165722 1080000 844940.8 792000 1070176 1080000 920366.8

Temperature (K) 970 969.5409 950 950.3205 970 969.0656 910 910.8225
Cr composit ion 0.25 0.2505 0.4 0.4011 0.25 0.2509 0.5 0.4996
Co composit ion 0.45 0.4606 0.3 0.3006 0.35 0.3629 0.25 0.2482
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Figure 4.9 Comparison of the ground truth microstructures with the simulated 
microstructures from model predictions for four random cases with high errors in 

time. 

Metric Value

RMSE 12.47

PSNR 26.21

SSIM 0.96

LPIPS 0.02

(a) (b)

(c) (d)

Metric Value

RMSE 24.36

PSNR 20.40

SSIM 0.91

LPIPS 0.04

Metric Value

RMSE 23.25

PSNR 20.80

SSIM 0.91

LPIPS 0.06

Metric Value

RMSE 27.72

PSNR 19.27

SSIM 0.91

LPIPS 0.06
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Another source of error that we observed in predictions stems from the interplay 

between time and temperature. For these types of errors, we hypothesize that the 

predicted processing conditions, while being different from the ground truth, are indeed 

another path to reach a similar microstructure. To test this hypothesis, we ran the PF 

model with the predicted chemistry and processing parameters and compared 

quantitatively the simulated microstructures with the ground truth microstructures in 

Figure 4.10. Again, the metrics and distributions show that the microstructures are very 

similar, and in fact, we can generate similar microstructures from two separate paths, i.e., 

higher time/lower temperature and lower time/higher temperature. Therefore, in these 

cases, the model does not predict wrong processing but just discovers a new path. 

Therefore, according to the model review results, the primary sources of errors, primarily 

in heat treatment time and temperature, root in the physical concepts behind the spinodal 

decomposition and are not inherently wrong predictions but just another right answer.  
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Figure 4.10 Comparison of the ground truth microstructures with the simulated 
microstructures from model predictions for four random cases with errors in time 

and temperature. 

 

Metric Value

RMSE 17.63

PSNR 23.21

SSIM 0.97

LPIPS 0.02

(a) (b)

(c) (d)

Metric Value

RMSE 24.36

PSNR 20.40

SSIM 0.91

LPIPS 0.04

Metric Value

RMSE 14.91

PSNR 24.66

SSIM 0.98

LPIPS 0.02

Metric Value

RMSE 18.87

PSNR 22.62

SSIM 0.97

LPIPS 0.02
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Validation of The Proposed Model with the Experimental Data 

The main motivation of the proposed model is to enable the chemistry and 

processing history prediction of a micrograph. This makes the model a unique tool that 

enables, for the first-time, microstructure inverse design possible with no lost 

information, i.e., reducing the complexity of microstructure to just average grain size, etc. 

Since ultimately, the predicted chemistry and processing parameters are going to feed 

into the experiment, the model validation is crucial. In this section, we validate the 

model's predictability against an experimental transmission electron microscopy (TEM) 

image for spinodal decomposition of Fe-Cr-Co with the initial composition of 46% Fe, 

31% Cr, and 23% Co after 100 hrs of heat treatment at 873 K from Okada et al. [182]. 

The original TEM image was larger than the model's required input size, so it was 

cropped to meet the 224x224 pixels size. Also, the Fe composition minimum and 

maximum in the micrograph were not given, and we selected these values by 

interpolating between the adjacent simulation points in the database. Figure 4.11 Figure 

3.10shows the predictions of the model for the experimental TEM microstructure along 

with the ground truth.  

 

 
Figure 4.11 Prediction of processing time, temperature, and chemistry for an 

experimental TEM image adopted from Okada et al. [182]. The original image was 
cropped to be in the desired size of 224 × 224 pixels. 

 

Ground truth Prediction 
Time (Sec.) 360000 322020

Temperature (K) 873 881.904
Cr composit ion 0.31 0.3585
Co composit ion 0.23 0.2316
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Comparison between the predicted and ground truth shows that the model 

performs very well in terms of Co composition and temperature predictions with just 

0.6% and 0.9% error, respectively. The predictions show 10% and 15% errors for 

annealing time and Cr composition, respectively. While all computational models 

naturally have some errors, we identify five key sources for the uncertainties in using the 

model for experimental micrographs, 1) the TEM micrograph does not have the image 

quality of the simulation microstructures, i.e., the training data, 2) the TEM image size 

was larger than the model's input, and we cropped it to 224x224 pixels, 3) the Fe 

composition was not reported for the TEM image and we used the PF input, 4) the model 

was trained with synthetic data and not TEM micrographs, 5) the PF model was 

parameterized with CALPHAD, and some errors correlate with uncertainty in 

CALPHAD data. These uncertainties can be reduced if there are enough experimental 

images to be used in the training dataset. Despite all these shortcomings, the model's 

predictions for chemistry and processing history for the TEM micrograph were 

reasonably well.  

Conclusion 

In this chapter, we have developed a computational framework that enables the 

microstructure inverse design. As a model material, we studied the Fe-Cr-Co based 

permanent magnet alloys.  The developed deep neural network is able to read a 

micrograph of one element distribution and predicts the chemistry and processing 

parameters that would lead to that micrograph. The model integrates the physics-based 

and data-driven modeling. The training and testing data were generated from the phase-

field modeling of the spinodal decomposition process in Fe-Cr-Co alloys. The fused input 
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data, including the microstructure morphologies and the associated minimum and 

maximum Fe composition, were used to train the proposed network to predict the heat 

treatment time and temperature as well as the initial chemical composition, i.e., the Cr 

and Co. We used different CNN layers as well as different convolutional layers of 

EfficientNet-B7 pretrained networks to quantify the microstructure morphologies. The 

accuracy metrics, parity plots, and error distribution demonstrate that the model with the 

EfficientNet-B7 pretrained network performs well on the training data. We found that 

temperature is the most challenging parameter to predict and it requires deeper layers and 

more complicated extracted features from microstructures. The error analysis showed that 

some wrong predictions, in particular the ones with high errors in time and temperature 

predictions, are not actually wrong but just other correct answers. We identified that the 

errors are associated with either the microstructure morphology stability or the possibility 

of having one microstructure with two processing paths. Finally, we validated the model 

with an experimental TEM microstructure and the model was able to predict the 

processing history and chemistry of the TEM micrograph reasonably well. The process 

parameters and chemistry prediction for experimental micrographs can improve 

significantly if we have the right size, and high-resolution microstructures, and also add 

some experimental data to the training dataset. 

Data availability 

The raw/processed data and codes required to reproduce these findings are 

available at 

https://github.com/Amir1361/time_temperature_composition_predictionhttps://github.co

m/Amir1361/Materials_Design_by_ML_DL.

https://github.com/Amir1361/time_temperature_composition_prediction
https://github.com/Amir1361/Materials_Design_by_ML_DL
https://github.com/Amir1361/Materials_Design_by_ML_DL
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CHAPTER FIVE: SPATIOTEMPORAL PREDICTION OF MICROSTRUCTURE 

EVOLUTION WITH PREDICTIVE RECURRENT NEURAL NETWORK 

In this chapter, we propose a Predictive Recurrent Neural Network (PredRNN) 

model for microstructure evolution prediction, which extends the inner-layer transition 

function of memory states in LSTMs to spatiotemporal memory flow. 

The result provided in this chapter is submitted as a research paper in the 

Materials & Design Journal (October 2022).  

Phase-Field Modeling for Microstructure Sequences Generation  

Following the Simplex-Lattice design, the microstructure sequences are produced 

by PF modeling Fe-Cr-Cr spinodal decomposition for the different times, chemical 

compositions, and temperatures. The microstructures were retrieved for 125,233 different 

samples that were simulated using the PF approach within the parameters listed in Table 

2.3 for various chemical compositions, temperatures, and times. The sample 

microstructure sequences from PF simulation results are shown in Figure 4.1. On a 24 

Core CPU, a MOOSE simulation of the 2D domains uses about 120 service units (SU) 

every run. Therefore, it took around 505k SU to screen the suggested range of various 

temperatures and chemical compositions for microstructure evolution. In other words, 

each MOOSE simulation of a 200 nanometer 2D domains takes approximately 120 hrs 

per run for 100 mesh grid on a 24 Core CPU. Figure 4.1 indicates that the microstructure 

evolution process differs in various chemical compositions and temperatures.  
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The training dataset can be generated from simulated microstructures. The length 

of each sequence is 20 microstructures. The first 10 microstructures are for the first 30 hr 

of heat treatment time and are used to predict the future 10 microstructures, which belong 

to 50 hr to 300 hr, as output sequence. There are 20,000 sequences for training and 4,000 

sequences as testing data. Three different Fe-composition-based microstructure 

morphology sequences are presented in Figure 5.1.  

 
Figure 5.1 Three different Fe-composition-based microstructure morphology 

sequences 

As can be seen, the dataset contains very different evolution sequences in terms of 

structure. In addition, since the microstructures are selected from both distinct stages of 

spinodal decomposition, a fast composition modulation growth stage and a slower 

coarsening stage, the difference between the input and output sequence is significant, 
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which can be easily recognized in Figure 5.1. In this case, the model has a more difficult 

task in predicting the output sequence. 

 

Microstructure Evolution Prediction by PredRNN 

20,000 sequences trained the PredRNN to predict the output microstructures. 

With a mini-batch of 8 sequences, we trained the models using the ADAM optimizer. 

After 80,000 iterations, the training process is terminated with a learning rate of 10-4. 

PredRNN typically employs four ST-LSTM layers to balance training effectiveness with 

prediction quality. We set the size of the convolutional kernels inside the ST-LSTM unit 

to 5×5 and the number of channels of each hidden state to 128.  

As illustrated in Figure 5.2, the training loss decreases smoothly with iteration, 

which indicates that the model's parameters have reached their optimal value globally. In 

addition, we employ evaluation measures that are frequently used to determine how 

similar two images are. The predicted and ground truth microstructures are compared 

using the Mean Squared Error (MSE), the peak signal to-noise ratio (PSNR), the 

Structural Similarity Index Measure (SSIM), and the Learned Perceptual Image Patch 

Similarity (LPIPS). The distinction between these metrics is that PSNR compares image 

compression quality, SSIM measures the similarity of structural information within the 

spatial neighborhoods, and LPIPS is based on deep features and is more in line with 

human perceptions. MSE estimates the absolute pixel-wise errors. Smaller MSE and 

LPIPS, and higher PSNR and SSIM indicate more similarity between images.  
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Figure 5.2 Training loss per iteration 

 

After training, test sequences are used to compute MSE, LPIPS, PSNR, and 

SSIM; the average values for each iteration are given in Figure 5.3. The results 

demonstrate that all the metrics improve with iteration to reach almost stability. It proves 

that the model learns from the data and can train the hyperparameters.  
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Figure 5.3 Average MSE, PSNR, SSIM, and LPIPS for test sequences during 

training per each iteration 

 

 
Figure 5.4 Frame-wise results on the three randomly selected samples from the 

test set produced by the final PredRNN model (predictions (P) vs. ground truth (G)) 

25000Time in second 108000
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180000 250000 300000270000 540000360000 430000 900000220000 1080000
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Figure 5.4 displays three randomly selected samples from the test set for a 

qualitative comparison. The left microstructures of the dashed line are the input frames, 

the right ones in the top row are the ground truth of output microstructures, and the 

bottom row shows the PredRNN prediction. The microstructures produced by PredRNN 

predict clear images, meaning it can be confident of future variations. In addition, we can 

see that the predicted sequence is close to the ground truth sequence.  

 

Trained Model Performance on The Microstructure Evolution Prediction During 

Time 

Model performance frames prediction during time is one of the key parameters in 

spatiotemporal models' evaluation [190, 191]. Basically, the perdition of earlier frames 

because of similarity with input sequence is easier than long-term prediction. Figure 5.5 

provides the corresponding frame-wise comparisons between the final PredRNN model 

predictions and ground truth microstructures for test sequences. The average values of 

metrics show that the model can predict all the microstructures with reasonable accuracy. 

On the other hand, the model is more powerful in predicting the first frames than the last 

as MSE and LPIPS increase and PSNR and SSIM decrease from time step 1 to 10.  

For qualitative comparison of long-term and short-term prediction, three 

randomly selected samples from the test set produced by the final PredRNN model are 

given in Figure 5.6. The results show that PredRNN prediction for short-term cases is 

more accurate than long-term prediction. These results seem reasonable because there is a 

stronger relationship between the first microstructure from the output sequence and the 

input sequence. However, in general, the predictions for long-term cases also have good 
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agreement with the ground truth. It proves that the PredRNN can predict the 

microstructure evolution reasonably well. 

 

 
Figure 5.5 Frame-wise results on the test set produced by final PredRNN model 
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Figure 5.6 Trained PredRNN model performance on short and long-term 

prediction for three randomly selected samples from the test set 

 

Trained Model Inference Performance in Future Microstructures Prediction 

The time it takes to calculate the model's outputs as a function of the inputs is 

known as the inference speed. The model's response time is crucial in many applications, 

especially those requiring real-time data [192]. Since this study aims to develop a deep 

network to predict the microstructure evolution quickly and accurately, the model 

inference performance is a principal factor. Therefore, the trained model performance is 

compared with the simulation on a reference computer. Since MOOSE can only run with 

the CPU, we used the same resource for the trained model. The result for randomly 
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selected test data is given in Figure 5.7. While the simulation of rest microstructures takes 

more than 75 hr by PF modeling, the trained model can predict the future sequence 

quickly by just having earlier microstructures. The error metrics indicate that this 

prediction is robust and reliable compared to simulated microstructures.  

 
Figure 5.7 Comparison of trained PredRNN model speed with PF simulation on 

a randomly selected sample from the test set 

 

Conclusion 

We introduced a framework based on a deep neural network to predict the 

material microstructure evolution. As a case study, we generated the training and test 

dataset from phase-field modeling of the spinodal decomposition process of Fe-Cr-Co 

alloy. We considered the microstructure morphologies evolution based on Fe 

composition. The future microstructure sequence was predicted by knowing the earlier 

sequence by PredRNN. A detailed analysis of the model's performance indicated that the 

model parameters were optimized based on training loss reduction and error metrics 

improvement. The quantitative and qualitative comparisons show that the trained 

PredRNN model can predict the output sequence accurately. Although the model 
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accuracy for the short-term prediction is better than the long-term prediction, the model 

still shows reliable performance in the long-term forecasting. The model inference test 

demonstrates that it can predict the microstructure evolution quickly and accurately. In 

general, the proposed models could reasonably predict the materials' microstructure 

evolution. 

Data availability 

The trained model parameters and dataset to reproduce these findings are 

available at https://doi.org/10.24435/materialscloud:es-a4.   

 

 

https://doi.org/10.24435/materialscloud:es-a4
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CONCLUSION AND FUTURE WORKS 

This dissertation aims to present using the deep neural network on the materials’ 

microstructure that plays a critical role in the properties and performance of materials. 

This dissertation attempts to achieve these research goals based on the following steps. 

A deep neural network for chemical compositions and process history in steady-

state processes was developed at the first step. While the simulation methods based on 

physical concepts, such as the PF method, can predict the spatiotemporal evolution of the 

materials’ microstructures, they are not efficient techniques for predicting processing and 

chemistry if a specific morphology is desired. The model alloy used in this work is Fe-

Cr-Co permanent magnets. These alloys experience spinodal decomposition at 

temperatures around 850 – 970 K. We used the PF method to create the training and test 

dataset for the DL network. The PF results are extracted after the 100 hr spinodal 

decomposition process, and all the training data are independent of time. The mixed 

dataset, which includes both images, i.e., the morphology of Fe distribution, and 

continuous data, i.e., the Fe minimum and maximum concentration in the 

microstructures, are used as input data, and the spinodal temperature and initial chemical 

composition are utilized as the output data to train the proposed deep neural network. A 

CNN will quantify the produced microstructures by the PF method; then, another deep 

neural network will use the salient features to predict the temperature and chemical 

composition. The proposed convolutional layers were compared with pretrained 

EfficientNet convolutional layers as transfer learning in microstructure feature extraction. 
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We quantified the microstructures by using a suggested CNN and various convolutional 

layers of the pretrained EfficientNet-B6 and EfficientNet-B7 networks. Then, further 

fully-connected layers integrated the generated features with the output of a fully-

connected layer for processing numerical data to forecast processing history. The most 

accurate network was discovered after evaluating various microstructures. A thorough 

examination of the model's performance revealed that the model's parameters were 

chosen to minimize loss during training and validation. The findings demonstrate that 

while the chemistry prediction may be made with just the basic elements that were 

derived from the microstructure morphology by the first convolutional layers, the 

temperature prediction requires more sophisticated data that deeper layers can extract. 

The model's comparison to an experimental TEM micrograph shows that it is highly 

accurate in predicting the behavior of real alloy systems. We showed that the meaningful 

information pertinent to the compositions and temperature could be extracted from the 

microstructure morphology using the pretrained convolutional layers of EfficientNet 

networks. Generally speaking, the proposed models were able to fairly accurately predict 

the processing history based on the microstructure of the materials. 

As mentioned, prediction of the chemical composition and processing history 

from microstructure morphology can help optimize processing conditions and discover 

possible processing paths for a targeted microstructure. But we did not consider the 

process treatment time effect on the microstructures in the first step. In the second step, 

we proposed a deep learning framework that can predict the treatment time, temperature, 

and chemistry of a microstructure just by knowing the morphological distribution of one 

element. We again used the Fe-Cr-Co-based permanent magnet alloy as model material. 
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We generated a dataset by simulating the spinodal decomposition process in Fe-Cr-Co 

alloys using the PF method. In this case study, the time, temperature, and initial chemical 

compositions are used as output, i.e., processing history, while the mixed dataset of 

microstructure morphology, as image data, and minimum/maximum of iron concentration 

in the morphology as numeric data are input.  

To characterize the microstructure morphologies, we used several CNN layers as 

well as various convolutional layers of EfficientNet-B7 pretrained networks. The model 

with the EfficientNet-B7 pretrained network works well on the training data, as shown by 

the accuracy metrics, parity plots, and error distribution. We discovered that the most 

difficult characteristic to predict is temperature, which calls for deeper layers and more 

intricately derived features from microstructures. The error analysis revealed that some 

incorrect predictions—particularly those with significant errors in time and temperature 

predictions—were simply other right responses. We identified that the inaccuracies are 

related to either the stability of the microstructure morphology or the potential for a 

single microstructure to have two processing routes. Finally, we tested the model using 

an experimental TEM microstructure, and the results showed that the model was 

reasonably accurate in predicting the chemistry and processing history of the TEM 

micrograph. If we have the appropriate size and high-resolution microstructures and 

include some experimental data in the training dataset, the process parameters and 

chemical prediction for experimental micrographs can be much enhanced. 

Data set generation in the first two parts of the thesis was very expensive. With 

the aim to expand the current model to more complex alloys, the data set generation will 

become a bottleneck. Therefore, in the third step, we presented a deep neural network-
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based framework to predict the materials microstructure evolution, which is a 

spatiotemporal prediction problem. In this case study, we used PF modeling to create the 

training and test datasets for the spinodal decomposition of a Fe-Cr-Co alloy. We took 

into account the evolution of microstructure morphologies dependent on Fe composition. 

Knowing the earlier sequence through PredRNN allowed us to anticipate the future 

microstructure sequence. According to a thorough review of the model's performance, the 

model parameters were improved based on training loss reduction and improved error 

metrics. The trained PredRNN model is capable of properly predicting the output 

sequence, as shown by the quantitative and qualitative comparisons. Although the 

model's accuracy for short-term forecasting is higher than that for long-term forecasting, 

it nevertheless exhibits dependable performance in the latter. 

In summary, the developed models in this dissertation will be able to find the 

process conditions and chemical compositions from an ideal microstructure and predict 

microstructures without expensive and time-consuming simulations and experiments. 

Doing so provides the materials science community with knowledge and algorithms that 

can be used for new materials development with the desired properties.  

 

Future Works 

Material informatics is one of the rapidly developing fields. With the development 

of more powerful models, new rooms are opened for AI use in materials science. This 

work is the first step in our group toward using deep learning and data science in 

materials design. In the following, we provide some information about how it is possible 

to expand this study in the future. 



96 

 

• Expand the model to consider 3D microstructures and predict the process 

history and chemistry behind them. Data generation will be the first 

challenge in the 3D model. At the same time, training a deep network that 

can digest the 3D microstructures will be another interesting problem. 

• Unknown parameters in microstructure modeling are another challenge in 

materials design. Several complex parameters, particularly for 

multicomponent alloys, such as interfacial energies, diffusion coefficients, 

and coefficients of the Onsager diffusion matrix, are usually very difficult 

to measure accurately, either experimentally or computationally, and 

therefore not available for many materials. We can hypothesize that these 

parameters could be predicted from a few sets of experimental 

microstructures with known processing history by a machine learning 

model that has been trained by physics-based simulations. Our team has 

recently succeeded in developing a model for the prediction of Onsager 

and gradient energy coefficients from microstructure images with machine 

learning. 

• Knowledge of the microstructure of the materials during the 

manufacturing processes, such as additive manufacturing, can greatly 

improve the final product quality. Live microstructure prediction based on 

common simulation techniques is not practical because of computational 

costs. The PredRNN model can be improved to predict the materials’ 

microstructure based on chemical compositions, processing conditions, 

and earlier microstructures quickly and accurately. 
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