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ABSTRACT 

The importance of fostering in students the requisite language to understand what 

is being communicated and how to communicate their understanding requires educators 

to conceptualize themselves as teachers of language and content. It is possible to engage 

in activities of the mathematics classroom and through that participation engage in 

language practices and mathematical practices simultaneously. The purpose of this study 

was to explore the use of semiotic resources, and modality, with a student-generated tool 

on students’ communication of multiplicative reasoning. 

The study design was a qualitative case study that included a single third-grade 

class with an in-depth look at six students of varying knowledge levels. Two students, 

one male and one female, were randomly selected from Beyond, On, and Approaching 

levels. Discourse analysis served dual purposes for the data collected: first, it explored a 

socially constructed multi-modal tool utilized as an activity to enhance language use 

individually and interactively during mathematical discourse; second, it supported 

investigating the language used by participants during the studied activities and how they 

relate to Communication About and Communication In multiplication. 

The findings support the utilization of semiotic resources, inclusive of visual 

representations, signs, symbolic notations, and receptive and expressive language 

elements as fundamental to the learning and communication we are asking of our 

students. Through the interplay of semiotic resources, a multimodal student-generated 
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tool can support students in summarizing their learning, individually and interactively, 

enhancing their means of communicating discursively in mathematics.  
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CHAPTER ONE: INTRODUCTION 

Background of the Study and Current Problem 

Gone are the days of the silent mathematics classroom where computation reigned 

as the means to convey understanding. Communicating is a part of learning, and we have 

typically not considered how students do that in a mathematics classroom. Once 

classified as the subject of universal language, conveying understanding has increased the 

language demands and become an integral part of the mathematics classroom. Beyond 

the universal language of number, today’s mathematics classroom necessitates the 

construction of a solid foundation of knowledge to portray both conceptual and 

procedural understanding through language and communicative discourse. This calls for 

creating a language-rich environment that allows students to engage in content area 

reading about mathematics with the curriculum supports needed to communicate their 

experiences. Without integrating language into the teaching and practice in daily 

mathematics lessons we leave students without the requisite skills to thrive in the 

mathematics classroom.  

Language and thought are effectively bound as the former drives the development 

of cognitive skills one needs to communicate and participate in mathematics activities 

and on high-stakes assessments. As evidenced by the National Assessment of Educational 

Progress [NAEP], only 41% of the nation’s fourth graders performed at or above 

proficiency levels in mathematics increasing 1% from the percentage of proficiency in 

2017 (U.S. Department of Education, 2019). Idaho students’ fourth-grade proficiency 
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level is at 43%.  Eighth graders in the United States have a proficiency level of 34%, 

indicating that our nation’s scores are not improving as students get older (U.S 

Department of Education, 2019). According to the National Center for Education 

Statistics [NCES], disparities are amplified in grade levels amongst students of varying 

ethnicities and multi-lingual and socio-economic statuses (U.S. Department of Education, 

2019). Language impacts both mono- and multi-lingual learners, and their mathematical 

scores and language proficiency can inhibit not only student understanding of the task but 

how students demonstrate knowledge (Erath et al., 2018; Prediger et al., 2015). These 

impacts could be apparent in their communicative participation and through content 

reading obstacles in classroom text and on assessments (Bailey et al., 2015; Prediger et 

al., 2015; Nagy et al., 2012). 

Communication plays an essential role in the habits we attempt to cultivate in the 

mathematics classroom. An essential challenge of the discipline is to assist students in 

shifting from “every day, informal ways of constructing knowledge to the technical and 

academic ways that are necessary for disciplinary learning in all subjects” (Schleppegrell, 

2007, p. 140). Communicating in the everyday, or social language, and more technical 

schooling language, has been described by Cummins (1979) as Basic Interpersonal 

Communication Skills (BICS) and Cognitive Academic Language Proficiency (CALP). 

Students come to school established in the language of their homes and communities and 

not the specialized academic knowledge and vocabulary associated with the content 

domains, like mathematics. Social language outpaces the development of academic 

language; however, the use of both conceptualizes classroom discourse across curriculum 

content. Nagy et al. (2012) synthesize academic language and vocabulary research to 
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define the academic language register as the “specialized language, both oral and written 

of academic settings that facilitates communication and thinking about disciplinary 

content” (p. 92). This has become of extreme importance to the mathematics classroom 

as the increased demands of classroom discourse and written response become part of the 

standards (see Common Core State Standards [CCSS], National Governor’s Association 

[NGA], 2010), and practices in mathematics (National Council of Teachers of 

Mathematics, [NCTM], 2000). Snow and Uccelli (2010), contend that “academic 

language is intrinsically more difficult than other language registers and that thinking 

about the educational experiences that promote its development is a crucial task for 

educators of all students” (p. 114). The importance of fostering in students the requisite 

language to understand what is being communicated and how to communicate their 

understanding requires educators to conceptualize themselves as teachers of language and 

content. Development of this nature is not intended to be unilateral from the educator to 

the student but co-constructed in the classroom community. 

Research Questions 

This study investigated third grade students’ communication of multiplicative 

reasoning through social semiotic resources. A considerable amount of research has been 

compiled on the connection between language and mathematics (see Erath et al., 2021, p. 

966). Earlier research focused on correlating reading ability to mathematical abilities, 

analyzing text and problem-solving comprehension which separates language and 

mathematics (Aiken, 1972; Monroe & Engelhart, 1931). In the last twenty years there has 

been a shift towards the interconnectedness of mathematics and language and how we 

engage them simultaneously when learning content (Halliday, 1978, 1993; Moschkovich, 
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2015a; Moschkovich & Zahner, 2018; O’Halloran, 1998, 2010, 2015; Schleppegrell, 

2007). Recent recommendations have iterated foci for future research: language 

development in mathematics for mono- and multi-lingual learners, research regarding 

more specific views of language and how they relate to content strands within 

mathematics, and the content of the communicative discourse (Erath et al., 2021; 

Moschkovich, 2018; Planas & Schütte, 2018). For the purpose of this study, I will utilize 

a social semiotic framework for generating communication about and in mathematics. 

Through this lens, mathematics content and language development are actualized within a 

“broader sense of literacy as participation in practices and discourses. These discursive 

practices involve multiple aspects of mathematical proficiency, multiple symbol systems 

(written text, numbers, graphs, tables, etc.), and multiple modes of communication (oral, 

written, receptive, productive)” (Moschkovich, 2015a, p. 45). The development of 

mathematical literacy can be viewed through a multitude of resources and socially 

situated meanings within a community as students interact and communicate in and about 

their mathematical knowledge.   

The studies purpose explored the use of semiotic resources, and modality, with a 

student-generated tool on students’ communication of multiplicative reasoning. The 

research questions are as follows: 

How do semiotic resources and student-generated tools enhance students’ abilities to 

communicate their multiplicative reasoning? 

1. How does the utilization of the student-generated tool assist students in 

communicating mathematically? 
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2. What semiotic resources are evident in student activity and how are students utilizing 

them? 

3. How does the student-generated tool influence the expression of multiplicative 

understanding? 

Significance of the Study 

The study’s central question, How do semiotic resources and student-generated 

tools enhance students’ abilities to communicate their multiplicative reasoning? benefits 

prior and future research. First, the findings of this study can contribute to the ongoing 

discussion of language and mathematics as interwoven content strands. Second, by 

exploring the use of a student-generated multi-modal tool implications for integrating and 

acknowledging semiotic resources as a means of representing thought and generating 

communication could be instituted into classroom practice by educators and students. 

And finally, initiating discourse practices is an important aspect of classroom teaching 

and learning; however, analyzing the kinds and depth of communication will provide 

educators a means of evaluating the meaningfulness of the discourse opportunities which 

will contribute to research recommendations in language and mathematics. 

Organization of the Study 

The study is organized into five chapters. Chapter one is comprised of the 

introduction to the research questions and an overview of the study. Chapter two 

investigates the conceptual framework of language and mathematics and the connection 

of language to expressing knowledge within the content of multiplication.  The 

theoretical framework, also addressed in chapter two, explores the connection of semiotic 

resources, or modality, and the social construction and communication of resources 
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students utilize to participate discursively. In chapter three, a description of the 

qualitative case study and analysis methods for examining the data will be explained. 

Chapter four presents the findings from the analysis within a communication framework 

for an in-depth look at the content of the Discourse and semiotic resources evidenced in 

communication. The fifth and final chapter, discusses the findings from chapter four in 

connection with the conceptual and theoretical frameworks and research questions of this 

study. Recommendations for future research will be addressed in this chapter. 
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CHAPTER TWO: LITERATURE REVIEW 

Communication 

Communication can be distinguished by its receptive (listening and reading) and 

expressive (speaking and writing) language qualities. The language components: reading, 

writing, listening, and speaking, offer the opportunity to share, display, and consider the 

reasonings and justifications for the mathematics students are conceptualizing. However, 

not all students successfully recognize how to interpret mathematics concepts and 

communicate mathematical thought processes in the classroom (Barwell, 2005; 

Moschkovich, 2002; Schlepegrell, 2007). Expressing mathematical ideas through 

language has become an integral component of the transition towards a more 

communicatively oriented mathematics community. 

Mathematical Register 

Considerable research has been devoted to investigating the relationship between 

language and mathematics. In Aiken’s (1972) review of literature, he summarized over 

forty years of research on language factors and their effects on mathematics, including a 

previous review of literature by Monroe and Engelhart (1931) identifying reading ability 

and its relationship to mathematics ability.  Language factors addressed in 

recommendations for future research emphasized vocabulary development and textbook 

analysis, verbal and non-verbal problem-solving schema development, and discovery and 

exposition learning. Aiken’s (1972) final recommendation for future research 
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acknowledged the introduction of a linguistic lens to analyze mathematics learning in a 

deeper syntactic and grammatical manner.  

The United Nations Educational and Scientific Organization (UNESCO, 1974) 

symposium amassed linguists and mathematicians with an objective “to contribute to the 

systematization within the field of those difficulties in mathematics education which 

pertain to linguistics, and further to analyze these difficulties and their mutual 

relationships” (p. 8).  Comparable to other school subjects such as social studies, science 

and language arts, mathematics has its own subject-specific language often referred to as 

the “mathematics register” (Halliday, 1974). Halliday (1974) defines a mathematics 

register 

as a set of meanings that belong to the language of mathematics (the mathematical 

use of natural language) and that a language must express if it is used for 

mathematical purposes. We should not think of a mathematical register as 

constituting solely terminology, or of the development of a register as simply a 

process of adding new words (p. 65). 

The inclusion of specialized and general academic words from Halliday’s (1974) initial 

formulation implicitly acknowledged that the language of mathematics includes the 

technical vocabulary to construct meaning but more so the “meanings, styles, and modes 

of argument” necessary for mathematics (Halliday, 1974, p. 65) which is emphasized by 

Pimm (1987). The mathematics register advances the conception of mathematics as more 

than a number and computation discipline, but a content rich in its own vocabulary, 

grammatical structures and means of reasoning that necessitate elaboration. Halliday 

(1993) also addressed the grammatical structures inherent in the composite of language 
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and mathematics. One type of grammatical structure is the mathematics symbols utilized 

to convey meaning, through a grammatical symbolic notation. The grammar of 

mathematical symbolism, (O’Halloran, 1998, 2010, 2015), links the symbolic and visual 

representations allowing for the language of what is happening in symbolic notation to be 

written or verbalized formally. For example, symbols for operations that are delineated 

through specialized vocabulary and parenthesis indicate the sequence, or processes for 

performing the mathematical task.  

When constructing the mathematics register, an overemphasis on vocabulary and 

precise grammatical phrases can constrain the resources educators teach with and restrict 

student engagement to formalized modes of expression. An emphasis on vocabulary has 

inevitably led to lists of mathematical words, deemed essential, for each domain and 

subconstruct of mathematics.  The complexity of these words can be situated as 

unfamiliar words, unfamiliar phrases, and words with multiple meanings (Maher et al., 

2018; Moschkovich, 2015a).  The following components exemplify the mathematics 

register: a highly technical vocabulary, semi-technical terms, dense noun phrases, 

complex subordinated clauses, conjunctions with precise meanings, and implicit logical 

relationships (Abedi & Lord, 2001; Moschkovich, 2015a; Schleppegrell, 2001, 2007; 

Schütte, 2019; Wilkinson, 2019). In mathematical situations, the register includes 

“specialized vocabulary that is exclusively mathematical (binomial); everyday 

vocabulary that is re-purposed as specialized (table, product); and dense noun phrases 

that express specialized meaning (area under a curve)” (Wilkinson, 2018, p. 169). The 

individual terms are highly specialized to the discipline, which carries no meaning 

outside of mathematics; they are compounded by repurposed words with the technical 
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meaning inside mathematics and in other disciplines; and phrases utilized as description 

of processes in the discipline (Sigley & Wilkinson, 2015; Wilkinson, 2018). 

Vocabulary Acquisition 

Numerous studies have addressed vocabulary acquisition in mathematics as 

something that must be taught explicitly; positing that mathematics learning, nor 

understanding, cannot take place without the acquisition of specialized vocabulary first 

(Kovarik, 2010; Monroe & Pendergrass, 1997; Monroe & Panchyshyn, 1995; Pierce & 

Fontaine, 2009; Riccomini et al., 2015). To teach vocabulary explicitly, Riccomini et al. 

(2015), recommend using purposeful word instruction and practice, with the opportunity 

to use words in context. Suggestions from the literature also include formulating cross-

curriculum connections to literacy strategies for use in mathematics (Riccomini et al., 

2015); and utilizing general and specialized graphic organizers in mathematics (Bruun et 

al., 2015; Dexter & Hughes, 2011; Monroe & Panchyshyn, 1995; Monroe & Pendergrass, 

1997).  

Scaffolding can be described as “different types of adult guidance, with different 

purposes, in multiple settings, and across various time scales” (Moschkovich, 2015b, p. 

1067). Scaffolding transpires with the utilization of tools (Prediger & Hein, 2017), 

through revoicing (Enyedy et al., 2008; Moschkovich, 2002, 2015b), or classroom 

activity (Aineamani, 2019).  “Revoicing,” noted by Moschkovich (2002, 2015), allows 

for validation of the students’ ideas while reframing with more formalized academic 

vocabulary. This allows for taking students’ ideas seriously while pushing students 

conceptually (Brendefur et al., 2015; Sherin, 2002) to weave conversational and formal 

academic language registers. The development of an activity which engages students in 
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reading, writing, listening, and speaking is an important way to formalize language and 

can be achieved by interacting with text (Alshwaikh & Morgan, 2018), tools that deepen 

activity (Morgan et al., 2014; Sfard, 2008), and collaboration (Francisco, 2013). Thus, 

engaging students in the interaction and communication necessary to be successful 

mathematicians.  Specialized vocabulary plays a significant role as a feature of the 

mathematics register. However, the hierarchal placement of specialized vocabulary 

acquisition preceding meaning-making implies understanding cannot be conveyed 

without it.  The divergence initiates a dilemma for educators regarding how and when 

they should initiate new vocabulary, and whether it should be completed explicitly or 

implicitly (Turner et al., 2019). Mathematical tasks can be dense with the technical 

language and semantic features mentioned above. This imposes challenges to students as 

they create and convey meaning through more than words, phrases and sentences, to 

enhance their language output to the meaning, modes and arguments necessary to 

communicate mathematically. 

Mathematical Literacy 

Consequently, to meet the standards in mathematics, communicating 

mathematical understanding has become an integral component of the teaching and 

learning in the classroom. Students routinely engage in content literacy development in 

mathematics as they participate in classroom conversations about their ideas or the ideas 

of others and generate explanations or justifications in written form for their work. 

Literacy in mathematics is more than reading and interpreting word problems to 

demonstrate knowledge but the broadening of minimal reading and writing to engage in 

deeper expressions of literacy in the mathematics classroom. The Academic Literacy in 
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Mathematics framework (ALM) (Moschkovich, 2015a, Moschkovich & Zahner, 2018) 

proposes three integrated components for constructing mathematical literacy: 

mathematical proficiency, mathematical practices, and mathematical discourse. This 

integrates the cognitive (reasoning, metacognitive) and the socio-cultural by emphasizing 

the development of language and mathematics simultaneously. Through this integrated 

approach to instruction, Moschkovich (2015a) states the development of academic 

literacy, 

Allows students to use multiple modes of communication, symbol systems, 

registers, and languages as resources for mathematical reasoning, and supports 

students in negotiating situated meanings for mathematical language that is 

grounded in mathematical activity (p 45). 

Language is important to meaning making but is so enmeshed in the learning and 

understanding of mathematics as to be not hierarchal but inclusive in every aspect. In an 

ALM framework, modalities, and semiotic resources, assist in navigating the 

mathematics practices for explaining, reasoning, justifying, and generating claims. 

Situated activities within the mathematics community support sense-making, whether 

informally or formally and with the requisite tools through modalities for participation 

(Moschkovich, 2015a; Moschkovich & Zahner, 2018). Student communication can then 

encapsulate the conceptual and procedural understandings of their mathematics 

classroom and produce that knowledge in a multitude of ways. 

Semiotics and Modality 

Further research in the language and mathematics domain considers the 

mathematics discipline’s linguistic implications, through a functional linguistic and 
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semiotic lens (Halliday, 1978, 1993; O’Halloran, 2015; Schleppegrell, 2007). The 

extension of functional linguistics has shifted the focus to a more semiotic system of 

language, as mentioned above, inclusive of models and visuals to analyze and extend our 

understanding of the mathematics register (O’Halloran, 1998, 2010, 2015; Schleppegrell, 

2007). Halliday (1993) defines the semiotic process as “the distinctive characteristics of 

human learning” and is the process of making meaning (p. 93). Language becomes the 

means by which we interpret meaning individually and within social situations. Halliday 

(1993) suggests the essentiality of experience through language, not as a separate entity 

to the mathematical situations we research. The impetus for this shift is to demonstrate 

the relationship amongst mathematics, language, and visual representations to “extend the 

typological resources of natural language to enable it to connect to the more topological 

meanings made with visual representations” (Lemke, 2003, p. 1). In mathematics, for 

example, texts often include unfamiliar vocabulary and complex sentence structures and 

are also often multimodal, incorporating diagrams, tables, graphs, images, and 

mathematical expressions. In defining the multimodal framework, O’Halloran (2015) 

states  

The multimodal (or multi-semiotic) makeup of mathematics means three different 

meaning potentials are accessed to construct mathematical reality: namely, 

linguistic, symbolic, and visual forms of representation, each of which have 

developed specific grammatical features to fulfill the functions they are required 

to serve. That is, language is used to reason about the mathematical results in a 

discourse of argumentation in which mathematical processes are related to each 

other and interpreted (p. 71). 
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Multimodality and its influences on communication were theorized by Kress, et al. 

(2001) in his research regarding modality in the science classroom.  In studying the 

evolving theories of semiotics and modality Kress et al. (2001) noted, “our sense of the 

interrelations of the modes became clearer, as did our general understanding of human 

semiosis - how humans make meanings, represent and respond to these meanings, and 

rework the meanings of others” (p. 9). This perspective offers a transitional focus that 

facilitates connections between the visual and linguistic aspects of mathematics and 

allows students to interpret the mathematical meaning and express aspects of 

mathematical thought through varying forms of language.  

Studies utilizing a semiotic framework have focused on analyzing the 

mathematical and everyday registers to highlight how language and mathematics 

integrate through modality. This progresses beyond distinct integrations of reading, 

writing, listening, and speaking as a means for mathematical output but as a construct for 

linguistic communication. This enlists the expressive and receptive qualities of language 

along with visual and non-linguistic forms of communication, such as gestures (Chen & 

Herbst, 2013; Fernandes et al., 2017; Shein, 2012), tools (Brinkmann, 2003; Haneda, 

2014; Kolloffel et al., 2011; Prediger and Hein, 2017), and manipulatives, which are 

utilized to express informal and academic language for sense-making. Shein (2012) 

examined the role of gestures and discourse on fifth-grade English Language Learner 

(ELL) students’ participation in error analysis for finding the area of geometric shapes. 

As students interacted, the classroom educator employed gestures to engage students in 

the mathematics discussion and facilitated students’ reasoning using representations and 

gestures to explain their models. Students participated in modalities to make meaning, 
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and convey meaning, through spoken and gestural discourse. Chen and Herbst (2013) 

recognized the importance of modalities as students practice geometric conjectures with 

diagrams, gestures, and verbal discourse. The study reports that diagrams were an 

integral method for assisting students in making conjectures and are an important tool, 

along with gestures, in assisting students to reason and interact mathematically within the 

classroom. Adapting Toulmin's argumentation tool, Prediger and Hein (2017), analyzed 

how scaffolding can support students in developing multi-step argumentation in grades 

nine and ten on theorems of angles. The tool used for scaffolding, materialized 

argumentation structure, combines a graphic aid to sequence ideas for argumentation. 

Graphic aids and written explanation were utilized as part of the tool. However, 

expressing their mathematical argument aloud remained a challenge in part due to word 

and noun phrases necessary to connect and portray argument and evidence. 

Connecting the visual and linguistic facets of mathematics allows students to 

express and interpret mathematical meaning, not only through expressive and receptive 

language but also through varying forms of modality, generating a resource-rich toolkit in 

which students can engage to communicate mathematically. Brenner (1994, 1998) 

classified mathematics classroom communication into three categories: Communication 

about mathematics – reflecting, describing, and reasoning about their processes and the 

processes of others; Communication in mathematics – register and representations; 

Communication with mathematics – use of mathematics as a tool to explore real world 

contexts. Language and modalities are embedded in every aspect of the framework and 

support a focus on communicating themes in mathematics. Brenner’s framework 

encompasses the communicative aspects of language expression and mathematical 
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knowledge as interconnected constructs. This engages the learner in selecting the 

modality that best conveys their understanding for themselves and to their classmates. 

The nature of establishing a mathematics community allows students and educators to be 

equal partners in the generating and sharing of understanding rather than work in 

isolation. Cobb & Bowers (1999) attend to the engagement of all students in the activity 

by looking at ways individual students are reasoning and participating. This will be 

important to research as we use a multimodal tool to engage students across diverse 

classroom structures. 

Communication Summary 

Language development in mathematics has advanced from a localized 

mathematics register of specified vocabulary knowledge and contextual problem 

comprehension (Aiken, 1972; Halliday, 1974) to a more inclusive emphasis of language 

and mathematics development. The earlier scope of language development in 

mathematics emphasized the mode of reading and speaking in the formal mathematics 

register. The semiotic frameworks (O’Halloran, 2010, 2015; Schleppegrell, 2007), have 

focused on utilizing the mathematical and everyday registers to emphasize how language 

and mathematics integrate and express learning through modalities. With focused 

strategies and modalities, educators can enhance student communication. It becomes 

increasingly important that academic language cease being perceived as developing 

content-specific vocabulary but the expanding of students’ registers to communicate in 

school settings and beyond them.  According to Moschkovich (2013), instruction for 

multilingual students should go beyond developing a set vocabulary for a mathematics 

skill and instead should “provide opportunities for students to actively use mathematical 
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language to communicate about and negotiate meaning for mathematical situations” (p. 

19). Although stated for multilingual learners, it is an important contention for all 

students in today’s mathematics classroom. These opportunities will assist students in 

bridging the everyday and technical vocabulary if used interchangeably during 

mathematics discourse. This progresses beyond the distinct utilization of reading, writing, 

listening, and speaking as a means for mathematical output, but as a construct for 

linguistic communication, which enlists those expressive and receptive modes along with 

representations, visuals, and non-linguistic forms of communication, such as gestures, for 

sense-making. Educators engaged in enriching language support students in navigating 

mathematics at a deeper level through the strategies of revoicing and interactions with 

tools, texts, and classmates to strengthen communication. Based on these studies, it is 

important to examine a more comprehensive tool for communicating mathematics 

knowledge through modality and its influence on multiplicative reasoning. 

Mathematics Knowledge 

Communication and reasoning have become an integral part of the mathematics 

classroom. Mathematics is no longer a matter of just knowing, or doing computation, 

with students locally and nationally, increasingly asked to demonstrate an in-depth 

knowledge of content. In response, policy and content standards were enacted with 

suggestions for increasing understanding and participation in their mathematics learning 

to support United States students competing in a global economy. In Principles and 

Standards for School Mathematics, (2000) NCTM suggest that math programs “allow 

students to (1) organize and consolidate their mathematical thinking through 

communication; (2) communicate their mathematical thinking coherently and clearly to 
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peers, teachers, and others; (3) analyze and evaluate the mathematical thinking and 

strategies of others; and (4) use the language of mathematics to express mathematical 

ideas precisely” (Kostos & Shin, 2010, p.223). Language is used to conceptualize 

mathematical concepts learned in the classroom. With the enactment of the Standards for 

Mathematical Content and the Standards for Mathematical Practice (CCSS, NGA, 2010), 

students are expected to progressively communicate their mathematical content 

knowledge. Actively engaging students in conceptualizing mathematical understanding is 

intertwined with demonstrating procedural competency and communicating through 

language modalities in today’s state and national assessments. 

Conceptual vs. Procedural Knowledge 

Scholars have debated the emphasis of conceptual versus procedural learning and 

which should take precedence during instruction to maximize outcomes (Hiebert & 

Lefevre, 1986). Within these dueling learning styles, the prevalent pedagogy extends 

major implications for classroom instruction, curricular materials, and assessments 

throughout our nation’s classrooms. When discussing procedural and conceptual 

knowledge, there is an effort to emphasize how we acquire knowledge, delve into the 

relationship between conceptual and procedural knowledge, and how we present that 

knowledge. Hiebert and Lefevre (1986) define conceptual knowledge as “knowledge that 

is rich in relationships.  It can be thought of as a connected web of knowledge, a network 

in which the linking relationships are as prominent as the discrete pieces of information” 

(pp. 3-4) in the seminal book edited by Hiebert (1986).  Procedural knowledge as defined 

is “made up of two distinct parts.  One part is composed of the formal language, or 

symbol representation system, of mathematics. The other part consists of the algorithms, 
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or rules, for completing mathematical tasks” (p. 6). As thoroughly as these definitions are 

cited, the authors acknowledge flaws clearly defining this construct as “not all knowledge 

fits nicely into one class or the other.  Some knowledge lies at the intersection” (Hiebert 

& Lefevre, 1986, p. 9). Although there is an attempt to place each in a position of 

prominence it is important to note how symbiotic the two are to developing 

understanding. Hiebert and Lefevre, (1986) acknowledge the distinction between 

procedural and conceptual knowledge in definition while highlighting how mutually 

beneficial establishing a correlation between the two is. In a review of conceptual 

understanding literature, Crooks and Alibali (2014) found a thorough understanding of 

conceptual knowledge difficult to encapsulate as there is no accord on how to define or 

measure it. With research designating meaning for conceptual knowledge in myriad 

ways, the problem becomes in identifying conceptual understanding, the relationship 

between conceptual and procedural understanding, and how to use research to guide 

practice (Baroody et al., 2007; Crooks & Alibali, 2014). Crooks and Alibali (2014) 

suggest enacting a common framework to actualize conceptual understanding to allow for 

many of the definitions noted in the review of literature to be subsumed into two 

categories: knowledge of general principles and knowledge of the principles underlying 

procedures. Crooks and Alibali (2014) state, that 

general principles knowledge involves understanding of mathematical ideas 

without relation to specific problems or procedures. Knowledge of principles 

underlying procedures, on the other hand, involves connecting concepts to 

specific procedures; for example, knowing why certain procedures work for 

certain problems or knowing the purpose of each step in a procedure (p. 71). 
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The authors believe a framework for discerning conceptual knowledge will guide efforts 

to research this construct across specific mathematical domains and direct appropriate 

research measurements. 

Connecting Conceptual and Procedural Knowledge 

Current research in mathematical understanding can be viewed as broadening the 

characterization of procedural knowledge and noting its interrelated and iterative 

relationship with conceptual knowledge (Barmby et al., 2009; Baroody et al., 2007; 

Crooks & Alibali, 2014; Kilpatrick et al., 2002; Rittle Johnson et al., 2001; Rittle-

Johnson & Schneider, 2014; Star, 2012). The narrow scope of defined procedural 

knowledge has led to measures of fact recall and memorization. This has resulted in the 

view of procedural knowledge as secondary to, or less important than procedural 

knowledge (Star, 2012). Baroody et al. (2007) and Star (2012) discuss reconceptualizing 

procedural knowledge to discuss the type and quality of connection. Part of establishing 

procedural and conceptual knowledge as parallel constructs is to understand that one does 

not mean richer connections than the other. One can have weak conceptual knowledge 

and high procedural knowledge, just as there can be high conceptual knowledge with 

weak procedural knowledge (Baroody et al., 2007). Learning is designated as either 

strong or weak schema development noted as deep conceptual knowledge or meaningful 

procedural knowledge. Baroody et al. (2007) suggest “increasing integration with 

corresponding conceptual knowledge increases the accuracy, versatility, duration and 

generality of strategy choice and adaptability” (p. 126). Rittle-Johnson et al. (2001) 

conducted experiments with fifth and sixth grade students learning decimal fractions. 

Their research indicated that pre-test conceptual knowledge predicted gains in procedural 
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knowledge and procedural knowledge gains improved conceptual knowledge. This 

signifies a rich connection between the two without compromising one for the other but 

constructs that influence each other. 

Mathematical Proficiency 

Kilpatrick et al. (2002), also view the symbiotic relationship between conceptual 

understanding and procedural fluency as a necessity for successfully increasing the 

learning of mathematics. Neither procedural nor conceptual knowledge is designated as 

the epitome but part of the existing paradigm of mathematical proficiency.  Through 

analysis of research, experience in teaching and learning mathematics, Kilpatrick et al. 

(2002), define mathematical proficiency as the “mathematical knowledge, understanding 

and skill people need to have successful learning in mathematics” and conceptual 

understanding as “comprehension of mathematical concepts, operations and relations” (p. 

5).  Kilpatrick et al. (2002), recognize conceptual understanding as one of five key 

strands of the broader construct of mathematical proficiency which are interwoven and 

interdependent: conceptual understanding, procedural fluency, strategic competence, 

adaptive reasoning, and productive disposition (see figure 1). Students can make and see 

connections, flexibly represent their mathematical thought, justify the reasonableness of 

answers, and commit less content to memory as they are able to connect content easily 

(Kilpatrick et al., 2002). 
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Figure 1 Strands of Proficiency 

Representing and connecting knowledge is a major component of deep understanding. 

Variations of representations of their mathematical thought assist students in discussions 

regarding similarities and differences amongst solution methods and making connections 

within their own learning and the learning of others. The emphasis on procedural fluency 

as the existence in “flexible as well as efficient and appropriate application of 

procedures” embody the enactment of high schema connections (Baroody et al., 2007, 

p.120). In illustrating the interconnectedness of procedural fluency and conceptual 

understanding, Kilpatrick et al. (2002) state “understanding makes learning skills easier, 

less susceptible to common errors, and less prone to forgetting. By the same token, a 

certain level of skill is required to learn many mathematical concepts with understanding 

and using procedures can help strengthen and develop that understanding” (p. 122). 

Proficiency and Practice Through Communication 

If the CCSS Standards for Mathematical Content (NGA, 2010) are the “what” 

students need to know, then the Standards for Mathematical Practice are the “how”. The 

eight Practice Standards support the processes (NCTM): problem solving, reasoning and 

Conceptual understanding – comprehension 
of mathematical concepts, operations, and 
relations 

 

Procedural fluency – skill in carrying out 
procedures, flexibly, accurately, efficiently, 
and appropriately 
Strategic competence – ability to formulate, 
represent, and solve mathematical problems 
Adaptive reasoning – capacity for logical 
thought, reflection, explanation, and 
justification 
Productive disposition – habitual inclination 
to see mathematics as sensible, useful, and 
worthwhile, coupled with a belief in diligence 
and one’s own efficacy. 
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proof, communication, representation, and connections with proficiencies (Kilpatrick et 

al., 2002): conceptual understanding, procedural fluency, strategic competence, adaptive 

reasoning, and productive disposition, which are necessary for the development of 

mathematics learning. Students engage in the components of the mathematical practices 

when expressing their understandings through discourse opportunities in the classroom 

contributing to mathematics’ literacy (Moschkovich, 2015a; Moschkovich & Zahner, 

2018). Practices involve thinking and reasoning, while students communicate their 

understanding in the social environs of their classroom community through modalities for 

sense making and meaning. Through the development of academic literacy, students are 

provided tasks which allow us to observe their conceptual understanding through 

explanations and reasonings while engaging in multimodal means of communication to 

share that understanding (Moschkovich, 2015a). It becomes less about which practices 

students engage in and more about how they are participating in the practices. 

Engaging students in explanations, discussions, and proof bring to light the 

justification and reasoning that assist in practicing the mathematics registers and give 

students opportunities to engage in the practice standards for mathematics through 

varying modalities.  They often provide the evidence one uses to show their knowledge 

and are part of the mathematical practices as stated in the CCSS (NGA, 2010) and 

NCTM's Principles to Action (2014). The eight practices are as follows: 1. Make sense of 

problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. 

Construct viable arguments and critique the reasoning of others. 4. Model with 

mathematics. 5. Use appropriate tools strategically. 6. Attend to precision. 7. Look for 

and make use of structure. 8. Look for and express regularity in repeated reasoning (For a 
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more thorough description see CCSS, NGA, 2010, 

www.corestandards.org/Math/Practices). Student participation in the mathematical 

practices provide a glimpse into how students are developing mathematical understanding 

and how that understanding evolves through classroom engagement. This constitutes the 

enactment of tasks rich in engaging students in thinking and reasoning about 

mathematics, without which student learning is affected (Henningsen & Stein, 1997). As 

Niss (2003) specified and was emphasized by Lithner (2017) the importance in assisting 

students towards mathematical competence which is the “ability to understand, judge, do 

and use mathematics” inclusive of problem solving and justifying choices and conclusion 

through reasoning (p. 938). Generalizing and justification of thought processes for 

solving or using a particular strategy are ways to demonstrate reasoning. Speaking and 

writing are prominent forms of expressive language. We will examine each of these 

modalities and their connection to communicating understanding through mathematical 

practices while also considering integration of multiple modes which strengthen 

communication and understanding. 

Mathematical Practices and Modality 

Speaking 

In mathematics, we are shifting from a focus on communicating the correct 

answer to emphasizing understanding, sharing different methods and models for problem 

solving and communicating our thinking to others. Discourse is often used to 

conceptualize mathematical concepts learned in the classroom and has been researched 

extensively (see Ryve, 2019 for a review of discourse in mathematics literature). For the 

purpose of this paper, we will focus on Gee’s Discourse (big D) (2004) which is defined 

http://www.corestandards.org/Math/Practices
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as “ways of combining and integrating language, actions, interactions, ways of thinking, 

believing, valuing, and using various symbols, tools, and objects to enact a particular sort 

of socially recognizable identity” (p. 29). The continual building of knowledge through 

language and the use of other objects, tools and technologies establish “language-in-

action”(Gee, 1999, p. 13). The process of reading and writing, advances both oral and 

written forms of mathematics Discourse by facilitating interaction and language practice 

among students. Interaction can contextualize discussions and assist students in 

practicing the language of their mathematics community through modalities (Gee, 2004, 

2014; Moschkovich, 2003, 2015a; Moschkovich & Zahner, 2018; O’Halloran, 2015; 

Schleppegrell, 2007; Sfard, 2001, 2008).  The cooperative nature is especially supportive 

of those who may have linguistic, cultural, ethnic, and skill-level differences (Barwell, 

2005; Baxter et al., 2005; Schleppegrell, 2007; Snow & Uccelli, 2009 Zwiers, 2007). 

Research on the effects of engaging students in mathematical practices of 

discourse have observed the impact of student collaboration and cooperative learning 

(Francisco, 2013; Slavin et al., 2009), teacher moves (Kazemi & Hintz, 2014; Jacobs & 

Empson, 2016; Lithner, 2017; Maher et al., 2018; Sfard, 2008; Stein et al., 1996, 2008; 

Zwiers & Hamerla, 2018), discourse competence (Erath et al., 2018; Moschkovich, 

2015b), and positioning (Andersson & Wagner, 2019). Slavin et al., (2009) found that 

studies of cooperative learning amongst students in elementary school programs have a 

large impact on achievement measures with a weighted mean ES=+0.42 in 9 randomized 

or quasi-randomized experiments (p. 43). A study of high school students engaged in a 

probability task show that collaborative activity promotes understanding while engaging 

students in the practices to refine and examine their ideas socially (Francisco, 2013). 
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Ingram et al., (2020), view student interaction and how they enable justification and 

reasoning of mathematical thinking to be socially constructed through analyzing 

participation in discourse. 

Interaction through collaboration, or cooperative learning, can become the 

gateway to students’ conceptions, models, and strategies. Educators play an important 

role in enacting meaningful discourse routines (Kazemi & Hintz, 2014; Sfard, 2008; Stein 

et al., 2008; Zwiers & Hamerla, 2018) as a powerful way to unpack and scaffold 

language students will encounter. Students speak with purpose to improve their 

conversational skills and mathematics register simultaneously.  Zwiers and Hamerla 

(2018) define academic conversations as “sustained and purposeful conversations about 

school topics” (p. 1). The practice of engaging in academic conversations is an 

intentionally scaffolded process of enacting purposeful communication amongst students 

within a classroom (Moschkovich, 2015b). Tasks, which engage students at a high level 

(Stein et al., 1996) allow for pressing students conceptually to justification, explanations, 

and meaning making (Brendefur et al., 2013). These tasks allow for students to explore 

mathematics “with worthwhile tasks and ask students to share their work and reflect on 

necessary elements within the mathematics” (Brendefur et al., 2013, p. 65). The ability of 

educators, and students, to engage in discourse and mathematical practices in meaningful 

ways impacts the presenting of their mathematical proficiency. 

A situated perspective on the mathematics classroom recognizes participation and 

contributions to the development of mathematical practices socially, supporting students 

in progressing mathematically (Cobb & Bowers, 1999; Yackel & Cobb, 1996, Cobb et al, 

2011). Cobb and Bower’s (1999) work are situated in the symbiotic relationship between 
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instructional design and classroom research in the mathematics classroom. Close 

attention is paid to the engagement in students reasoning and communal practice. The 

compulsory relationship between students’ contributions and the transformation of 

classroom practices, establish their engagement in the socially constructed situation and 

participation in the Community of Practice. Ethical implications as posited by Cobb and 

Bowers (1999), recognize level of participation by students may vary in this framework. 

Adjustments must be made to accentuate participation by students to actuate their 

possibility of learning (Cobb & Bowers, 1999; Stein et al., 1996). Non-participation does 

not lie solely on the student but on how educators facilitate, and encourage, engagement 

in the practice of mathematics as a valued member of the community (Bailey, 2015; 

Barwell, 2005; Cobb & Bowers, 1999).  

A student’s ability to verbalize a connection among concepts and representations, 

is a means for educators to look upon demonstration of conceptual understanding.  

However, the evidence may not need to be strictly verbal as we often have students which 

understand before they can verbalize understanding (Crooks & Alibali, 2014; Kilpatrick 

et al., 2002). Communication involves more than writing and speaking and is inclusive of 

other symbols and artifacts which can be utilized to connect meaning (Gee, 2004, 2014; 

Moschkovich, 2015a; Moschkovich & Zahner, 2018). In Shein’s (2012) study of fifth 

grade English Language Learners (ELLs), the use of gestures and discourse were 

reported to communicate understanding of geometric area calculations.  The use of 

gestures by students and teachers enhanced the discourse during these lessons and was 

increased by the teacher’s use of revoicing and representations (Moschkovich, 1999; 

Shein, 2012). Chen and Herbst (2013) also investigate students’ multimodal 



28 

 

communication of geometric reasoning with gestures, speech, and diagrams. They 

conclude that the use of all triangulate communication amongst the three modalities and 

assist students in making reasoned conjectures. Fernandes et al. (2017), examined how 

multimodality assisted bilingual sixth through eighth grade students on an area 

measurement task selected from the National Assessment of Educational Progress 

(NAEP). Through interviews, the students were observed using manipulatives to form 

diagrams and gesturing to make claims and explain their reasoning. The authors view 

modality as an approach for assessing what our students understand broadening the 

language expression beyond speaking for reasoning. 

Writing 

Writing has been implemented in the mathematics classroom in a variety of ways, 

such as learning logs, journals, mathematical autobiography, writing of problems and test 

questions, freewriting, creative writing, proof writing and formal response papers (Kostos 

& Shin, 2010; Bosse & Faulconer, 2008; Baxter et al., 2005; Burns, 2004; Fried & Amit, 

2003; Pugalee, 2001; Countryman, 1992). According to Firmender et al. (2017), it is 

imperative to reflect on how we are asking students to write.  Are students being asked to 

“write about math (e.g., math autobiography, writing about one’s feelings about math), 

which foregrounds the literacy aspects” (p. 86) as opposed to writing in mathematics to 

communicate learning (Firmender et al., 2017)? Although educators recognize the need 

for attending to writing in the mathematics classroom, time integration and reconciling 

mathematical content and writing ability can be daunting. Research has reported low 

implementation of writing by educators outside simplified versions of writing such as 

note taking and single sentence response with an answer (Bakewell, 2008; Kosko, 2016; 
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Ntenza, 2004). Educator perceptions of mathematics writing play a key role in its 

implementation. In interviews of mathematics educators, Ntenza (2004) found that 

teachers “did not seem to appreciate the relationship between writing and mathematics, 

nor reached a common understanding amongst and with themselves on how to collect 

evidence of students’ learning through writing” (p. 18). Besides not understanding the 

importance of integrated writing in mathematics, educators also report time constraints 

for writing in class (Bakewell, 2008).   

Writing can contextualize discussions and assist students in practicing the 

language of their mathematics community, grammatical structures of the English 

language and writing forms (Barwell, 2005). Through reading and writing, language and 

content can be of benefit to each other. Students written response can show the 

interconnectedness of language and content learning (Kostos & Shin, 2010; 

Schleppegrell, 2007; Zwiers, 2007) and be utilized for formative assessment (Kostos & 

Shin, 2010; Barwell, 2005; Burns, 2004; Fried & Amit, 2003; Countryman, 1992). With 

numerous types of writing possibilities for the mathematics classroom, how can we be 

sure that we are writing to learn and deepen mathematical thinking and understanding 

(Bosse & Faulconer, 2008). The Elementary Mathematical Writing Task Force (Casa et 

al., 2016), sought to clarify the types of writing by adhering to two goals: “for students to 

reason mathematically and to communicate ideas” (p. 3). The task force then 

recommended four types of writing for mathematics and their purposes to meet their 

goals.  These types of writing are explanatory, to help make personal sense of the 

situation; informative/explanatory, to describe and explain; argumentative, to construct 

and critique an argument; and mathematically creative, showcase ideas and problem-
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solving situations (Casa et al., 2016). Educators can generate writing prompts 

accompanied with the sentence stems and frames, for students to engage and respond to 

writing with appropriate scaffolds. This entails facilitation of their ideas for writing about 

mathematics rather than prompting students with rules and shortcuts (Casa et al., 2016; 

Bosse & Faulconer, 2008). The task force recommended the following for consideration 

when integrating writing: 

• Writing can be developed across a continuum, based on student grade and 

linguistic level.  Sometimes students will write just to write, and not fulfill the 

complete writing process. 

• Audience influences student mathematical understanding.  Vary task prompts so 

students can write to friends and family members and in different forms. 

• Mathematical writing may take multiple forms which can be represented through 

paragraphs, sentences, notes, or letters. (Casa et al., 2016, p. 4-5) 

These recommendations from the Elementary Writing Task Force allow educators to 

focus on very specific kinds of writing.  However, considering how writing can be 

integrated into daily or weekly lesson plans requires a closer inspection of curriculum and 

materials. 

An additional tool used to develop literacies in mathematics is the mathematics 

journal (Kostos & Shin, 2010; Baxter et al., 2005; Pugalee, 2004; Fried & Amit, 2003) 

which reports increased student proficiencies for students.  Baxter et al. (2005), 

designated writing as a form of communication for seventh grade general mathematics 

students. Observation noted minimal participation of students during classroom 

interactions; however, analysis of written work in their journals show students ability to 
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explain their mathematical thinking, use representations and interact with the content.  In 

a meta-analysis of mathematics writing literature by Powell et al. (2017), a synthesis of 

articles from January 1990 to January 2016, yielded twenty-nine studies that analyzed 

student writing through outcomes from peer reviewed journals. Of the twenty-nine 

studies, seven focused on elementary students from first through sixth grade.  All focused 

on explanatory forms of writing in mathematics. This study highlights the need for more 

information on how the modality of writing influences mathematical understanding. 

A combination of modalities also affords students a valuable means of 

communicating their mathematical reasoning.  Bjuland et al. (2008) researched the use of 

written representations in combination with gesture with sixth grade students during a 

geometry unit. Using gesture in conjunction with the representation and dialogue assisted 

students in collaborative group work and participation in their mathematics community. 

Oviatt & Cohen (2013) analyzed high school students use of multimodality which 

consisted of integrated technology (digital pens), representations, and writing. Findings 

revealed students’ written work predicted their success with their mathematical task by 

ninety-six percent.  Suggestions for future research include examining different content 

domains and observation of situated classroom interactions. 

Mathematics Knowledge Summary 

The intersection between the content standards engendering understanding and 

the practices and their focus on communicating processes and proficiencies seek to 

develop the expertise of mathematicians. These curriculum reform transitions are 

supported by mathematics research. Hiebert and Grouws (2007), in their reconciliation of 

a definition for conceptual understanding from a sociocultural perspective, state that 
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understanding is an activity which would mean “participating in a community of people 

who are becoming adept at doing and making sense of mathematics as well as coming to 

value such activity” (p. 382). Sociocultural theory emphasizes learning that takes place 

among experts and novices collaboratively among a common goal (Tharp, 1994; 

Vygotsky, 1978). Understanding can be co-created through content conversations in 

shared activity with the teacher and communally with other students. Progressing 

conceptual understanding through shared experiences and discourse, unify content 

language and everyday communication. Tharp states (1994), it is through the interface of 

everyday experience and content meaning that the highest order of understanding can be 

achieved and verbal tools “can be manipulated for the solution of practical problems of 

the experienced world” (p. 155) through practices in discourse. Students engaged in this 

process interact in social practices and utilize their shared knowledge whether in face-to-

face interactions within the mathematics classroom, or in isolation, and engage in 

mathematics content (Greeno, 1997). Teaching and learning are conceptualized as an 

activity rich in interaction amongst a developing community of learners “where the ways 

of thinking, modes of inquiry, communicative convention, values, and beliefs 

characteristic of the wider mathematical community can be progressively enacted and 

appropriated” (Goos, 1999, p. 4). 

Hiebert and Lefevre (1986) suggest several reasons for establishing a relationship 

between conceptual and procedural knowledge.  Linking a procedure to conceptual 

knowledge helps with understanding of a concept but also retrieving information later.  

Generating rich instruction integrating each type of knowledge benefits students in their 

learning in presenting them with numerous models, strategies, and language to utilize. 
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Although a focus for mathematics research, the definition and measurement of conceptual 

knowledge, can be broad and daunting for identifying and measuring. Crooks and Alibali 

(2014) state, “the term “conceptual knowledge” has come to denote a wide array of 

constructs, making it difficult to understand the major findings in the field, the ways in 

which conceptual knowledge relates to procedural knowledge, and the most effective 

ways to utilize current research to guide instructional practices” (p. 345). According to 

Kilpatrick et al., (2002) there are five strands for mathematical proficiency inclusive of 

conceptual and procedural understanding which interweave to highlight and impart 

understanding. Yackel and Hanna (2003) suggest when students can justify their own 

thinking with language and other modalities, they further their own understandings. 

Educators play a crucial role in assisting students in providing evidence for their 

reasonings to support their understandings with strategies and procedures. In utilizing the 

ALM framework, Moschkovich and Zahner (2018), in an excerpt of a middle school 

classroom discourse, show how students use multiple representations (text, table, and 

graph) to demonstrate conceptual understanding, interact in small group and come to a 

consensus on explanations to demonstrate mathematical practices and participated in 

Discourse through creation of various texts and representations through multimodality 

(pg. 1004-1005). Semiotics, and modality, provide a lens for examining the use of tasks 

to support communicating mathematical practices and Discourse in the content area of 

multiplication. 
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Multiplication 

Understanding of multiplicative reasoning has over relied on students’ level of 

fact fluency (Brendefur et al., 2015; Kling & Bay-Williams, 2014; Schoenfeld, 2020; 

Smith, S. & Smith, M., 2006), rather than reasoning and connecting of multiplication 

concepts to demonstrate multiplicative understanding. Fluency fact knowledge is 

important; however, a shift in pedagogy, brought to the forefront by the CCSS, regard 

conceptual understanding of the concept of multiplication constructed through student 

engagement in problem solving and reasoning as equally important. To truly 

acknowledge the gravity of the expectations reliant on third grade to set the foundation 

for multiplicative reasoning, it is important to study the vertical progression of the 

curriculum from second grade to fourth grade.  This allows us to envision how we might 

enhance development of multiplication in the early years and situate students in improved 

position for later growth in multiplication. For second grade, multiplication is introduced 

in the Operations and Algebraic Thinking domain which emphasizes “work with equal 

groups to gain foundations for multiplication” (NGA, 2010). The emphasis is on a visual 

model for representing multiplication, not on symbolic written notation or knowing of 

facts. In third grade, multiplication becomes a major work of this grade.  It is essential for 

students to “develop an understanding of the meanings of multiplication and division of 

whole numbers through activities and problems involving equal-sized groups, arrays, and 

area models” (NGA, 2010). This spotlights the significance of developing understanding 

through problems solving and activities utilizing multiple representations. Multiplicative 

focus for fourth grade, further develops “understanding and fluency with multi-digit 

multiplication and developing understanding of dividing to find quotients involving 
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multi-digit dividends” (NGA, 2010).  In this grade, the emphasis is on extending 

multiplication with content connections to division.  The combination of the content and 

practice standards acknowledge the necessity of beginning early to set the foundational 

constructs for multiplicative thinking, the use of representations and visuals to develop 

conceptual meaning and communicate about the construct through modalities to assist 

reasoning. 

Multiplicative Levels 

Numerous studies have been completed on students’ categorical presentation of 

additive to multiplicative thought (Jacob & Willis, 2001, 2003; Clark & Kamii, 1996; 

Kouba, 1989; Sherin & Fuson, 2005) and indicators of multiplicative thought (Carrier, 

2014). Kouba (1989) suggested five categories for classification of student solution 

strategy: direct representation, double counting, transitional counting, additive or 

subtractive, and recalled number fact.  Students in grades first through third were given 

two equivalent set multiplication problems and four division word problems.  Students’ 

intuitive models for multiplication revolved around counting of sets and counting all the 

objects in the set which aligns with an additive strategy (Kouba, 1989). Jacob and Willis 

(2001) have labeled five phases of additive to multiplicative thought: one-to-one 

counting, additive composition, many-to-one counting, multiplicative relations, and 

operating on the operator. A range of multiplicative tasks (arrays, multiplication and 

division relationship, multiplication situations that could not be thought of as additive and 

grouping situations) were utilized through interview to recognize student thinking as 

categorically additive or multiplicative. The authors discuss representations of additive 

and multiplicative thinkers in their study, ways to progress students to operating on the 
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operator and use in classrooms by educators to ascertain additive and multiplicative 

thinkers in the classroom are noted. Sherin and Fuson (2005) suggest six taxonomies for 

strategy: count all, additive calculation, count by, pattern based, learned products and 

hybrid based on interviews with third grade students before, during and after 

multiplication instruction. The authors reported differences in how we might categorize 

student strategy when the interactions between the strategies are blurred. For example, 

students may be able to count by a number quickly to recall a product which would make 

it difficult to decide whether they would classify as a count by or learned product. For 

this reason, Sherin and Fuson, (2005) understand the limitations to a taxonomy while also 

challenging our views of “assuming that the end products of learning are memorized 

count-by sequences or straightforwardly internalized versions of the multiplication table” 

for generating understandings (p. 377). Carrier (2014) narrowed categories of 

multiplicative thought to three: pre-multiplicative, emergent, and multiplier with up to 

twelve sub-categories within. Implications for this study, were the use of key words that 

triggered student response and as a tool for assessing student multiplicative 

understanding. One of the many understandings yielded from the research is the 

realization that there is not direct progression from additive to multiplicative thinker.  

Students can deploy different strategies when working with varying problem structures 

for multiplication and division. This constitutes the necessity of knowledge shifts in 

language, structure, and modeling to develop and communicate conceptual understanding 

of multiplication.  
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Multiplicative Language 

As we assimilate new knowledge, connecting to familiar models, strategies and 

language assist in conceptualizing and communicating thinking. Adhering to the structure 

inherent in mathematics allows students to focus on connections between content which 

establishes a schema for common vocabulary (Brendefur et al., 2013). The structures 

integral to the conceptualization of multiplication resides in quantity ideas of units and 

unitizing (Anghileri, 1989; Carrier, 2014; Clark and Kamii, 1996; Park & Nunes, 2001; 

Simon & Blume, 1994; Ulrich, 2015, 2016) and visualizing the structure of iterating and 

partitioning (Barmby et al., 2009; Hurst & Linsell, 2020; Iszak, 2005; Kosko, 2020). 

Steffe (1994) defines units as the “countable items of one” and unitizing as “a sequence 

of unit items used in the formulation of an experiential counting act” (p. 14). In 

mathematics literature, the unitized unit, is known as the composite unit. Carrier, (2014), 

defines units and composite units as the recognition of the unit as a quantity of one, and 

as a quantity that is more than one (composite unit). Simon (2017, p. 129), define 

iterating and partitioning as 1) Partitioning a unit into n equal parts creates parts one of 

which will iterate n times to make the whole. 2) Iterating a small quantity n times, 

produces a specific large quantity that is n times as large. So, partitioning a unit into n 

equal parts creates parts of a particular size” Iterating can also be referred to by copying 

and partitioning can be splitting evenly. The above definition taken from Simon (2017) is 

regarding fractions but is useful for representations of multiplication. The importance of 

directing students towards the use of structural vocabulary to help make connections 

between different content that also use the same structural words establishes a schema for 
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common vocabulary. Iterating and partitioning models, support our representations of 

multiplicative ideas and vocabulary as part of this construct.  

Drawing on the work of Mulligan and Mitchelmore (1997), Jacob and Willis 

(2001, 2003) highlight the recognitions students must come to in multiplicative 

situations: groups of equal size (a multiplicand), numbers of groups (the multiplier) and a 

total amount (the product). “When they can construct and coordinate these aspects for 

both multiplication and division problems prior to carrying out the count, they are 

thinking multiplicatively” (Jacob & Willis, 2001, p. 307). While unit, iterating and 

partitioning are words associated to various mathematical content, words such as 

multiplier, multiplicand, and product are specialized vocabulary representative of the 

mathematics register specifically for multiplication. Carrier (2014) also summarized 

particular words from existing literature that may be early indicators of multiplicative 

reasoning: “(e.g., twice as big), area, split, half, one half, one third, divide, times, cut, 

more, less, double, larger, smaller, equal, sets, sets of sets or their synonyms” (p. 93). 

These mathematical word lists can be dense with multiple meaning words and phrases for 

use in the multiplication construct. This imposes challenges to students as they generate 

meaning through more than words, phrases, and sentences, to enrich their language 

output to the meaning, modes, and arguments necessary to communicate multiplicative 

knowledge. 

Multiplicative Reasoning 

Studies of young learners and early developments of multiplicative reasoning 

view patterns, subitizing and skip counting as ways young mathematicians develop the 

structure of units and unitizing for composite units (Baroody, 2006; Cheeseman et al., 
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2020; Mulligan & Mitchelmore, 2009; Papic et al., 2011; Warren et al., 2012). Young 

students work on patterning structures in early childhood development.  Recent research 

suggests patterning and subitizing can act as an effective bridge for introducing the ratio 

concept, a form of multiplicative thinking (Warren et al., 2012).  Pattern is much more 

than student recognition of what comes next in the patterning sequence, but that the 

pattern itself is a unit. The conceptual view of patterning asks that students identify the 

unit of repeat (yellow, yellow, blue) which entails the unitizing process (Warren et al., 

2012). Patterning can be continued through the skill of subitizing, or suddenly seeing.  In 

Kindergarten classes, subitizing is used to build student number sense around a part 

whole relationship. When forming mathematical reasoning around number, subitizing 

allows students to see a whole and the parts which compose it (Warren et al., 2012). Skip 

counting emphasizes the use of the composite unit and the idea that the number 3 can be 

something other than 1, 2, 3 and can be one unit of 3; and that unit can be repeated and 

counted as 3, 6, 9. Children with a rich grasp of number and mathematical patterns and 

relationships are more likely to become reasoners (Baroody, 2006). Investigations of 

multiplication and division problem solving with young students who have not had 

formal instruction utilized counting and grouping strategies to solve problems (Carpenter 

et al., 1999; Downton, 2008; Smith & Smith, 2006). Empson and Turner (2006) consider 

the role of partitioning through paper folding with students as young as first grade to 

demonstrate multiplicative thought.  Their findings “suggest that given a task structure 

that provides multiple opportunities to test and revise ideas, shifts from additive to 

emergent multiplicative reasoning are likely” (Empson & Turner, 2006, p. 55). Students 

may need opportunities to iterate and partition unit and composite units to identify a 
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shape and its spatial structuring using its spatial components (Battista et al., 1998). Using 

the idea of composing spatially, Mulligan et al. (2004) acknowledge the importance of 

spatial structuring and in visualizing and organizing multiplicative structures for 

partitioning. 

It is important to understand which multiplicative strategies are present, so 

students can be challenged conceptually (Brendefur et al., 2015) to improve their 

knowledge for multiplication. Students without a developed conceptual construct for 

multiplication will continue to explore inefficient strategies or apply them inaccurately. 

This is evident in research with students over reliance on additive strategies for 

multiplying (Jacob & Willis, 2001, 2003; Kouba, 1989). As designated in the standards 

(CCSS), multiplicative reasoning is the major work of third grade laying the foundation 

for successive mathematical topics such as ratios, proportionality, variables, and 

quantification one needs to later succeed in mathematics (Carrier, 2014; Fielding-Wells et 

al., 2014; Van Dooren et al., 2010). Therefore, designating what constitutes as 

multiplicative reasoning is imperative to the facilitation of knowledge construction for 

multiplication which moves beyond additive thinking. Scholars have examined this role 

and have stressed the importance of students’ ideas of quantity (Carrier, 2014; Simon & 

Blume, 1994), schema of correspondence (Clark & Kamii, 1996; Park & Nunes, 2001), 

and multiplication’s co-varying role with addition (Van Dooren et al., 2010). Park and 

Nunes (2001) suggest that children’s concept of multiplication originates in their 

“schema of correspondences and not in the concept of addition” (p. 764). They define the 

concept of multiplication as an “invariant relationship between two quantities. This 

constant relation, known as ratio or rate, and is a core meaning of multiplication (Park & 
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Nunes, 2001, 764). Carrier (2014) summarized the Park and Nunes (2001) definition as 

“the ratio or rate is the constant unit that is called the multiplicand and acted upon by the 

multiplier. Children employ the schema of correspondence to represent fixed 

relationships between variables and solve multiplication problems (p. 87). In order to 

grasp this concept MacLellan (2001) asserts “if children are genuinely to engage in 

multiplicative reasoning, they must appreciate that the relationship between the elements 

may be constant (which allows repeated addition); but they must also, critically, 

appreciate that the relationship may be a co-varying one” (p. 151).  Inquiry based tasks 

also afford students the ability to progress their thinking from an absolute, or additive, 

structure to a more multiplicative, proportional structure as shown in a study of fourth 

grade students (Fielding-Wells et al., 2014). Throughout the inquiry, students’ 

investigations were structured in conjunction with representations, small group 

interactions and whole class discussions (Fielding-Wells et al., 2014). The 

communicative aspect of the inquiry, developed throughout by teacher questioning, 

allowed students to challenge their reasonings and those of their classmates as they 

progressed to an understanding of proportionality. Unless teachers consciously assist in 

developing multiplicative thinking, which goes well beyond repeated addition, it may not 

happen for many children. 

Modality and Multiplication 

Understanding multiple representations of mathematical concepts is part of the 

CCSS (NGA, 2010) standards for mathematical practices. Bruner’s modes of 

representation (1966): enactive, iconic, and symbolic, are of particular importance to 

modeling the multiplication we are learning. The modes are defined as enactive, or 
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action; iconic, or image; and symbolic, words or language (Bruner, 1966). Brendefur et 

al. (2015) highlight the use of enactive, iconic and symbolic representations for 

multiplication learning by means of enactive models of counters and tiles and then 

drawing “iconic diagrams of arrays and groupings that would offer a subsequent 

opportunity to label the iconic representations with symbolic notation (e.g. mathematical 

symbols and words)” (p. 144). This will allow students to build a concrete connection for 

the modeling of multiplication structure and strategies to make sense of multiplication. 

Kilpatrick et al., (2002) acknowledge the tension amongst symbolic and concrete ways of 

thinking multiplicatively. The linear bar model, transformed to side-by-side bars, depicts 

the rectangular array interpretation, and when the bars are linked together with no space 

then becomes the area interpretation (p. 74). Multiple interpretations can cause tension, 

but more so could fixation on a singular representation without the means to reason 

flexibly to learn and communicate concepts (Kilpatrick et al., 2002). The importance of 

visualizing representations of the array model is theorized by Battista et al., (1998), and 

states the importance of viewing the model as a whole which will then construct a 

“scheme for iterating rows, columns, or layers of cubes, with layer structuring being the 

most efficient, both computationally and mentally” (p. 505). The authors found evidence 

to support students’ struggle with the model based on an inability to see the rows and 

columns structures that compose arrays. 

Previous studies have yielded important insights into students use of 

representations for multiplicative thought such as arrays (Barmby et al., 2009; Battista, 

1998, 2020; Harries & Barmby, 2008; Izsak, 2005; Kosko, 2020), manipulatives (Hurst 

& Linsell, 2020; Kosko, 2020; Mills, 2019), and the ways we can use them to reason 
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about the mathematical practices (Barwell, 2005; Barwell et al., 2005; Erath et al., 2018; 

Prediger and Zindel, 2017). Barmby et al., (2009), researched the use of the array as a 

key representation of understanding multiplication through the modality of computer-

generated images and interaction amongst students ages eight to eleven.  They report the 

importance of arrays for assisting with calculation strategies. Challenges of using the 

array as a representation were stated as students’ unfamiliarity with the structure of the 

model and inability to equate dimensions to rows and columns to construct the model. 

This was common to finding from Battista et al. (1998). Iszak (2005), also studied the 

array representation with fifth grade students on computation of whole number problems. 

Implications for how representations are used across content areas to construct meaning 

are presented. Prior knowledge of the representational use of dots as a means of 

constructing arrays played a crucial role in students transferring those ideas to area model 

representations. Kosko (2020), attempted to identify third and fourth grade students’ 

multiplicative reasoning given three types of visual representations: set, length, and area. 

In grouping structures, utilizing the groups of images and arrays, the possibility is present 

to group and visualize composite units. Length engages the ideas of a linear or 

continuous model for discerning multiplicative structure with number lines and bar model 

examples. Area representations express multiplicative relationships with a row and 

column structure. They most resemble arrays and can relate to square units or open area 

models given side dimensions (Kosko, 2020). Kosko’s (2020) research supports prior 

studies that revealed the use of representations of set and area which most often generate 

a single counting unit rather than a multiplicative composite (Anghileri, 1995; Barmby et 

al., 2009; Battista et al., 1998; Clark and Kamii, 1996; Downton & Sullivan, 2017; 



44 

 

Kosko, 2020). Further research is necessary for revealing representations and their 

assistance in developing different levels of reasoning. Ulrich and Wilson, (2017), studied 

sixth grade students’ multiplicative reasoning conveyed through written assessment items 

using both continuous (bar models and number lines) and discrete (set image) 

representations to ascertain their development of composite unit strategies for 

classification of the students’ work by thought. Student written work indicated their 

reasoning about units using representations. Implications for continued research on the 

use of written assessments are suggested. Representations can be used to extend 

conceptual knowledge of multiplication and communicate reasoning. Connecting student 

representations with language allows for the use of a conceptual tool that shares meaning 

and assists in communicating. 

Students experience with multiplication should encourage mathematics 

communication, inclusive of spoken discourse (Kazemi & Hintz, 2014; Sfard, 2008; Stein 

et al., 2008; Zwiers & Hamerla, 2018), writing (Casa et al., 2016; Cohen et al., 2015), 

and using formal and informal language of mathematics to reason through varying forms 

of modality (Moschkovich, 2015a; Moschkovich & Zahner, 2018). In effect, enhancing 

the discipline of mathematics own register for cultivating reading, writing, speaking, 

thinking, and reasoning (Schleppegrell, 2007). Rogers (2011) summarizes a definition by 

Kress which “draws attention to the many material resources beyond speech and writing” 

which postulate meaning making. Speaking and writing become just one of many modes 

to assist in understanding where “meaning is made in all modes separately, and at the 

same time, that meaning is an effect of all the modes acting jointly” (Kress et al., 2001, p. 

1). Communicating through modality to express mathematical proficiency has been 
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addressed in a variety of math topics and grade levels; however, few studies are available 

to connect and develop these ideas in multiplication. 

Fernandes et al. (2017) examined how multimodality assisted bilingual sixth 

through eighth grade students on an area measurement task selected from the National 

Assessment of Educational Progress (NAEP). Students at differing stages of language 

development were observed with manipulatives to form diagrams and gesturing to make 

claims and explain their reasoning. The representations and gestures conveyed student 

understanding of the concepts of area, geometric rotations, and translations. 

Manipulatives allowed students to enactively construct their reasonings and strengthened 

the formulation of their explanations. The qualitative results submitted by the authors 

view modality as an approach for assessing what our students understand broadening the 

language expression beyond speaking and writing for assessing reasoning (Fernandes et 

al., 2017). 

Brendefur et al. (2015) studied third, fourth, and fifth grade students developing 

fact fluency. Over five weeks, the treatment consisted of students using “enactive models 

to examine facts and facts strategies and then progressed to iconic and symbolic 

representations” with a social interactional approach (Brendefur et al., 2015, p. 145-146), 

while the comparison group activities included a daily math fact test with flash cards and 

mnemonics for memorizing facts. Results show that students in the treatment performed 

significantly better than students in the comparison group at all grade levels. The study’s 

results demonstrate evidence for the use of representational and social interactional 

frameworks to support students in making connections to strategies and relationships 

between multiplication facts. 
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Mulligan and Watson (1998) sought to understand second and third grade 

students’ development of multiplication and division concepts drawing on Collis and 

Biggs, multimodal approach known as Structure of Observed Learning Outcomes 

(SOLO) model. The SOLO model is designated into unistructural, multi-structural and 

relational levels which cycle amongst each other while enactive, iconic, and symbolic 

modes of representation are present within each level. Student responses to multiplication 

word problems were designated into SOLO levels and then further categorized based on 

their iconic to symbolic representations of thought. Of the forty-six percent of students 

which iconically modeled in interview one, fifty-six percent of those were able to transfer 

their learning to relational symbolic representations. Mulligan and Watson’s (1998) 

findings support the use of iconic representation to increase students use of efficient 

multiplicative strategies in counting composite units, as well as operating in symbolic 

number sentences or with written explanations in the writing mode. Implications for the 

use of the SOLO model to analyze important multiplicative concepts within the use of 

two modes, iconic representations and written symbolic representations, as important 

aspects of addressing how students function in the learning of multiplication and division. 

Multiplication Summary 

Connecting concepts and practices of multiplication is an important aspect for 

developing multiplicative understanding. Developing multiplicative thought begins early 

with informal knowledge of multiplication and the introduction of patterning to 

strengthen student ideas of unit (Baroody, 2006; Cheeseman et al., 2020; Mulligan & 

Mitchelmore, 2009; Papic et al., 2011; Warren et al., 2012). We progress in grade three to 

formalizing multiplicative thought with connections using composite units, connections 
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with repeated addition, representations, and images to structure mathematical thought. 

Numerous studies have been completed on students’ categorical presentation of additive 

to multiplicative thought (Jacob & Willis, 2001, 2003; Clark & Kamii, 1996; Kouba, 

1989; Sherin & Fuson, 2005). Many of these studies have multiple levels allocated to the 

representation of additive thinking, documenting students over reliance on this construct 

and later pitfalls in attempting to apply it throughout their work with multiplication. 

Research has also stated that the road from additive to multiplicative thinker rarely 

progresses straight. Therefore, students may not progress through these levels distinctly, 

but cross through and use combinations of them to assist in problem solving depending 

on instruction, problem type and even number specific resources (Sherin & Fuson, 2005). 

Although some studies used varying modes to communicate reasoning, the 

reasoning was not a communication through the modality but the result of their use of the 

representation. The modality represented their placement in a domain, additive, or 

multiplicative thinking, and less how they were integrating with and within the practices 

of the mathematical classroom. Few have focused on the modalities and their influence 

on students’ communication and participation in the structure and content of their 

mathematics classroom. The representation, whether it be enactive (manipulative), iconic 

(number line, bar model, array, area model) or symbolic (number sentence or written 

words) becomes the communicator, or the teller of information, rather than a tool 

students use to operate with and instigate mathematical proficiency. I argue when 

modalities are enacted jointly, we have the potential to communicate more than our 

correctness but our processes, explanations, and justifications at the heart of 

understanding. 
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After the examination of the above studies more research is needed to explore 

how student expression of multiplicative understanding is enhanced through utilization of 

a multi-modal student generated tool. Separately researchers have concentrated on the 

“what” of multiplicative learning and the “how” of mathematical practices; however, 

little research explores the simultaneous development and demonstration of both for 

multiplication. The present study will add to this general body of research on 

multiplication and communication by analyzing how students engage in and about the 

mathematics to convey multiplicative understanding. 

Conceptual Framework Summary 

The focus of this dissertation was to examine the use of a multimodal tool on 

students’ communication of multiplication reasoning. Research on communication and 

mathematics has been oriented in many ways. Academic language registers differentiate 

itself from the informal social language, as the language of schooling laden with the 

technical vocabulary of individual content areas (Nagy et al., 2012; Snow & Uccelli, 

2010).  Mathematics, considered a number and computation discipline, is noted by 

Halliday (1974) as a register with its own vocabulary, grammatical structure, and ways of 

reasoning. A significant feature of the mathematics register is the role of specialized 

vocabulary.  The acquisition of specialized vocabulary has led to a dilemma for educators 

in terms of how and when they should initiate new vocabulary. Suggestions from the 

literature include purposeful word instruction and practice (Riccomini et al., 2015); and 

utilizing graphic organizers in mathematics (Bruun et al., 2015; Dexter & Hughes, 2011; 

Monroe & Panchyshyn, 1995; Monroe & Pendergrass, 1997). Mathematical tasks can be 

complicated with technical language and semantic features. The inherent challenge is to 
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attempt to compose the “symbolic representations and visual images that do not match up 

exactly with their ‘‘translation’’ into the oral and written language used to develop the 

meanings they present” (Schleppegrell, 2007, p.145). Students must then create and 

convey meaning in the modes necessary to communicate mathematically. Research from 

a functional linguistic and semiotic lens analyze the implications of language in the 

domain of mathematics (Halliday, 1974, 1978, 1993; O’Halloran, 1998, 2011, 2015; 

Schleppegrell, 2007). The addition of functional linguistics has shifted the focus to a 

more semiotic system of language, inclusive of models and visuals to analyze and extend 

our understanding of the mathematics register (O’Halloran, 1998, 2011, 2015; 

Schleppegrell, 2007). The broadening of the semiotic system inclusive of modality as a 

means of communicating mathematical understanding allows for students to engage the 

modality (reading, writing, listening, speaking, representational, visual, gestural) that 

conveys meaning. A significant feature to multimodal perspectives on learning is the 

assumption that meanings are made through many representational and communicational 

resources, of which language is but one (Kress, 2000). Developing content area literacy 

in mathematics has become more than reading text and writing answers. Modality is a 

resource for students to engage in mathematical reasoning, to communicate 

understanding and interact in the classroom.  In particular, the components of 

mathematical proficiency, mathematical practices, and mathematical discourse, utilize 

language and modality to explore conceptual proficiency through the mathematical 

practices and engage in situational discourse in the mathematics classroom 

(Moschkovich, 2015a; Moschkovich & Zahner, 2018).  
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A facet of the sociocultural perspective of learning and teaching necessitates 

engaging in the mathematics community as a mathematician to “learning the socially 

learned cultural traditions of what kinds of discourses and representations are useful and 

how to use them” (Lemke, 2001, p. 298). Language is a tool for understanding and 

learning and an integral part of exploring the mathematics world. In mathematics, multi-

modalities inclusive of manipulatives, visuals, iconic representation, and receptive and 

expressive language elements are intrinsic to mathematics and mathematics learning. 

Hence, multimodal tools utilized to support mathematics offer a variety of possibilities 

reliant on the nature of the mathematical activity that is engendered to support learning 

and quality of the collaboration with peers. A sociocultural interpretation of teaching and 

learning, goes beyond the vocabulary acquisition, word problem interpretation and 

computation to enacting skills, sharing knowledge, and communicating mathematically 

with peers (Moschkovich, 2004). It is possible to engage in activities of the mathematics 

classroom and through that participation engage in language practices and mathematical 

practices simultaneously. When students engage in the discourses (informal, formal) of 

the mathematics community they develop the socio-mathematical norms of the 

classroom. Yackel and Cobb (1996) define socio-mathematical norms as the “normative 

aspects of mathematical discussions that are specific to students' mathematical activity.” 

(p. 458). By exemplifying a multimodal approach, it will be useful to examine how the 

different modes afford learning, which mode supports the best form of communication, or 

whether combinations of modes afford learning (Kress, 2011). Therefore, a social 

semiotic framework allows researchers to examine the understanding generated by 

students, as they work with teachers and peers, to make sense of mathematics through 
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representations and modalities building competencies for communicating effectively in a 

progressively multimodal world. 

The functionality of language and mathematics has been extensively studied and 

provokes a critical challenge of connecting knowledge from diverse fields (applied 

linguistics, sociolinguistics, cultural and social psychology, discourse studies, semiotics); 

as well as discipline specific knowledge from mathematics research (Morgan et al., 2014; 

Planas & Schütte, 2018). Planas and Schütte (2018), identified similarities and 

differences in theoretical research as compiled for a special issue in the mathematics 

journal Zentralblatt für Didaktik der Mathematik [ZDM]. The theories listed represent the 

present focus of language and mathematics research: "(1) the politics of language and 

language diversity, (2) the modes of communication and representation in language, and 

(3) the interactionist dimension of language in classroom discussion" (Planas & Schütte, 

2018, p. 967). Moschkovich (2018), also recommends research for language and 

mathematics should comprehend that “mathematical understanding involve multiple 

modalities and artifacts— including oral and written language, gestures, the body, 

inscriptions, and so on— the study of language and mathematics requires 

interdisciplinary approaches” (p. 38). Although for the purpose of this paper I am not 

focused on the construct of political language and language diverse learners, these 

recommendations encourage studies, like my own, of modality and interaction and how 

they can contribute to the understanding of subject specific content for all students.  
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Theoretical Framework 

Social Semiotic Theory 

The aim of this study is to examine the role of language in communicating 

students’ understanding through the lens of social semiotics and modality in the 

mathematics content area of multiplication. According to Morgan (2006), researchers in 

mathematics education have brought theoretical perspective to addressing language and 

with that “increased attention to the nature of language and other semiotic systems used 

in mathematical activity and to the roles that these may play in the teaching, learning and 

doing of mathematics, drawing on semiotic and linguistic theories and developing them” 

(p. 219). An integral part of exploring mathematics is utilizing language as a tool. 

According to O’Halloran (2006), multi-semiotics, or modalities inclusive of 

manipulatives, visuals, iconic representation, and receptive and expressive language 

elements are intrinsic to mathematics and mathematics learning. Therefore, multimodal 

tasks used to support mathematics offer many possibilities enhance learning and the 

quality of the interaction with peers. 

In its earliest definition, social semiotics has been defined as “the science of the 

life of signs in society” (Saussure, 1974) as cited by Hodge et al. (1988). Signs become 

the signifiers of meaning in differing modes, actions, and artifacts created in a social 

domain. “In social semiotics the focus changed from the ‘sign’ to the way people use 

semiotic ‘resources’ because it avoids the impression that ‘what a sign stands for’ is 

something pre-given, and not affected by its use” (Van Leeuwen, 2005, p. 3). Bezemer 

and Kress (2008) state that producers and users are meaning makers or sign makers; 

however, the making is subject to the semiotic resources available and the maker’s 
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interest and how they wish to represent their learning. The potential of the sign, or 

resource, is only constituted in its position in the discourse that the resource is engaged 

in, whether in written or spoken form, or any modality considered relevant to the user 

(Van Leeuwen, 2005). Both Hodge et al. (1988) and Van Leeuwen (2005) acknowledge 

the importance of recognizing all semiotic resources. For this study, I use the term 

semiotic resources as defined by Van Leeuwen (2005): 

In this book […] semiotic resources are the actions and artifacts we use to 

communicate, whether they are produced physiologically – with our vocal 

apparatus; with the muscles we use to create facial expressions and gestures, etc. 

– or by means of technologies – with pen, ink, and paper; with computer hardware 

and software; with fabrics, scissors and sewing machines, etc (p. 3). 

This emerges beyond the spoken and written language and texts produced in discourse, 

but inclusive of activities and artifacts, which themselves can include text, 

representations, images, gestures, and voice to communicate in their own manner. 

However, the accumulation of semiotic resources is the basis for the concept of mode, 

which Kress (2010) defines as “a socially shaped and culturally given semiotic resource 

for making meaning. Image, writing, layout, music, gesture, speech, moving image, 

soundtrack and 3D objects are examples of modes used in representation and 

communication” (p.79). The focus on semiotic resources best assists in interpreting the 

research questions for this study as they pertain to the ‘how’ students enact these 

resources and the “what” knowledge they are communicating in their classroom 

community. 
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The development of language is a semiotic process and therefore, constantly 

evolving as new modes are introduced and the contexts in which they are learned change 

(Halliday, 1993). As defined by Halliday (1978, p. 2) and stated in Morgan (2006, p. 

221), a social semiotic perspective recognizes that “language consists of the exchange of 

meanings in interpersonal contexts of one kind or another” and that this exchange is 

functional. Drawing on Halliday (1993), social semiotic researchers recognize three 

communicative meta-functions: the ideational-enact personal and social relationships, the 

interpersonal- related to human experience and representations, and the textual-

multimodal forms of communication. For Halliday’s meta-functions utilized in research 

see (Alshwaikh, 2018; Alshwaikh & Morgan, 2018; Björklund Boistrup & Selander, 

2009; Björklund Boistrup, 2010). This allows for classroom activity to be analyzed from 

three perspectives. Participating in the discursive aspects of the classroom is what an 

individual does to interact with their peers in a social or academic setting. Studying 

language must therefore consider meanings that are being exchanged, informally and 

formally in the embedded cultures and contexts of the classroom and the output that is 

being communicated. According to Morgan (2006), the context of the situation comprises 

activity goals, participants, and the tools available as part of the semiotic structure which 

is  

formed out of the socio-semiotic variables: field, tenor, and mode.  

The field of discourse may be thought of not simply as the subject matter but as 

the institutional setting of the activity in which a speaker and other participants 

are engaged. Tenor encompasses the relationships between the participants, and 
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mode refers to the channel of communication (e.g., writing or speech) and other 

aspects of the role of language in the situation (p. 221). 

Therefore, the activity is comprised of the classroom dynamics established for the 

purpose of the discursive mathematics community, the engagement in interactions of the 

students present, and the modality in which they communicate their knowledge. 

O’Halloran (1998, 2006, 2011, 2015) also considers the phenomenon of semiotic 

resources and the multi-semiotic nature of mathematical discourse which involves 

mathematical symbolism, visual display, and language. She contends that the three are so 

symbiotically entwined that one could not investigate one without considering the others 

during analysis. O’Halloran summarizes the function of the three semiotic resources as 

follows: 

the mathematical symbolism contains a complete description of the pattern of the 

relationship between entities, the visual display connects our physiological 

perceptions to this reality, and the linguistic discourse functions to provide 

contextual information for the situation described symbolically and visually (p. 

363). 

O’Halloran (1998, 2010) utilizes research in secondary mathematics to explain 

the lexicogrammatical analysis of algebraic equations and how the function of 

mathematical symbolism affects mathematical discourse and communication. The 

lexicogrammatical analysis is also considered by Lemke (2003).  Although these research 

studies focus on the systemic functional linguistics of multi-semiotics, the latter research 

by O’Halloran (2011, 2015) considers multi-modality and its effects on discourse 

analysis. See also (Bezemer & Kress, 2008; Jewitt et al., 2001; Kress, 2010, 2011). 
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Beyond utterance, clause, or phrase usage, the mathematical understandings students 

make and interpret to share within their discursive community are emphasized by the 

phenomenon of semiotic resources and multi-modality. In particular, a communication 

framework provides the lens for examining the skills necessary for mathematics thinking 

and learning and the affordances of modality to that communication (Brenner, 1994, 

1998). By exemplifying a multi-semiotic, multi-modal approach, it will be helpful to 

examine how the “different modes offer different potentials for making meaning” (Kress, 

2010, p. 79). 

An integral aspect of the social semiotic perspective acknowledges the importance 

of meaning collectively with social situations and language use (Kress, 2000, 2010, 2011; 

Morgan, 2006; Sfard, 2001, 2008). The emphasis on the “‘social’ in ‘social semiotics’ 

can only come into its own when social semiotics fully engages with social theory. This 

kind of interdisciplinarity is an essential feature of social semiotics” (Van Leeuwen, 

2005, p. 1). A facet of the sociocultural perspective of learning and teaching necessitates 

engaging in the mathematics community as a mathematician to “learning the socially 

learned cultural traditions of what kinds of discourses and representations are useful and 

how to use them” (Lemke, 2001, p. 298). Lemke (2001) has applied this idea to science 

and mathematics. A socio-cultural interpretation of teaching and learning goes beyond 

vocabulary acquisition, word problem interpretation, and computation to enacting skills, 

sharing knowledge, and communicating mathematically with peers (Moschkovich, 2004). 

When students can engage in the discourses (informal, formal) of the mathematics 

community, they then develop the socio-mathematical norms of the classroom. Cobb et 

al. (2011) extend ideas of norms and mathematical practice to include the “normative 
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purpose of engaging in mathematical activity, standards of mathematical argumentation, 

and ways of reasoning with tools and symbols” (p. 110). It is possible to engage in 

mathematics classroom activities and engage in language and mathematical practices 

simultaneously through that participation. 

As Lave and Wenger (1991) suggest, through participation, the students’ 

knowledgeable skills evolve as they collaborate in social practices. An apprenticeship, 

(Lave, 1991; Lave and Wenger 1991; Vygotsky, 1978), is a way for students to learn new 

knowledge and engage with experts as part of a learning community. Through this 

Vygotsky-ian lens (1978), models for an apprentice can originate from other students in 

the mathematics classroom. As students are engaged in this cooperative learning process, 

they assimilate skills and understanding from available models. They, in turn, can 

become the “old timers” and participate in their mathematics classroom, sharing and 

modeling understanding for others. Within this perspective jointly constructed activity, 

among teachers and students and student to student, is central to learning in a socio-

constructed perspective. The mentoring of knowledgeable teachers or peers in the 

classroom community assists in scaffolding interaction and learning opportunity (Bruner, 

1964). 

Summary of Literature Review 

This study investigated third grade students’ communication of multiplicative 

reasoning through social semiotic resources. In mathematics, classroom teachers can 

facilitate development and utilize numerous features of oral and written language, 

strategies for supporting language expression, whether informal or formal, and multiple 

modes of representation (gestural, oral, written, textual, or drawn). In understanding the 
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significance of students meaning generating, tools are viewed as an integral mathematical 

activity for engaging reasoning "with physical materials, pictures, diagrams, computer 

graphics as well as with conventional written symbols" (Cobb & Bowers, 1999, p 11). In 

this, they acknowledge a significant connection to socially building language through 

interaction and the influence of tools in developing mathematical understanding. 

Another perspective is the view of informal or everyday register while 

communicating. This interest stems from Vygotsky’s (1978) recognition of the 

importance of language and social interaction in learning. An informal register allows 

engagement in the collaborative practice. Students can then use that participation to 

expand their understanding and formalize mathematical thought and communication. A 

goal for the mathematics community of practice is for teachers and peers to acknowledge 

informal thoughts and knowledge in the shared setting and progress to constructing more 

mathematical ways of expressing thought (Vygotsky, 1978). The promise of building on 

and modifying the everyday, informal language towards a more formal school language 

enriches students’ experiences and accessibility for interactions in the classroom 

environment.  

The constructs central to this research comprise the notion of communication, 

semiotic resources or modality, and multiplicative understanding, and the interaction of 

these components for supporting learning in the mathematics classroom by students. 

Consequently, I draw on a socially constructed semiotic perspective (Cobb & Bowers, 

1999; Brenner, 1994, 1998; Gee, 2014; Greeno, 1994; Halliday, 1993; Morgan, 2006, 

2014; O’Halloran, 2010; Presmeg et al., 2016; Sfard, 2001, 2008; van Leeuwen, 2005; 

Vygotsky, 1978) to provide a lens for exploring how students interact with and utilize 
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multimodal tools to communicate multiplicative thinking and learning. The role of 

language in mathematics has been extensively studied and confronts a critical challenge 

of associating knowledge from diverse fields (applied linguistics, sociolinguistics, 

cultural and social psychology, discourse studies, semiotics); as well as discipline 

specific knowledge from mathematics research (Morgan et al., 2014; Planas & Schütte, 

2018).  

Developing mathematically literate students is more than reading and interpreting 

word problems. It is engaging with mathematical texts, whether formally or informally, 

to broaden the constraints of literacy and its’ relationship to mathematics. Progressing 

beyond distinct utilization of reading, writing, listening, and speaking as a means for 

mathematical output, but as a construct for linguistic communication, which enlists those 

expressive and receptive modes along with representations, visuals, and non-linguistic 

forms of communication, such as signs, for sense-making. Educators invested in their 

students’ mathematics and literacy advancement create opportunities for students to 

engage in mathematical practices and share conceptual understanding, while also 

attending to the types of communication and discourse students are enacting, Thus, 

building the more communicatively inclined community we strive for in mathematics. 
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CHAPTER THREE: METHODOLOGY 

Introduction 

Methodologies need to properly evaluate the process and the content of 

mathematical discourse and investigate the factors contributing to mathematical 

discursive communities. Researchers can use many theoretical and methodological 

resources to see patterns in social interactions; however, “recognizing these patterns and 

what they achieve provides tools for analyzing classroom processes and can also inform 

development of teaching practice” (Morgan et al., 2014, p. 847). This study examined 

several activities, through a social semiotic lens, exploring mathematical conceptual 

themes communicated discursively by students based on components of Brenner’s (1994, 

1998) communication framework. All three components of the framework support the 

development of mathematical understanding; however, this study focused on 

Communication About and Communication In mathematics as the third component, 

Communicating With math as a tool for real world problem-solving, was not the aim of 

this study. The framework will assist in actualizing conceptual knowledge and guiding 

efforts to research this construct across a specific mathematical domain (Crooks & 

Alibali, 2014) 

As Morgan et al. (2014, p. 847) stated, there should be no distinction between, 

“doing mathematics and thinking mathematically. Detailed characterization of the nature 

of mathematical language thus provides a means of describing the ways in which learners 

are engaging in mathematical activity.” With a student-generated visual, semiotic 
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resources accumulate into a multi-modal tool to represent and communicate mathematics 

conceptual knowledge. The methodology chapter will address the features of a qualitative 

case study, participants and site selected, data collection and analysis. We will examine 

data collected, exploring themes communicated discursively by students and how social 

semiotics are weaved throughout activities. The qualitative analysis of selected interview 

and observation transcripts, documents, and tools will be conducted with the aim of 

developing descriptions of Discourse, individually and interactively, and mathematical 

themes across activities. The research questions guiding this study are as follows: 

Research Questions 

How do semiotic resources and student-generated tools enhance students’ abilities 

to communicate their multiplicative reasoning? 

1. How does the utilization of the student-generated tool assist students in 

communicating mathematically? 

2. What semiotic resources are evident in student activity and how are students 

utilizing them? 

3. How does the student-generated tool influence the expression of 

multiplicative understanding? 

Study Description 

This chapter explains the method of discourse analysis chosen based on social 

semiotic theory. The nature of mathematical discourse is multi-semiotic because it 

involves semiotic resources of “mathematical symbolism, visual display, and language” 

(O’Halloran, 1998, p. 359). Those semiotic resources encompassing language modalities 

of reading, writing, listening, and speaking engage images drawn by students to represent 
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their knowledge composing multiple modalities. The tenets of social semiotics are the 

basis for the discourse analytic approach chosen for the qualitative case study undertaken 

for this dissertation. According to Gee (2014) the theory of discourse analysis can be 

applied to multi-modal texts composed of words, images, and other modalities, with the 

intent to communicate. Discourse analysis can be enacted because “discourse is about 

communication and we humans can communicate via other symbol systems (e.g., 

mathematics) or via systems composed using modalities other than language or ones 

composed by mixing other modalities with language” (Gee, 2014, p. 187). Therefore, 

discourse analysis may serve dual purposes: first, it explores a socially constructed multi-

modal tool utilized as an activity to enhance language use individually and interactionally 

during mathematical discourse; second, it supports investigating the language used during 

the studied activities and how they relate to communication of mathematical knowledge 

during mathematical discourse.  

A Discourse presents distinctive ways to communicate through modalities and 

interactions which help students enact and interact using various objects and tools (Gee, 

2014). “Discourses (being and doing kinds of people) exist in part to allow people to 

carry out certain distinctive activities” (Gee, 2014, p.178). With this focus, students can 

establish themselves as practicing mathematicians within a classroom community. By 

examining the semiotic resources composed of mathematical symbols, visuals (student-

generated tool), written (words or images), and spoken languages that students produced 

and used while reasoning, we can analyze the structure of the activities that allowed for 

the use of semiotic resources and what was produced socially; as well as the thematic 
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structures of the mathematics content knowledge communicated by student 

mathematicians (Chapman, 1995, 1997, 2003). 

As Chapman (2003) noted, the theoretical framework of social semiotics reasons 

that the mathematical meanings are constructed within language practices and “school 

learning areas are social practices in which teachers and learners use language, together 

with other semiotic systems, to make meanings” (p. 154). Through this methodology, 

Chapman utilizes analytical terms from Lemke (1985) to argue that analyzing the 

formation of the activity structures of the social interaction and thematic structures, 

which show how meaning is being used, are employed for discourse analysis. Activity 

structures, summarized in Chapman (2003) from Lemke (1987) are “regularly repeated 

and socially recognizable sequences of actions” (p. 155). Thematic structures, utilized for 

discourse analysis in Chapman (2003) from Lemke (1987) are defined as “systems of 

relations among themes. Discourse analysis of thematic structure considers how the 

language of text is used to develop themes, and to relate themes to each other” (p. 156). 

Conducting an exploration of the activity and thematic structures supports the conceptual 

framework of communicating multiplicative knowledge and the theoretical framework of 

social semiotics. 

A qualitative case study is defined as an exploration of a real-life, bounded case, 

through detailed data collection, with rich descriptions of cases and themes (Creswell & 

Poth, 2018; Merriam, 1998; Merriam & Tisdell, 2015). A case study design was more 

appropriate for my study for several reasons. First, it allows a researcher to concentrate 

on a single phenomenon, or case, and aim “to uncover the interaction of significant 

factors characteristic of the phenomenon” (Merriam, 1998, p. 29). Those factors being 
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communicating multiplicative thought and social semiotics. Second, as the objective of 

this study was to answer the “how” semiotic resources and multi-modal tools enhance 

communication the descriptive aspects of a case study will assist in telling the story of 

what students produced during activities. I conducted a descriptive exploration of how 

social semiotics can enhance student communication of multiplicative knowledge 

through activities implemented within the bounds of a third-grade classroom. By limiting 

this study to a single classroom and narrowing foci to one female and one male student 

from each of the knowledge levels (beyond, on level, approaching), I was able to analyze 

the discursive practices and multiplicative themes shared semiotically by groups of 

students within the case. This within-case analysis encompasses thematic analysis which 

looked for common themes that transcend the case and is rich in the “context of the case” 

(Creswell & Poth, 2018; Merriam, 1998; Yin 2014). As cited in Merriam (1998), Miles 

and Huberman stated that “by looking at a range of similar and contrasting cases, we can 

understand a single-case finding, grounding it by specifying how and where and, if 

possible, why it carries on as it does. We can strengthen the precision, the validity, and 

the stability of the findings” (p. 40). 

Site 

The site for this study was chosen in a purposive manner (Creswell, 2012) due to 

my work as a co-teacher, which I will address in Role of the Researcher section, and its 

use of Thinking Maps: Language for Learning resource, which will be addressed in the 

data collection section. The study was conducted in the 2021-2022 school year in an 

urban school district in the Northwest. The school district’s demographics are 78.3%-
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White, 11.4%-Hispanic, 4%-Black or African American, 3%-Asian and 1%-Native 

Hawaiian or Other Pacific Islanders.  

The school chosen as part of this study is Burton Elementary School (BES; a 

pseudonym).  BES is a school with a traditional program (English instruction) and dual-

language program (Spanish and English instruction) in one building and a total of five 

hundred eighty-four students from Pre-Kindergarten to sixth grade. The third-grade 

traditional classroom was part of this study. BES is a title one school which qualifies for 

students’ free breakfast, lunch, and snack programs. The demographics of the school are 

49%-White, 36%-Hispanic, 7%-Black or African American, 5%-Two or more races, 1%-

Asian and 1%-Native Hawaiian or Other Pacific Islanders.  

Participants 

The classroom selected as part of this bounded, case study was a third-grade 

classroom in a Title I school. Twenty-six students (eleven female, fifteen male) and one 

educator were part of this class. The classroom was selected based on their availability 

and their interest in participation. Specifically, six students were purposively sampled 

from the twenty-six students for data collection and analysis in this case study. Part of 

purposive sampling “involves identification and selection of individuals or groups of 

individuals that are proficient and well-informed with a phenomenon of interest” (Etikan 

et al., 2016, p. 2). Before engaging in the study, Institutional Review Board (IRB) 

approval was sought along with participant permission from the school district, principal, 

student participants and guardians (see Appendix A for IRB approval). Jansen et al. 2009, 

specified that students’ mathematical learning goals should be shared or “mutually 

understood and committed to by all participants” (cited by Cobb and Jackson, 2011, p. 
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12). Therefore, educator participants were consulted from the studies’ development. 

Theoretically, we wanted to explore the semiotic resources and modalities students use to 

communicate their mathematical development as it emerges in the social situation of the 

classroom in the content area of multiplication.  

The students were in their seventh month of third-grade. Class demographics are 

62%-White, 7%-Hispanic, 7%-Black or African American, 12%-Asian, and 7%-Two or 

more races. The third-grade class at Burton Elementary School (BES; a pseudonym) 

comprise 26 students. Of the 26 students, 20 have been part of the class since beginning 

the school year, starting August 2021. Before their third-grade year, their first and 

second-grade years of schooling were interrupted due to the Covid Pandemic. The 

students did not have formal instruction in multiplication before unit instruction as part of 

the third-grade curriculum as it is not a significant work of any prior grade.  

Before beginning the study, the students completed three units of instruction that 

included the teaching of multiplicative reasoning. Unit two of multiplication instruction 

began in October 2021 with a combination of teacher-created materials and the Unit 

Module from the Developing Mathematical Thinking Institute curriculum resources 

(DMTI, 2021, https://www.dmtinstitute.com/curricular-resources). The lessons were co-

planned and co-taught by the researcher (myself) and classroom educator Mrs. Brooks (a 

pseudonym) until December 22, 2021. See table for the sequence of instruction:  

https://www.dmtinstitute.com/curricular-resources
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Table 1 Sequence of Instruction 

Duration: Unit Activity: 
October 18-November 
19, 2021 

Literacy Mathematics connection Amanda Bean’s Amazing 
Dream integrated lesson. 
DMTI Unit 2 Multiplication, Arrays, and Area 

December 20-22, 
2021and January 10-14, 
2022 

Problem-solving with four operations – single and multi-
step problems 
Teacher created contexts 

January 18-February 17, 
2022 

DMTI Fact Fluency Module – strategy card development 
DMTI Unit 5 Multiplication, Division, Area, and Perimeter 
Teacher created area and perimeter project 

 
Data was collected on six students purposively sampled from the case’s available 

students and whose parents gave informed consent for their participation in the study. 

These six students were selected based on their I-Ready Diagnostic (Curriculum 

Associates, 2017), a district required curriculum-based measure given to students three 

times a year (August, December, and May). The teacher and I reviewed scaled scores 

from students I-Ready Diagnostic and categorized the students into groups of beyond, on, 

and approaching grade level based on their scores. The students were assigned a number 

by the teacher. The numbers were then entered for the students on slips of paper and three 

piles of numbers based on the categories listed above were made. A number was selected 

randomly until we had one female and one male for each category of beyond, on, and 

approaching level for a total of six students. 

The students participated in six activities as part of established classroom 

activities. To address the main research question: How do semiotic resources and tools 

enhance students’ abilities to explain their multiplicative reasoning? and successive sub- 

questions, I analyzed the activity and thematic structures afforded by using a student-

generated tool (described in more detail later), which served as an artifact for data 

collection.  Video recordings of the lessons allowed me to analyze the social interactions 
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and the student-generated tools impact on its development and utilization in classroom 

discourse considering themes and modalities present. 

Semi-structured post-interviews with the same selected students provided an in-

depth and personal account of the activities, modality choices, and use from different 

students of varying knowledge levels. 

Role of the Researcher 

The selection of this site and classroom as a setting for this research study were 

due to my role as a co-teacher at the site. In research co-teaching has been defined as 

“two or more people sharing responsibility for teaching all students assigned to a 

classroom” (Villa et al., 2013, p.3). It has now been expanded to include partnerships 

between the general educator and math and reading specialists, the gifted and talented 

teacher, and the ELL teacher (Honigsfeld & Dove, 2010, 2019; Villa et al., 2013). This 

approach calls for crossing the boundaries of typical collaboration and combining the 

skills of two highly qualified educators to share responsibility for student instruction 

(Bahamonde & Friend, 1999; Friend et al., 2010; Honigsfeld & Dove, 2010, 2019; 

Theoharis & O’Toole, 2011; Villa et al., 2013). Shared responsibility includes lesson 

planning, teaching, classroom management, assessment, grading, and student and parent 

feedback. From the shared purpose and focus on student learning, both educators must be 

willing to meld their teaching styles, expand their pedagogies and present themselves as 

equal partners during instruction. 

Being an already established colleague at the school and a participant as an 

educator in co-teaching for the last three years has allowed me to understand the third-

grade team, their long-term mathematics goals, and insight into their daily mathematics 
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instruction. Furthermore, to present an in-depth analysis of this case study, it is necessary 

for the researcher to develop as much expertise in relevant topic areas as possible, collect 

and integrate many forms of data collection (interviews, observations, documents, audio-

visuals, etc.), and utilize them to describe themes, cases and perform cross-case analysis 

(Creswell & Poth, 2018). As the researcher, it is important to note my positionality 

affords me an “inside look” at these partnerships. It will be essential to generate rich, 

detailed descriptions (Merriam & Tisdell, 2015), triangulate and corroborate evidence 

(Lincoln & Guba, 1985, Yin, 2014), and collaborate with participants consistently for 

accuracy of accounts, peer review, and debrief of data and process (Creswell & Poth, 

2018; Lincoln & Guba, 1985; Merriam & Tisdell, 2015). As a co-teacher, I planned with 

every grade level weekly for 45 minutes from August to December. This allowed us to 

discuss curriculum, weekly learning goals, assessments, and short and long-term planning 

goals. 

Although I was a participant-observer in the grade level co-planning sessions, I 

was not a part of the daily lesson delivery as a co-teacher during this study. I consider my 

position parallel to a design researcher who seeks to establish relationships between the 

research of instructional design and its practical application, student learning individually 

and socially, and tools which support development (Bell, 2004; Cobb, 2003; Cobb et al., 

2003, Cobb & Jackson, 2011, Prediger et al., 2015). As a known educator in the building, 

I was not present in the classroom during lesson recordings. 

Data Collection 

This study reflects the principles for qualitative case study (Creswell & Poth, 

2018; Merriam & Tisdell, 2015), while combining analysis perspectives from semiotic 
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theory (Halliday, 1993; Hodge et al., 1988; Kress, 2010; O’Halloran, 2015) within 

socially constructed Discourse (Brenner, 1994, 1998; Gee, 2004, 2014). To address the 

research questions guiding this study, the data was collected in a third-grade classroom 

over six instructional lessons. Data collection from students included one written prompt 

response, two student-generated tools, and one multiplication probe. Video data consisted 

of video recordings of lessons (for a total of three lessons) and audio recordings of semi-

structured interviews (a total of six). These data sources are detailed below (see Table 2 

for data collection and timeline).  
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Table 2 Data Collection and Activity Timeline 

Project Activity           

 Week 1 Week 2 
Activity 1: Prompt (no 
tool) D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 

Prompt for student 
response 
What do you know about 
multiplication? 

x    

 

    

 

Data Collection: Video-
taped lesson, document x          

Activity 2: Prompt 
(with tool)           

Prompt for student 
response 
What do you know about 
multiplication? 

  x  

 

    

 

Data collection: Video-
taped lesson   x        

Activity 3: Frame 
Thinking (with tool)           

Continue with tool from 
activity two     x      

Data Collection: Video-
taped lesson, artifact     x      

Activity 4:  Probe (no 
tool)           

Multiplication fact probe      x     
Data collection: 
document      x     

Activity 5: Probe (with 
tool)           

Multiplication facts 
added to tool        x   

Data collection: Video-
taped lesson        x   

Activity 6: Frame 
Thinking (with tool)           

Continue with tool from 
activity five          x 

Data collection: Video-
taped lesson, artifact          x 

Interviews: Day 12-14 
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Documents 

The prompt for activity one initially addresses students’ understandings of 

multiplication. Students were prompted with the question, ‘What do you know about 

multiplication?’ The structure of activity one required students to respond to a writing 

prompt. Writing prompts are part of classroom instructional routines and are a cross-

curricular tool for students to generate ideas about a given topic with the potential to 

share those ideas discursively. The interactive routine for activity one provided a time to 

communicate their ideas about multiplication individually, then interactively with a 

partner, and finally with the class. A time allotment of ten minutes was given for students 

to write with additional or less time provided by the teacher as she monitored the 

classroom. Using their responses to the prompt, the teacher commenced classroom 

discussion and sharing ideas. Each discourse is denoted in a different color to 

differentiate from individual ideas and those gathered through discourse with partners 

and class. The documents were collected and secured for within-case analysis with the 

tool constructed from activities two and five. I compared the document from students’ 

writing prompt response to what was produced in their student-generated tool to analyze 

the discourse produced in the activity structure. Recorded observations provided 

confirmation of the activity structure and discourse of the class, and semi-structured 

interviews provided insight into individual student thoughts shared in the document and 

to triangulate data. 

Another document slated for collection from activity four was a multiplication 

fluency probe. Students were asked to complete as many of the facts that they could 

recall assessing student procedural fluency of multiplication. The fluency probe gave 
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insight into students’ automaticity with facts and what kinds of facts were answered. The 

semi-structured interviews allowed a glimpse beyond the procedural fluency of the probe 

to the reasoning and strategies that are engaged. Analysis will examine student 

expression of their understanding through the probe and tool rather than only observing 

the traditional ‘drill and kill’ approach to multiplication fact fluency. 

Tool 

The notion of mapping thought to convey meaning and reflect learning has been 

popularized by the use of graphic organizers (Dexter & Hughes, 2011; Fisher & Frey, 

2018; Monroe, 1998; Zollman, 2009), concept mapping (Baroody & Bartels, 2001; 

Brinkmann, 2003; Novak, 2006; Ryve, 2004) and Thinking Maps® (Hyerle, 1996, 2004, 

2008). All have been utilized as instructional tools in classrooms across content areas, 

providing a visual pathway to represent and record valuable information before, during or 

after learning. This makes mapping a way to deliver content instruction, facilitate student 

thinking, and be useful for assessment (Baroody & Bartels, 2001; Brinkmann, 2003; 

Novak, 2006; Ryve, 2004). Thinking Maps® are a routine picture of a thought process 

that students can depend on to share and filter information. They are different from 

graphic organizers as they focus on a consistent visual that co-exists with a specific 

thought process (Hyerle, 1996, 2004, 2008). According to Hyerle (2008), the “visual-

spatial-verbal displays of understanding support learners in transforming static 

information into active knowledge  . . . uniting linguistic, numerical, and scientific 

languages together on the same page” (p. 7). The opportunity for students to generate a 

visual tool of their learning, with differing semiotic resources, will be a critical portion of 

the data generated that address the research questions of this study. Although there are 
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eight Thinking Maps® visual tools, this study will focus on using one of these as a 

student-generated tool. 

The Circle Map’s (Hyerle, 1996, 2004) purpose is to define a concept with 

context. Other purposes are its support in activating prior knowledge, telling, 

brainstorming, listing, and connecting information on a given topic. The idea is stated in 

a small middle circle of the paper. The outside of the circle includes information about 

the central idea produced by the user, including words, phrases, drawings or other 

representations indicative of what they consider relevant about the topic. After 

completing the idea-generating portion of the tool, all thought is framed within an outer 

square, also known as the Frame of Reference (Hyerle, 1996, 2004). Still referencing the 

idea in the middle circle, the frame of reference extends thought to who or what 

influenced the ideas and forms added to the circle, and statements synthesizing “what?” 

the information is, and “why” it is relevant. 

BES has been integrating Thinking Maps® as part of its curriculum across grade 

levels kindergarten through sixth grade as a schoolwide initiative since 2017. An initial 

full-day training was implemented in 2017 with ensuing follow-up trainings (45 minutes, 

periodically throughout the year) and refresher training (half-day August 2021). Initial 

and follow-up trainings were provided by myself and District personnel. Each grade level 

is responsible for formulating a plan for introducing and instructing all eight maps to 

students within the first quarter of each school year. Mrs. Brooks has been a participant at 

all trainings since the onset in 2017.  

Merriam and Tisdell (2015), consider artifacts as things or objects that represent 

some form of communication. To address the research questions, activities two and five 
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comprised the usage of the student-generated tool as a form of visual communication. 

First, students generated semiotic ideas about multiplication in the outer circle 

individually and then collectively through classroom interaction. The interactive routine 

for activity two and five provided a time to communicate their ideas about multiplication 

individually, then interactively with a partner, and finally with the class. Activities three 

and six will involve the conclusion of the tool with the inclusion of the frame of reference 

first individually and then through classroom interaction. Each interaction is denoted in a 

particular color to differentiate from individual ideas and those gathered through 

discourse. The central ideas for the student-generated tools are What do you know about 

multiplication? for activity two and Multiplication Facts for activity five. The tools were 

collected and secured for analysis. 

Semi-Structured Interviews 

Six students were chosen for semi-structured interviews.  Student scaled scores on 

their I-Ready measure designated students as approaching, on, and beyond grade level. 

Two students (one female and one male) were chosen from each listed category.  The 

interviews were audio recorded to discuss the documents and student-generated tool as 

created during the activities. As the tool is individualized to the students, the opportunity 

to explain and justify semiotic resources added to their tool and the impact of the 

interaction on the further development of mathematical ideas adding insight to their 

mathematical conceptions. 

A self-developed interview protocol (see Appendix B) was used to introduce the 

interviewer, review the purpose of the study, list interview questions to use as a guide, 

and the space to record information. As highlighted by Merriam and Tisdell (2015), 
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interviews with structured questions can obtain more specific information, while the 

addition of more open-ended questions encourages participants to freely respond and 

elaborate. The interview protocol for this study, included a variety of specific questions 

to obtain information about the work produced by students on the documents and the 

student-generated tool and open-ended questions to elicit information about the semiotic 

resources used to convey thought and the impact of the interaction on their conceptions. 

Guided by the research questions, the semi-structured interviews were critical to 

exploring the questions stated in this study. Through these interviews, information was 

gathered from students of varying levels about their multiplication conceptions, 

modalities used to communicate those conceptions, and classroom interactions that 

contributed to conceptions. Data from these observations were transcribed verbatim for 

translation of speech into writing. Verbatim transcripts are most often used by qualitative 

researchers to capture the exact dialogue used by participants, despite how time-

consuming this process can be (Lodico et al., 2006). I compared this data to the 

documents and tools produced in classroom lessons and recorded classroom observation 

during analysis through triangulation. 

Video-Taped Lessons 

Classroom activities were video recorded for observation and analysis as part of 

this study. Classroom observations of activity one (writing prompt), activity two and 

three (student-generated tool), and activity five and six (student-generated tool) were 

completed. Classroom activities were approximately twenty to thirty minutes in duration 

each. Analysis of video observations for multi-modality “involve repeated viewing of the 

data . . . honing in on excerpts . . . and viewing the data alongside the logs” in order to 
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refine criteria for sampling data and developing analytical ideas based on the research 

questions (Bezemer & Jewitt, 2010, p 188). 

Whether participating in classroom discursive practices with or without using the 

students’ generated tool, the interactions are a valuable component of data connected 

with the social semiotic theory motivating this study. Video recordings of classroom 

interactions allow perspective on the collaborative setting and the opportunities for 

students to communicate and clarify their ideas with and without tools. These videotaped 

interactions during classroom discourse were transcribed verbatim. The analysis sought 

to observe themes across activities and the semiotic resources present in communicating 

mathematically during the discourse. Triangulation amongst other data collection 

methods was sought. 

Data Analysis 

According to Merriam and Tisdell (2015), the theoretical framework and research 

questions should guide what the researcher aims to observe. Therefore, the data collected 

was aligned with the research questions within the lens of communication (Brenner, 

1994, 1998; Chapman, 2003; Gee, 2004, 2014; Lemke, 1987) and social semiotic theory 

(Halliday, 1993; Hodge et al., 1988; Kress, 2010; O’Halloran, 2015). Specifically, the 

gathered data provided insight into how a multi-modal student-generated tool influenced 

communication and how knowledge was conveyed through modality, both individually 

and interactively. The figure 2 shows how I initially attempted to analyze data and 

address the findings. 
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Figure 2 Initial Data Analysis 

Creswell and Poth (2018, p. 185-197) refer to the analysis of data holistically and 

iteratively, rather than as step-by-step process through activities, as the “Data Analysis 

Spiral”. The research process was guided by this ‘spiral’ which includes the procedures 

of memoing, coding, analysis, representing and visualizing data. The process relied on 

interview and observation transcripts, documents, and tools produced from the activities. 

I further analyzed the discourse by looking at the activity and thematic structures that 

were evident in the data.  

The data collected investigated how the use of a student-generated tool assists in 

sharing multiplicative knowledge through semiotic resources. I followed the 

recommendations of several authors of research (Creswell & Poth, 2018; Merriam, 1998; 

Merriam & Tisdell, 2015; Saldana, 2013) by collecting and analyzing data to follow the 

inductive nature of qualitative research. As the data was collected through documents and 

tools, I began the process by repeated readings of the data to visualize what the data was 

showing and immerse in the details (Creswell & Poth, 2018). This allowed for the initial 

organization of data in table form and memoing process to begin. These memos allowed 

for primary codes and themes to emerge from the data. 
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Within-case analysis focused on those themes evident in the semiotic resources 

and student-generated tool utilized for participating discursively. The iterative process of 

assessing themes across data assisted in spiraling through analysis (Creswell & Poth, 

2018) to formulate connections among the ways students of varying abilities are 

communicating multiplicatively through semiotic resources. Through many iterations of 

reading and reviewing data figure 3 represents a focus on discourse analysis undertaken. 

 
Figure 2 Actual Data Analysis 

Memoing 

I created document memos (Creswell & Poth, 2018) to capture developing 

concepts and evolving ideas which are “helpful for summarizing and identifying code 

categories for themes and/or comparisons across questions or data forms” (p. 189). These 

descriptive memos assisted in applying codes and developing themes in the initial 

observed document and tools. This inductive approach to analysis allowed me to see 

emerging themes that correlated to an existing framework for mathematical 

communication identified in the literature on mathematics and language. Cyclical 
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collecting of coding and memoing allow codes to cluster and interrelate, where emerging 

categories are identified (Saldana, 2006), supporting the data analysis spiral (Creswell & 

Poth, 2018). Analytic Memos (Saldana, 2006) helped to structure the sequence of the 

Discourse analysis into activity and thematic structures, by organizing the analysis, and 

determining the continued spiral through the data towards results. 

Activity Structure 

The structure of the activities assisted in the organizing of data into prepared files and 

delineating text units based on the interactions as part of the activities. The structure of 

activity one required students to respond to a writing prompt. Writing prompts are part of 

classroom instructional routines and are a cross-curricular tool for students to generate 

ideas about a given topic with the potential to share those ideas discursively. The 

interactive routine for activity one provided a time to communicate their ideas about 

multiplication individually, then interactively with a partner, and finally with the class. 

Using their responses to the prompt, the teacher commenced classroom discussion and 

sharing ideas. Each discourse is denoted in a different color to differentiate from 

individual ideas and those gathered through discourse. This allowed for the data to be 

categorized into a table and sorted by those semiotic resources shared without the tool. 

The data was further organized by text structures following the interaction of the activity 

and were broken apart by individual, partner, and classroom discourse. The student-

generated tool was organized in a similar way. As noted previously, the tool is an 

established cross-curricular instructional tool as part of the classroom involved in this 

study. The interactive routine for activity two also provided a time to communicate their 

ideas about multiplication individually, interactively with a partner, and then with the 
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class. Each discourse is denoted in a different color to differentiate from individual ideas 

and those generated socially. 

The data was then categorized into a table and sorted by those semiotic resources 

shared with the student-generated tool. These differing segments of data assist in 

describing the related phenomena with category names (Lodico et al., 2006). Text 

structures based on the individual, partner, and classroom discourse were categorized 

accordingly. When analyzing data, it was noted that a column for off-topic responses was 

needed as a category to provide the most comprehensive understanding of all student thought 

shared in response to the question in activity one and two. 

Thematic Structure 

I used an inductive approach to analysis in which thoughts from memos began the 

initial coding process (Merriam & Tisdell, 2015). In consistent reading and reviewing of the 

data before coding, student responses about multiplication were evident with the tool and 

without. The data can “furnish descriptive information, verify emerging hypotheses, advance 

new categories, offer historical understanding, track change and development,” and so on 

(Merriam & Tisdell, 2015, p. 182). Emerging codes in the data furnished tracked changes 

amongst the different interactive structures, descriptive information, and advanced categories 

for codes. 

Coding is “the process of identifying different segments of the data that describe 

related phenomena and labeling these parts using broad category names” (Lodico et al., 

2006, p.305). Those multiplicative ideas that were identified as initial codes in the memos 

then became those broad category names. Data was then highlighted and coded within the 

text.  It is recommended by Merriam and Tisdell (2015) to “review the literature that you 

have consulted in setting up your study” (p.177) to enhance analysis. As I viewed the 
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multiplicative thought coded initially, themes related to communicating mathematically 

emerged in connection to the aims of the conceptual frameworks of communication, 

multiplication, and social semiotics. In particular, Brenner (1994, 1998) classified 

mathematics classroom communication into three categories Communication About, In, 

and With Mathematics. Communication With encompasses the utilization of mathematics 

as a tool for enacting math through real world situations and problem solving, which is 

beyond the scope of this paper. The components of Communication About and 

Communication In incorporate the understanding and language aims of the conceptual 

framework assisting in classifying initial codes within themes. Table 3 below outlines the 

initial codes and how they relate to themes and their descriptions. 

Table 2 Initial Codes 

Multiplicative 
thought 

Initial Codes Themes 
Rules 
 
Processes 
 
Strategies 
 
Reasoning 

Communication About 
Mathematics 
 
Reflecting, describing, reasoning 
with others 

Vocabulary 
 
Language 
 
Symbols 
 
Representations 
 
Facts 

Communication In Mathematics 
 
Register and representations 

 

The recurring patterns in the initial codes are subsumed under these themes to convey 

mathematical knowledge about multiplication. Therefore, Brenner’s framework embodies 

the communicative aspects of language expression and mathematical knowledge as 
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interwoven constructs to help define and complete the analysis of the data to answer the 

research questions. Finally, detailed descriptions of semiotic resources, and modes, used 

by the students during activities and interviews were categorized in the framework.  

I coded the data sources collectively for common themes which emerged from the 

initial memoing and codes to classify those themes tied to communication frameworks for 

mathematics to triangulate data amongst tools, documents, and transcripts. These multiple 

methods of data collection and analysis for triangulation function to strengthen reliability 

(Merriam, 1998). Recorded observations of activities one, two and three, and five and six 

were used as a secondary source of data to corroborate activity sequence and student 

interactions. Those activities were transcribed verbatim. The coding framework identified 

above was then applied to transcripts for coding and analysis based on the thematic 

structure. Student interviews triangulated data from activities and classroom 

observations. The semi-structured student interviews of the six students of varying levels 

were audio recorded and translated verbatim. The coding framework was applied to these 

transcripts for coding and analysis. Triangulation becomes the process of confirming 

evidence and comparing these different sources and perspectives from different 

participants (Lodico et al., 2006). 

Analysis Summary 

In qualitative analysis, validity can be attempted in different ways. One way is 

through within-case analysis and cross-case analysis. Defined by Creswell and Poth 

(2018) within-case analysis provides the “description of each case and themes within the 

case, followed by a thematic analysis across the cases, called a cross-case analysis” (p. 

100). The within-case analysis is bound within the single third-grade classroom and the 

description of activity structures and themes coded and identified through frameworks. 
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The cross-case analysis observed those themes within randomly selected participants of 

varying knowledge levels (beyond, on, and approaching, and one female and one male 

from each of those categories). This provides an in-depth glimpse into the bounded case. 

Depth allows for rich, thick descriptions which allows readers to determine the 

generalizability of the research position to their own situations (Merriam, 1998). 

Qualitative researchers seek to accurately represent the views and experiences of 

their participants through the participants own words (Lodico et al., 2006). During semi-

structured interviews students reviewed their documents and tools created and collected 

for data and used them to share ideas and respond to questions. The modality of reading 

their ideas aloud during the interview verified written modalities in their documents and 

tools. Interviews also allowed students to express why they added ideas or resources and 

their importance in communicating their multiplicative knowledge. Staying true to 

participants’ views and perspectives and sharing their ideas accurately can be validated 

through respondent validations, or member checks (Creswell & Poth, 2018; Merriam, 

1998; Merriam & Tisdell, 2015). These member checks, defined by Merriam and Tisdell 

(2015), are the process involved in “taking your preliminary analysis back to some of the 

participants and ask[ing] whether your interpretation “rings true”” (p. 217). A member 

check for plausibility of findings was completed by Mrs. Brooks, the classroom teacher. I 

shared the data analysis figure, thematic coding structure (with initial codes and final 

themes), and organized tables of data. Mrs. Brooks reviewed data looking for variants 

that would not fit within the thematic structures of communication about and in 

mathematics. We jointly examined how student thought was coded within the framework 

and discussed particular student ideas and their representations in each theme. 
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Limitations 

In this section, I will address the limitations of this study as they pertain to 

generalizability, timeline, reliability, and the COVID pandemic. 

1. There is decreased generalizability due to small sample size of one classroom, 

with six students, from the same school district. The six students randomly chosen 

from the class from groups of students of varying knowledge levels, may not be 

generalizable to other classrooms and school settings. 

2. The study took place a month after the students’ final multiplication instructional 

unit ended. Many of the students expressed “forgetfulness” about the content 

since it had been so long since the instructional unit affecting reliability of data 

produced by participants. 

3. Data was collected in the form of documents, tools, video observations and semi-

structured interviews within a two-week period. Activities could have been too 

close together to get accurate data from different activity structures. One could 

also consider collecting data from the beginning of the multiplication instructional 

unit to the end, attempting a longitudinal study. 

4. Participants reviewed their documents and tools produced during the activities in 

the semi-structured interviews. Mrs. Brooks, the classroom educator, also 

participated in a member check of the data tables and coding structure. A separate 

peer review could have strengthened internal validity. 

5. COVID pandemic may have impacted participants in the form of learning loss if 

quarantining caused them to miss consecutive days during the unit. 
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Methodology Summary 

The methodology defining this study, and the analyses and interpretations of the 

data, derive from general qualitative case study research (Creswell & Poth, 2018), 

through a semiotic and social perspective. To address the main research question, and 

sub-questions, attention was given “to the variety of representations developed by the 

students, the tools and manipulatives used, and how these interact with the class’s 

developing ways of talking, explaining, and justifying their thinking” (Prediger et al., 

2015, p. 882). The Discourse were analyzed for dual purposes: how the multi-modal 

student-generated tool enhances communicative language use individually and/or through 

interaction and the types of mathematics communication expressed.  

An inductive data analysis involved examining many small pieces of information 

and abstracting a connection between them (Creswell & Poth, 2018; Merriam & Tisdell, 

2015). The connection was found in extant literature on communication and mathematics 

and themes developed to support the aims and objectives of this study. Language and 

modalities are embedded in every aspect of the framework and support a focus on 

communicating themes about and in, multiplication (Brenner, 1994, 1998). It is with this 

thematic lens of the Discourse that the findings are presented in answer to the research 

questions of this study. 
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CHAPTER FOUR: FINDINGS 

Introduction 

As stated in Chapter one, this study examined the role of semiotic resources in 

communicating students’ understanding of the mathematics content area of multiplication 

using a multi-modal student-generated tool. In mathematics, educators can facilitate the 

development and utilization of expressive and receptive language, whether informal or 

formal, and semiotic resources, including tools that can represent and visualize student 

thinking. In understanding the significance of students’ meaning-making, tools are 

viewed as an integral mathematical activity for engaging reasoning (Cobb & Bowers, 

1999). This acknowledges a connection between building language through social 

interaction and the influence of tools and semiotic resources in developing mathematical 

understanding. 

The study design was a qualitative case study that included a single third-grade 

class with an in-depth look at six students of varying knowledge levels. I collected data 

through artifacts and documents produced during classroom activities, classroom 

observations, and one-on-one interviews. Discourse analysis investigated how language 

was being used, and how meaning was constructed in different activity structures within 

the classroom community. In this study, the “how” pertains to the thematic structure of 

communicating meaning about and in mathematics with semiotic resources in the social 

context of a classroom. I conducted data analysis through triangulation and coding of 

interview transcripts, observational transcripts, and classroom artifacts and documents. 
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This chapter conveys the research study’s findings through the summation of the 

communication expressed. Students synopsized their thoughts on multiplication with and 

without a student-generated tool, individually and socially, through interactive activities. 

Two dominant themes structure the findings: communication about and communication 

in mathematics while considering how students of varying abilities and gender utilize 

semiotic resources to demonstrate knowledge. Ideas shared during classroom interactions 

could have been added to student documents and tools. Interviews triangulated how or if 

students communicated those ideas. Descriptions of the themes and data extracts were 

selected from the Discourse analysis to portray patterns of language communication and 

semiotic resources utilized to address the research questions, aims, and objectives of this 

study. For complete data tables of each category of students’ communication see 

Appendix C for Beyond, Appendix D for On, and Appendix E for Approaching. The 

research questions were as follows: 

Research Questions 

How do semiotic resources and student-generated tools enhance students’ abilities 

to communicate their multiplicative reasoning? 

1. How does the utilization of the student-generated tool assist students in 

communicating mathematically? 

2. What semiotic resources are evident in student activity and how are students 

utilizing them? 

3. How does the student-generated tool influence the expression of multiplicative 

understanding?  
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Communication About Multiplication 

When communicating about mathematics (Brenner, 1994, 1998), students 

describe their thinking and reason about their own processes or the processes of others.  

This links the theme closely with the CCSS (2010) Mathematical Practice Standards, 

which ask students to reason and/or explain the problem-solving processes individually 

and socially within the classroom. Student participation in mathematical practices 

provide a glimpse into how students are developing mathematical understanding and how 

that understanding evolves through classroom interaction. It does not include specialized 

vocabulary as part of the mathematics register. In this theme, student ideas about the 

processes of doing multiplication, the steps they would take, the strategies they would 

use, along with justifying and reasoning when they would use certain strategies were 

highlighted.  

The theme of communicating about multiplication provide evidence for the 

research questions of this dissertation in line with the aims and objectives of this study. 

The research questions were addressed as follows: The data in this section represent what 

and how students communicated mathematically with and without utilizing the tool, 

individually and through interaction, which is the focus of question one. In the tables 

below, some images from strategies, which would be Communication In, are referenced 

in the section for Communication About as students used the images to reason about the 

processes of multiplication. Semiotic resources present in images, signs, and language 

modalities speak to question two of the study. Question three focuses on the 

multiplicative communication students enacted when using the tool with the framework 

and corroborated with quoted student statements from interview transcripts. 
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The data provide a within-case analysis of students of varying knowledge levels 

and genders. Each level (beyond, on, approaching), shares student communication about 

multiplication with and without the tool. Classroom observations verified the activity 

structure and student interaction. The semi-structured interviews were a chance for 

students to extend Discourse on ideas incorporated individually or interactively.  

Beyond: Without and With the Tool 

Table 3 Beyond/Communication About/Without Tool 
Beyond   Without tool 
Female: Male: 
Number line 
Bar model 

5x5 

Post interaction without tool: 
Female: Male: Both: 
Repeated addition Anything times 10 take away 

the 1 and add that number 
 

Counting the first number 
then the second number which 
is 5 x 2 
 
When you times 1 you get the 
number you started with  
 
Count 5 one time 
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Table 4 Beyond/Communication About/With Tool 
Beyond With Tool Explanation from 

interview: 
Female:   Add the second number, 

how many times the first 
number says 
“This one (points to first 
arrow) tells you how 
many times you do that 
one (follows arrow with 
finger on second arrow.” 

Post 
interaction 
with tool: 

Ratio table, repeated addition, skip 
counting. 
 

“I added more strategies 
like ratio table, repeated 
addition, and skip 
counting because that 
was just helping figure 
out more about 
multiplication. Because, 
like there are more than 
one way to get the 
answer for 
multiplication.” 

Male:  “Because I think most 
people wouldn't think of 
doing that. They would 
keep the same number 
or... I don't know.” 

Post 
interaction 
with tool: 

Ratio table, Bar model, Area model, Array, 
Repeated addition, Skip counting 

Speaker 1: “All of the 
things that you wrote on 
here, what would you 
consider is a resource for 
multiplying? Something 
that would help you.” 
8BB: “Probably one of 
these four” [points to 
four strategies in blue, 
from partner, ratio table, 
bar model, area model, 
array].” 
Speaker 1: “One of 
those four. Why so?” 
8BB: “Because there are 
other ways of solving 
multiplication.” 
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Beyond With Tool Explanation from 
interview: 
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On: Without and With Tool 

Table 5 On/Communication About/Without Tool 
On   Without tool 
Female: Male: 
So 12 x 2 is like 12 + 12=24 you can 
count by 12’s or 2’s 12 times 
 

Add the number at the two times and you add 
the number to itself as many times as the 
other number 

Post interaction without tool: 
Female: Female: communication Male: 
Post interaction 
without tool: 

Post interaction without 
tool: 

Post interaction without 
tool: 

Repeated addition 
 
Counting the first 
number then the 
second number 
which is 5 x 2 
 
Anything times 10 
take away the 1 and 
add that number 
When you times 1 
you get the number 
you started with 

“Repeated addition is 
basically multiplication.” 
“Anything times 10 makes the 
one and add the number. So 
six times 10, 60. So you add, 
and then this other one, it's the 
number.” (attempts to explain 
10 rule) 

“Any number times one gets 
the same number. So one 
times six gets six.” 

No communication about 
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Table 6 On/Communication About/With Tool 
On With Tool Explanation from interview: 
Female: use for area 

model 
 

“So this would be four. Two... And 
then you'd have to multiply this by 
this 
[points to 4 and 2] 
... to get what's inside of the box. 
[shades inside with finger]” 

Post 
interaction 
with tool:  
 

Repeated addition “Because 12 times something, or 12 
times two, you have to add 12 plus 
12.” 

“Repeated addition for five times, 
because you can just count five, 10, 
15.” 

Male:  

 
 

 

“These are all for 5 X 5. A ratio 
table, so for one, on the bottom is 
the multiplication and on the top is 
how many times you add it. So for 
this top, this is the number, how 
many times you have to add the 
number to itself. And then this is 
how many times. And this is what, 
like 5, 10, 15, 20, 25. And this is 
counting up by fives.” 

“This is probably the easiest [points 
to repeated addition]. It’s like 
groups. I mean, this is the easiest, 
but this is probably the second 
easiest, the ratio table and you can 
count over and over.” 

Post 
interaction 
with tool:  

Counting “Multiplication, you could count 
like this. [points to repeated 
addition equation.]” 

  



95 

 

Approaching: Without and With Tool 

Table 7 Approaching/Communication About/Without Tool 
Approaching   Without tool 
Female: Male: 
Ratio table Find what you are multiplying then look at 

the first number like 2 then look at the next 
number like 5 and count 5, 2 times and will 
get 10 

Bar model  
Post interaction without tool: 

Female: Male: Both: 
 Anything times 10 take away 

the 1 and add that number 
 
“So, anything times one is the 
one, because back to my 
strategy, I said two times five. 
I count two one time. I'm 
going to skip around. Two 
only one time.” 
 

Counting the first number 
then the second number 
which is 5 x 2 
 
When you times 1 you get 
the number you started 
with 
 
Repeated addition 
Count 5 one time 
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Table 8 Approaching/Communication About/With Tool 
Approaching With Tool Explanation from interview: 
Female:  “A number line, you can use a 

number at the beginning. And 
then if you use jumps, it gets 
you to an even bigger 
number.” 

“Because you can start with a 
number and then you can use 
jumps, if you use 10 and then a 
jump of 10, that's going to get 
you to 20, and then another 
jump of 10, that's going to get 
you to 30.” 

Post 
interaction 
with tool: 

 “It is important because it tells 
you what to do, and how many 
you times the other number 
by” 

Male:  21 BA: “BM’s idea, because I 
would agree with his.” 

Speaker 1: “Okay.” 

21 BA: “If you times anything 
by one, replace with the other 
number.” 

Post 
interaction 
with tool:  

Ratio 
table:  
 

Speaker 1: “What if I gave you 
a problem of 45 times five?” 

21 BA: “45 times five?” 

Speaker 1: “Which one of 
those would you want to do 
that in?” 

21 BA: “You could do number 
line, because it has more space, 
but it’ll take more space. Ratio 
table would be better. Like I 
said before, you could do 1 of 
45, 2 of 45 and keep going like 
that.” 
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Communication About Facts 

Activity four and five of the study examined student procedural fluency in 

multiplication facts. Activity four was a fluency probe of one hundred facts ranging from 

times zeros to twelves. Activity five and six were a student-generated tool, that allowed 

students to write in any fact that they knew. The purpose of these activities was to look 

beyond the number of facts students could complete, but which facts they did answer and 

how or why the answered the facts that they did. The semi-structured interview allowed 

students to review facts shared in both activities and highlighted students’ reasoning and 

solution strategies. The tables below share the reasoning for each student in each leveled 

category after looking at their probe and student-generated tool. The data presented share 

how students reasoned about the processes they used to solve multiplication facts 

extending student communication about multiplication beyond providing a product to the 

strategies students used to solve multiplication facts. For a complete listing of data see 

Appendix F.  



98 

 

Communicating About with Fact Fluency 

Table 9 All Levels/Communication About Fluency 

Female Beyond Male 
Reasoning in interview about facts: 
 
Umm . . . . it looks like I did the anchor 
facts. Yeah, I see times 2s, times 10s, 
times 5s, 1’s 

Reasoning in interview about facts: 

“Sometimes if it's a big number times a 
small number, I just switch them. Because 
eight times six is 48. So like, I would 
have it be six times eight.” 

Female On Male: 
Reasoning in interview about facts: 

“I would switch it. That's one of my 
strategies. I'll switch them around if it's 
easier. If it's six times five, I won't do... Or 
no. Five times six, I won't do six of the... 
Or five of the sixes because I know how to 
count by fives better.” 

Reasoning in interview about facts: 

“Oh, you take it apart, so yes. So if you 
use 11 + ... Oh wait, no. I was going to 
say 11 + 3, but that's not adding. If you 
use 11 X 3, so you have to add three 1s 
and three 10s.” 

 
Female Approaching Male: 
Reasoning in interview about facts: 

“If I got 3 and then 65, I'll take the three 
and 60 and five ones and 3 ones and then 
I'll put them both together.” 

Reasoning in interview about facts: 

“First, I know this two times nine, then I'll 
know four times nine. So, two times 
seven. It'll help two times seven because 
you count two more.” 

 

Communication In Mathematics 

When communicating in mathematics (Brenner, 1994, 1998) students “speak” the 

language of the mathematics community. Communication in mathematics is a theme tied 

closely with the Mathematics Register (Halliday, 1974) and allows students to connect 

math concepts to specific formalized vocabulary, use language to define concepts and 

procedures of the content, and connect representations to extend the syntax, phrasing, and 

Discourse. It does not include problem-solving processes. In this theme, student ideas 

about the informal and formal registers, symbols, and representations, along with 

phrasing used to define concepts of multiplication, were highlighted. The theme of 
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communicating in multiplication provides evidence for the research questions of this 

dissertation in line with the aims and objectives of this study. The research questions 

were addressed as follows: The data in this section represent the informal and formal 

ways students defined multiplication with and without utilizing the tool and individually 

and through interaction, which is the focus of question one. In the tables below, signs, 

symbolic notations, and representations were used by students to Communicate In 

multiplication. Some of the visual representations of strategies like the number line, ratio 

table, bar model, array model was also present in data for Communication About if 

students used them to explain and or justify when they would apply them. Utilizing 

semiotic resources of image, sign, and language modalities speak to question two of the 

study. Question three focuses on the multiplicative communication students enacted 

when using the tool with quoted student statements from interview transcripts which are 

evidenced throughout the communication in the section.  
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Beyond: Without and With Tool 

Table 10 Beyond/Communication In/Without Tool 
Beyond   Without tool 
Female: Male: 
The symbol is an x 5x5 

Post interaction without tool: 
Female: Male: Both: 
No communication in Like 5x 2 which is 10  

 

Table 11 Beyond/Communication In/With Tool 
Beyond With Tool Explanation from interview: 
Female:  “And this one is telling you the 

symbol that you can use” 

1 x 2 “Me holding something and 
spreading them out and using 
them to count, let's say one times 
two.” 

Post 
interaction 
with tool: 

Repeated addition in expression 
example:  
 
 

“Because you can use it to do 
multiplication and you can add 
them more than once.” 

Male: 

 

identity rule of multiplication 

Post 
interaction 
with tool:  
 

X symbol “Because this symbol means 
times and the main point is to 
write down what multiplication 
is.” 

  



101 

 

On: Without and With Tool 

Table 12 On/Communication In/Without Tool 
On   Without tool 
Female: Male: 
The x sign No communication in 
12 x 2 =24  

Post interaction without tool: 
Female: Male: Both: 
No communication in No communication in  

 

Table 13 On/Communication In/With Tool 

On With Tool Explanation from interview: 
Female:  “It was 12 times two again. Like you 

can count 12, 2 times or 2’s, 12 times 
to get 24.” 
Commutative property 
multiplication 
 
“Because 12 times something, or 12 
times two, you have to add 12 plus 
12.” 

 24 GO: “Well, numbers is the base of 
it. So, you need numbers to complete 
it.” 

Speaker 1: “Those numbers, is there a 
word we use in multiplication to talk 
about those numbers?” 

24 FO: “Umm . . . the factors.” 
Post 
interaction 
with tool: 

 “Because you have to use the same 
number over again. For two times 12, 
12 and then 12 but don’t do 12 and add 
two. That's not how you do it.” 

24 FO: “Because counting is really a 
part of it because you have to count 
over and over with the same number.” 

Speaker 1: “What is that, when you 
count over and over again?” 

24 FO: “Repeated addition.” 
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On With Tool Explanation from interview: 
Male: 

 

 
 
 

“These are all for 5 X 5.  

 

Post 
interaction 
with tool:  
 

Groups “For groups, you just can have circles 
and put the same in each one. It is easy 
to count all of them from there.” 

Same number over and over 20 BO: “You add the number to it over 
and over.” 

Speaker 1: “Okay. Is there any other 
word that we use for doing something 
over and over again?” 

20 BO: “Iterate.” 
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Approaching: Without and With Tool 

Table 14 Approaching/Communication In/Without Tool 
Approaching   Without tool 
Female: Male: 
X No communication in 

Post interaction without tool: 
Female: Male: Both: 
No communication in No communication in  

 

Table 15 Approaching/Communication In/With Tool 
Approaching With Tool Explanation from interview: 
Female:  

 
 

 
 
 
 

 
 
 
 
 

 
 
 

 
 

 

“So, multiplication 
has many different 
ways you can do it” 

Post 
interaction 
with tool: 

X (symbol) “The X is for the 
symbol of 
multiplication.” 

Male:  21 BA: “And 
multiplication is... 
Division. They go 
together.” 

Speaker 1: “Okay. 
Can you give me an 
example? Like the 24 
divided by 3 you have 
on your map.” 
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Approaching With Tool Explanation from interview: 

21 BA: “But I would 
think like 
multiplication, just 
times. Like, 24 
divided by three 
equals something, I 
think 24 would be 
counting three over 
and over until you get 
to 24. You count 3 . . . 
. . . [student counting]. 
That would be 8” 

 “So, I usually do this 
first, label what I am 
going to do. For 
example, the two is 
going to be the apples. 
And the bottom is 
going to be how many 
there is. How many 
apples. And this part, 
I’m just going to write 
each basket. Two, 
four, six, eight, ten. 
So, it brings back to 
counting over and 
over, and to my 
strategy” 
Speaker 1: Can you 
tell me that context 
from your ratio table? 

“Yeah, ok. I have two 
apples in each basket. 
If I have five baskets, 
how many apples do I 
have? That is five 
times two.” 

Post 
interaction 
with tool:  

Same number over and over Speaker 1: “I'm 
hearing you say the 
words over and over, 
over and over. What 
does that mean for 
multiplying, over and 



105 

 

Approaching With Tool Explanation from interview: 
over? I heard you use 
it a lot.” 

21 BA: “So, you 
count five two times. 
You copy two over 
and over five times. 
So two, four, six, 
eight, 10. 10, that's the 
answer. Iterate. Yeah. 
That’s it.” 

 

Findings Summary 

The findings indicate the student-generated tool engaged students in 

demonstrating knowledge through language and semiotic resources. The activity 

structures, both with peer and whole class interactions, offered students opportunity for 

socially constructing multiplicative thought. The results also showed increased 

Communication In and About multiplication as students exchanged ideas through partner 

and whole class interaction and incorporated those ideas within the tool more than they 

did without the tool.  

The results suggest the use of a multi-modal student-generated tool broadens the 

language and resources applied by the students when communicating. Through 

interviews, students provided their own competency for communicating the ideas they 

procured from classmates. Data provided in the findings also support semiotic resources 

and modality as their own means of communicating, and also as an instrument to 

communicate. Visual and linguistic modes were connected in the tool and expressed in 

Discourse. The analysis also identified how students of varying knowledge levels, 
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immersed themselves within the activity structure and generated a tool to engage in the 

classroom community. 

Participants in this study shared individual ideas and also subsumed ideas from 

peers through interaction as indicated in the post interaction sections of the data tables. 

The framework assisted in illuminating student thought, not just about their own ideas, 

but the ideas of others. Through the thematic lens of Communication About and In 

mathematics, activities of this study were analyzed for the language and modalities 

present and the Discourse students engaged in as mathematicians. The conceptual and 

theoretical lens frame the discussion of this study consistent with the research questions 

and framework presented and analyzed in this chapter. 
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CHAPTER 5: DISCUSSION AND CONCLUSION 

The results suggest students’ language and resources for communicating are 

extended through the use of a multi-modal student-generated tool. The interactive activity 

structure allowed practicing mathematicians to accumulate semiotic resources within the 

tool during Discourse. These resources included image, signs, symbolic notation, and 

written words and phrases which could be read from the student-generated tool. Studying 

language must therefore consider more than single modalities of speaking and writing 

that are being exchanged, to the “what” and “how” thought is being exchanged in 

classroom contexts. 

The semi-structured interviews provided students the opportunity to justify and 

reason about their own ideas and the ideas they acquired from others. The semiotic 

resources were used by students to represent their multiplicative thought, and also to 

communicate about processes. Students were able to connect their visual modes to 

expressive modes when collaborating during activity structures and within the semi-

structured interviews. Students of varying knowledge levels used the tool to communicate 

their own knowledge of multiplication, and then were able to extend that knowledge by 

using the tool to communicate in the classroom community to increase their knowledge 

about the topic. The conceptual and social semiotic theoretical lens frame the discussion 

of this study consistent with the research questions and framework presented and 

analyzed. 
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Summary of Key Findings 

The findings highlighted the extension of language and semiotic resources 

students engaged in with a student-generated tool. Classroom interactions embedded in 

the activity structure also increased Communication In and About multiplication. 

Students did not just adopt others’ ideas during peer Discourse but incorporated the ideas 

into their own mathematical repertoire. Studying language must therefore consider 

meanings that are being exchanged, informally and formally, in the embedded cultures 

and contexts of the classroom and specific outputs that can generate productive 

communication. 

Relating the visual and linguistic features of mathematics allows students to 

communicate and interpret mathematical meaning, not only through language but also 

through varying forms of modality, producing a tool that captures knowledge shared 

within the classroom community. Semiotic resources can be used to express 

mathematical proficiency of multiplication and communicate reasoning, as evidenced in 

the findings chapter, as students utilized representations and signs to speak 

mathematically. Connecting student representations with language allows for 

mathematical expression in and about multiplication from the tool. These resources are 

then used to participate in the discursive aspects of the classroom. 

Also, the findings emphasized how students of varying knowledge levels 

participated in the activities and expressed multiplicative reasoning. Student participants 

at each level engaged with and reasoned about their mathematical thought as delineated 

in the findings. Although having shared less individually, they reasoned about the 

representations and ideas of others and interpreted them in their own way. 
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In summary, the qualitative case study illustrated how the visual and semiotic 

function within a student-generated tool enhances communication of multiplicative 

reasoning. In comparison to students’ work without a tool in response to a prompt, 

students communicated more about multiplication and in multiplication using semiotic 

resources. Semiotic resources communicated multiplicative knowledge; however, they 

also became a mode for students to communicate. 

Interpretation of Findings 

Communication vital to the mathematics classrooms of today requires cognitive 

skills to express conceptual and procedural knowledge and the requisite language and 

thought needed to participate in discursive classroom activities and assessments (Erath et 

al, 2021; Ingram et al., 2020; Moschkovich & Zahner, 2018; Planas & Schütte, 2018). 

The central research question posed in this study was “How do semiotic resources and 

student-generated tools enhance students’ abilities to communicate their multiplicative 

reasoning?” The findings suggest that student-generated tools are enhanced with semiotic 

resources and assist in communicating multiplicative reasoning. Each of the three sub-

questions substantiate the central question with findings from the analysis. Therefore, the 

discussion section will examine each of the sub-questions and their relationship to the 

communicative themes from the Discourse Analysis, Communication About and 

Communication In for multiplication. 

Research Question 1 

The first research question proposed in this study, “How does the utilization of the 

student-generated tool assist students in communicating mathematically?” examined 

whether the student-generated tool aided students’ mathematical communication. The 
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question was addressed by comparing the Discourse structures of activities one and two 

and analyzing student Communication About and In multiplication with and without the 

tool. Students Communicating About multiplication described problem solving processes 

and reasoned about their strategies or the strategies of others; and Communicating In 

multiplication utilized the mathematical register and representations (Brenner 1994, 

1998). The data showed all six student participants enhanced their Communication About 

and In multiplication with the student-generated tool. These enhanced communications 

included individual and interactive communication and the extension of representations 

beyond written modality to extend meaning-making.  

The structure of activity one: prompt (without the tool), and activity two: student-

generated tool (with the tool), were engaged to compare the extension of language 

resources and collaboration (Francisco, 2013; Morgan et al., 2014; Sfard, 2008). Rooted 

in this structure was the availability of processing time individually, with a partner, and 

then with classmates, along with the opportunity to add those collaborative ideas to their 

activity. Only one of the six students incorporated an idea from peer discussion from the 

tool; otherwise, all ideas came from class interaction and were similar across student 

participants. Whereas, when students utilized the tool there were individual, partner, and 

class interaction ideas listed for nearly every knowledge level and gender. This 

corroborates the importance of facilitating Discourse and interaction practices that 

support students in contextualizing discussion and practicing the language of their 

mathematics community through modality and tools (Cobb & Bowers, 1999; Gee, 2014; 

Moschkovich, 2015a, 2018; O’Halloran, 2015; Schleppegrell, 2007; Sfard, 2001, 

2008). This is similar to research on the importance of interaction and collaborative 
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activity to engage students in examining socially constructed ideas through Discourse 

allowing them to practice refining, justifying, and reasoning about those ideas (Francisco, 

2013; Goos, 1999; Ingram et al., 2019). 

Students showed strength in the written modality without the tool, as students 

wrote in more complete sentences or longer phrases. One reason for the extension of the 

written modality could be the consideration of the question as a writing prompt and 

students’ use of lined paper. Yet, the output of student Communication About and In 

mathematics shows a disconnect between the reading of ideas from their document 

without the tool and the willingness to reason through the ideas. For example, all students 

had “Counting the first number then the second number which is 5 x 2.” However, 

nothing in the statement sets a composite unit, or states an iteration of the second factor. 

With the statement alone, you would add the numbers notating an addition expression. 

The students included the expression 5 x 2, connecting the additive statement to the 

multiplicative expression. Through discourse, students did not take the opportunity to 

challenge this additive statement, and I missed the chance as a researcher to delve into 

this conception during individual interviews. This is in contrast to Fielding and Wells 

(2019) where students interactively challenged conceptions during investigations in small 

group and whole class discussions. A possible reason for this is the questioning 

incorporated by the educator in the Fielding and Wells study, which facilitated student 

challenges and reasoning during discursive activity through teacher moves. Student 

communication, not teacher moves, was the focus of this study, but they clearly play a 

crucial role in extending Discourse and will be addressed in recommendations for future 

research. 
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Student expression with the tool included less complete sentence structure, which 

coincides with the creating of the tool and the use of words, phrases, drawings, or other 

representations indicative of what they consider relevant about the topic (Hyerle 1996, 

2004). As evidenced in the findings, this did not diminish the number of ideas, phrases, 

or representations students used to describe the topic and engage those thoughts with a 

partner and classmates. The written modality, in concurrence with representations and 

spoken modality, augmented their communicative production with the tool. Research 

asserts writing is a learning tool which deepens mathematical thinking and reasoning 

(Bosse & Faulconer, 2008; Kostos & Shin, 2010; Baxter et al., 2005; Pugalee, 2004; 

Fried & Amit, 2003). My findings indicate that multiple modes, beyond a single 

expressive mode, can be enacted to Communicate About and In mathematics. This is 

comparable to findings that integrated multi-modalities, inclusive of writing to extend 

collaborative group work (Bjuland et al., 2008) and predict math success on a task (Oviatt 

& Cohen 2013). 

Research Question 2 

The second research question proposed in this study, “What semiotic resources 

are evident in student activity and how are students utilizing them?” explored semiotic 

resources evident in student work and how students employed them during the activities. 

The data revealed that student participants evidenced semiotic resources with signs and 

representations and applied those representations to Communicate About and In 

multiplication. Students reasoned through symbolic notations with the fluency probe and 

the student-generated tool from activity two and five during the interview.  
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The potential to make meaning through semiotic resources allows for constructing 

mathematical conceptual and procedural knowledge by combining semiotic systems 

simultaneously (O’Halloran, 2005; Wilkinson, 2018, 2019). As presented in the findings, 

two of the six students Beyond Female and Approaching Female, used arrows and 

multiplicative expression to explain the process of multiplication. With the tool, the 

Beyond Female said “add the second number how many times the first number says,” 

with the Approaching Female writing “important” on her tool next to the arrows and the 

expression. On the tool, the Beyond Female used the word “add” in her description, but 

in her interview used the more formal descriptor of times to indicate multiplication, “this 

one (points to first arrow) tells you how many times you do that one (follows arrow with 

finger) on second arrow” which added gesture to illustrate the process. The Approaching 

Female stated, “it is important because it tells you what to do, and how many you times 

the other number,” but did not add a gesture to her description of the process. Both, 

during the interview, assert the first factor in the expression as an iterator of the second 

factor. Sign-making is subject to the semiotic resources available and how the maker 

wishes to represent their learning (Bezemer & Kress, 2008). This is reiterated by Van 

Leeuwen (2005), who considers the relevancy of the sign and how students position its 

use during discourse and in the other modalities it is engaged in. Related studies 

recognize the importance of diagrams, gestures, and other modalities to assist students in 

reasoning and interacting within the classroom and making mathematical conjectures 

(Chen et al., 2017; Chen & Herbst, 2013). 

The data also revealed the importance of representation to express multiplicative 

knowledge in the student-generated tool, since all six participants used iconic 
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representations and or symbolic notations. Without the tool, strategies were listed for 

repeated addition, bar model, number line, and ratio table. With the tool, strategies for 

each of these were listed along with groups, array, and area model with modeled 

representations completed individually or after the interaction. A major tenet of the CCSS 

Standards for Mathematical Practices (2010) is understanding multiple representations of 

mathematics content. Representing content enactively, iconically, and symbolically is 

what Bruner (1966) identified as modes of representation. These modes allow students to 

build connections amongst the modes, enactive to iconic or iconic to symbolic, or within 

a mode with multiple iconic representations. Representing and connecting knowledge is 

an important component of mathematical proficiency. Representational variations assist 

students to discuss comparisons in solution methods and connections within their own 

learning and the learning of others (Baroody et al., 2007; Barwell et al., 2018; Erath et al., 

2018; Kilpatrick et al, 2002). Although representations are part of Communication In, 

students used them as an image of the strategy, what it looks like, while verbalizing the 

process that the image represented or reasoning about how they would use it which is 

Communicating About. These included semiotic representations related to previous 

studies which discuss the conceptualization of representations (Brendefur et al., 2015; 

Izsak, 2005; Kosko, 2020; Mulligan & Watson; 1998; Ulrich & Wilson, 2017). 

The fluency probe from activity four consisted of one hundred facts for students 

to answer. Activity five asked students to write down as many multiplication facts as they 

could. Reconceptualizing procedural knowledge has been recommended to discuss the 

type and quality of connections students make conceptually to procedures (Barmby et al., 

2008; Baroody et al., 2007; Crooks & Alibali, 2014; Kilpatrick et al., 2002; Rittle 
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Johnson et al., 2001; Rittle-Johnson & Schneider, 2015; Star, 2012). The semi-structured 

interviews provided insight beyond the procedural fluency to the reasoning and strategies 

that were engaged. Strategies explained by the students were the use of derived facts and 

described in their interviews as completing “anchor facts,” “doubling,” or “taking 

apart/decomposing.” The Approaching Female described her strategy for 6 x 4 as “six 

times two is 12, and then I would do that again. And then six times four would be 24.” 

The Beyond Male student applied a derived fact strategy to 12 x 6 “I know that three 

times 12 is 36, and then six times 12 is 72. Like a double.” In using a decomposing 

strategy, the On Male student shared, “Oh, you take it apart, so yes. So if you use 11 + ... 

Oh wait, no. I was going to say 11 + 3, but that's not adding. If you use 11 X 3, so you 

have to add three 1s and three 10s.” Making connections to “anchor facts” or facts that 

are easier to recall, is consistent with research on developing fact fluency (Baroody & 

Dowker, 2003; Brendefur et al., 2015). While it is easy to classify students by the number 

of facts they complete, we also tend to categorize them based on the strategy they choose 

(Jacob & Willis, 2001, 2003; Clark & Kamii, 1996; Kouba, 1989; Sherin & Fuson, 2005). 

Researchers caution these lines can be blurred based on the quickness they are able to 

enact a strategy or how they switch from additive types of strategies to other strategies 

(Carrier, 2014; Sherin & Fuson, 2005). However, it was not the aim of this study to 

quantify procedural knowledge through fluency but to understand how students express 

conceptual knowledge of symbolic notations of Communicating In to Communicate 

About the multiplication. The findings indicate students can reason about symbolic 

notations and utilize strategies to make schema connections to other facts (Baroody & 

Dowker, 2003; Baroody et al., 2007; Brendefur et al., 2015). 
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Research Question 3 

The third research question proposed in this study, “How does the student-

generated tool influence the expression of multiplicative understanding?” considered 

how the student-generated tool encouraged what students expressed multiplicatively. The 

question was addressed by conducting an in-depth look at what students Communicated 

About and In multiplication and their reasonings investigated in the interview. The data 

showed all six student participants expressed their Communication About and In 

multiplication with the student-generated tool. These enhanced communications included 

the use of visual and linguistic modalities to convey multiplicative thought and reason 

about processes, use of a mathematics’ register, and the extension of learning 

opportunities for students of varying knowledge levels. 

Visual Modality and Reasoning 

Students worked individually and interactively to communicate understanding 

within their student-generated tools. The creation of a multi-modal semiotic tool required 

students to make sense of the practice and make meaning out of the resources used to 

make it (Lemke, 1990). First, students included more strategies and represented them 

visually, to explain multiplication processes with the tool than without. Five of the six 

participants added a majority of the strategies post-interaction (only the Approaching 

Female had more individually). As suggested by Lave and Wenger (1991), skills and 

knowledge evolve as students collaborate in social practices. At different points students 

were engaged as apprentices and experts inside the learning community and assimilated 

skills and understanding from available models (Lave, 1991; Lave and Wenger 1991; 

Vygotsky, 1978). Even though many of the strategies were acquired from others, students 
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could reason about the processes and strategies of others. When asked what they 

considered resources for multiplication, many students chose strategies and reasoned that 

there was “more than one way to find the answer to a multiplication problem” and to use 

the strategies would “get you the answer.” 

During analysis, I looked for how students conceptualized the structure to 

Communicate About multiplication. To convey multiplicative reasoning, adherence to a 

unitized quantity, or composite unit, (Anghileri, 1989; Carrier, 2014; Clark and Kamii, 

1996; Park & Nunes, 2001; Simon & Blume, 1994; Steffe, 1994; Ulrich, 2016), rather 

than a one-to-one counting structure is essential. Findings from the study showed that 

students used some inefficient strategies or relied heavily on additive thinking; 

nonetheless, the number of additional strategies in the tool meant there was also evidence 

of unitized quantity. Only two participants utilized a counting strategy for one of the 

many strategies that were listed. Both indicated a single count in a “grouping” strategy 

with one of them stating, “you can do six circles and then put little circles in each group 

until you get to the number, and then you can count each little circle and the big ones, and 

then that's how much they're in.” One reason for this could be the possibility of 

representing each count for each group, making it easier to count in a single unit rather 

than unitize the units. In the literature, this is noted as a direct representation (Kouba, 

1989), one-to-one counting (Jacob & Willis, 2001), and count all (Sherin & Fuson, 2005) 

classification. Many of the students emphasized a strong connection between 

multiplication and addition. In student explanations, this was articulated in descriptions 

with “add” or “like adding” in their statements which happened most often with the 

repeated addition and skip counting strategies and minimally with the bar model. 
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Research on multiplicative taxonomies considers this an over reliance on additive 

strategies for multiplying (Jacob & Willis, 2001, 2003; Kouba, 1989), which could cause 

students to struggle when they attempt to apply additive strategies to successive 

mathematics content in later grades. 

An encouraging finding from this study was the recording of other strategies, 

number line, array, and area model, recognizing unitized quantity. Composite units were 

described in the findings as “jumps of 10,” “counting by or counting up,” and counting in 

rows and columns. The identification of a “scheme for iterating rows, columns” is of 

importance to constructing and viewing the array model (Battista et al., 1998, p. 505). 

Struggles with the array model as a strategy were found to be an inability to see the rows 

and column structure (Barmby et al., 2009; Battista, 2020) and prerequisite knowledge of 

dots to construct the array (Iszak, 2005). It was because of the dot structure the Beyond 

Male reasoned he would least likely use arrays because “it's not really good for any of 

them because it's like putting dots and squares everywhere and it is hard to get them 

straight.” Area representations express multiplicative relationships with a row and 

column structure that resemble arrays and can relate to square units or open area models 

given side dimensions (Kosko, 2020). Side dimensions of the open area model were 

referenced as factors for finding the area inside of the representation. 

The findings show both similarities and a difference with existing research. 

Similarities include a flexibility by students to think both additively and multiplicatively 

about strategies, (Jacob & Willis, 2001, 2003; Kouba, 1989) detailed counting strategies 

by composite unit, (Anghileri, 1989; Carrier, 2014; Clark and Kamii, 1996; Park & 

Nunes, 2001; Simon & Blume, 1994; Steffe, 1994; Ulrich, 2016) and acknowledging the 
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importance and struggles of the array model (Barmby et al., 2009; Battista et al., 1998; 

Iszak, 2005). A difference between these findings and extant literature is the connection 

to Kosko’s findings of set and area models generating a single count rather than a 

composite unit. This was true for set models, as evidenced by the grouping data shared 

above, but the area model reasoned in this study correlated to a multiplicative composite. 

This could be because it was drawn as an open area model, so there were no square tiles 

to individually count. The results demonstrate how student-generated tools helped engage 

participants in representing strategies semiotically and reasoning about their processes as 

students noted no representations, less strategies, and reasoning without the tool. 

Register 

Communicating In mathematics entails more than a visual and symbolic notation 

of communicating, but includes the mathematics register or the domain-specific language 

of mathematics (Brenner, 1994, 1998; Halliday, 1974). Some examples of register were 

included with and without the tool. One idea comprised the articulation of the properties 

of identity and commutativity of multiplication. In Communicating About, students 

defined the process for multiplying by one: “If you times anything by one replace with 

the other number” which is a consistent definition with mathematics literature (Baroody 

& Dowker, 2003). Commutativity was referenced with and without the tool and with the 

fluency probe, but not to the extent of the identity property. Students indicated the 

commutative property when making statements about symbolic equations; for example, 

12 x 2 =24 “Like you can count 12, 2 times or 2’s, 12 times to get 24.” The properties are 

specialized vocabulary of the domain, but not words students are expected to recall. In 

this instance, articulating the process is more important and students were able to do that 



120 

 

with and without the tool. Another idea relevant across both activities was the 

multiplication symbol or X. Even though the addition sign was on most students’ work 

represented in repeated addition, students stated clearly that the X is the symbol for 

multiplication.  

Specific terms and phrases utilized as descriptors of processes in the discipline 

(Carrier, 2014; Sigley & Wilkinson, 2015; Wilkinson, 2018, 2019) were evident in the 

findings from this study. Some of the words present in student written and spoken 

discourse were area, times, double, bigger, and groups. These words were summarized 

by Carrier (2014) as early indicators of multiplicative reasoning and utilized by students 

to reason about representations in their tool and symbolic notation from their facts. 

Another grammatical structure is the link between the symbolic and visual representation 

that allows the language of what is happening symbolically to be written or verbalized by 

students; for example, 7 x 9 = 63 is seven times nine equals sixty-three (O’Halloran, 

1998, 2010, 2015).  

The findings show students benefitted from the use of phrases and informal 

register to Communicate In multiplication; however, without an emphasis on formalizing 

those phrases and ideas, students acting on their own was not present in this study. 

Students stayed in the informal register for using vocabulary individually and through 

interaction until formalizing some of their ideas in the interview. Informally students 

spoke about numbers that you use to multiply. One student formalized “numbers” to 

factors. The phrase “same number over and over” was prevalent in the data. Two students 

connected the structural word for iterating to this phrase, another used it as the definition 

for repeated addition. Product, the solution to a multiplication problem, was not 
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evidenced in the Discourse. The student-generated tool grounds language and multi-

modality into mathematical activity providing a situated activity to negotiate meaning 

socially (Moschkovich, 2015a). Students were able to engage semiotic resources to 

participate in the mathematics classroom community (Bailey, 2015; Barwell, 2005; Cobb 

& Bowers, 1999). Recommendations from literature emphasize how the everyday and 

mathematical registers combine to express learning and expanding students’ registers to 

communicate in school settings and beyond them (Moschkovich, 2015a; O’Halloran, 

2010, 2015; Schleppegrell, 2007). The results of this study are in line with this 

recommendation. Addressing how we might increase formalizing register in activity will 

be addressed in the recommendations. 

Knowledge Levels 

Students utilizing the student-generated tool made connections beyond what they 

had shared individually. The Approaching Male was the only student to state a 

relationship between multiplication and division. In his explanation for this relationship, 

he explains how he would solve twenty-four divided by three: “Like, 24 divided by three 

equals something, I think 24 would be counting three over and over until you get to 24. 

You count 3 . . . . . . [student counting]. That would be 8.” This is consistent with results 

from Carrier (2014) and using different strategies for problem structures; for instance, 

using a multiplicative strategy to divide. Two of the students, Approaching Male and On 

Female, treated their student-generated tool as a “living document” inserting 

representations during the interview to give a visual representation of what they were 

sharing incorporating ideas as needed. The Approaching Male drew another 

representation of a ratio table so he could orally produce a contextual situation to 
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represent what was happening in the bar model. The Approaching Female had the most 

comprehensive listing of strategies in her tool with images that were strictly 

representative of what the strategy looked like without numbers. As she read from her 

tool, she was able to generalize different units to speak to the processes that would 

happen in each one. Consistent with research on semiotic resources, the students are the 

meaning-makers or sign-makers, and the maker decides what resources to use and how to 

represent them (Bezemer & Kress, 2008).  The findings show that students utilizing the 

tool as a sign-maker emphasized their meaning-making consistent with students at other 

levels and surpassing them. 

In conclusion, the results from the qualitative case study support student-

generated tools to enhance Communication About and In multiplication for students of 

varying knowledge levels. The tool allowed students to communicate semiotically by 

visually representing their learning and engaging other modes to convey thought. Those 

visual representations became an integral part of students’ meaning-making and 

communicative processes increasing language development in the content of mathematics 

and providing alternate means to communicate conceptual and procedural knowledge. 

Recommendations for Future Research 

Communication is an integral part of the mathematics classroom and steeped in 

linguistic challenges. Activity structures that support language development and 

mathematical thought simultaneously would be of benefit to educators who should 

consider themselves educators of language and content. Second, tools that engage 

students cognitively to generate and share meaning assist students to become the creators 
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of their own learning. The inclusion of semiotic resources involves expanding student 

expression. For many students, this allows them access to the mathematics community.  

Future Research 

One recommendation for future research is to consider a mixed-methods or 

quantitative study. Language and mathematics are rich in descriptive, qualitative studies. 

Mixed methods or quantitative studies would quantify data and establish correlations. 

This is consistent with recommendations for future research in language and mathematics 

(Erath et al., 2021).  

Another recommendation would be to expand the boundaries of the case to 

include multiple classrooms in a single grade at one school, different grade levels in one 

school, or multiple classrooms in a single grade across a school district making the data 

more generalizable. 

Another recommendation for future research is to explore Thinking Maps® 

(Hyerle, 1996, 2004, 2008) more thoroughly in mathematics and across content areas. 

The student-generated tool is part of a larger curriculum strategy that could be explored. 

There is minimal empirical research on their use; however, there were positive results for 

using them in this study. 

Future research could consider the development of the student-generated tool 

from the beginning to end of the unit. This study was completed a month after 

instructional units were completed and many students mentioned “not remembering” 

some of the ideas they wanted to share. Expanding the timeline to incorporate 

instructional time might increase student conceptual knowledge or register use. 
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Last, future research could consider how student-generated tools enhance 

communication and multiplicative thought with different demographics including delving 

deeper into gender, special needs students, multilanguage learners, ethnicity, socio-

economic status, urban versus rural, Thinking Maps® trained versus not trained. As not 

all students successfully recognize how to interpret mathematics concepts and 

communicate mathematical thought processes in the classroom (Barwell, 2005; 

Moschkovich, 2002; Schlepegrell, 2007). 

Schools and Educators 

The urban school district this study was conducted in has been attempting to 

implement student-generated tools, Thinking Maps® across the district for quite some 

time. The school as part of this study, has been implementing for five years. When 

surveyed about their use in different content areas, teachers who co-taught with the 

Multi-language Learner Co-teacher indicated higher use of them in math than those 

teachers who did not co-teach. Strengthening implementation at the school and district 

level would be an integral part of researching their effectiveness for students. One 

recommendation is to engage in professional development workshops for use in the 

mathematics class. Another recommendation for educators and coaches at the school 

level would be to dive deep into mathematics’ standards to generate unit maps, or 

frameworks, with vocabulary, representations, and tool use that will be integrated across 

instruction.   

A recommendation for educators who wish to create mathematics and literacy 

advancements would be to create opportunities for students to engage in mathematical 

practices and share conceptual understanding. This was evidenced by teacher moves, 
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instructional routines, and classroom norms that could be integrated into practice. 

Teacher moves can assist students in formalizing thought and engaging students as a 

linguistic role model. Students need a teacher who engages with their interpretations and 

enables all participants to engage communicatively (Schutte, 2019). 

The activity structure as part of this study was a well-developed routine. Students 

knew exactly how to interact with the tool. This can also be translated to the development 

of meaningful discourse routines (Kazemi & Hintz, 2014; Sfard, 2008; Stein et al., 2008; 

Zwiers & Hamerla, 2018) as a powerful way to unpack and scaffold language students 

will encounter. A component of enacting discourse routines and establishing a 

mathematics community is instituting norms for the mathematics community (Yackel & 

Cobb, 1996). What does your mathematics community look like, sound like, feel like? 

Conclusion 

Connecting a socially constructed tool with communication engages the learner in 

selecting the semiotic resource that best conveys understanding for themselves and to 

their classmates. This allows students to blend language, mathematical symbolism and 

visuals to construct meaning and bridge registers (Cobb & Bowers, 1999; O’Halloran, 

2015; Wilkinson, 2019), engaging all semiotic systems to Communicate About and In 

mathematics. The communication framework allowed for a comprehensive look at 

student mathematical thought through Communicating About multiplication and 

describing problem-solving processes and reasoning; and Communicating In 

multiplication utilizing the mathematical register and representations (Brenner 1994, 

1998). The semiotic frameworks (O’Halloran, 2010, 2015; Schleppegrell, 2007), have 

focused on utilizing the mathematical and everyday registers to emphasize how language 
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and mathematics integrate and express learning through modalities. Classroom activity 

structures support sense-making, whether informally or formally, and assist students with 

the requisite tools and modalities for participation (Moschkovich, 2015a; Moschkovich & 

Zahner, 2018). A situated learning opportunity recognizes the development of 

mathematical practices socially, supporting students in their mathematical progression 

(Cobb & Bowers, 1999; Cobb et al., 2011; Yackel & Cobb, 1996). Students can 

summarize their conceptual and procedural understandings and express that through the 

mode that best supports their learning and communication (Kress, 2010, 2011). A 

significant contribution of this study is elucidating how third grade students leverage 

numerous resources, including tools, visual representations, and symbols to facilitate and 

support the development of multiplicative thought. I claim when semiotic resources are 

enacted, we have the potential to communicate more than our accuracy with facts or 

correctness in using formal vocabulary, but our processes, explanations, and justifications 

at the heart of understanding. 
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Thank you for sitting and talking with me today. I am going to ask about the work that 

you produced in class.  

The semi-structured interview questions are as follows: 

 

• Tell me about here (prompt). 

• Can you read from your circle map. 

Why did you add this word, image, symbol, idea, resource? 

• How does what you added to your tool tell what you know about multiplication? 

• If you had to pick what you thought were the three most important ideas from 

your map, what would they be and why would you pick them? 

• What are some examples of ideas you added after talking with your classmates? 

Why did you add those ideas? 

• Tell me about (fluency probe) and the fact circle map. 

• How did creating the tool make you feel? 

• Is there anything that you want to share, or that you find important, that I have not 
asked you about? 
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Table C.5 Beyond/Communication About 

 

 

Beyond With Tool Explanation from interview: 
Female: image  “Add the second number, how 

many times the first number 
says” 
“This one (points to first arrow) 
tells you how many times you 
do that one (follows arrow with 
finger on second arrow.” 

Bar model  
Numbers We're using numbers and we're 

adding more 
Post 
interaction 
with tool: 

Ratio table, repeated addition skip counting. “I added more strategies like 
ratio table, repeated addition, 
and skip counting because that 
was just helping figure out more 
about multiplication. Because, 
like there are more than one 
way to get the answer for 
multiplication.” 

Any number times one “And then this one is telling 
you if you use this number then, 
and then if you say one times 
five, then you could just have 
the first number up five times. 
So one… So we add five up one 
time.” 
“Five times one that would 
equal five. You can use a ratio 
table. You can add up the same 
number over and over. You add 
the second number how many 
times the first number is” 
 

Male: If you times anything by 1 replace it with the 
other number 

“Because I think most people 
wouldn't think of doing that. 
They would keep the same 
number or... I don't know.” 

Post 
interaction 
with tool:  
Beyond 
Male: 

Ratio table 
Bar model 
Area model 
Array  
Repeated addition  
Skip counting 

Speaker 1: “All of the things 
that you wrote on here, what 
would you consider is a 
resource for multiplying? 
Something that would help you. 
8BB: “Probably one of these 
four” [points to four strategies 
in blue, from partner work, ratio 
table, bar model, area model, 
array].” 
Speaker 1: “One of those four. 
Why so?” 
8BB: “Because there are other 
ways of solving multiplication.” 
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Table C.12 Beyond/Communication In 

 

 

Beyond With Tool Explanation from interview: 
Female: Symbol X “And this one is telling you the 

symbol that you can use” 
1 x 2 “Me holding something and 

spreading them out and using 
them to count, let's say one 
times two.” 

Post 
interaction 
with tool: 

Same number over and over 
 

 

9 x 10=90 “Nine times 10 equal 90” 
Repeated addition in expression example: 2 + 2 
+ 2 + 2 

“Because you can use it to do 
multiplication and you can add 
them more than once.” 

Male: “If you times anything by 1 replace it with the 
other number” 

identity rule of multiplication 

Post 
interaction 
with tool:  
 

X symbol “Because this symbol means 
times and the main point is to 
write down what multiplication 
is.” 

Same number over and over “if it's five times five, you add 
the same number over and over. 

Skip Counting example: 2, 4, 6, 8 
Repeated addition with expression example: 2 + 
2 + 2 + 2 

Skip counting. Two, four, six, 
eight, that's math. Repeated 
addition, two plus two plus 
two, equals... 
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Table D.7 On/Communication About 

 

  

On With Tool Explanation from interview: 
Female: use for area model “So this would be four. Two... And then 

you'd have to multiply this by this 
[points to 4 and 2] 
... to get what's inside of the box. 
[shades inside with finger]” 

Like adding “Because you have to add the numbers 
together. So like skip counting, but 
adding.” 

Post 
interaction 
with tool: 

Use strategies “Use those strategies to get the answer.” 
To find area “You use multiplication to find area 

inside, an area model, like right here. 
[Points to picture that was drawn]” 

Skip counting “You’re skip counting because you have 
to count the same one over and over”  

Repeated addition “Because 12 times something, or 12 
times two, you have to add 12 plus 12.” 

“Repeated addition for five times, 
because you can just count five, 10, 15.” 

Male: Communication about comes from 
representations. See Communication 
in for images 

“These are all for 5 X 5. A ratio table, so 
for one, on the bottom is the 
multiplication and on the top is how 
many times you add it. So for this top, 
this is the number, how many times you 
have to add the number to itself. And 
then this is how many times. And this is 
what, like 5, 10, 15, 20, 25. And this is 
counting up by fives.” 

“This is probably the easiest [points to 
repeated addition]. It’s like groups. I 
mean, this is the easiest, but this is 
probably the second easiest, the ratio 
table and you can count over and over.” 

Post 
interaction 
with tool:  
 

Counting “Multiplication, you could count like 
this. [points to repeated addition 
equation.]” 
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Table D.14 On/Communication In 
On With Tool Explanation from interview: 
Female: 12 x 2 =24 “It was 12 times two again. 

Like you can count 12, 2 
times or 2’s, 12 times to get 
24.” 
Commutative property 
multiplication 
 
“Because 12 times 
something, or 12 times two, 
you have to add 12 plus 12.” 

X  
Multiplying “multiplying is 

multiplication, but you're 
doing it.” 

Numbers 24 OF: “Well, numbers is the 
base of it. So, you need 
numbers to complete it.” 

Speaker 1: “Those numbers, 
is there a word we use in 
multiplication to talk about 
those numbers?” 

24 OF: “Umm . . . the 
factors.” 

Post 
interaction 
with tool: 

Times X, is other number  
Same number over and over “Because you have to use the 

same number over again. For 
two times 12, 12 and then 12 
but don’t do 12 and add two. 
That's not how you do it.” 
 

24 OF: “Because counting is 
really a part of it because you 
have to count over and over 
with the same number.” 

Speaker 1: “What is that, 
when you count over and 
over again?” 

24 OF: “Repeated addition.” 
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On With Tool Explanation from interview: 
Model skip counting “You’re skip counting 

because you have to count 
the same one over and over” 

Male: 5 x 5 =25 modeled as a ratio 
table and repeated addition 

“These are all for 5 X 5. A 
ratio table, so for one, on the 
bottom is the multiplication 
and on the top is how many 
times you add it. So for this 
top, this is the number, how 
many times you have to add 
the number to itself. And 
then this is how many times. 

“And this is what, like 5, 10, 
15, 20, 25. And this is 
counting up by fives.” 

“This is probably the easiest 
[points to repeated addition]. 
It’s like groups. I mean, this 
is the easiest, but this is 
probably the second easiest, 
the ratio table and you can 
count over and over.” 

 X “That's the multiplication 
symbol.” 

Because the symbol, if they 
might think it's a plus. If 
their paper is crooked, they 
might think it's a plus, so 
they might think it's adding, 
but it's supposed to be an X 
for multiplication. 

Post 
interaction 
with tool:  
 

Numbers “Because in multiplication 
you use numbers a lot.” 

Groups “For groups, you just can 
have circles and put the same 
in each one. It is easy to 
count all of them from 
there.” 

Same number over and over 20 OB: “You add the number 
to it over and over.” 
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On With Tool Explanation from interview: 

Speaker 1: “Okay. Is there 
any other word that we use 
for doing something over and 
over again?” 

20 OB: “Iterate.” 
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Table E.9 Approaching/Communication About 
Approaching With Tool Explanation from 

interview: 
Female: 
Talks about all 
her 
representations 
So, 
multiplication 
has many 
different ways 
you can do it like 
a bar model, 
number line, or 
ratio table that 
help you a lot. 

Put in groups “You can put... If you have a 
really huge number, you can 
do six circles and then put 
little circles in each group 
until you get to the number, 
and then you can count each 
little circle and the big ones, 
and then that's how much 
they're in.” 

Bar Model: 
Communication about 
comes from 
representations. See 
Communication in for 
images 

“So, the bar model helps me a 
lot because there's rectangles. 
And then I just put numbers 
below it. If there was five, 
then I'll count up and it would 
get me to a number.” 

“A bar model, it's kind of like 
skip counting, but with 
boxes.” 

Ratio table: 
Communication about 
comes from 
representations. See 
Communication in for 
images 

“I would love to use a ratio 
table, because if you use an 
easy number, it's easier to 
skip count with it, like one, 
and then six, and then two, 
and then you put six and six 
together, and then that's 12. 
And then you put the 12 and 
another 6 together for 18” 

Number line: 
Communication about 
comes from 
representations. See 
Communication in for 
images 

“A number line, you can use a 
number at the beginning. And 
then if you use jumps, it gets 
you to an even bigger 
number.” 

“Because you can start with a 
number and then you can use 
jumps, if you use 10 and then 
a jump of 10, that's going to 
get you to 20, and then 
another jump of 10, that's 
going to get you to 30.” 

Skip count “So you can use two plus two 
is four, and then you can keep 
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Approaching With Tool Explanation from 
interview: 

adding until you get to the 
number you want it to go.” 
 

“Because I can skip count by 
any number really easily. 
Sometimes I get seven mixed 
up.” 
 

Post interaction 
with tool: 

6 x 6 with arrow to first 6 
“important modeled 

“It is important because it 
tells you what to do, and how 
many you times the other 
number by” 

Repeated addition: 
Communication about 
comes from 
representations. See 
Communication in for 
images 

“So, you can use two plus two 
is four, and then you can keep 
adding until you get to the 
number you want it to go.” 

Array: Communication 
about comes from 
representations. See 
Communication in for 
images 

“Array. So, how much are in a 
row? If there was four in a 
row, and then four in a 
column. And then you can 
count each row or column, 
and then that'll get you to a 
number.” 

Any number times one is 
the other number 

“So, if you use five times one, 
it still could be five. Because 
it's only one, five times.” 

Male: If you times anything by 
one replace with the other 
number 

21 BA: “Max's idea, because I 
would agree with his.” 

Speaker 1: “Okay.” 

21 BA: “If you times anything 
by one, replace with the other 
number.” 

Post interaction 
with tool:  

Ratio table: 
Communication about 
comes from 
representations. See 
Communication in for 
images 

“So, a ratio table. So, one, 
write one, and it'll be two on 
the bottom. Two, four on the 
bottom. Three, six on the 
bottom. Four, eight on the 
bottom. So, we're counting by 
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Approaching With Tool Explanation from 
interview: 

two - two, four, six, eight, 
ratio table” 

Speaker 1: “What if I gave 
you a problem of 45 times 
five?” 

21 BA: “45 times five?” 

Speaker 1: “Which one of 
those would you want to do 
that in?” 

21 BA: “You could do 
number line, because it has 
more space, but it’ll take more 
space. Ratio table would be 
better. Like I said before, you 
could do 1 of 45, 2 of 45 and 
keep going like that.” 

“Because it shows you more 
about numbers in 
multiplication. Shows 
numbers counting, same 
number over and over. So it 
will give you how. It'll 
explain.” [points to start of 
ratio table where the words 
for the apples and baskets] 

Bar model: 
Communication about 
comes from 
representations. See 
Communication in for 
images 

“bar model is three twos, and 
each one, we're going to label 
that one two, four, six. So it 
starts out six.” 

Skip counting: 
Communication about 
comes from 
representations. See 
Communication in for 
images 
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Table E.16 Approaching/Communication In 
Approaching With Tool Explanation from 

interview: 
Female: Example Equation 5 x 6=?  

Bar model modeled “So, the bar model helps me a lot 
because there's rectangles. And 
then I just put numbers below it. 
If there was five, then I'll count 
up and it would get me to a 
number.” 
 
“A bar model, it's kind of like 
skip counting, but with boxes.” 

Ratio table modeled 
representation communicates 
about 

“I would love to use a ratio table, 
because if you use an easy 
number, it's easier to skip count 
with it, like one, and then six, and 
then two, and then you put six 
and six together, and then that's 
12. And then you put the 12 and 
another 6 together for 18” 

Number line modeled “A number line, you can use a 
number at the beginning. And 
then if you use jumps, it gets you 
to an even bigger number.” 
 

Post 
interaction 
with tool: 

Array modeled “Array. So, how much are in a 
row? If there was four in a row, 
and then four in a column. And 
then you can count each row or 
column, and then that'll get you to 
a number.” 

X (symbol) “The X is for the symbol of 
multiplication.” 
 

Same number over and over  
Numbers  

Male: Example facts 
1,000x1=1000; 3x1=3 
 
 

“Back to [SP’s] idea, and if you 
times anything by one, replace 
with the other number. The 
teacher said to write down your 
partner’s idea.” 
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Approaching With Tool Explanation from 
interview: 

From fluency tool activity 5 - 
24 divided by 3 

21 BA: “And multiplication is... 
Division. They go together.” 

Speaker 1: “Okay. Can you give 
me an example? Like the 24 
divided by 3 you have on your 
map.” 

21 BA: “But I would think like 
multiplication, just times. Like, 
24 divided by three equals 
something, I think 24 would be 
counting three over and over until 
you get to 24. You count 3 . . . . . . 
[student counting]. That would be 
8” 

Ratio table example See 
interview for contextual 
problem explanation using 
ratio table on map 

“So, I usually do this first, label 
what I am going to do. For 
example, the two is going to be 
the apples. And the bottom is 
going to be how many there is. 
How many apples. And this part, 
I’m just going to write each 
basket. Two, four, six, eight, ten. 
So, it brings back to counting 
over and over, and to my 
strategy” 
Speaker 1: Can you tell me that 
context from your ratio table? 

“Yeah, ok. I have two apples in 
each basket. If I have five 
baskets, how many apples do I 
have? That is five times two.” 

Post 
interaction 
with tool:  

X (symbol) Oh, that's a time sign. 
Ratio table example “So, a ratio table. So, one, write 

one, and it'll be two on the 
bottom. Two, four on the bottom. 
Three, six on the bottom. Four, 
eight on the bottom. So, we're 
counting by two - two, four, six, 
eight, ratio table” 
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Approaching With Tool Explanation from 
interview: 

Bar model example “bar model is three twos, and each 
one, we're going to label that one 
two, four, six. So it starts out six.” 

Skip counting example  
Numbers  
Same number over and over Speaker 1: “I'm hearing you say 

the words over and over, over and 
over. What does that mean for 
multiplying, over and over? I 
heard you use it a lot.” 

21 BA: “So, you count five two 
times. You copy two over and 
over five times. So two, four, six, 
eight, 10. 10, that's the answer. 
Iterate. Yeah. That’s it.” 
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APPENDIX F: FLUENCY REASONING 
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Table 16 Fluency Reasoning All Levels 

Beyond 
Female Male: 
Reasoning in interview about fact 
probe: 
 
Umm . . . . it looks like I did the anchor 
facts. Yeah, I see times 2s, times 10s, 
times 5s, 1’s 

Reasoning in interview about fact 
probe: 

“Sometimes if it's a big number times a 
small number, I just switch them. 
Because eight times six is 48. So like, I 
would have it be six times eight.” 

“I know that three times 12 is 36, and 
then six times 12 is 72. Like a double” 
 

On 
Female: Male: 
Reasoning in interview about fact 
probe: 

“I would switch it. That's one of my 
strategies. I'll switch them around if it's 
easier. If it's six times five, I won't do... Or 
no. Five times six, I won't do six of the... 
Or five of the sixes because I know how to 
count by fives better.” 

“So, if I did four times eight, I would do 
16 plus 16.” 

 
48 x 2 
“So this one is kind of easy because eight... 
So I would just drop down eight and eight 
if it was two, and then add that 16 and then 
40 and 40 would be 80. And then I take the 
10 to the 80. And then I add 6 to 90 and it 
gets 96.” 

Reasoning in interview about fact 
probe: 

“Because this is four times if you switch 
it. It could be 4 X 6 and then this is 2 X 
6. So 4 X 6 would be 6 + 6 is 12 and then 
another 6 + 6 is 12. And then if you add 
those 12s together, it's 24.” 

“Oh, you take it apart, so yes. So if you 
use 11 + ... Oh wait, no. I was going to 
say 11 + 3, but that's not adding. If you 
use 11 X 3, so you have to add three 1s 
and three 10s.” 

 

Approaching: continued on next page 
Female: Male: 
Reasoning in interview about fact 
probe: 
9 GA: Okay. So I only did the ones that 
were easy for me. 
Speaker 1: Okay. And what are you 
noticing about the ones that were easy for 
you? 

Reasoning in interview about fact 
probe: 

“First, I know this two times nine, then 
I'll know four times nine. So, two times 
seven. It'll help two times seven because 
you count two more.” 
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9 GA: Twos a lot. 
Speaker 1: Twos a lot. What else are you 
noticing? 
9 GA: Tens. 
Speaker 1: Tens. So what do we call those? 
Twos, tens? I'm seeing- 
9 GA: Fives. 
Speaker 1: Fives. I see ones. 
9 GA: Ones. 
Speaker 1: What do we call ones, twos, 
fives, and tens? 
9 GA: Anchors facts. 

“So six times two is 12, and then I would 
do that again. And then six times four 
would be 24” 

“If I got 3 and then 65, I'll take the three 
and 60 and five ones and 3 ones and then 
I'll put them both together.” 
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